NVPTXAsmPrinter.cpp revision 263508
1//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal representation
11// of machine-dependent LLVM code to NVPTX assembly language.
12//
13//===----------------------------------------------------------------------===//
14
15#include "NVPTXAsmPrinter.h"
16#include "MCTargetDesc/NVPTXMCAsmInfo.h"
17#include "NVPTX.h"
18#include "NVPTXInstrInfo.h"
19#include "NVPTXMCExpr.h"
20#include "NVPTXRegisterInfo.h"
21#include "NVPTXTargetMachine.h"
22#include "NVPTXUtilities.h"
23#include "InstPrinter/NVPTXInstPrinter.h"
24#include "cl_common_defines.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Assembly/Writer.h"
28#include "llvm/CodeGen/Analysis.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/DebugInfo.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/GlobalVariable.h"
36#include "llvm/IR/Module.h"
37#include "llvm/IR/Operator.h"
38#include "llvm/MC/MCStreamer.h"
39#include "llvm/MC/MCSymbol.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/FormattedStream.h"
43#include "llvm/Support/Path.h"
44#include "llvm/Support/TargetRegistry.h"
45#include "llvm/Support/TimeValue.h"
46#include "llvm/Target/Mangler.h"
47#include "llvm/Target/TargetLoweringObjectFile.h"
48#include <sstream>
49using namespace llvm;
50
51#define DEPOTNAME "__local_depot"
52
53static cl::opt<bool>
54EmitLineNumbers("nvptx-emit-line-numbers", cl::Hidden,
55                cl::desc("NVPTX Specific: Emit Line numbers even without -G"),
56                cl::init(true));
57
58static cl::opt<bool>
59InterleaveSrc("nvptx-emit-src", cl::ZeroOrMore, cl::Hidden,
60              cl::desc("NVPTX Specific: Emit source line in ptx file"),
61              cl::init(false));
62
63namespace {
64/// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
65/// depends.
66void DiscoverDependentGlobals(const Value *V,
67                              DenseSet<const GlobalVariable *> &Globals) {
68  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
69    Globals.insert(GV);
70  else {
71    if (const User *U = dyn_cast<User>(V)) {
72      for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
73        DiscoverDependentGlobals(U->getOperand(i), Globals);
74      }
75    }
76  }
77}
78
79/// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
80/// instances to be emitted, but only after any dependents have been added
81/// first.
82void VisitGlobalVariableForEmission(
83    const GlobalVariable *GV, SmallVectorImpl<const GlobalVariable *> &Order,
84    DenseSet<const GlobalVariable *> &Visited,
85    DenseSet<const GlobalVariable *> &Visiting) {
86  // Have we already visited this one?
87  if (Visited.count(GV))
88    return;
89
90  // Do we have a circular dependency?
91  if (Visiting.count(GV))
92    report_fatal_error("Circular dependency found in global variable set");
93
94  // Start visiting this global
95  Visiting.insert(GV);
96
97  // Make sure we visit all dependents first
98  DenseSet<const GlobalVariable *> Others;
99  for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
100    DiscoverDependentGlobals(GV->getOperand(i), Others);
101
102  for (DenseSet<const GlobalVariable *>::iterator I = Others.begin(),
103                                                  E = Others.end();
104       I != E; ++I)
105    VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
106
107  // Now we can visit ourself
108  Order.push_back(GV);
109  Visited.insert(GV);
110  Visiting.erase(GV);
111}
112}
113
114// @TODO: This is a copy from AsmPrinter.cpp.  The function is static, so we
115// cannot just link to the existing version.
116/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
117///
118using namespace nvptx;
119const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) {
120  MCContext &Ctx = AP.OutContext;
121
122  if (CV->isNullValue() || isa<UndefValue>(CV))
123    return MCConstantExpr::Create(0, Ctx);
124
125  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
126    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
127
128  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
129    return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx);
130
131  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
132    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
133
134  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
135  if (CE == 0)
136    llvm_unreachable("Unknown constant value to lower!");
137
138  switch (CE->getOpcode()) {
139  default:
140    // If the code isn't optimized, there may be outstanding folding
141    // opportunities. Attempt to fold the expression using DataLayout as a
142    // last resort before giving up.
143    if (Constant *C = ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
144      if (C != CE)
145        return LowerConstant(C, AP);
146
147    // Otherwise report the problem to the user.
148    {
149      std::string S;
150      raw_string_ostream OS(S);
151      OS << "Unsupported expression in static initializer: ";
152      WriteAsOperand(OS, CE, /*PrintType=*/ false,
153                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
154      report_fatal_error(OS.str());
155    }
156  case Instruction::GetElementPtr: {
157    const DataLayout &TD = *AP.TM.getDataLayout();
158    // Generate a symbolic expression for the byte address
159    APInt OffsetAI(TD.getPointerSizeInBits(), 0);
160    cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
161
162    const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
163    if (!OffsetAI)
164      return Base;
165
166    int64_t Offset = OffsetAI.getSExtValue();
167    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
168                                   Ctx);
169  }
170
171  case Instruction::Trunc:
172    // We emit the value and depend on the assembler to truncate the generated
173    // expression properly.  This is important for differences between
174    // blockaddress labels.  Since the two labels are in the same function, it
175    // is reasonable to treat their delta as a 32-bit value.
176  // FALL THROUGH.
177  case Instruction::BitCast:
178    return LowerConstant(CE->getOperand(0), AP);
179
180  case Instruction::IntToPtr: {
181    const DataLayout &TD = *AP.TM.getDataLayout();
182    // Handle casts to pointers by changing them into casts to the appropriate
183    // integer type.  This promotes constant folding and simplifies this code.
184    Constant *Op = CE->getOperand(0);
185    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
186                                      false /*ZExt*/);
187    return LowerConstant(Op, AP);
188  }
189
190  case Instruction::PtrToInt: {
191    const DataLayout &TD = *AP.TM.getDataLayout();
192    // Support only foldable casts to/from pointers that can be eliminated by
193    // changing the pointer to the appropriately sized integer type.
194    Constant *Op = CE->getOperand(0);
195    Type *Ty = CE->getType();
196
197    const MCExpr *OpExpr = LowerConstant(Op, AP);
198
199    // We can emit the pointer value into this slot if the slot is an
200    // integer slot equal to the size of the pointer.
201    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
202      return OpExpr;
203
204    // Otherwise the pointer is smaller than the resultant integer, mask off
205    // the high bits so we are sure to get a proper truncation if the input is
206    // a constant expr.
207    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
208    const MCExpr *MaskExpr =
209        MCConstantExpr::Create(~0ULL >> (64 - InBits), Ctx);
210    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
211  }
212
213    // The MC library also has a right-shift operator, but it isn't consistently
214  // signed or unsigned between different targets.
215  case Instruction::Add:
216  case Instruction::Sub:
217  case Instruction::Mul:
218  case Instruction::SDiv:
219  case Instruction::SRem:
220  case Instruction::Shl:
221  case Instruction::And:
222  case Instruction::Or:
223  case Instruction::Xor: {
224    const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
225    const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
226    switch (CE->getOpcode()) {
227    default:
228      llvm_unreachable("Unknown binary operator constant cast expr");
229    case Instruction::Add:
230      return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
231    case Instruction::Sub:
232      return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
233    case Instruction::Mul:
234      return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
235    case Instruction::SDiv:
236      return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
237    case Instruction::SRem:
238      return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
239    case Instruction::Shl:
240      return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
241    case Instruction::And:
242      return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
243    case Instruction::Or:
244      return MCBinaryExpr::CreateOr(LHS, RHS, Ctx);
245    case Instruction::Xor:
246      return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
247    }
248  }
249  }
250}
251
252void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI) {
253  if (!EmitLineNumbers)
254    return;
255  if (ignoreLoc(MI))
256    return;
257
258  DebugLoc curLoc = MI.getDebugLoc();
259
260  if (prevDebugLoc.isUnknown() && curLoc.isUnknown())
261    return;
262
263  if (prevDebugLoc == curLoc)
264    return;
265
266  prevDebugLoc = curLoc;
267
268  if (curLoc.isUnknown())
269    return;
270
271  const MachineFunction *MF = MI.getParent()->getParent();
272  //const TargetMachine &TM = MF->getTarget();
273
274  const LLVMContext &ctx = MF->getFunction()->getContext();
275  DIScope Scope(curLoc.getScope(ctx));
276
277  assert((!Scope || Scope.isScope()) &&
278    "Scope of a DebugLoc should be null or a DIScope.");
279  if (!Scope)
280     return;
281
282  StringRef fileName(Scope.getFilename());
283  StringRef dirName(Scope.getDirectory());
284  SmallString<128> FullPathName = dirName;
285  if (!dirName.empty() && !sys::path::is_absolute(fileName)) {
286    sys::path::append(FullPathName, fileName);
287    fileName = FullPathName.str();
288  }
289
290  if (filenameMap.find(fileName.str()) == filenameMap.end())
291    return;
292
293  // Emit the line from the source file.
294  if (InterleaveSrc)
295    this->emitSrcInText(fileName.str(), curLoc.getLine());
296
297  std::stringstream temp;
298  temp << "\t.loc " << filenameMap[fileName.str()] << " " << curLoc.getLine()
299       << " " << curLoc.getCol();
300  OutStreamer.EmitRawText(Twine(temp.str().c_str()));
301}
302
303void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
304  SmallString<128> Str;
305  raw_svector_ostream OS(Str);
306  if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
307    emitLineNumberAsDotLoc(*MI);
308
309  MCInst Inst;
310  lowerToMCInst(MI, Inst);
311  OutStreamer.EmitInstruction(Inst);
312}
313
314void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
315  OutMI.setOpcode(MI->getOpcode());
316
317  // Special: Do not mangle symbol operand of CALL_PROTOTYPE
318  if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) {
319    const MachineOperand &MO = MI->getOperand(0);
320    OutMI.addOperand(GetSymbolRef(MO,
321      OutContext.GetOrCreateSymbol(Twine(MO.getSymbolName()))));
322    return;
323  }
324
325  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
326    const MachineOperand &MO = MI->getOperand(i);
327
328    MCOperand MCOp;
329    if (lowerOperand(MO, MCOp))
330      OutMI.addOperand(MCOp);
331  }
332}
333
334bool NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO,
335                                   MCOperand &MCOp) {
336  switch (MO.getType()) {
337  default: llvm_unreachable("unknown operand type");
338  case MachineOperand::MO_Register:
339    MCOp = MCOperand::CreateReg(encodeVirtualRegister(MO.getReg()));
340    break;
341  case MachineOperand::MO_Immediate:
342    MCOp = MCOperand::CreateImm(MO.getImm());
343    break;
344  case MachineOperand::MO_MachineBasicBlock:
345    MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
346        MO.getMBB()->getSymbol(), OutContext));
347    break;
348  case MachineOperand::MO_ExternalSymbol:
349    MCOp = GetSymbolRef(MO, GetExternalSymbolSymbol(MO.getSymbolName()));
350    break;
351  case MachineOperand::MO_GlobalAddress:
352    MCOp = GetSymbolRef(MO, getSymbol(MO.getGlobal()));
353    break;
354  case MachineOperand::MO_FPImmediate: {
355    const ConstantFP *Cnt = MO.getFPImm();
356    APFloat Val = Cnt->getValueAPF();
357
358    switch (Cnt->getType()->getTypeID()) {
359    default: report_fatal_error("Unsupported FP type"); break;
360    case Type::FloatTyID:
361      MCOp = MCOperand::CreateExpr(
362        NVPTXFloatMCExpr::CreateConstantFPSingle(Val, OutContext));
363      break;
364    case Type::DoubleTyID:
365      MCOp = MCOperand::CreateExpr(
366        NVPTXFloatMCExpr::CreateConstantFPDouble(Val, OutContext));
367      break;
368    }
369    break;
370  }
371  }
372  return true;
373}
374
375unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
376  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
377    const TargetRegisterClass *RC = MRI->getRegClass(Reg);
378
379    DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
380    unsigned RegNum = RegMap[Reg];
381
382    // Encode the register class in the upper 4 bits
383    // Must be kept in sync with NVPTXInstPrinter::printRegName
384    unsigned Ret = 0;
385    if (RC == &NVPTX::Int1RegsRegClass) {
386      Ret = (1 << 28);
387    } else if (RC == &NVPTX::Int16RegsRegClass) {
388      Ret = (2 << 28);
389    } else if (RC == &NVPTX::Int32RegsRegClass) {
390      Ret = (3 << 28);
391    } else if (RC == &NVPTX::Int64RegsRegClass) {
392      Ret = (4 << 28);
393    } else if (RC == &NVPTX::Float32RegsRegClass) {
394      Ret = (5 << 28);
395    } else if (RC == &NVPTX::Float64RegsRegClass) {
396      Ret = (6 << 28);
397    } else {
398      report_fatal_error("Bad register class");
399    }
400
401    // Insert the vreg number
402    Ret |= (RegNum & 0x0FFFFFFF);
403    return Ret;
404  } else {
405    // Some special-use registers are actually physical registers.
406    // Encode this as the register class ID of 0 and the real register ID.
407    return Reg & 0x0FFFFFFF;
408  }
409}
410
411MCOperand NVPTXAsmPrinter::GetSymbolRef(const MachineOperand &MO,
412                                        const MCSymbol *Symbol) {
413  const MCExpr *Expr;
414  Expr = MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_None,
415                                 OutContext);
416  return MCOperand::CreateExpr(Expr);
417}
418
419void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
420  const DataLayout *TD = TM.getDataLayout();
421  const TargetLowering *TLI = TM.getTargetLowering();
422
423  Type *Ty = F->getReturnType();
424
425  bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
426
427  if (Ty->getTypeID() == Type::VoidTyID)
428    return;
429
430  O << " (";
431
432  if (isABI) {
433    if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
434      unsigned size = 0;
435      if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
436        size = ITy->getBitWidth();
437        if (size < 32)
438          size = 32;
439      } else {
440        assert(Ty->isFloatingPointTy() && "Floating point type expected here");
441        size = Ty->getPrimitiveSizeInBits();
442      }
443
444      O << ".param .b" << size << " func_retval0";
445    } else if (isa<PointerType>(Ty)) {
446      O << ".param .b" << TLI->getPointerTy().getSizeInBits()
447        << " func_retval0";
448    } else {
449      if ((Ty->getTypeID() == Type::StructTyID) || isa<VectorType>(Ty)) {
450        SmallVector<EVT, 16> vtparts;
451        ComputeValueVTs(*TLI, Ty, vtparts);
452        unsigned totalsz = 0;
453        for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
454          unsigned elems = 1;
455          EVT elemtype = vtparts[i];
456          if (vtparts[i].isVector()) {
457            elems = vtparts[i].getVectorNumElements();
458            elemtype = vtparts[i].getVectorElementType();
459          }
460          for (unsigned j = 0, je = elems; j != je; ++j) {
461            unsigned sz = elemtype.getSizeInBits();
462            if (elemtype.isInteger() && (sz < 8))
463              sz = 8;
464            totalsz += sz / 8;
465          }
466        }
467        unsigned retAlignment = 0;
468        if (!llvm::getAlign(*F, 0, retAlignment))
469          retAlignment = TD->getABITypeAlignment(Ty);
470        O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
471          << "]";
472      } else
473        assert(false && "Unknown return type");
474    }
475  } else {
476    SmallVector<EVT, 16> vtparts;
477    ComputeValueVTs(*TLI, Ty, vtparts);
478    unsigned idx = 0;
479    for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
480      unsigned elems = 1;
481      EVT elemtype = vtparts[i];
482      if (vtparts[i].isVector()) {
483        elems = vtparts[i].getVectorNumElements();
484        elemtype = vtparts[i].getVectorElementType();
485      }
486
487      for (unsigned j = 0, je = elems; j != je; ++j) {
488        unsigned sz = elemtype.getSizeInBits();
489        if (elemtype.isInteger() && (sz < 32))
490          sz = 32;
491        O << ".reg .b" << sz << " func_retval" << idx;
492        if (j < je - 1)
493          O << ", ";
494        ++idx;
495      }
496      if (i < e - 1)
497        O << ", ";
498    }
499  }
500  O << ") ";
501  return;
502}
503
504void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
505                                        raw_ostream &O) {
506  const Function *F = MF.getFunction();
507  printReturnValStr(F, O);
508}
509
510void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
511  SmallString<128> Str;
512  raw_svector_ostream O(Str);
513
514  if (!GlobalsEmitted) {
515    emitGlobals(*MF->getFunction()->getParent());
516    GlobalsEmitted = true;
517  }
518
519  // Set up
520  MRI = &MF->getRegInfo();
521  F = MF->getFunction();
522  emitLinkageDirective(F, O);
523  if (llvm::isKernelFunction(*F))
524    O << ".entry ";
525  else {
526    O << ".func ";
527    printReturnValStr(*MF, O);
528  }
529
530  O << *CurrentFnSym;
531
532  emitFunctionParamList(*MF, O);
533
534  if (llvm::isKernelFunction(*F))
535    emitKernelFunctionDirectives(*F, O);
536
537  OutStreamer.EmitRawText(O.str());
538
539  prevDebugLoc = DebugLoc();
540}
541
542void NVPTXAsmPrinter::EmitFunctionBodyStart() {
543  VRegMapping.clear();
544  OutStreamer.EmitRawText(StringRef("{\n"));
545  setAndEmitFunctionVirtualRegisters(*MF);
546
547  SmallString<128> Str;
548  raw_svector_ostream O(Str);
549  emitDemotedVars(MF->getFunction(), O);
550  OutStreamer.EmitRawText(O.str());
551}
552
553void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
554  OutStreamer.EmitRawText(StringRef("}\n"));
555  VRegMapping.clear();
556}
557
558void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
559  unsigned RegNo = MI->getOperand(0).getReg();
560  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
561  if (TRI->isVirtualRegister(RegNo)) {
562    OutStreamer.AddComment(Twine("implicit-def: ") +
563                           getVirtualRegisterName(RegNo));
564  } else {
565    OutStreamer.AddComment(Twine("implicit-def: ") +
566                           TM.getRegisterInfo()->getName(RegNo));
567  }
568  OutStreamer.AddBlankLine();
569}
570
571void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
572                                                   raw_ostream &O) const {
573  // If the NVVM IR has some of reqntid* specified, then output
574  // the reqntid directive, and set the unspecified ones to 1.
575  // If none of reqntid* is specified, don't output reqntid directive.
576  unsigned reqntidx, reqntidy, reqntidz;
577  bool specified = false;
578  if (llvm::getReqNTIDx(F, reqntidx) == false)
579    reqntidx = 1;
580  else
581    specified = true;
582  if (llvm::getReqNTIDy(F, reqntidy) == false)
583    reqntidy = 1;
584  else
585    specified = true;
586  if (llvm::getReqNTIDz(F, reqntidz) == false)
587    reqntidz = 1;
588  else
589    specified = true;
590
591  if (specified)
592    O << ".reqntid " << reqntidx << ", " << reqntidy << ", " << reqntidz
593      << "\n";
594
595  // If the NVVM IR has some of maxntid* specified, then output
596  // the maxntid directive, and set the unspecified ones to 1.
597  // If none of maxntid* is specified, don't output maxntid directive.
598  unsigned maxntidx, maxntidy, maxntidz;
599  specified = false;
600  if (llvm::getMaxNTIDx(F, maxntidx) == false)
601    maxntidx = 1;
602  else
603    specified = true;
604  if (llvm::getMaxNTIDy(F, maxntidy) == false)
605    maxntidy = 1;
606  else
607    specified = true;
608  if (llvm::getMaxNTIDz(F, maxntidz) == false)
609    maxntidz = 1;
610  else
611    specified = true;
612
613  if (specified)
614    O << ".maxntid " << maxntidx << ", " << maxntidy << ", " << maxntidz
615      << "\n";
616
617  unsigned mincta;
618  if (llvm::getMinCTASm(F, mincta))
619    O << ".minnctapersm " << mincta << "\n";
620}
621
622std::string
623NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const {
624  const TargetRegisterClass *RC = MRI->getRegClass(Reg);
625
626  std::string Name;
627  raw_string_ostream NameStr(Name);
628
629  VRegRCMap::const_iterator I = VRegMapping.find(RC);
630  assert(I != VRegMapping.end() && "Bad register class");
631  const DenseMap<unsigned, unsigned> &RegMap = I->second;
632
633  VRegMap::const_iterator VI = RegMap.find(Reg);
634  assert(VI != RegMap.end() && "Bad virtual register");
635  unsigned MappedVR = VI->second;
636
637  NameStr << getNVPTXRegClassStr(RC) << MappedVR;
638
639  NameStr.flush();
640  return Name;
641}
642
643void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr,
644                                          raw_ostream &O) {
645  O << getVirtualRegisterName(vr);
646}
647
648void NVPTXAsmPrinter::printVecModifiedImmediate(
649    const MachineOperand &MO, const char *Modifier, raw_ostream &O) {
650  static const char vecelem[] = { '0', '1', '2', '3', '0', '1', '2', '3' };
651  int Imm = (int) MO.getImm();
652  if (0 == strcmp(Modifier, "vecelem"))
653    O << "_" << vecelem[Imm];
654  else if (0 == strcmp(Modifier, "vecv4comm1")) {
655    if ((Imm < 0) || (Imm > 3))
656      O << "//";
657  } else if (0 == strcmp(Modifier, "vecv4comm2")) {
658    if ((Imm < 4) || (Imm > 7))
659      O << "//";
660  } else if (0 == strcmp(Modifier, "vecv4pos")) {
661    if (Imm < 0)
662      Imm = 0;
663    O << "_" << vecelem[Imm % 4];
664  } else if (0 == strcmp(Modifier, "vecv2comm1")) {
665    if ((Imm < 0) || (Imm > 1))
666      O << "//";
667  } else if (0 == strcmp(Modifier, "vecv2comm2")) {
668    if ((Imm < 2) || (Imm > 3))
669      O << "//";
670  } else if (0 == strcmp(Modifier, "vecv2pos")) {
671    if (Imm < 0)
672      Imm = 0;
673    O << "_" << vecelem[Imm % 2];
674  } else
675    llvm_unreachable("Unknown Modifier on immediate operand");
676}
677
678
679
680void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
681
682  emitLinkageDirective(F, O);
683  if (llvm::isKernelFunction(*F))
684    O << ".entry ";
685  else
686    O << ".func ";
687  printReturnValStr(F, O);
688  O << *getSymbol(F) << "\n";
689  emitFunctionParamList(F, O);
690  O << ";\n";
691}
692
693static bool usedInGlobalVarDef(const Constant *C) {
694  if (!C)
695    return false;
696
697  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
698    if (GV->getName().str() == "llvm.used")
699      return false;
700    return true;
701  }
702
703  for (Value::const_use_iterator ui = C->use_begin(), ue = C->use_end();
704       ui != ue; ++ui) {
705    const Constant *C = dyn_cast<Constant>(*ui);
706    if (usedInGlobalVarDef(C))
707      return true;
708  }
709  return false;
710}
711
712static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
713  if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
714    if (othergv->getName().str() == "llvm.used")
715      return true;
716  }
717
718  if (const Instruction *instr = dyn_cast<Instruction>(U)) {
719    if (instr->getParent() && instr->getParent()->getParent()) {
720      const Function *curFunc = instr->getParent()->getParent();
721      if (oneFunc && (curFunc != oneFunc))
722        return false;
723      oneFunc = curFunc;
724      return true;
725    } else
726      return false;
727  }
728
729  if (const MDNode *md = dyn_cast<MDNode>(U))
730    if (md->hasName() && ((md->getName().str() == "llvm.dbg.gv") ||
731                          (md->getName().str() == "llvm.dbg.sp")))
732      return true;
733
734  for (User::const_use_iterator ui = U->use_begin(), ue = U->use_end();
735       ui != ue; ++ui) {
736    if (usedInOneFunc(*ui, oneFunc) == false)
737      return false;
738  }
739  return true;
740}
741
742/* Find out if a global variable can be demoted to local scope.
743 * Currently, this is valid for CUDA shared variables, which have local
744 * scope and global lifetime. So the conditions to check are :
745 * 1. Is the global variable in shared address space?
746 * 2. Does it have internal linkage?
747 * 3. Is the global variable referenced only in one function?
748 */
749static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
750  if (gv->hasInternalLinkage() == false)
751    return false;
752  const PointerType *Pty = gv->getType();
753  if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED)
754    return false;
755
756  const Function *oneFunc = 0;
757
758  bool flag = usedInOneFunc(gv, oneFunc);
759  if (flag == false)
760    return false;
761  if (!oneFunc)
762    return false;
763  f = oneFunc;
764  return true;
765}
766
767static bool useFuncSeen(const Constant *C,
768                        llvm::DenseMap<const Function *, bool> &seenMap) {
769  for (Value::const_use_iterator ui = C->use_begin(), ue = C->use_end();
770       ui != ue; ++ui) {
771    if (const Constant *cu = dyn_cast<Constant>(*ui)) {
772      if (useFuncSeen(cu, seenMap))
773        return true;
774    } else if (const Instruction *I = dyn_cast<Instruction>(*ui)) {
775      const BasicBlock *bb = I->getParent();
776      if (!bb)
777        continue;
778      const Function *caller = bb->getParent();
779      if (!caller)
780        continue;
781      if (seenMap.find(caller) != seenMap.end())
782        return true;
783    }
784  }
785  return false;
786}
787
788void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
789  llvm::DenseMap<const Function *, bool> seenMap;
790  for (Module::const_iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
791    const Function *F = FI;
792
793    if (F->isDeclaration()) {
794      if (F->use_empty())
795        continue;
796      if (F->getIntrinsicID())
797        continue;
798      emitDeclaration(F, O);
799      continue;
800    }
801    for (Value::const_use_iterator iter = F->use_begin(),
802                                   iterEnd = F->use_end();
803         iter != iterEnd; ++iter) {
804      if (const Constant *C = dyn_cast<Constant>(*iter)) {
805        if (usedInGlobalVarDef(C)) {
806          // The use is in the initialization of a global variable
807          // that is a function pointer, so print a declaration
808          // for the original function
809          emitDeclaration(F, O);
810          break;
811        }
812        // Emit a declaration of this function if the function that
813        // uses this constant expr has already been seen.
814        if (useFuncSeen(C, seenMap)) {
815          emitDeclaration(F, O);
816          break;
817        }
818      }
819
820      if (!isa<Instruction>(*iter))
821        continue;
822      const Instruction *instr = cast<Instruction>(*iter);
823      const BasicBlock *bb = instr->getParent();
824      if (!bb)
825        continue;
826      const Function *caller = bb->getParent();
827      if (!caller)
828        continue;
829
830      // If a caller has already been seen, then the caller is
831      // appearing in the module before the callee. so print out
832      // a declaration for the callee.
833      if (seenMap.find(caller) != seenMap.end()) {
834        emitDeclaration(F, O);
835        break;
836      }
837    }
838    seenMap[F] = true;
839  }
840}
841
842void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) {
843  DebugInfoFinder DbgFinder;
844  DbgFinder.processModule(M);
845
846  unsigned i = 1;
847  for (DebugInfoFinder::iterator I = DbgFinder.compile_unit_begin(),
848                                 E = DbgFinder.compile_unit_end();
849       I != E; ++I) {
850    DICompileUnit DIUnit(*I);
851    StringRef Filename(DIUnit.getFilename());
852    StringRef Dirname(DIUnit.getDirectory());
853    SmallString<128> FullPathName = Dirname;
854    if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
855      sys::path::append(FullPathName, Filename);
856      Filename = FullPathName.str();
857    }
858    if (filenameMap.find(Filename.str()) != filenameMap.end())
859      continue;
860    filenameMap[Filename.str()] = i;
861    OutStreamer.EmitDwarfFileDirective(i, "", Filename.str());
862    ++i;
863  }
864
865  for (DebugInfoFinder::iterator I = DbgFinder.subprogram_begin(),
866                                 E = DbgFinder.subprogram_end();
867       I != E; ++I) {
868    DISubprogram SP(*I);
869    StringRef Filename(SP.getFilename());
870    StringRef Dirname(SP.getDirectory());
871    SmallString<128> FullPathName = Dirname;
872    if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
873      sys::path::append(FullPathName, Filename);
874      Filename = FullPathName.str();
875    }
876    if (filenameMap.find(Filename.str()) != filenameMap.end())
877      continue;
878    filenameMap[Filename.str()] = i;
879    ++i;
880  }
881}
882
883bool NVPTXAsmPrinter::doInitialization(Module &M) {
884
885  SmallString<128> Str1;
886  raw_svector_ostream OS1(Str1);
887
888  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
889  MMI->AnalyzeModule(M);
890
891  // We need to call the parent's one explicitly.
892  //bool Result = AsmPrinter::doInitialization(M);
893
894  // Initialize TargetLoweringObjectFile.
895  const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
896      .Initialize(OutContext, TM);
897
898  Mang = new Mangler(&TM);
899
900  // Emit header before any dwarf directives are emitted below.
901  emitHeader(M, OS1);
902  OutStreamer.EmitRawText(OS1.str());
903
904  // Already commented out
905  //bool Result = AsmPrinter::doInitialization(M);
906
907  // Emit module-level inline asm if it exists.
908  if (!M.getModuleInlineAsm().empty()) {
909    OutStreamer.AddComment("Start of file scope inline assembly");
910    OutStreamer.AddBlankLine();
911    OutStreamer.EmitRawText(StringRef(M.getModuleInlineAsm()));
912    OutStreamer.AddBlankLine();
913    OutStreamer.AddComment("End of file scope inline assembly");
914    OutStreamer.AddBlankLine();
915  }
916
917  if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
918    recordAndEmitFilenames(M);
919
920  GlobalsEmitted = false;
921
922  return false; // success
923}
924
925void NVPTXAsmPrinter::emitGlobals(const Module &M) {
926  SmallString<128> Str2;
927  raw_svector_ostream OS2(Str2);
928
929  emitDeclarations(M, OS2);
930
931  // As ptxas does not support forward references of globals, we need to first
932  // sort the list of module-level globals in def-use order. We visit each
933  // global variable in order, and ensure that we emit it *after* its dependent
934  // globals. We use a little extra memory maintaining both a set and a list to
935  // have fast searches while maintaining a strict ordering.
936  SmallVector<const GlobalVariable *, 8> Globals;
937  DenseSet<const GlobalVariable *> GVVisited;
938  DenseSet<const GlobalVariable *> GVVisiting;
939
940  // Visit each global variable, in order
941  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
942       I != E; ++I)
943    VisitGlobalVariableForEmission(I, Globals, GVVisited, GVVisiting);
944
945  assert(GVVisited.size() == M.getGlobalList().size() &&
946         "Missed a global variable");
947  assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
948
949  // Print out module-level global variables in proper order
950  for (unsigned i = 0, e = Globals.size(); i != e; ++i)
951    printModuleLevelGV(Globals[i], OS2);
952
953  OS2 << '\n';
954
955  OutStreamer.EmitRawText(OS2.str());
956}
957
958void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O) {
959  O << "//\n";
960  O << "// Generated by LLVM NVPTX Back-End\n";
961  O << "//\n";
962  O << "\n";
963
964  unsigned PTXVersion = nvptxSubtarget.getPTXVersion();
965  O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
966
967  O << ".target ";
968  O << nvptxSubtarget.getTargetName();
969
970  if (nvptxSubtarget.getDrvInterface() == NVPTX::NVCL)
971    O << ", texmode_independent";
972  if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
973    if (!nvptxSubtarget.hasDouble())
974      O << ", map_f64_to_f32";
975  }
976
977  if (MAI->doesSupportDebugInformation())
978    O << ", debug";
979
980  O << "\n";
981
982  O << ".address_size ";
983  if (nvptxSubtarget.is64Bit())
984    O << "64";
985  else
986    O << "32";
987  O << "\n";
988
989  O << "\n";
990}
991
992bool NVPTXAsmPrinter::doFinalization(Module &M) {
993
994  // If we did not emit any functions, then the global declarations have not
995  // yet been emitted.
996  if (!GlobalsEmitted) {
997    emitGlobals(M);
998    GlobalsEmitted = true;
999  }
1000
1001  // XXX Temproarily remove global variables so that doFinalization() will not
1002  // emit them again (global variables are emitted at beginning).
1003
1004  Module::GlobalListType &global_list = M.getGlobalList();
1005  int i, n = global_list.size();
1006  GlobalVariable **gv_array = new GlobalVariable *[n];
1007
1008  // first, back-up GlobalVariable in gv_array
1009  i = 0;
1010  for (Module::global_iterator I = global_list.begin(), E = global_list.end();
1011       I != E; ++I)
1012    gv_array[i++] = &*I;
1013
1014  // second, empty global_list
1015  while (!global_list.empty())
1016    global_list.remove(global_list.begin());
1017
1018  // call doFinalization
1019  bool ret = AsmPrinter::doFinalization(M);
1020
1021  // now we restore global variables
1022  for (i = 0; i < n; i++)
1023    global_list.insert(global_list.end(), gv_array[i]);
1024
1025  delete[] gv_array;
1026  return ret;
1027
1028  //bool Result = AsmPrinter::doFinalization(M);
1029  // Instead of calling the parents doFinalization, we may
1030  // clone parents doFinalization and customize here.
1031  // Currently, we if NVISA out the EmitGlobals() in
1032  // parent's doFinalization, which is too intrusive.
1033  //
1034  // Same for the doInitialization.
1035  //return Result;
1036}
1037
1038// This function emits appropriate linkage directives for
1039// functions and global variables.
1040//
1041// extern function declaration            -> .extern
1042// extern function definition             -> .visible
1043// external global variable with init     -> .visible
1044// external without init                  -> .extern
1045// appending                              -> not allowed, assert.
1046
1047void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
1048                                           raw_ostream &O) {
1049  if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
1050    if (V->hasExternalLinkage()) {
1051      if (isa<GlobalVariable>(V)) {
1052        const GlobalVariable *GVar = cast<GlobalVariable>(V);
1053        if (GVar) {
1054          if (GVar->hasInitializer())
1055            O << ".visible ";
1056          else
1057            O << ".extern ";
1058        }
1059      } else if (V->isDeclaration())
1060        O << ".extern ";
1061      else
1062        O << ".visible ";
1063    } else if (V->hasAppendingLinkage()) {
1064      std::string msg;
1065      msg.append("Error: ");
1066      msg.append("Symbol ");
1067      if (V->hasName())
1068        msg.append(V->getName().str());
1069      msg.append("has unsupported appending linkage type");
1070      llvm_unreachable(msg.c_str());
1071    }
1072  }
1073}
1074
1075void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
1076                                         raw_ostream &O,
1077                                         bool processDemoted) {
1078
1079  // Skip meta data
1080  if (GVar->hasSection()) {
1081    if (GVar->getSection() == "llvm.metadata")
1082      return;
1083  }
1084
1085  const DataLayout *TD = TM.getDataLayout();
1086
1087  // GlobalVariables are always constant pointers themselves.
1088  const PointerType *PTy = GVar->getType();
1089  Type *ETy = PTy->getElementType();
1090
1091  if (GVar->hasExternalLinkage()) {
1092    if (GVar->hasInitializer())
1093      O << ".visible ";
1094    else
1095      O << ".extern ";
1096  }
1097
1098  if (llvm::isTexture(*GVar)) {
1099    O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n";
1100    return;
1101  }
1102
1103  if (llvm::isSurface(*GVar)) {
1104    O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n";
1105    return;
1106  }
1107
1108  if (GVar->isDeclaration()) {
1109    // (extern) declarations, no definition or initializer
1110    // Currently the only known declaration is for an automatic __local
1111    // (.shared) promoted to global.
1112    emitPTXGlobalVariable(GVar, O);
1113    O << ";\n";
1114    return;
1115  }
1116
1117  if (llvm::isSampler(*GVar)) {
1118    O << ".global .samplerref " << llvm::getSamplerName(*GVar);
1119
1120    const Constant *Initializer = NULL;
1121    if (GVar->hasInitializer())
1122      Initializer = GVar->getInitializer();
1123    const ConstantInt *CI = NULL;
1124    if (Initializer)
1125      CI = dyn_cast<ConstantInt>(Initializer);
1126    if (CI) {
1127      unsigned sample = CI->getZExtValue();
1128
1129      O << " = { ";
1130
1131      for (int i = 0,
1132               addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
1133           i < 3; i++) {
1134        O << "addr_mode_" << i << " = ";
1135        switch (addr) {
1136        case 0:
1137          O << "wrap";
1138          break;
1139        case 1:
1140          O << "clamp_to_border";
1141          break;
1142        case 2:
1143          O << "clamp_to_edge";
1144          break;
1145        case 3:
1146          O << "wrap";
1147          break;
1148        case 4:
1149          O << "mirror";
1150          break;
1151        }
1152        O << ", ";
1153      }
1154      O << "filter_mode = ";
1155      switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
1156      case 0:
1157        O << "nearest";
1158        break;
1159      case 1:
1160        O << "linear";
1161        break;
1162      case 2:
1163        assert(0 && "Anisotropic filtering is not supported");
1164      default:
1165        O << "nearest";
1166        break;
1167      }
1168      if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
1169        O << ", force_unnormalized_coords = 1";
1170      }
1171      O << " }";
1172    }
1173
1174    O << ";\n";
1175    return;
1176  }
1177
1178  if (GVar->hasPrivateLinkage()) {
1179
1180    if (!strncmp(GVar->getName().data(), "unrollpragma", 12))
1181      return;
1182
1183    // FIXME - need better way (e.g. Metadata) to avoid generating this global
1184    if (!strncmp(GVar->getName().data(), "filename", 8))
1185      return;
1186    if (GVar->use_empty())
1187      return;
1188  }
1189
1190  const Function *demotedFunc = 0;
1191  if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
1192    O << "// " << GVar->getName().str() << " has been demoted\n";
1193    if (localDecls.find(demotedFunc) != localDecls.end())
1194      localDecls[demotedFunc].push_back(GVar);
1195    else {
1196      std::vector<const GlobalVariable *> temp;
1197      temp.push_back(GVar);
1198      localDecls[demotedFunc] = temp;
1199    }
1200    return;
1201  }
1202
1203  O << ".";
1204  emitPTXAddressSpace(PTy->getAddressSpace(), O);
1205  if (GVar->getAlignment() == 0)
1206    O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
1207  else
1208    O << " .align " << GVar->getAlignment();
1209
1210  if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
1211    O << " .";
1212    // Special case: ABI requires that we use .u8 for predicates
1213    if (ETy->isIntegerTy(1))
1214      O << "u8";
1215    else
1216      O << getPTXFundamentalTypeStr(ETy, false);
1217    O << " ";
1218    O << *getSymbol(GVar);
1219
1220    // Ptx allows variable initilization only for constant and global state
1221    // spaces.
1222    if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
1223         (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) &&
1224        GVar->hasInitializer()) {
1225      const Constant *Initializer = GVar->getInitializer();
1226      if (!Initializer->isNullValue()) {
1227        O << " = ";
1228        printScalarConstant(Initializer, O);
1229      }
1230    }
1231  } else {
1232    unsigned int ElementSize = 0;
1233
1234    // Although PTX has direct support for struct type and array type and
1235    // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
1236    // targets that support these high level field accesses. Structs, arrays
1237    // and vectors are lowered into arrays of bytes.
1238    switch (ETy->getTypeID()) {
1239    case Type::StructTyID:
1240    case Type::ArrayTyID:
1241    case Type::VectorTyID:
1242      ElementSize = TD->getTypeStoreSize(ETy);
1243      // Ptx allows variable initilization only for constant and
1244      // global state spaces.
1245      if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
1246           (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) &&
1247          GVar->hasInitializer()) {
1248        const Constant *Initializer = GVar->getInitializer();
1249        if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
1250          AggBuffer aggBuffer(ElementSize, O, *this);
1251          bufferAggregateConstant(Initializer, &aggBuffer);
1252          if (aggBuffer.numSymbols) {
1253            if (nvptxSubtarget.is64Bit()) {
1254              O << " .u64 " << *getSymbol(GVar) << "[";
1255              O << ElementSize / 8;
1256            } else {
1257              O << " .u32 " << *getSymbol(GVar) << "[";
1258              O << ElementSize / 4;
1259            }
1260            O << "]";
1261          } else {
1262            O << " .b8 " << *getSymbol(GVar) << "[";
1263            O << ElementSize;
1264            O << "]";
1265          }
1266          O << " = {";
1267          aggBuffer.print();
1268          O << "}";
1269        } else {
1270          O << " .b8 " << *getSymbol(GVar);
1271          if (ElementSize) {
1272            O << "[";
1273            O << ElementSize;
1274            O << "]";
1275          }
1276        }
1277      } else {
1278        O << " .b8 " << *getSymbol(GVar);
1279        if (ElementSize) {
1280          O << "[";
1281          O << ElementSize;
1282          O << "]";
1283        }
1284      }
1285      break;
1286    default:
1287      assert(0 && "type not supported yet");
1288    }
1289
1290  }
1291  O << ";\n";
1292}
1293
1294void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
1295  if (localDecls.find(f) == localDecls.end())
1296    return;
1297
1298  std::vector<const GlobalVariable *> &gvars = localDecls[f];
1299
1300  for (unsigned i = 0, e = gvars.size(); i != e; ++i) {
1301    O << "\t// demoted variable\n\t";
1302    printModuleLevelGV(gvars[i], O, true);
1303  }
1304}
1305
1306void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
1307                                          raw_ostream &O) const {
1308  switch (AddressSpace) {
1309  case llvm::ADDRESS_SPACE_LOCAL:
1310    O << "local";
1311    break;
1312  case llvm::ADDRESS_SPACE_GLOBAL:
1313    O << "global";
1314    break;
1315  case llvm::ADDRESS_SPACE_CONST:
1316    O << "const";
1317    break;
1318  case llvm::ADDRESS_SPACE_SHARED:
1319    O << "shared";
1320    break;
1321  default:
1322    report_fatal_error("Bad address space found while emitting PTX");
1323    break;
1324  }
1325}
1326
1327std::string
1328NVPTXAsmPrinter::getPTXFundamentalTypeStr(const Type *Ty, bool useB4PTR) const {
1329  switch (Ty->getTypeID()) {
1330  default:
1331    llvm_unreachable("unexpected type");
1332    break;
1333  case Type::IntegerTyID: {
1334    unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
1335    if (NumBits == 1)
1336      return "pred";
1337    else if (NumBits <= 64) {
1338      std::string name = "u";
1339      return name + utostr(NumBits);
1340    } else {
1341      llvm_unreachable("Integer too large");
1342      break;
1343    }
1344    break;
1345  }
1346  case Type::FloatTyID:
1347    return "f32";
1348  case Type::DoubleTyID:
1349    return "f64";
1350  case Type::PointerTyID:
1351    if (nvptxSubtarget.is64Bit())
1352      if (useB4PTR)
1353        return "b64";
1354      else
1355        return "u64";
1356    else if (useB4PTR)
1357      return "b32";
1358    else
1359      return "u32";
1360  }
1361  llvm_unreachable("unexpected type");
1362  return NULL;
1363}
1364
1365void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
1366                                            raw_ostream &O) {
1367
1368  const DataLayout *TD = TM.getDataLayout();
1369
1370  // GlobalVariables are always constant pointers themselves.
1371  const PointerType *PTy = GVar->getType();
1372  Type *ETy = PTy->getElementType();
1373
1374  O << ".";
1375  emitPTXAddressSpace(PTy->getAddressSpace(), O);
1376  if (GVar->getAlignment() == 0)
1377    O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
1378  else
1379    O << " .align " << GVar->getAlignment();
1380
1381  if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
1382    O << " .";
1383    O << getPTXFundamentalTypeStr(ETy);
1384    O << " ";
1385    O << *getSymbol(GVar);
1386    return;
1387  }
1388
1389  int64_t ElementSize = 0;
1390
1391  // Although PTX has direct support for struct type and array type and LLVM IR
1392  // is very similar to PTX, the LLVM CodeGen does not support for targets that
1393  // support these high level field accesses. Structs and arrays are lowered
1394  // into arrays of bytes.
1395  switch (ETy->getTypeID()) {
1396  case Type::StructTyID:
1397  case Type::ArrayTyID:
1398  case Type::VectorTyID:
1399    ElementSize = TD->getTypeStoreSize(ETy);
1400    O << " .b8 " << *getSymbol(GVar) << "[";
1401    if (ElementSize) {
1402      O << itostr(ElementSize);
1403    }
1404    O << "]";
1405    break;
1406  default:
1407    assert(0 && "type not supported yet");
1408  }
1409  return;
1410}
1411
1412static unsigned int getOpenCLAlignment(const DataLayout *TD, Type *Ty) {
1413  if (Ty->isPrimitiveType() || Ty->isIntegerTy() || isa<PointerType>(Ty))
1414    return TD->getPrefTypeAlignment(Ty);
1415
1416  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1417  if (ATy)
1418    return getOpenCLAlignment(TD, ATy->getElementType());
1419
1420  const VectorType *VTy = dyn_cast<VectorType>(Ty);
1421  if (VTy) {
1422    Type *ETy = VTy->getElementType();
1423    unsigned int numE = VTy->getNumElements();
1424    unsigned int alignE = TD->getPrefTypeAlignment(ETy);
1425    if (numE == 3)
1426      return 4 * alignE;
1427    else
1428      return numE * alignE;
1429  }
1430
1431  const StructType *STy = dyn_cast<StructType>(Ty);
1432  if (STy) {
1433    unsigned int alignStruct = 1;
1434    // Go through each element of the struct and find the
1435    // largest alignment.
1436    for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1437      Type *ETy = STy->getElementType(i);
1438      unsigned int align = getOpenCLAlignment(TD, ETy);
1439      if (align > alignStruct)
1440        alignStruct = align;
1441    }
1442    return alignStruct;
1443  }
1444
1445  const FunctionType *FTy = dyn_cast<FunctionType>(Ty);
1446  if (FTy)
1447    return TD->getPointerPrefAlignment();
1448  return TD->getPrefTypeAlignment(Ty);
1449}
1450
1451void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
1452                                     int paramIndex, raw_ostream &O) {
1453  if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
1454      (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA))
1455    O << *getSymbol(I->getParent()) << "_param_" << paramIndex;
1456  else {
1457    std::string argName = I->getName();
1458    const char *p = argName.c_str();
1459    while (*p) {
1460      if (*p == '.')
1461        O << "_";
1462      else
1463        O << *p;
1464      p++;
1465    }
1466  }
1467}
1468
1469void NVPTXAsmPrinter::printParamName(int paramIndex, raw_ostream &O) {
1470  Function::const_arg_iterator I, E;
1471  int i = 0;
1472
1473  if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
1474      (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) {
1475    O << *CurrentFnSym << "_param_" << paramIndex;
1476    return;
1477  }
1478
1479  for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, i++) {
1480    if (i == paramIndex) {
1481      printParamName(I, paramIndex, O);
1482      return;
1483    }
1484  }
1485  llvm_unreachable("paramIndex out of bound");
1486}
1487
1488void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
1489  const DataLayout *TD = TM.getDataLayout();
1490  const AttributeSet &PAL = F->getAttributes();
1491  const TargetLowering *TLI = TM.getTargetLowering();
1492  Function::const_arg_iterator I, E;
1493  unsigned paramIndex = 0;
1494  bool first = true;
1495  bool isKernelFunc = llvm::isKernelFunction(*F);
1496  bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
1497  MVT thePointerTy = TLI->getPointerTy();
1498
1499  O << "(\n";
1500
1501  for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
1502    Type *Ty = I->getType();
1503
1504    if (!first)
1505      O << ",\n";
1506
1507    first = false;
1508
1509    // Handle image/sampler parameters
1510    if (llvm::isSampler(*I) || llvm::isImage(*I)) {
1511      if (llvm::isImage(*I)) {
1512        std::string sname = I->getName();
1513        if (llvm::isImageWriteOnly(*I))
1514          O << "\t.param .surfref " << *getSymbol(F) << "_param_"
1515            << paramIndex;
1516        else // Default image is read_only
1517          O << "\t.param .texref " << *getSymbol(F) << "_param_"
1518            << paramIndex;
1519      } else // Should be llvm::isSampler(*I)
1520        O << "\t.param .samplerref " << *getSymbol(F) << "_param_"
1521          << paramIndex;
1522      continue;
1523    }
1524
1525    if (PAL.hasAttribute(paramIndex + 1, Attribute::ByVal) == false) {
1526      if (Ty->isVectorTy()) {
1527        // Just print .param .b8 .align <a> .param[size];
1528        // <a> = PAL.getparamalignment
1529        // size = typeallocsize of element type
1530        unsigned align = PAL.getParamAlignment(paramIndex + 1);
1531        if (align == 0)
1532          align = TD->getABITypeAlignment(Ty);
1533
1534        unsigned sz = TD->getTypeAllocSize(Ty);
1535        O << "\t.param .align " << align << " .b8 ";
1536        printParamName(I, paramIndex, O);
1537        O << "[" << sz << "]";
1538
1539        continue;
1540      }
1541      // Just a scalar
1542      const PointerType *PTy = dyn_cast<PointerType>(Ty);
1543      if (isKernelFunc) {
1544        if (PTy) {
1545          // Special handling for pointer arguments to kernel
1546          O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
1547
1548          if (nvptxSubtarget.getDrvInterface() != NVPTX::CUDA) {
1549            Type *ETy = PTy->getElementType();
1550            int addrSpace = PTy->getAddressSpace();
1551            switch (addrSpace) {
1552            default:
1553              O << ".ptr ";
1554              break;
1555            case llvm::ADDRESS_SPACE_CONST:
1556              O << ".ptr .const ";
1557              break;
1558            case llvm::ADDRESS_SPACE_SHARED:
1559              O << ".ptr .shared ";
1560              break;
1561            case llvm::ADDRESS_SPACE_GLOBAL:
1562              O << ".ptr .global ";
1563              break;
1564            }
1565            O << ".align " << (int) getOpenCLAlignment(TD, ETy) << " ";
1566          }
1567          printParamName(I, paramIndex, O);
1568          continue;
1569        }
1570
1571        // non-pointer scalar to kernel func
1572        O << "\t.param .";
1573        // Special case: predicate operands become .u8 types
1574        if (Ty->isIntegerTy(1))
1575          O << "u8";
1576        else
1577          O << getPTXFundamentalTypeStr(Ty);
1578        O << " ";
1579        printParamName(I, paramIndex, O);
1580        continue;
1581      }
1582      // Non-kernel function, just print .param .b<size> for ABI
1583      // and .reg .b<size> for non ABY
1584      unsigned sz = 0;
1585      if (isa<IntegerType>(Ty)) {
1586        sz = cast<IntegerType>(Ty)->getBitWidth();
1587        if (sz < 32)
1588          sz = 32;
1589      } else if (isa<PointerType>(Ty))
1590        sz = thePointerTy.getSizeInBits();
1591      else
1592        sz = Ty->getPrimitiveSizeInBits();
1593      if (isABI)
1594        O << "\t.param .b" << sz << " ";
1595      else
1596        O << "\t.reg .b" << sz << " ";
1597      printParamName(I, paramIndex, O);
1598      continue;
1599    }
1600
1601    // param has byVal attribute. So should be a pointer
1602    const PointerType *PTy = dyn_cast<PointerType>(Ty);
1603    assert(PTy && "Param with byval attribute should be a pointer type");
1604    Type *ETy = PTy->getElementType();
1605
1606    if (isABI || isKernelFunc) {
1607      // Just print .param .b8 .align <a> .param[size];
1608      // <a> = PAL.getparamalignment
1609      // size = typeallocsize of element type
1610      unsigned align = PAL.getParamAlignment(paramIndex + 1);
1611      if (align == 0)
1612        align = TD->getABITypeAlignment(ETy);
1613
1614      unsigned sz = TD->getTypeAllocSize(ETy);
1615      O << "\t.param .align " << align << " .b8 ";
1616      printParamName(I, paramIndex, O);
1617      O << "[" << sz << "]";
1618      continue;
1619    } else {
1620      // Split the ETy into constituent parts and
1621      // print .param .b<size> <name> for each part.
1622      // Further, if a part is vector, print the above for
1623      // each vector element.
1624      SmallVector<EVT, 16> vtparts;
1625      ComputeValueVTs(*TLI, ETy, vtparts);
1626      for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
1627        unsigned elems = 1;
1628        EVT elemtype = vtparts[i];
1629        if (vtparts[i].isVector()) {
1630          elems = vtparts[i].getVectorNumElements();
1631          elemtype = vtparts[i].getVectorElementType();
1632        }
1633
1634        for (unsigned j = 0, je = elems; j != je; ++j) {
1635          unsigned sz = elemtype.getSizeInBits();
1636          if (elemtype.isInteger() && (sz < 32))
1637            sz = 32;
1638          O << "\t.reg .b" << sz << " ";
1639          printParamName(I, paramIndex, O);
1640          if (j < je - 1)
1641            O << ",\n";
1642          ++paramIndex;
1643        }
1644        if (i < e - 1)
1645          O << ",\n";
1646      }
1647      --paramIndex;
1648      continue;
1649    }
1650  }
1651
1652  O << "\n)\n";
1653}
1654
1655void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
1656                                            raw_ostream &O) {
1657  const Function *F = MF.getFunction();
1658  emitFunctionParamList(F, O);
1659}
1660
1661void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
1662    const MachineFunction &MF) {
1663  SmallString<128> Str;
1664  raw_svector_ostream O(Str);
1665
1666  // Map the global virtual register number to a register class specific
1667  // virtual register number starting from 1 with that class.
1668  const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
1669  //unsigned numRegClasses = TRI->getNumRegClasses();
1670
1671  // Emit the Fake Stack Object
1672  const MachineFrameInfo *MFI = MF.getFrameInfo();
1673  int NumBytes = (int) MFI->getStackSize();
1674  if (NumBytes) {
1675    O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t" << DEPOTNAME
1676      << getFunctionNumber() << "[" << NumBytes << "];\n";
1677    if (nvptxSubtarget.is64Bit()) {
1678      O << "\t.reg .b64 \t%SP;\n";
1679      O << "\t.reg .b64 \t%SPL;\n";
1680    } else {
1681      O << "\t.reg .b32 \t%SP;\n";
1682      O << "\t.reg .b32 \t%SPL;\n";
1683    }
1684  }
1685
1686  // Go through all virtual registers to establish the mapping between the
1687  // global virtual
1688  // register number and the per class virtual register number.
1689  // We use the per class virtual register number in the ptx output.
1690  unsigned int numVRs = MRI->getNumVirtRegs();
1691  for (unsigned i = 0; i < numVRs; i++) {
1692    unsigned int vr = TRI->index2VirtReg(i);
1693    const TargetRegisterClass *RC = MRI->getRegClass(vr);
1694    DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
1695    int n = regmap.size();
1696    regmap.insert(std::make_pair(vr, n + 1));
1697  }
1698
1699  // Emit register declarations
1700  // @TODO: Extract out the real register usage
1701  // O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
1702  // O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
1703  // O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
1704  // O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
1705  // O << "\t.reg .s64 %rl<" << NVPTXNumRegisters << ">;\n";
1706  // O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
1707  // O << "\t.reg .f64 %fl<" << NVPTXNumRegisters << ">;\n";
1708
1709  // Emit declaration of the virtual registers or 'physical' registers for
1710  // each register class
1711  for (unsigned i=0; i< TRI->getNumRegClasses(); i++) {
1712    const TargetRegisterClass *RC = TRI->getRegClass(i);
1713    DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
1714    std::string rcname = getNVPTXRegClassName(RC);
1715    std::string rcStr = getNVPTXRegClassStr(RC);
1716    int n = regmap.size();
1717
1718    // Only declare those registers that may be used.
1719    if (n) {
1720       O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
1721         << ">;\n";
1722    }
1723  }
1724
1725  OutStreamer.EmitRawText(O.str());
1726}
1727
1728void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
1729  APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
1730  bool ignored;
1731  unsigned int numHex;
1732  const char *lead;
1733
1734  if (Fp->getType()->getTypeID() == Type::FloatTyID) {
1735    numHex = 8;
1736    lead = "0f";
1737    APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &ignored);
1738  } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
1739    numHex = 16;
1740    lead = "0d";
1741    APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
1742  } else
1743    llvm_unreachable("unsupported fp type");
1744
1745  APInt API = APF.bitcastToAPInt();
1746  std::string hexstr(utohexstr(API.getZExtValue()));
1747  O << lead;
1748  if (hexstr.length() < numHex)
1749    O << std::string(numHex - hexstr.length(), '0');
1750  O << utohexstr(API.getZExtValue());
1751}
1752
1753void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
1754  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1755    O << CI->getValue();
1756    return;
1757  }
1758  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
1759    printFPConstant(CFP, O);
1760    return;
1761  }
1762  if (isa<ConstantPointerNull>(CPV)) {
1763    O << "0";
1764    return;
1765  }
1766  if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1767    O << *getSymbol(GVar);
1768    return;
1769  }
1770  if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1771    const Value *v = Cexpr->stripPointerCasts();
1772    if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
1773      O << *getSymbol(GVar);
1774      return;
1775    } else {
1776      O << *LowerConstant(CPV, *this);
1777      return;
1778    }
1779  }
1780  llvm_unreachable("Not scalar type found in printScalarConstant()");
1781}
1782
1783void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
1784                                   AggBuffer *aggBuffer) {
1785
1786  const DataLayout *TD = TM.getDataLayout();
1787
1788  if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
1789    int s = TD->getTypeAllocSize(CPV->getType());
1790    if (s < Bytes)
1791      s = Bytes;
1792    aggBuffer->addZeros(s);
1793    return;
1794  }
1795
1796  unsigned char *ptr;
1797  switch (CPV->getType()->getTypeID()) {
1798
1799  case Type::IntegerTyID: {
1800    const Type *ETy = CPV->getType();
1801    if (ETy == Type::getInt8Ty(CPV->getContext())) {
1802      unsigned char c =
1803          (unsigned char)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
1804      ptr = &c;
1805      aggBuffer->addBytes(ptr, 1, Bytes);
1806    } else if (ETy == Type::getInt16Ty(CPV->getContext())) {
1807      short int16 = (short)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
1808      ptr = (unsigned char *)&int16;
1809      aggBuffer->addBytes(ptr, 2, Bytes);
1810    } else if (ETy == Type::getInt32Ty(CPV->getContext())) {
1811      if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1812        int int32 = (int)(constInt->getZExtValue());
1813        ptr = (unsigned char *)&int32;
1814        aggBuffer->addBytes(ptr, 4, Bytes);
1815        break;
1816      } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1817        if (const ConstantInt *constInt = dyn_cast<ConstantInt>(
1818                ConstantFoldConstantExpression(Cexpr, TD))) {
1819          int int32 = (int)(constInt->getZExtValue());
1820          ptr = (unsigned char *)&int32;
1821          aggBuffer->addBytes(ptr, 4, Bytes);
1822          break;
1823        }
1824        if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1825          Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1826          aggBuffer->addSymbol(v);
1827          aggBuffer->addZeros(4);
1828          break;
1829        }
1830      }
1831      llvm_unreachable("unsupported integer const type");
1832    } else if (ETy == Type::getInt64Ty(CPV->getContext())) {
1833      if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1834        long long int64 = (long long)(constInt->getZExtValue());
1835        ptr = (unsigned char *)&int64;
1836        aggBuffer->addBytes(ptr, 8, Bytes);
1837        break;
1838      } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1839        if (const ConstantInt *constInt = dyn_cast<ConstantInt>(
1840                ConstantFoldConstantExpression(Cexpr, TD))) {
1841          long long int64 = (long long)(constInt->getZExtValue());
1842          ptr = (unsigned char *)&int64;
1843          aggBuffer->addBytes(ptr, 8, Bytes);
1844          break;
1845        }
1846        if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1847          Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1848          aggBuffer->addSymbol(v);
1849          aggBuffer->addZeros(8);
1850          break;
1851        }
1852      }
1853      llvm_unreachable("unsupported integer const type");
1854    } else
1855      llvm_unreachable("unsupported integer const type");
1856    break;
1857  }
1858  case Type::FloatTyID:
1859  case Type::DoubleTyID: {
1860    const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
1861    const Type *Ty = CFP->getType();
1862    if (Ty == Type::getFloatTy(CPV->getContext())) {
1863      float float32 = (float) CFP->getValueAPF().convertToFloat();
1864      ptr = (unsigned char *)&float32;
1865      aggBuffer->addBytes(ptr, 4, Bytes);
1866    } else if (Ty == Type::getDoubleTy(CPV->getContext())) {
1867      double float64 = CFP->getValueAPF().convertToDouble();
1868      ptr = (unsigned char *)&float64;
1869      aggBuffer->addBytes(ptr, 8, Bytes);
1870    } else {
1871      llvm_unreachable("unsupported fp const type");
1872    }
1873    break;
1874  }
1875  case Type::PointerTyID: {
1876    if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1877      aggBuffer->addSymbol(GVar);
1878    } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1879      const Value *v = Cexpr->stripPointerCasts();
1880      aggBuffer->addSymbol(v);
1881    }
1882    unsigned int s = TD->getTypeAllocSize(CPV->getType());
1883    aggBuffer->addZeros(s);
1884    break;
1885  }
1886
1887  case Type::ArrayTyID:
1888  case Type::VectorTyID:
1889  case Type::StructTyID: {
1890    if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV) ||
1891        isa<ConstantStruct>(CPV) || isa<ConstantDataSequential>(CPV)) {
1892      int ElementSize = TD->getTypeAllocSize(CPV->getType());
1893      bufferAggregateConstant(CPV, aggBuffer);
1894      if (Bytes > ElementSize)
1895        aggBuffer->addZeros(Bytes - ElementSize);
1896    } else if (isa<ConstantAggregateZero>(CPV))
1897      aggBuffer->addZeros(Bytes);
1898    else
1899      llvm_unreachable("Unexpected Constant type");
1900    break;
1901  }
1902
1903  default:
1904    llvm_unreachable("unsupported type");
1905  }
1906}
1907
1908void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
1909                                              AggBuffer *aggBuffer) {
1910  const DataLayout *TD = TM.getDataLayout();
1911  int Bytes;
1912
1913  // Old constants
1914  if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
1915    if (CPV->getNumOperands())
1916      for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
1917        bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
1918    return;
1919  }
1920
1921  if (const ConstantDataSequential *CDS =
1922          dyn_cast<ConstantDataSequential>(CPV)) {
1923    if (CDS->getNumElements())
1924      for (unsigned i = 0; i < CDS->getNumElements(); ++i)
1925        bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
1926                     aggBuffer);
1927    return;
1928  }
1929
1930  if (isa<ConstantStruct>(CPV)) {
1931    if (CPV->getNumOperands()) {
1932      StructType *ST = cast<StructType>(CPV->getType());
1933      for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
1934        if (i == (e - 1))
1935          Bytes = TD->getStructLayout(ST)->getElementOffset(0) +
1936                  TD->getTypeAllocSize(ST) -
1937                  TD->getStructLayout(ST)->getElementOffset(i);
1938        else
1939          Bytes = TD->getStructLayout(ST)->getElementOffset(i + 1) -
1940                  TD->getStructLayout(ST)->getElementOffset(i);
1941        bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, aggBuffer);
1942      }
1943    }
1944    return;
1945  }
1946  llvm_unreachable("unsupported constant type in printAggregateConstant()");
1947}
1948
1949// buildTypeNameMap - Run through symbol table looking for type names.
1950//
1951
1952bool NVPTXAsmPrinter::isImageType(const Type *Ty) {
1953
1954  std::map<const Type *, std::string>::iterator PI = TypeNameMap.find(Ty);
1955
1956  if (PI != TypeNameMap.end() && (!PI->second.compare("struct._image1d_t") ||
1957                                  !PI->second.compare("struct._image2d_t") ||
1958                                  !PI->second.compare("struct._image3d_t")))
1959    return true;
1960
1961  return false;
1962}
1963
1964
1965bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI) {
1966  switch (MI.getOpcode()) {
1967  default:
1968    return false;
1969  case NVPTX::CallArgBeginInst:
1970  case NVPTX::CallArgEndInst0:
1971  case NVPTX::CallArgEndInst1:
1972  case NVPTX::CallArgF32:
1973  case NVPTX::CallArgF64:
1974  case NVPTX::CallArgI16:
1975  case NVPTX::CallArgI32:
1976  case NVPTX::CallArgI32imm:
1977  case NVPTX::CallArgI64:
1978  case NVPTX::CallArgParam:
1979  case NVPTX::CallVoidInst:
1980  case NVPTX::CallVoidInstReg:
1981  case NVPTX::Callseq_End:
1982  case NVPTX::CallVoidInstReg64:
1983  case NVPTX::DeclareParamInst:
1984  case NVPTX::DeclareRetMemInst:
1985  case NVPTX::DeclareRetRegInst:
1986  case NVPTX::DeclareRetScalarInst:
1987  case NVPTX::DeclareScalarParamInst:
1988  case NVPTX::DeclareScalarRegInst:
1989  case NVPTX::StoreParamF32:
1990  case NVPTX::StoreParamF64:
1991  case NVPTX::StoreParamI16:
1992  case NVPTX::StoreParamI32:
1993  case NVPTX::StoreParamI64:
1994  case NVPTX::StoreParamI8:
1995  case NVPTX::StoreRetvalF32:
1996  case NVPTX::StoreRetvalF64:
1997  case NVPTX::StoreRetvalI16:
1998  case NVPTX::StoreRetvalI32:
1999  case NVPTX::StoreRetvalI64:
2000  case NVPTX::StoreRetvalI8:
2001  case NVPTX::LastCallArgF32:
2002  case NVPTX::LastCallArgF64:
2003  case NVPTX::LastCallArgI16:
2004  case NVPTX::LastCallArgI32:
2005  case NVPTX::LastCallArgI32imm:
2006  case NVPTX::LastCallArgI64:
2007  case NVPTX::LastCallArgParam:
2008  case NVPTX::LoadParamMemF32:
2009  case NVPTX::LoadParamMemF64:
2010  case NVPTX::LoadParamMemI16:
2011  case NVPTX::LoadParamMemI32:
2012  case NVPTX::LoadParamMemI64:
2013  case NVPTX::LoadParamMemI8:
2014  case NVPTX::PrototypeInst:
2015  case NVPTX::DBG_VALUE:
2016    return true;
2017  }
2018  return false;
2019}
2020
2021/// PrintAsmOperand - Print out an operand for an inline asm expression.
2022///
2023bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
2024                                      unsigned AsmVariant,
2025                                      const char *ExtraCode, raw_ostream &O) {
2026  if (ExtraCode && ExtraCode[0]) {
2027    if (ExtraCode[1] != 0)
2028      return true; // Unknown modifier.
2029
2030    switch (ExtraCode[0]) {
2031    default:
2032      // See if this is a generic print operand
2033      return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
2034    case 'r':
2035      break;
2036    }
2037  }
2038
2039  printOperand(MI, OpNo, O);
2040
2041  return false;
2042}
2043
2044bool NVPTXAsmPrinter::PrintAsmMemoryOperand(
2045    const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant,
2046    const char *ExtraCode, raw_ostream &O) {
2047  if (ExtraCode && ExtraCode[0])
2048    return true; // Unknown modifier
2049
2050  O << '[';
2051  printMemOperand(MI, OpNo, O);
2052  O << ']';
2053
2054  return false;
2055}
2056
2057void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
2058                                   raw_ostream &O, const char *Modifier) {
2059  const MachineOperand &MO = MI->getOperand(opNum);
2060  switch (MO.getType()) {
2061  case MachineOperand::MO_Register:
2062    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
2063      if (MO.getReg() == NVPTX::VRDepot)
2064        O << DEPOTNAME << getFunctionNumber();
2065      else
2066        O << NVPTXInstPrinter::getRegisterName(MO.getReg());
2067    } else {
2068      emitVirtualRegister(MO.getReg(), O);
2069    }
2070    return;
2071
2072  case MachineOperand::MO_Immediate:
2073    if (!Modifier)
2074      O << MO.getImm();
2075    else if (strstr(Modifier, "vec") == Modifier)
2076      printVecModifiedImmediate(MO, Modifier, O);
2077    else
2078      llvm_unreachable(
2079          "Don't know how to handle modifier on immediate operand");
2080    return;
2081
2082  case MachineOperand::MO_FPImmediate:
2083    printFPConstant(MO.getFPImm(), O);
2084    break;
2085
2086  case MachineOperand::MO_GlobalAddress:
2087    O << *getSymbol(MO.getGlobal());
2088    break;
2089
2090  case MachineOperand::MO_ExternalSymbol: {
2091    const char *symbname = MO.getSymbolName();
2092    if (strstr(symbname, ".PARAM") == symbname) {
2093      unsigned index;
2094      sscanf(symbname + 6, "%u[];", &index);
2095      printParamName(index, O);
2096    } else if (strstr(symbname, ".HLPPARAM") == symbname) {
2097      unsigned index;
2098      sscanf(symbname + 9, "%u[];", &index);
2099      O << *CurrentFnSym << "_param_" << index << "_offset";
2100    } else
2101      O << symbname;
2102    break;
2103  }
2104
2105  case MachineOperand::MO_MachineBasicBlock:
2106    O << *MO.getMBB()->getSymbol();
2107    return;
2108
2109  default:
2110    llvm_unreachable("Operand type not supported.");
2111  }
2112}
2113
2114void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
2115                                      raw_ostream &O, const char *Modifier) {
2116  printOperand(MI, opNum, O);
2117
2118  if (Modifier && !strcmp(Modifier, "add")) {
2119    O << ", ";
2120    printOperand(MI, opNum + 1, O);
2121  } else {
2122    if (MI->getOperand(opNum + 1).isImm() &&
2123        MI->getOperand(opNum + 1).getImm() == 0)
2124      return; // don't print ',0' or '+0'
2125    O << "+";
2126    printOperand(MI, opNum + 1, O);
2127  }
2128}
2129
2130
2131// Force static initialization.
2132extern "C" void LLVMInitializeNVPTXBackendAsmPrinter() {
2133  RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
2134  RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
2135}
2136
2137void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) {
2138  std::stringstream temp;
2139  LineReader *reader = this->getReader(filename.str());
2140  temp << "\n//";
2141  temp << filename.str();
2142  temp << ":";
2143  temp << line;
2144  temp << " ";
2145  temp << reader->readLine(line);
2146  temp << "\n";
2147  this->OutStreamer.EmitRawText(Twine(temp.str()));
2148}
2149
2150LineReader *NVPTXAsmPrinter::getReader(std::string filename) {
2151  if (reader == NULL) {
2152    reader = new LineReader(filename);
2153  }
2154
2155  if (reader->fileName() != filename) {
2156    delete reader;
2157    reader = new LineReader(filename);
2158  }
2159
2160  return reader;
2161}
2162
2163std::string LineReader::readLine(unsigned lineNum) {
2164  if (lineNum < theCurLine) {
2165    theCurLine = 0;
2166    fstr.seekg(0, std::ios::beg);
2167  }
2168  while (theCurLine < lineNum) {
2169    fstr.getline(buff, 500);
2170    theCurLine++;
2171  }
2172  return buff;
2173}
2174
2175// Force static initialization.
2176extern "C" void LLVMInitializeNVPTXAsmPrinter() {
2177  RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
2178  RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
2179}
2180