MipsSEISelLowering.cpp revision 263508
1//===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Subclass of MipsTargetLowering specialized for mips32/64.
11//
12//===----------------------------------------------------------------------===//
13#define DEBUG_TYPE "mips-isel"
14#include "MipsSEISelLowering.h"
15#include "MipsRegisterInfo.h"
16#include "MipsTargetMachine.h"
17#include "llvm/CodeGen/MachineInstrBuilder.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/IR/Intrinsics.h"
20#include "llvm/Support/CommandLine.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/raw_ostream.h"
23#include "llvm/Target/TargetInstrInfo.h"
24
25using namespace llvm;
26
27static cl::opt<bool>
28EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
29                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
30
31static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
32                                   cl::desc("Expand double precision loads and "
33                                            "stores to their single precision "
34                                            "counterparts"));
35
36MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM)
37  : MipsTargetLowering(TM) {
38  // Set up the register classes
39  addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
40
41  if (HasMips64)
42    addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
43
44  if (Subtarget->hasDSP() || Subtarget->hasMSA()) {
45    // Expand all truncating stores and extending loads.
46    unsigned FirstVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
47    unsigned LastVT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
48
49    for (unsigned VT0 = FirstVT; VT0 <= LastVT; ++VT0) {
50      for (unsigned VT1 = FirstVT; VT1 <= LastVT; ++VT1)
51        setTruncStoreAction((MVT::SimpleValueType)VT0,
52                            (MVT::SimpleValueType)VT1, Expand);
53
54      setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
55      setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
56      setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT0, Expand);
57    }
58  }
59
60  if (Subtarget->hasDSP()) {
61    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
62
63    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
64      addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
65
66      // Expand all builtin opcodes.
67      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
68        setOperationAction(Opc, VecTys[i], Expand);
69
70      setOperationAction(ISD::ADD, VecTys[i], Legal);
71      setOperationAction(ISD::SUB, VecTys[i], Legal);
72      setOperationAction(ISD::LOAD, VecTys[i], Legal);
73      setOperationAction(ISD::STORE, VecTys[i], Legal);
74      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
75    }
76
77    setTargetDAGCombine(ISD::SHL);
78    setTargetDAGCombine(ISD::SRA);
79    setTargetDAGCombine(ISD::SRL);
80    setTargetDAGCombine(ISD::SETCC);
81    setTargetDAGCombine(ISD::VSELECT);
82  }
83
84  if (Subtarget->hasDSPR2())
85    setOperationAction(ISD::MUL, MVT::v2i16, Legal);
86
87  if (Subtarget->hasMSA()) {
88    addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
89    addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
90    addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
91    addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
92    addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
93    addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
94    addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
95
96    setTargetDAGCombine(ISD::AND);
97    setTargetDAGCombine(ISD::OR);
98    setTargetDAGCombine(ISD::SRA);
99    setTargetDAGCombine(ISD::VSELECT);
100    setTargetDAGCombine(ISD::XOR);
101  }
102
103  if (!Subtarget->mipsSEUsesSoftFloat()) {
104    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
105
106    // When dealing with single precision only, use libcalls
107    if (!Subtarget->isSingleFloat()) {
108      if (Subtarget->isFP64bit())
109        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
110      else
111        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
112    }
113  }
114
115  setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
116  setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
117  setOperationAction(ISD::MULHS,              MVT::i32, Custom);
118  setOperationAction(ISD::MULHU,              MVT::i32, Custom);
119
120  if (HasMips64) {
121    setOperationAction(ISD::MULHS,            MVT::i64, Custom);
122    setOperationAction(ISD::MULHU,            MVT::i64, Custom);
123    setOperationAction(ISD::MUL,              MVT::i64, Custom);
124  }
125
126  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
127  setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
128
129  setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
130  setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
131  setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
132  setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
133  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
134  setOperationAction(ISD::LOAD,               MVT::i32, Custom);
135  setOperationAction(ISD::STORE,              MVT::i32, Custom);
136
137  setTargetDAGCombine(ISD::ADDE);
138  setTargetDAGCombine(ISD::SUBE);
139  setTargetDAGCombine(ISD::MUL);
140
141  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
142  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
143  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
144
145  if (NoDPLoadStore) {
146    setOperationAction(ISD::LOAD, MVT::f64, Custom);
147    setOperationAction(ISD::STORE, MVT::f64, Custom);
148  }
149
150  computeRegisterProperties();
151}
152
153const MipsTargetLowering *
154llvm::createMipsSETargetLowering(MipsTargetMachine &TM) {
155  return new MipsSETargetLowering(TM);
156}
157
158// Enable MSA support for the given integer type and Register class.
159void MipsSETargetLowering::
160addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
161  addRegisterClass(Ty, RC);
162
163  // Expand all builtin opcodes.
164  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
165    setOperationAction(Opc, Ty, Expand);
166
167  setOperationAction(ISD::BITCAST, Ty, Legal);
168  setOperationAction(ISD::LOAD, Ty, Legal);
169  setOperationAction(ISD::STORE, Ty, Legal);
170  setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
171  setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
172  setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
173
174  setOperationAction(ISD::ADD, Ty, Legal);
175  setOperationAction(ISD::AND, Ty, Legal);
176  setOperationAction(ISD::CTLZ, Ty, Legal);
177  setOperationAction(ISD::CTPOP, Ty, Legal);
178  setOperationAction(ISD::MUL, Ty, Legal);
179  setOperationAction(ISD::OR, Ty, Legal);
180  setOperationAction(ISD::SDIV, Ty, Legal);
181  setOperationAction(ISD::SREM, Ty, Legal);
182  setOperationAction(ISD::SHL, Ty, Legal);
183  setOperationAction(ISD::SRA, Ty, Legal);
184  setOperationAction(ISD::SRL, Ty, Legal);
185  setOperationAction(ISD::SUB, Ty, Legal);
186  setOperationAction(ISD::UDIV, Ty, Legal);
187  setOperationAction(ISD::UREM, Ty, Legal);
188  setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
189  setOperationAction(ISD::VSELECT, Ty, Legal);
190  setOperationAction(ISD::XOR, Ty, Legal);
191
192  if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
193    setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
194    setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
195    setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
196    setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
197  }
198
199  setOperationAction(ISD::SETCC, Ty, Legal);
200  setCondCodeAction(ISD::SETNE, Ty, Expand);
201  setCondCodeAction(ISD::SETGE, Ty, Expand);
202  setCondCodeAction(ISD::SETGT, Ty, Expand);
203  setCondCodeAction(ISD::SETUGE, Ty, Expand);
204  setCondCodeAction(ISD::SETUGT, Ty, Expand);
205}
206
207// Enable MSA support for the given floating-point type and Register class.
208void MipsSETargetLowering::
209addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
210  addRegisterClass(Ty, RC);
211
212  // Expand all builtin opcodes.
213  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
214    setOperationAction(Opc, Ty, Expand);
215
216  setOperationAction(ISD::LOAD, Ty, Legal);
217  setOperationAction(ISD::STORE, Ty, Legal);
218  setOperationAction(ISD::BITCAST, Ty, Legal);
219  setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
220  setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
221  setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
222
223  if (Ty != MVT::v8f16) {
224    setOperationAction(ISD::FABS,  Ty, Legal);
225    setOperationAction(ISD::FADD,  Ty, Legal);
226    setOperationAction(ISD::FDIV,  Ty, Legal);
227    setOperationAction(ISD::FEXP2, Ty, Legal);
228    setOperationAction(ISD::FLOG2, Ty, Legal);
229    setOperationAction(ISD::FMA,   Ty, Legal);
230    setOperationAction(ISD::FMUL,  Ty, Legal);
231    setOperationAction(ISD::FRINT, Ty, Legal);
232    setOperationAction(ISD::FSQRT, Ty, Legal);
233    setOperationAction(ISD::FSUB,  Ty, Legal);
234    setOperationAction(ISD::VSELECT, Ty, Legal);
235
236    setOperationAction(ISD::SETCC, Ty, Legal);
237    setCondCodeAction(ISD::SETOGE, Ty, Expand);
238    setCondCodeAction(ISD::SETOGT, Ty, Expand);
239    setCondCodeAction(ISD::SETUGE, Ty, Expand);
240    setCondCodeAction(ISD::SETUGT, Ty, Expand);
241    setCondCodeAction(ISD::SETGE,  Ty, Expand);
242    setCondCodeAction(ISD::SETGT,  Ty, Expand);
243  }
244}
245
246bool
247MipsSETargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
248  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
249
250  switch (SVT) {
251  case MVT::i64:
252  case MVT::i32:
253    if (Fast)
254      *Fast = true;
255    return true;
256  default:
257    return false;
258  }
259}
260
261SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
262                                             SelectionDAG &DAG) const {
263  switch(Op.getOpcode()) {
264  case ISD::LOAD:  return lowerLOAD(Op, DAG);
265  case ISD::STORE: return lowerSTORE(Op, DAG);
266  case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
267  case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
268  case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
269  case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
270  case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
271  case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
272  case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
273                                          DAG);
274  case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
275  case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
276  case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
277  case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
278  case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
279  case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
280  }
281
282  return MipsTargetLowering::LowerOperation(Op, DAG);
283}
284
285// selectMADD -
286// Transforms a subgraph in CurDAG if the following pattern is found:
287//  (addc multLo, Lo0), (adde multHi, Hi0),
288// where,
289//  multHi/Lo: product of multiplication
290//  Lo0: initial value of Lo register
291//  Hi0: initial value of Hi register
292// Return true if pattern matching was successful.
293static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
294  // ADDENode's second operand must be a flag output of an ADDC node in order
295  // for the matching to be successful.
296  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
297
298  if (ADDCNode->getOpcode() != ISD::ADDC)
299    return false;
300
301  SDValue MultHi = ADDENode->getOperand(0);
302  SDValue MultLo = ADDCNode->getOperand(0);
303  SDNode *MultNode = MultHi.getNode();
304  unsigned MultOpc = MultHi.getOpcode();
305
306  // MultHi and MultLo must be generated by the same node,
307  if (MultLo.getNode() != MultNode)
308    return false;
309
310  // and it must be a multiplication.
311  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
312    return false;
313
314  // MultLo amd MultHi must be the first and second output of MultNode
315  // respectively.
316  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
317    return false;
318
319  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
320  // of the values of MultNode, in which case MultNode will be removed in later
321  // phases.
322  // If there exist users other than ADDENode or ADDCNode, this function returns
323  // here, which will result in MultNode being mapped to a single MULT
324  // instruction node rather than a pair of MULT and MADD instructions being
325  // produced.
326  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
327    return false;
328
329  SDLoc DL(ADDENode);
330
331  // Initialize accumulator.
332  SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
333                                  ADDCNode->getOperand(1),
334                                  ADDENode->getOperand(1));
335
336  // create MipsMAdd(u) node
337  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
338
339  SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
340                                 MultNode->getOperand(0),// Factor 0
341                                 MultNode->getOperand(1),// Factor 1
342                                 ACCIn);
343
344  // replace uses of adde and addc here
345  if (!SDValue(ADDCNode, 0).use_empty()) {
346    SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
347    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
348  }
349  if (!SDValue(ADDENode, 0).use_empty()) {
350    SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
351    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
352  }
353
354  return true;
355}
356
357// selectMSUB -
358// Transforms a subgraph in CurDAG if the following pattern is found:
359//  (addc Lo0, multLo), (sube Hi0, multHi),
360// where,
361//  multHi/Lo: product of multiplication
362//  Lo0: initial value of Lo register
363//  Hi0: initial value of Hi register
364// Return true if pattern matching was successful.
365static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
366  // SUBENode's second operand must be a flag output of an SUBC node in order
367  // for the matching to be successful.
368  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
369
370  if (SUBCNode->getOpcode() != ISD::SUBC)
371    return false;
372
373  SDValue MultHi = SUBENode->getOperand(1);
374  SDValue MultLo = SUBCNode->getOperand(1);
375  SDNode *MultNode = MultHi.getNode();
376  unsigned MultOpc = MultHi.getOpcode();
377
378  // MultHi and MultLo must be generated by the same node,
379  if (MultLo.getNode() != MultNode)
380    return false;
381
382  // and it must be a multiplication.
383  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
384    return false;
385
386  // MultLo amd MultHi must be the first and second output of MultNode
387  // respectively.
388  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
389    return false;
390
391  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
392  // of the values of MultNode, in which case MultNode will be removed in later
393  // phases.
394  // If there exist users other than SUBENode or SUBCNode, this function returns
395  // here, which will result in MultNode being mapped to a single MULT
396  // instruction node rather than a pair of MULT and MSUB instructions being
397  // produced.
398  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
399    return false;
400
401  SDLoc DL(SUBENode);
402
403  // Initialize accumulator.
404  SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
405                                  SUBCNode->getOperand(0),
406                                  SUBENode->getOperand(0));
407
408  // create MipsSub(u) node
409  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
410
411  SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
412                                 MultNode->getOperand(0),// Factor 0
413                                 MultNode->getOperand(1),// Factor 1
414                                 ACCIn);
415
416  // replace uses of sube and subc here
417  if (!SDValue(SUBCNode, 0).use_empty()) {
418    SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MSub);
419    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
420  }
421  if (!SDValue(SUBENode, 0).use_empty()) {
422    SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MSub);
423    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
424  }
425
426  return true;
427}
428
429static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
430                                  TargetLowering::DAGCombinerInfo &DCI,
431                                  const MipsSubtarget *Subtarget) {
432  if (DCI.isBeforeLegalize())
433    return SDValue();
434
435  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
436      selectMADD(N, &DAG))
437    return SDValue(N, 0);
438
439  return SDValue();
440}
441
442// Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
443//
444// Performs the following transformations:
445// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
446//   sign/zero-extension is completely overwritten by the new one performed by
447//   the ISD::AND.
448// - Removes redundant zero extensions performed by an ISD::AND.
449static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
450                                 TargetLowering::DAGCombinerInfo &DCI,
451                                 const MipsSubtarget *Subtarget) {
452  if (!Subtarget->hasMSA())
453    return SDValue();
454
455  SDValue Op0 = N->getOperand(0);
456  SDValue Op1 = N->getOperand(1);
457  unsigned Op0Opcode = Op0->getOpcode();
458
459  // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
460  // where $d + 1 == 2^n and n == 32
461  // or    $d + 1 == 2^n and n <= 32 and ZExt
462  // -> (MipsVExtractZExt $a, $b, $c)
463  if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
464      Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
465    ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
466
467    if (!Mask)
468      return SDValue();
469
470    int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
471
472    if (Log2IfPositive <= 0)
473      return SDValue(); // Mask+1 is not a power of 2
474
475    SDValue Op0Op2 = Op0->getOperand(2);
476    EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
477    unsigned ExtendTySize = ExtendTy.getSizeInBits();
478    unsigned Log2 = Log2IfPositive;
479
480    if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
481        Log2 == ExtendTySize) {
482      SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
483      DAG.MorphNodeTo(Op0.getNode(), MipsISD::VEXTRACT_ZEXT_ELT,
484                      Op0->getVTList(), Ops, Op0->getNumOperands());
485      return Op0;
486    }
487  }
488
489  return SDValue();
490}
491
492// Determine if the specified node is a constant vector splat.
493//
494// Returns true and sets Imm if:
495// * N is a ISD::BUILD_VECTOR representing a constant splat
496//
497// This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
498// differences are that it assumes the MSA has already been checked and the
499// arbitrary requirement for a maximum of 32-bit integers isn't applied (and
500// must not be in order for binsri.d to be selectable).
501static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
502  BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
503
504  if (Node == NULL)
505    return false;
506
507  APInt SplatValue, SplatUndef;
508  unsigned SplatBitSize;
509  bool HasAnyUndefs;
510
511  if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
512                             8, !IsLittleEndian))
513    return false;
514
515  Imm = SplatValue;
516
517  return true;
518}
519
520// Test whether the given node is an all-ones build_vector.
521static bool isVectorAllOnes(SDValue N) {
522  // Look through bitcasts. Endianness doesn't matter because we are looking
523  // for an all-ones value.
524  if (N->getOpcode() == ISD::BITCAST)
525    N = N->getOperand(0);
526
527  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
528
529  if (!BVN)
530    return false;
531
532  APInt SplatValue, SplatUndef;
533  unsigned SplatBitSize;
534  bool HasAnyUndefs;
535
536  // Endianness doesn't matter in this context because we are looking for
537  // an all-ones value.
538  if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
539    return SplatValue.isAllOnesValue();
540
541  return false;
542}
543
544// Test whether N is the bitwise inverse of OfNode.
545static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
546  if (N->getOpcode() != ISD::XOR)
547    return false;
548
549  if (isVectorAllOnes(N->getOperand(0)))
550    return N->getOperand(1) == OfNode;
551
552  if (isVectorAllOnes(N->getOperand(1)))
553    return N->getOperand(0) == OfNode;
554
555  return false;
556}
557
558// Perform combines where ISD::OR is the root node.
559//
560// Performs the following transformations:
561// - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
562//   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
563//   vector type.
564static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
565                                TargetLowering::DAGCombinerInfo &DCI,
566                                const MipsSubtarget *Subtarget) {
567  if (!Subtarget->hasMSA())
568    return SDValue();
569
570  EVT Ty = N->getValueType(0);
571
572  if (!Ty.is128BitVector())
573    return SDValue();
574
575  SDValue Op0 = N->getOperand(0);
576  SDValue Op1 = N->getOperand(1);
577
578  if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
579    SDValue Op0Op0 = Op0->getOperand(0);
580    SDValue Op0Op1 = Op0->getOperand(1);
581    SDValue Op1Op0 = Op1->getOperand(0);
582    SDValue Op1Op1 = Op1->getOperand(1);
583    bool IsLittleEndian = !Subtarget->isLittle();
584
585    SDValue IfSet, IfClr, Cond;
586    bool IsConstantMask = false;
587    APInt Mask, InvMask;
588
589    // If Op0Op0 is an appropriate mask, try to find it's inverse in either
590    // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
591    // looking.
592    // IfClr will be set if we find a valid match.
593    if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
594      Cond = Op0Op0;
595      IfSet = Op0Op1;
596
597      if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
598          Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
599        IfClr = Op1Op1;
600      else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
601               Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
602        IfClr = Op1Op0;
603
604      IsConstantMask = true;
605    }
606
607    // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
608    // thing again using this mask.
609    // IfClr will be set if we find a valid match.
610    if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
611      Cond = Op0Op1;
612      IfSet = Op0Op0;
613
614      if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
615          Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
616        IfClr = Op1Op1;
617      else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
618               Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
619        IfClr = Op1Op0;
620
621      IsConstantMask = true;
622    }
623
624    // If IfClr is not yet set, try looking for a non-constant match.
625    // IfClr will be set if we find a valid match amongst the eight
626    // possibilities.
627    if (!IfClr.getNode()) {
628      if (isBitwiseInverse(Op0Op0, Op1Op0)) {
629        Cond = Op1Op0;
630        IfSet = Op1Op1;
631        IfClr = Op0Op1;
632      } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
633        Cond = Op1Op0;
634        IfSet = Op1Op1;
635        IfClr = Op0Op0;
636      } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
637        Cond = Op1Op1;
638        IfSet = Op1Op0;
639        IfClr = Op0Op1;
640      } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
641        Cond = Op1Op1;
642        IfSet = Op1Op0;
643        IfClr = Op0Op0;
644      } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
645        Cond = Op0Op0;
646        IfSet = Op0Op1;
647        IfClr = Op1Op1;
648      } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
649        Cond = Op0Op0;
650        IfSet = Op0Op1;
651        IfClr = Op1Op0;
652      } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
653        Cond = Op0Op1;
654        IfSet = Op0Op0;
655        IfClr = Op1Op1;
656      } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
657        Cond = Op0Op1;
658        IfSet = Op0Op0;
659        IfClr = Op1Op0;
660      }
661    }
662
663    // At this point, IfClr will be set if we have a valid match.
664    if (!IfClr.getNode())
665      return SDValue();
666
667    assert(Cond.getNode() && IfSet.getNode());
668
669    // Fold degenerate cases.
670    if (IsConstantMask) {
671      if (Mask.isAllOnesValue())
672        return IfSet;
673      else if (Mask == 0)
674        return IfClr;
675    }
676
677    // Transform the DAG into an equivalent VSELECT.
678    return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfClr, IfSet);
679  }
680
681  return SDValue();
682}
683
684static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
685                                  TargetLowering::DAGCombinerInfo &DCI,
686                                  const MipsSubtarget *Subtarget) {
687  if (DCI.isBeforeLegalize())
688    return SDValue();
689
690  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
691      selectMSUB(N, &DAG))
692    return SDValue(N, 0);
693
694  return SDValue();
695}
696
697static SDValue genConstMult(SDValue X, uint64_t C, SDLoc DL, EVT VT,
698                            EVT ShiftTy, SelectionDAG &DAG) {
699  // Clear the upper (64 - VT.sizeInBits) bits.
700  C &= ((uint64_t)-1) >> (64 - VT.getSizeInBits());
701
702  // Return 0.
703  if (C == 0)
704    return DAG.getConstant(0, VT);
705
706  // Return x.
707  if (C == 1)
708    return X;
709
710  // If c is power of 2, return (shl x, log2(c)).
711  if (isPowerOf2_64(C))
712    return DAG.getNode(ISD::SHL, DL, VT, X,
713                       DAG.getConstant(Log2_64(C), ShiftTy));
714
715  unsigned Log2Ceil = Log2_64_Ceil(C);
716  uint64_t Floor = 1LL << Log2_64(C);
717  uint64_t Ceil = Log2Ceil == 64 ? 0LL : 1LL << Log2Ceil;
718
719  // If |c - floor_c| <= |c - ceil_c|,
720  // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
721  // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
722  if (C - Floor <= Ceil - C) {
723    SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
724    SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
725    return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
726  }
727
728  // If |c - floor_c| > |c - ceil_c|,
729  // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
730  SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
731  SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
732  return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
733}
734
735static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
736                                 const TargetLowering::DAGCombinerInfo &DCI,
737                                 const MipsSETargetLowering *TL) {
738  EVT VT = N->getValueType(0);
739
740  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
741    if (!VT.isVector())
742      return genConstMult(N->getOperand(0), C->getZExtValue(), SDLoc(N),
743                          VT, TL->getScalarShiftAmountTy(VT), DAG);
744
745  return SDValue(N, 0);
746}
747
748static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
749                                      SelectionDAG &DAG,
750                                      const MipsSubtarget *Subtarget) {
751  // See if this is a vector splat immediate node.
752  APInt SplatValue, SplatUndef;
753  unsigned SplatBitSize;
754  bool HasAnyUndefs;
755  unsigned EltSize = Ty.getVectorElementType().getSizeInBits();
756  BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
757
758  if (!Subtarget->hasDSP())
759    return SDValue();
760
761  if (!BV ||
762      !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
763                           EltSize, !Subtarget->isLittle()) ||
764      (SplatBitSize != EltSize) ||
765      (SplatValue.getZExtValue() >= EltSize))
766    return SDValue();
767
768  return DAG.getNode(Opc, SDLoc(N), Ty, N->getOperand(0),
769                     DAG.getConstant(SplatValue.getZExtValue(), MVT::i32));
770}
771
772static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
773                                 TargetLowering::DAGCombinerInfo &DCI,
774                                 const MipsSubtarget *Subtarget) {
775  EVT Ty = N->getValueType(0);
776
777  if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
778    return SDValue();
779
780  return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
781}
782
783// Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
784// constant splats into MipsISD::SHRA_DSP for DSPr2.
785//
786// Performs the following transformations:
787// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
788//   sign/zero-extension is completely overwritten by the new one performed by
789//   the ISD::SRA and ISD::SHL nodes.
790// - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
791//   sequence.
792//
793// See performDSPShiftCombine for more information about the transformation
794// used for DSPr2.
795static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
796                                 TargetLowering::DAGCombinerInfo &DCI,
797                                 const MipsSubtarget *Subtarget) {
798  EVT Ty = N->getValueType(0);
799
800  if (Subtarget->hasMSA()) {
801    SDValue Op0 = N->getOperand(0);
802    SDValue Op1 = N->getOperand(1);
803
804    // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
805    // where $d + sizeof($c) == 32
806    // or    $d + sizeof($c) <= 32 and SExt
807    // -> (MipsVExtractSExt $a, $b, $c)
808    if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
809      SDValue Op0Op0 = Op0->getOperand(0);
810      ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
811
812      if (!ShAmount)
813        return SDValue();
814
815      if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
816          Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
817        return SDValue();
818
819      EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
820      unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
821
822      if (TotalBits == 32 ||
823          (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
824           TotalBits <= 32)) {
825        SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
826                          Op0Op0->getOperand(2) };
827        DAG.MorphNodeTo(Op0Op0.getNode(), MipsISD::VEXTRACT_SEXT_ELT,
828                        Op0Op0->getVTList(), Ops, Op0Op0->getNumOperands());
829        return Op0Op0;
830      }
831    }
832  }
833
834  if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget->hasDSPR2()))
835    return SDValue();
836
837  return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
838}
839
840
841static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
842                                 TargetLowering::DAGCombinerInfo &DCI,
843                                 const MipsSubtarget *Subtarget) {
844  EVT Ty = N->getValueType(0);
845
846  if (((Ty != MVT::v2i16) || !Subtarget->hasDSPR2()) && (Ty != MVT::v4i8))
847    return SDValue();
848
849  return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
850}
851
852static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
853  bool IsV216 = (Ty == MVT::v2i16);
854
855  switch (CC) {
856  case ISD::SETEQ:
857  case ISD::SETNE:  return true;
858  case ISD::SETLT:
859  case ISD::SETLE:
860  case ISD::SETGT:
861  case ISD::SETGE:  return IsV216;
862  case ISD::SETULT:
863  case ISD::SETULE:
864  case ISD::SETUGT:
865  case ISD::SETUGE: return !IsV216;
866  default:          return false;
867  }
868}
869
870static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
871  EVT Ty = N->getValueType(0);
872
873  if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
874    return SDValue();
875
876  if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
877    return SDValue();
878
879  return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
880                     N->getOperand(1), N->getOperand(2));
881}
882
883static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
884  EVT Ty = N->getValueType(0);
885
886  if (Ty.is128BitVector() && Ty.isInteger()) {
887    // Try the following combines:
888    //   (vselect (setcc $a, $b, SETLT), $b, $a)) -> (vsmax $a, $b)
889    //   (vselect (setcc $a, $b, SETLE), $b, $a)) -> (vsmax $a, $b)
890    //   (vselect (setcc $a, $b, SETLT), $a, $b)) -> (vsmin $a, $b)
891    //   (vselect (setcc $a, $b, SETLE), $a, $b)) -> (vsmin $a, $b)
892    //   (vselect (setcc $a, $b, SETULT), $b, $a)) -> (vumax $a, $b)
893    //   (vselect (setcc $a, $b, SETULE), $b, $a)) -> (vumax $a, $b)
894    //   (vselect (setcc $a, $b, SETULT), $a, $b)) -> (vumin $a, $b)
895    //   (vselect (setcc $a, $b, SETULE), $a, $b)) -> (vumin $a, $b)
896    // SETGT/SETGE/SETUGT/SETUGE variants of these will show up initially but
897    // will be expanded to equivalent SETLT/SETLE/SETULT/SETULE versions by the
898    // legalizer.
899    SDValue Op0 = N->getOperand(0);
900
901    if (Op0->getOpcode() != ISD::SETCC)
902      return SDValue();
903
904    ISD::CondCode CondCode = cast<CondCodeSDNode>(Op0->getOperand(2))->get();
905    bool Signed;
906
907    if (CondCode == ISD::SETLT  || CondCode == ISD::SETLE)
908      Signed = true;
909    else if (CondCode == ISD::SETULT || CondCode == ISD::SETULE)
910      Signed = false;
911    else
912      return SDValue();
913
914    SDValue Op1 = N->getOperand(1);
915    SDValue Op2 = N->getOperand(2);
916    SDValue Op0Op0 = Op0->getOperand(0);
917    SDValue Op0Op1 = Op0->getOperand(1);
918
919    if (Op1 == Op0Op0 && Op2 == Op0Op1)
920      return DAG.getNode(Signed ? MipsISD::VSMIN : MipsISD::VUMIN, SDLoc(N),
921                         Ty, Op1, Op2);
922    else if (Op1 == Op0Op1 && Op2 == Op0Op0)
923      return DAG.getNode(Signed ? MipsISD::VSMAX : MipsISD::VUMAX, SDLoc(N),
924                         Ty, Op1, Op2);
925  } else if ((Ty == MVT::v2i16) || (Ty == MVT::v4i8)) {
926    SDValue SetCC = N->getOperand(0);
927
928    if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
929      return SDValue();
930
931    return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
932                       SetCC.getOperand(0), SetCC.getOperand(1),
933                       N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
934  }
935
936  return SDValue();
937}
938
939static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
940                                 const MipsSubtarget *Subtarget) {
941  EVT Ty = N->getValueType(0);
942
943  if (Subtarget->hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
944    // Try the following combines:
945    //   (xor (or $a, $b), (build_vector allones))
946    //   (xor (or $a, $b), (bitcast (build_vector allones)))
947    SDValue Op0 = N->getOperand(0);
948    SDValue Op1 = N->getOperand(1);
949    SDValue NotOp;
950
951    if (ISD::isBuildVectorAllOnes(Op0.getNode()))
952      NotOp = Op1;
953    else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
954      NotOp = Op0;
955    else
956      return SDValue();
957
958    if (NotOp->getOpcode() == ISD::OR)
959      return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
960                         NotOp->getOperand(1));
961  }
962
963  return SDValue();
964}
965
966SDValue
967MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
968  SelectionDAG &DAG = DCI.DAG;
969  SDValue Val;
970
971  switch (N->getOpcode()) {
972  case ISD::ADDE:
973    return performADDECombine(N, DAG, DCI, Subtarget);
974  case ISD::AND:
975    Val = performANDCombine(N, DAG, DCI, Subtarget);
976    break;
977  case ISD::OR:
978    Val = performORCombine(N, DAG, DCI, Subtarget);
979    break;
980  case ISD::SUBE:
981    return performSUBECombine(N, DAG, DCI, Subtarget);
982  case ISD::MUL:
983    return performMULCombine(N, DAG, DCI, this);
984  case ISD::SHL:
985    return performSHLCombine(N, DAG, DCI, Subtarget);
986  case ISD::SRA:
987    return performSRACombine(N, DAG, DCI, Subtarget);
988  case ISD::SRL:
989    return performSRLCombine(N, DAG, DCI, Subtarget);
990  case ISD::VSELECT:
991    return performVSELECTCombine(N, DAG);
992  case ISD::XOR:
993    Val = performXORCombine(N, DAG, Subtarget);
994    break;
995  case ISD::SETCC:
996    Val = performSETCCCombine(N, DAG);
997    break;
998  }
999
1000  if (Val.getNode()) {
1001    DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1002          N->printrWithDepth(dbgs(), &DAG);
1003          dbgs() << "\n=> \n";
1004          Val.getNode()->printrWithDepth(dbgs(), &DAG);
1005          dbgs() << "\n");
1006    return Val;
1007  }
1008
1009  return MipsTargetLowering::PerformDAGCombine(N, DCI);
1010}
1011
1012MachineBasicBlock *
1013MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1014                                                  MachineBasicBlock *BB) const {
1015  switch (MI->getOpcode()) {
1016  default:
1017    return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1018  case Mips::BPOSGE32_PSEUDO:
1019    return emitBPOSGE32(MI, BB);
1020  case Mips::SNZ_B_PSEUDO:
1021    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1022  case Mips::SNZ_H_PSEUDO:
1023    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1024  case Mips::SNZ_W_PSEUDO:
1025    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1026  case Mips::SNZ_D_PSEUDO:
1027    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1028  case Mips::SNZ_V_PSEUDO:
1029    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1030  case Mips::SZ_B_PSEUDO:
1031    return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1032  case Mips::SZ_H_PSEUDO:
1033    return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1034  case Mips::SZ_W_PSEUDO:
1035    return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1036  case Mips::SZ_D_PSEUDO:
1037    return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1038  case Mips::SZ_V_PSEUDO:
1039    return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1040  case Mips::COPY_FW_PSEUDO:
1041    return emitCOPY_FW(MI, BB);
1042  case Mips::COPY_FD_PSEUDO:
1043    return emitCOPY_FD(MI, BB);
1044  case Mips::INSERT_FW_PSEUDO:
1045    return emitINSERT_FW(MI, BB);
1046  case Mips::INSERT_FD_PSEUDO:
1047    return emitINSERT_FD(MI, BB);
1048  case Mips::FILL_FW_PSEUDO:
1049    return emitFILL_FW(MI, BB);
1050  case Mips::FILL_FD_PSEUDO:
1051    return emitFILL_FD(MI, BB);
1052  case Mips::FEXP2_W_1_PSEUDO:
1053    return emitFEXP2_W_1(MI, BB);
1054  case Mips::FEXP2_D_1_PSEUDO:
1055    return emitFEXP2_D_1(MI, BB);
1056  }
1057}
1058
1059bool MipsSETargetLowering::
1060isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
1061                                  unsigned NextStackOffset,
1062                                  const MipsFunctionInfo& FI) const {
1063  if (!EnableMipsTailCalls)
1064    return false;
1065
1066  // Return false if either the callee or caller has a byval argument.
1067  if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
1068    return false;
1069
1070  // Return true if the callee's argument area is no larger than the
1071  // caller's.
1072  return NextStackOffset <= FI.getIncomingArgSize();
1073}
1074
1075void MipsSETargetLowering::
1076getOpndList(SmallVectorImpl<SDValue> &Ops,
1077            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
1078            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1079            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
1080  // T9 should contain the address of the callee function if
1081  // -reloction-model=pic or it is an indirect call.
1082  if (IsPICCall || !GlobalOrExternal) {
1083    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
1084    RegsToPass.push_front(std::make_pair(T9Reg, Callee));
1085  } else
1086    Ops.push_back(Callee);
1087
1088  MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1089                                  InternalLinkage, CLI, Callee, Chain);
1090}
1091
1092SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1093  LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1094
1095  if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1096    return MipsTargetLowering::lowerLOAD(Op, DAG);
1097
1098  // Replace a double precision load with two i32 loads and a buildpair64.
1099  SDLoc DL(Op);
1100  SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1101  EVT PtrVT = Ptr.getValueType();
1102
1103  // i32 load from lower address.
1104  SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr,
1105                           MachinePointerInfo(), Nd.isVolatile(),
1106                           Nd.isNonTemporal(), Nd.isInvariant(),
1107                           Nd.getAlignment());
1108
1109  // i32 load from higher address.
1110  Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
1111  SDValue Hi = DAG.getLoad(MVT::i32, DL, Lo.getValue(1), Ptr,
1112                           MachinePointerInfo(), Nd.isVolatile(),
1113                           Nd.isNonTemporal(), Nd.isInvariant(),
1114                           std::min(Nd.getAlignment(), 4U));
1115
1116  if (!Subtarget->isLittle())
1117    std::swap(Lo, Hi);
1118
1119  SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1120  SDValue Ops[2] = {BP, Hi.getValue(1)};
1121  return DAG.getMergeValues(Ops, 2, DL);
1122}
1123
1124SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1125  StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1126
1127  if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1128    return MipsTargetLowering::lowerSTORE(Op, DAG);
1129
1130  // Replace a double precision store with two extractelement64s and i32 stores.
1131  SDLoc DL(Op);
1132  SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1133  EVT PtrVT = Ptr.getValueType();
1134  SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1135                           Val, DAG.getConstant(0, MVT::i32));
1136  SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1137                           Val, DAG.getConstant(1, MVT::i32));
1138
1139  if (!Subtarget->isLittle())
1140    std::swap(Lo, Hi);
1141
1142  // i32 store to lower address.
1143  Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(),
1144                       Nd.isVolatile(), Nd.isNonTemporal(), Nd.getAlignment(),
1145                       Nd.getTBAAInfo());
1146
1147  // i32 store to higher address.
1148  Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
1149  return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1150                      Nd.isVolatile(), Nd.isNonTemporal(),
1151                      std::min(Nd.getAlignment(), 4U), Nd.getTBAAInfo());
1152}
1153
1154SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1155                                          bool HasLo, bool HasHi,
1156                                          SelectionDAG &DAG) const {
1157  EVT Ty = Op.getOperand(0).getValueType();
1158  SDLoc DL(Op);
1159  SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1160                             Op.getOperand(0), Op.getOperand(1));
1161  SDValue Lo, Hi;
1162
1163  if (HasLo)
1164    Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1165  if (HasHi)
1166    Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1167
1168  if (!HasLo || !HasHi)
1169    return HasLo ? Lo : Hi;
1170
1171  SDValue Vals[] = { Lo, Hi };
1172  return DAG.getMergeValues(Vals, 2, DL);
1173}
1174
1175
1176static SDValue initAccumulator(SDValue In, SDLoc DL, SelectionDAG &DAG) {
1177  SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1178                             DAG.getConstant(0, MVT::i32));
1179  SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1180                             DAG.getConstant(1, MVT::i32));
1181  return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1182}
1183
1184static SDValue extractLOHI(SDValue Op, SDLoc DL, SelectionDAG &DAG) {
1185  SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1186  SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1187  return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1188}
1189
1190// This function expands mips intrinsic nodes which have 64-bit input operands
1191// or output values.
1192//
1193// out64 = intrinsic-node in64
1194// =>
1195// lo = copy (extract-element (in64, 0))
1196// hi = copy (extract-element (in64, 1))
1197// mips-specific-node
1198// v0 = copy lo
1199// v1 = copy hi
1200// out64 = merge-values (v0, v1)
1201//
1202static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1203  SDLoc DL(Op);
1204  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1205  SmallVector<SDValue, 3> Ops;
1206  unsigned OpNo = 0;
1207
1208  // See if Op has a chain input.
1209  if (HasChainIn)
1210    Ops.push_back(Op->getOperand(OpNo++));
1211
1212  // The next operand is the intrinsic opcode.
1213  assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1214
1215  // See if the next operand has type i64.
1216  SDValue Opnd = Op->getOperand(++OpNo), In64;
1217
1218  if (Opnd.getValueType() == MVT::i64)
1219    In64 = initAccumulator(Opnd, DL, DAG);
1220  else
1221    Ops.push_back(Opnd);
1222
1223  // Push the remaining operands.
1224  for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1225    Ops.push_back(Op->getOperand(OpNo));
1226
1227  // Add In64 to the end of the list.
1228  if (In64.getNode())
1229    Ops.push_back(In64);
1230
1231  // Scan output.
1232  SmallVector<EVT, 2> ResTys;
1233
1234  for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
1235       I != E; ++I)
1236    ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
1237
1238  // Create node.
1239  SDValue Val = DAG.getNode(Opc, DL, ResTys, &Ops[0], Ops.size());
1240  SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1241
1242  if (!HasChainIn)
1243    return Out;
1244
1245  assert(Val->getValueType(1) == MVT::Other);
1246  SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1247  return DAG.getMergeValues(Vals, 2, DL);
1248}
1249
1250// Lower an MSA copy intrinsic into the specified SelectionDAG node
1251static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1252  SDLoc DL(Op);
1253  SDValue Vec = Op->getOperand(1);
1254  SDValue Idx = Op->getOperand(2);
1255  EVT ResTy = Op->getValueType(0);
1256  EVT EltTy = Vec->getValueType(0).getVectorElementType();
1257
1258  SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1259                               DAG.getValueType(EltTy));
1260
1261  return Result;
1262}
1263
1264static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1265  EVT ResVecTy = Op->getValueType(0);
1266  EVT ViaVecTy = ResVecTy;
1267  SDLoc DL(Op);
1268
1269  // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1270  // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1271  // lanes.
1272  SDValue LaneA;
1273  SDValue LaneB = Op->getOperand(2);
1274
1275  if (ResVecTy == MVT::v2i64) {
1276    LaneA = DAG.getConstant(0, MVT::i32);
1277    ViaVecTy = MVT::v4i32;
1278  } else
1279    LaneA = LaneB;
1280
1281  SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1282                      LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1283
1284  SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy, Ops,
1285                               ViaVecTy.getVectorNumElements());
1286
1287  if (ViaVecTy != ResVecTy)
1288    Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, Result);
1289
1290  return Result;
1291}
1292
1293static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG) {
1294  return DAG.getConstant(Op->getConstantOperandVal(ImmOp), Op->getValueType(0));
1295}
1296
1297static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1298                                   bool BigEndian, SelectionDAG &DAG) {
1299  EVT ViaVecTy = VecTy;
1300  SDValue SplatValueA = SplatValue;
1301  SDValue SplatValueB = SplatValue;
1302  SDLoc DL(SplatValue);
1303
1304  if (VecTy == MVT::v2i64) {
1305    // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1306    ViaVecTy = MVT::v4i32;
1307
1308    SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1309    SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1310                              DAG.getConstant(32, MVT::i32));
1311    SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1312  }
1313
1314  // We currently hold the parts in little endian order. Swap them if
1315  // necessary.
1316  if (BigEndian)
1317    std::swap(SplatValueA, SplatValueB);
1318
1319  SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1320                      SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1321                      SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1322                      SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1323
1324  SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy, Ops,
1325                               ViaVecTy.getVectorNumElements());
1326
1327  if (VecTy != ViaVecTy)
1328    Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1329
1330  return Result;
1331}
1332
1333static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1334                                        unsigned Opc, SDValue Imm,
1335                                        bool BigEndian) {
1336  EVT VecTy = Op->getValueType(0);
1337  SDValue Exp2Imm;
1338  SDLoc DL(Op);
1339
1340  // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1341  // here for now.
1342  if (VecTy == MVT::v2i64) {
1343    if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1344      APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1345
1346      SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), MVT::i32);
1347      SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), MVT::i32);
1348
1349      if (BigEndian)
1350        std::swap(BitImmLoOp, BitImmHiOp);
1351
1352      Exp2Imm =
1353          DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
1354                      DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i32, BitImmLoOp,
1355                                  BitImmHiOp, BitImmLoOp, BitImmHiOp));
1356    }
1357  }
1358
1359  if (Exp2Imm.getNode() == NULL) {
1360    // We couldnt constant fold, do a vector shift instead
1361
1362    // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1363    // only values 0-63 are valid.
1364    if (VecTy == MVT::v2i64)
1365      Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1366
1367    Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1368
1369    Exp2Imm =
1370        DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, VecTy), Exp2Imm);
1371  }
1372
1373  return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1374}
1375
1376static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1377  EVT ResTy = Op->getValueType(0);
1378  SDLoc DL(Op);
1379  SDValue One = DAG.getConstant(1, ResTy);
1380  SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, Op->getOperand(2));
1381
1382  return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1383                     DAG.getNOT(DL, Bit, ResTy));
1384}
1385
1386static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1387  SDLoc DL(Op);
1388  EVT ResTy = Op->getValueType(0);
1389  APInt BitImm = APInt(ResTy.getVectorElementType().getSizeInBits(), 1)
1390                 << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
1391  SDValue BitMask = DAG.getConstant(~BitImm, ResTy);
1392
1393  return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1394}
1395
1396SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1397                                                      SelectionDAG &DAG) const {
1398  SDLoc DL(Op);
1399
1400  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
1401  default:
1402    return SDValue();
1403  case Intrinsic::mips_shilo:
1404    return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1405  case Intrinsic::mips_dpau_h_qbl:
1406    return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1407  case Intrinsic::mips_dpau_h_qbr:
1408    return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1409  case Intrinsic::mips_dpsu_h_qbl:
1410    return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1411  case Intrinsic::mips_dpsu_h_qbr:
1412    return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1413  case Intrinsic::mips_dpa_w_ph:
1414    return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1415  case Intrinsic::mips_dps_w_ph:
1416    return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1417  case Intrinsic::mips_dpax_w_ph:
1418    return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1419  case Intrinsic::mips_dpsx_w_ph:
1420    return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1421  case Intrinsic::mips_mulsa_w_ph:
1422    return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1423  case Intrinsic::mips_mult:
1424    return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1425  case Intrinsic::mips_multu:
1426    return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1427  case Intrinsic::mips_madd:
1428    return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1429  case Intrinsic::mips_maddu:
1430    return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1431  case Intrinsic::mips_msub:
1432    return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1433  case Intrinsic::mips_msubu:
1434    return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1435  case Intrinsic::mips_addv_b:
1436  case Intrinsic::mips_addv_h:
1437  case Intrinsic::mips_addv_w:
1438  case Intrinsic::mips_addv_d:
1439    return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1440                       Op->getOperand(2));
1441  case Intrinsic::mips_addvi_b:
1442  case Intrinsic::mips_addvi_h:
1443  case Intrinsic::mips_addvi_w:
1444  case Intrinsic::mips_addvi_d:
1445    return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1446                       lowerMSASplatImm(Op, 2, DAG));
1447  case Intrinsic::mips_and_v:
1448    return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1449                       Op->getOperand(2));
1450  case Intrinsic::mips_andi_b:
1451    return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1452                       lowerMSASplatImm(Op, 2, DAG));
1453  case Intrinsic::mips_bclr_b:
1454  case Intrinsic::mips_bclr_h:
1455  case Intrinsic::mips_bclr_w:
1456  case Intrinsic::mips_bclr_d:
1457    return lowerMSABitClear(Op, DAG);
1458  case Intrinsic::mips_bclri_b:
1459  case Intrinsic::mips_bclri_h:
1460  case Intrinsic::mips_bclri_w:
1461  case Intrinsic::mips_bclri_d:
1462    return lowerMSABitClearImm(Op, DAG);
1463  case Intrinsic::mips_binsli_b:
1464  case Intrinsic::mips_binsli_h:
1465  case Intrinsic::mips_binsli_w:
1466  case Intrinsic::mips_binsli_d: {
1467    EVT VecTy = Op->getValueType(0);
1468    EVT EltTy = VecTy.getVectorElementType();
1469    APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1470                                       Op->getConstantOperandVal(3));
1471    return DAG.getNode(ISD::VSELECT, DL, VecTy,
1472                       DAG.getConstant(Mask, VecTy, true), Op->getOperand(1),
1473                       Op->getOperand(2));
1474  }
1475  case Intrinsic::mips_binsri_b:
1476  case Intrinsic::mips_binsri_h:
1477  case Intrinsic::mips_binsri_w:
1478  case Intrinsic::mips_binsri_d: {
1479    EVT VecTy = Op->getValueType(0);
1480    EVT EltTy = VecTy.getVectorElementType();
1481    APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1482                                      Op->getConstantOperandVal(3));
1483    return DAG.getNode(ISD::VSELECT, DL, VecTy,
1484                       DAG.getConstant(Mask, VecTy, true), Op->getOperand(1),
1485                       Op->getOperand(2));
1486  }
1487  case Intrinsic::mips_bmnz_v:
1488    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1489                       Op->getOperand(2), Op->getOperand(1));
1490  case Intrinsic::mips_bmnzi_b:
1491    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1492                       lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1493                       Op->getOperand(1));
1494  case Intrinsic::mips_bmz_v:
1495    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1496                       Op->getOperand(1), Op->getOperand(2));
1497  case Intrinsic::mips_bmzi_b:
1498    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1499                       lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1500                       Op->getOperand(2));
1501  case Intrinsic::mips_bneg_b:
1502  case Intrinsic::mips_bneg_h:
1503  case Intrinsic::mips_bneg_w:
1504  case Intrinsic::mips_bneg_d: {
1505    EVT VecTy = Op->getValueType(0);
1506    SDValue One = DAG.getConstant(1, VecTy);
1507
1508    return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1509                       DAG.getNode(ISD::SHL, DL, VecTy, One,
1510                                   Op->getOperand(2)));
1511  }
1512  case Intrinsic::mips_bnegi_b:
1513  case Intrinsic::mips_bnegi_h:
1514  case Intrinsic::mips_bnegi_w:
1515  case Intrinsic::mips_bnegi_d:
1516    return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1517                                    !Subtarget->isLittle());
1518  case Intrinsic::mips_bnz_b:
1519  case Intrinsic::mips_bnz_h:
1520  case Intrinsic::mips_bnz_w:
1521  case Intrinsic::mips_bnz_d:
1522    return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1523                       Op->getOperand(1));
1524  case Intrinsic::mips_bnz_v:
1525    return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1526                       Op->getOperand(1));
1527  case Intrinsic::mips_bsel_v:
1528    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1529                       Op->getOperand(1), Op->getOperand(2),
1530                       Op->getOperand(3));
1531  case Intrinsic::mips_bseli_b:
1532    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1533                       Op->getOperand(1), Op->getOperand(2),
1534                       lowerMSASplatImm(Op, 3, DAG));
1535  case Intrinsic::mips_bset_b:
1536  case Intrinsic::mips_bset_h:
1537  case Intrinsic::mips_bset_w:
1538  case Intrinsic::mips_bset_d: {
1539    EVT VecTy = Op->getValueType(0);
1540    SDValue One = DAG.getConstant(1, VecTy);
1541
1542    return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1543                       DAG.getNode(ISD::SHL, DL, VecTy, One,
1544                                   Op->getOperand(2)));
1545  }
1546  case Intrinsic::mips_bseti_b:
1547  case Intrinsic::mips_bseti_h:
1548  case Intrinsic::mips_bseti_w:
1549  case Intrinsic::mips_bseti_d:
1550    return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1551                                    !Subtarget->isLittle());
1552  case Intrinsic::mips_bz_b:
1553  case Intrinsic::mips_bz_h:
1554  case Intrinsic::mips_bz_w:
1555  case Intrinsic::mips_bz_d:
1556    return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1557                       Op->getOperand(1));
1558  case Intrinsic::mips_bz_v:
1559    return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1560                       Op->getOperand(1));
1561  case Intrinsic::mips_ceq_b:
1562  case Intrinsic::mips_ceq_h:
1563  case Intrinsic::mips_ceq_w:
1564  case Intrinsic::mips_ceq_d:
1565    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1566                        Op->getOperand(2), ISD::SETEQ);
1567  case Intrinsic::mips_ceqi_b:
1568  case Intrinsic::mips_ceqi_h:
1569  case Intrinsic::mips_ceqi_w:
1570  case Intrinsic::mips_ceqi_d:
1571    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1572                        lowerMSASplatImm(Op, 2, DAG), ISD::SETEQ);
1573  case Intrinsic::mips_cle_s_b:
1574  case Intrinsic::mips_cle_s_h:
1575  case Intrinsic::mips_cle_s_w:
1576  case Intrinsic::mips_cle_s_d:
1577    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1578                        Op->getOperand(2), ISD::SETLE);
1579  case Intrinsic::mips_clei_s_b:
1580  case Intrinsic::mips_clei_s_h:
1581  case Intrinsic::mips_clei_s_w:
1582  case Intrinsic::mips_clei_s_d:
1583    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1584                        lowerMSASplatImm(Op, 2, DAG), ISD::SETLE);
1585  case Intrinsic::mips_cle_u_b:
1586  case Intrinsic::mips_cle_u_h:
1587  case Intrinsic::mips_cle_u_w:
1588  case Intrinsic::mips_cle_u_d:
1589    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1590                        Op->getOperand(2), ISD::SETULE);
1591  case Intrinsic::mips_clei_u_b:
1592  case Intrinsic::mips_clei_u_h:
1593  case Intrinsic::mips_clei_u_w:
1594  case Intrinsic::mips_clei_u_d:
1595    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1596                        lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1597  case Intrinsic::mips_clt_s_b:
1598  case Intrinsic::mips_clt_s_h:
1599  case Intrinsic::mips_clt_s_w:
1600  case Intrinsic::mips_clt_s_d:
1601    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1602                        Op->getOperand(2), ISD::SETLT);
1603  case Intrinsic::mips_clti_s_b:
1604  case Intrinsic::mips_clti_s_h:
1605  case Intrinsic::mips_clti_s_w:
1606  case Intrinsic::mips_clti_s_d:
1607    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1608                        lowerMSASplatImm(Op, 2, DAG), ISD::SETLT);
1609  case Intrinsic::mips_clt_u_b:
1610  case Intrinsic::mips_clt_u_h:
1611  case Intrinsic::mips_clt_u_w:
1612  case Intrinsic::mips_clt_u_d:
1613    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1614                        Op->getOperand(2), ISD::SETULT);
1615  case Intrinsic::mips_clti_u_b:
1616  case Intrinsic::mips_clti_u_h:
1617  case Intrinsic::mips_clti_u_w:
1618  case Intrinsic::mips_clti_u_d:
1619    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1620                        lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1621  case Intrinsic::mips_copy_s_b:
1622  case Intrinsic::mips_copy_s_h:
1623  case Intrinsic::mips_copy_s_w:
1624    return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1625  case Intrinsic::mips_copy_s_d:
1626    // Don't lower directly into VEXTRACT_SEXT_ELT since i64 might be illegal.
1627    // Instead lower to the generic EXTRACT_VECTOR_ELT node and let the type
1628    // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1629    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1630                       Op->getOperand(1), Op->getOperand(2));
1631  case Intrinsic::mips_copy_u_b:
1632  case Intrinsic::mips_copy_u_h:
1633  case Intrinsic::mips_copy_u_w:
1634    return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1635  case Intrinsic::mips_copy_u_d:
1636    // Don't lower directly into VEXTRACT_ZEXT_ELT since i64 might be illegal.
1637    // Instead lower to the generic EXTRACT_VECTOR_ELT node and let the type
1638    // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1639    //
1640    // Note: When i64 is illegal, this results in copy_s.w instructions instead
1641    // of copy_u.w instructions. This makes no difference to the behaviour
1642    // since i64 is only illegal when the register file is 32-bit.
1643    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1644                       Op->getOperand(1), Op->getOperand(2));
1645  case Intrinsic::mips_div_s_b:
1646  case Intrinsic::mips_div_s_h:
1647  case Intrinsic::mips_div_s_w:
1648  case Intrinsic::mips_div_s_d:
1649    return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1650                       Op->getOperand(2));
1651  case Intrinsic::mips_div_u_b:
1652  case Intrinsic::mips_div_u_h:
1653  case Intrinsic::mips_div_u_w:
1654  case Intrinsic::mips_div_u_d:
1655    return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1656                       Op->getOperand(2));
1657  case Intrinsic::mips_fadd_w:
1658  case Intrinsic::mips_fadd_d:
1659    return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1660                       Op->getOperand(2));
1661  // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1662  case Intrinsic::mips_fceq_w:
1663  case Intrinsic::mips_fceq_d:
1664    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1665                        Op->getOperand(2), ISD::SETOEQ);
1666  case Intrinsic::mips_fcle_w:
1667  case Intrinsic::mips_fcle_d:
1668    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1669                        Op->getOperand(2), ISD::SETOLE);
1670  case Intrinsic::mips_fclt_w:
1671  case Intrinsic::mips_fclt_d:
1672    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1673                        Op->getOperand(2), ISD::SETOLT);
1674  case Intrinsic::mips_fcne_w:
1675  case Intrinsic::mips_fcne_d:
1676    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1677                        Op->getOperand(2), ISD::SETONE);
1678  case Intrinsic::mips_fcor_w:
1679  case Intrinsic::mips_fcor_d:
1680    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1681                        Op->getOperand(2), ISD::SETO);
1682  case Intrinsic::mips_fcueq_w:
1683  case Intrinsic::mips_fcueq_d:
1684    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1685                        Op->getOperand(2), ISD::SETUEQ);
1686  case Intrinsic::mips_fcule_w:
1687  case Intrinsic::mips_fcule_d:
1688    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1689                        Op->getOperand(2), ISD::SETULE);
1690  case Intrinsic::mips_fcult_w:
1691  case Intrinsic::mips_fcult_d:
1692    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1693                        Op->getOperand(2), ISD::SETULT);
1694  case Intrinsic::mips_fcun_w:
1695  case Intrinsic::mips_fcun_d:
1696    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1697                        Op->getOperand(2), ISD::SETUO);
1698  case Intrinsic::mips_fcune_w:
1699  case Intrinsic::mips_fcune_d:
1700    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1701                        Op->getOperand(2), ISD::SETUNE);
1702  case Intrinsic::mips_fdiv_w:
1703  case Intrinsic::mips_fdiv_d:
1704    return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1705                       Op->getOperand(2));
1706  case Intrinsic::mips_ffint_u_w:
1707  case Intrinsic::mips_ffint_u_d:
1708    return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1709                       Op->getOperand(1));
1710  case Intrinsic::mips_ffint_s_w:
1711  case Intrinsic::mips_ffint_s_d:
1712    return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1713                       Op->getOperand(1));
1714  case Intrinsic::mips_fill_b:
1715  case Intrinsic::mips_fill_h:
1716  case Intrinsic::mips_fill_w:
1717  case Intrinsic::mips_fill_d: {
1718    SmallVector<SDValue, 16> Ops;
1719    EVT ResTy = Op->getValueType(0);
1720
1721    for (unsigned i = 0; i < ResTy.getVectorNumElements(); ++i)
1722      Ops.push_back(Op->getOperand(1));
1723
1724    // If ResTy is v2i64 then the type legalizer will break this node down into
1725    // an equivalent v4i32.
1726    return DAG.getNode(ISD::BUILD_VECTOR, DL, ResTy, &Ops[0], Ops.size());
1727  }
1728  case Intrinsic::mips_fexp2_w:
1729  case Intrinsic::mips_fexp2_d: {
1730    EVT ResTy = Op->getValueType(0);
1731    return DAG.getNode(
1732        ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1733        DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1734  }
1735  case Intrinsic::mips_flog2_w:
1736  case Intrinsic::mips_flog2_d:
1737    return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1738  case Intrinsic::mips_fmadd_w:
1739  case Intrinsic::mips_fmadd_d:
1740    return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1741                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1742  case Intrinsic::mips_fmul_w:
1743  case Intrinsic::mips_fmul_d:
1744    return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1745                       Op->getOperand(2));
1746  case Intrinsic::mips_fmsub_w:
1747  case Intrinsic::mips_fmsub_d: {
1748    EVT ResTy = Op->getValueType(0);
1749    return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1),
1750                       DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy,
1751                                   Op->getOperand(2), Op->getOperand(3)));
1752  }
1753  case Intrinsic::mips_frint_w:
1754  case Intrinsic::mips_frint_d:
1755    return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1756  case Intrinsic::mips_fsqrt_w:
1757  case Intrinsic::mips_fsqrt_d:
1758    return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1759  case Intrinsic::mips_fsub_w:
1760  case Intrinsic::mips_fsub_d:
1761    return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1762                       Op->getOperand(2));
1763  case Intrinsic::mips_ftrunc_u_w:
1764  case Intrinsic::mips_ftrunc_u_d:
1765    return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1766                       Op->getOperand(1));
1767  case Intrinsic::mips_ftrunc_s_w:
1768  case Intrinsic::mips_ftrunc_s_d:
1769    return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1770                       Op->getOperand(1));
1771  case Intrinsic::mips_ilvev_b:
1772  case Intrinsic::mips_ilvev_h:
1773  case Intrinsic::mips_ilvev_w:
1774  case Intrinsic::mips_ilvev_d:
1775    return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1776                       Op->getOperand(1), Op->getOperand(2));
1777  case Intrinsic::mips_ilvl_b:
1778  case Intrinsic::mips_ilvl_h:
1779  case Intrinsic::mips_ilvl_w:
1780  case Intrinsic::mips_ilvl_d:
1781    return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1782                       Op->getOperand(1), Op->getOperand(2));
1783  case Intrinsic::mips_ilvod_b:
1784  case Intrinsic::mips_ilvod_h:
1785  case Intrinsic::mips_ilvod_w:
1786  case Intrinsic::mips_ilvod_d:
1787    return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1788                       Op->getOperand(1), Op->getOperand(2));
1789  case Intrinsic::mips_ilvr_b:
1790  case Intrinsic::mips_ilvr_h:
1791  case Intrinsic::mips_ilvr_w:
1792  case Intrinsic::mips_ilvr_d:
1793    return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1794                       Op->getOperand(1), Op->getOperand(2));
1795  case Intrinsic::mips_insert_b:
1796  case Intrinsic::mips_insert_h:
1797  case Intrinsic::mips_insert_w:
1798  case Intrinsic::mips_insert_d:
1799    return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1800                       Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1801  case Intrinsic::mips_ldi_b:
1802  case Intrinsic::mips_ldi_h:
1803  case Intrinsic::mips_ldi_w:
1804  case Intrinsic::mips_ldi_d:
1805    return lowerMSASplatImm(Op, 1, DAG);
1806  case Intrinsic::mips_lsa: {
1807    EVT ResTy = Op->getValueType(0);
1808    return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1809                       DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1810                                   Op->getOperand(2), Op->getOperand(3)));
1811  }
1812  case Intrinsic::mips_maddv_b:
1813  case Intrinsic::mips_maddv_h:
1814  case Intrinsic::mips_maddv_w:
1815  case Intrinsic::mips_maddv_d: {
1816    EVT ResTy = Op->getValueType(0);
1817    return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1818                       DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1819                                   Op->getOperand(2), Op->getOperand(3)));
1820  }
1821  case Intrinsic::mips_max_s_b:
1822  case Intrinsic::mips_max_s_h:
1823  case Intrinsic::mips_max_s_w:
1824  case Intrinsic::mips_max_s_d:
1825    return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1826                       Op->getOperand(1), Op->getOperand(2));
1827  case Intrinsic::mips_max_u_b:
1828  case Intrinsic::mips_max_u_h:
1829  case Intrinsic::mips_max_u_w:
1830  case Intrinsic::mips_max_u_d:
1831    return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1832                       Op->getOperand(1), Op->getOperand(2));
1833  case Intrinsic::mips_maxi_s_b:
1834  case Intrinsic::mips_maxi_s_h:
1835  case Intrinsic::mips_maxi_s_w:
1836  case Intrinsic::mips_maxi_s_d:
1837    return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1838                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1839  case Intrinsic::mips_maxi_u_b:
1840  case Intrinsic::mips_maxi_u_h:
1841  case Intrinsic::mips_maxi_u_w:
1842  case Intrinsic::mips_maxi_u_d:
1843    return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1844                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1845  case Intrinsic::mips_min_s_b:
1846  case Intrinsic::mips_min_s_h:
1847  case Intrinsic::mips_min_s_w:
1848  case Intrinsic::mips_min_s_d:
1849    return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
1850                       Op->getOperand(1), Op->getOperand(2));
1851  case Intrinsic::mips_min_u_b:
1852  case Intrinsic::mips_min_u_h:
1853  case Intrinsic::mips_min_u_w:
1854  case Intrinsic::mips_min_u_d:
1855    return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
1856                       Op->getOperand(1), Op->getOperand(2));
1857  case Intrinsic::mips_mini_s_b:
1858  case Intrinsic::mips_mini_s_h:
1859  case Intrinsic::mips_mini_s_w:
1860  case Intrinsic::mips_mini_s_d:
1861    return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
1862                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1863  case Intrinsic::mips_mini_u_b:
1864  case Intrinsic::mips_mini_u_h:
1865  case Intrinsic::mips_mini_u_w:
1866  case Intrinsic::mips_mini_u_d:
1867    return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
1868                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1869  case Intrinsic::mips_mod_s_b:
1870  case Intrinsic::mips_mod_s_h:
1871  case Intrinsic::mips_mod_s_w:
1872  case Intrinsic::mips_mod_s_d:
1873    return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
1874                       Op->getOperand(2));
1875  case Intrinsic::mips_mod_u_b:
1876  case Intrinsic::mips_mod_u_h:
1877  case Intrinsic::mips_mod_u_w:
1878  case Intrinsic::mips_mod_u_d:
1879    return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
1880                       Op->getOperand(2));
1881  case Intrinsic::mips_mulv_b:
1882  case Intrinsic::mips_mulv_h:
1883  case Intrinsic::mips_mulv_w:
1884  case Intrinsic::mips_mulv_d:
1885    return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
1886                       Op->getOperand(2));
1887  case Intrinsic::mips_msubv_b:
1888  case Intrinsic::mips_msubv_h:
1889  case Intrinsic::mips_msubv_w:
1890  case Intrinsic::mips_msubv_d: {
1891    EVT ResTy = Op->getValueType(0);
1892    return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
1893                       DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1894                                   Op->getOperand(2), Op->getOperand(3)));
1895  }
1896  case Intrinsic::mips_nlzc_b:
1897  case Intrinsic::mips_nlzc_h:
1898  case Intrinsic::mips_nlzc_w:
1899  case Intrinsic::mips_nlzc_d:
1900    return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
1901  case Intrinsic::mips_nor_v: {
1902    SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
1903                              Op->getOperand(1), Op->getOperand(2));
1904    return DAG.getNOT(DL, Res, Res->getValueType(0));
1905  }
1906  case Intrinsic::mips_nori_b: {
1907    SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
1908                               Op->getOperand(1),
1909                               lowerMSASplatImm(Op, 2, DAG));
1910    return DAG.getNOT(DL, Res, Res->getValueType(0));
1911  }
1912  case Intrinsic::mips_or_v:
1913    return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
1914                       Op->getOperand(2));
1915  case Intrinsic::mips_ori_b:
1916    return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
1917                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1918  case Intrinsic::mips_pckev_b:
1919  case Intrinsic::mips_pckev_h:
1920  case Intrinsic::mips_pckev_w:
1921  case Intrinsic::mips_pckev_d:
1922    return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
1923                       Op->getOperand(1), Op->getOperand(2));
1924  case Intrinsic::mips_pckod_b:
1925  case Intrinsic::mips_pckod_h:
1926  case Intrinsic::mips_pckod_w:
1927  case Intrinsic::mips_pckod_d:
1928    return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
1929                       Op->getOperand(1), Op->getOperand(2));
1930  case Intrinsic::mips_pcnt_b:
1931  case Intrinsic::mips_pcnt_h:
1932  case Intrinsic::mips_pcnt_w:
1933  case Intrinsic::mips_pcnt_d:
1934    return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
1935  case Intrinsic::mips_shf_b:
1936  case Intrinsic::mips_shf_h:
1937  case Intrinsic::mips_shf_w:
1938    return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
1939                       Op->getOperand(2), Op->getOperand(1));
1940  case Intrinsic::mips_sll_b:
1941  case Intrinsic::mips_sll_h:
1942  case Intrinsic::mips_sll_w:
1943  case Intrinsic::mips_sll_d:
1944    return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
1945                       Op->getOperand(2));
1946  case Intrinsic::mips_slli_b:
1947  case Intrinsic::mips_slli_h:
1948  case Intrinsic::mips_slli_w:
1949  case Intrinsic::mips_slli_d:
1950    return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
1951                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1952  case Intrinsic::mips_splat_b:
1953  case Intrinsic::mips_splat_h:
1954  case Intrinsic::mips_splat_w:
1955  case Intrinsic::mips_splat_d:
1956    // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
1957    // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
1958    // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
1959    // Instead we lower to MipsISD::VSHF and match from there.
1960    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
1961                       lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
1962                       Op->getOperand(1));
1963  case Intrinsic::mips_splati_b:
1964  case Intrinsic::mips_splati_h:
1965  case Intrinsic::mips_splati_w:
1966  case Intrinsic::mips_splati_d:
1967    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
1968                       lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
1969                       Op->getOperand(1));
1970  case Intrinsic::mips_sra_b:
1971  case Intrinsic::mips_sra_h:
1972  case Intrinsic::mips_sra_w:
1973  case Intrinsic::mips_sra_d:
1974    return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
1975                       Op->getOperand(2));
1976  case Intrinsic::mips_srai_b:
1977  case Intrinsic::mips_srai_h:
1978  case Intrinsic::mips_srai_w:
1979  case Intrinsic::mips_srai_d:
1980    return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
1981                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1982  case Intrinsic::mips_srl_b:
1983  case Intrinsic::mips_srl_h:
1984  case Intrinsic::mips_srl_w:
1985  case Intrinsic::mips_srl_d:
1986    return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
1987                       Op->getOperand(2));
1988  case Intrinsic::mips_srli_b:
1989  case Intrinsic::mips_srli_h:
1990  case Intrinsic::mips_srli_w:
1991  case Intrinsic::mips_srli_d:
1992    return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
1993                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1994  case Intrinsic::mips_subv_b:
1995  case Intrinsic::mips_subv_h:
1996  case Intrinsic::mips_subv_w:
1997  case Intrinsic::mips_subv_d:
1998    return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
1999                       Op->getOperand(2));
2000  case Intrinsic::mips_subvi_b:
2001  case Intrinsic::mips_subvi_h:
2002  case Intrinsic::mips_subvi_w:
2003  case Intrinsic::mips_subvi_d:
2004    return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2005                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2006  case Intrinsic::mips_vshf_b:
2007  case Intrinsic::mips_vshf_h:
2008  case Intrinsic::mips_vshf_w:
2009  case Intrinsic::mips_vshf_d:
2010    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2011                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2012  case Intrinsic::mips_xor_v:
2013    return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2014                       Op->getOperand(2));
2015  case Intrinsic::mips_xori_b:
2016    return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2017                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2018  }
2019}
2020
2021static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
2022  SDLoc DL(Op);
2023  SDValue ChainIn = Op->getOperand(0);
2024  SDValue Address = Op->getOperand(2);
2025  SDValue Offset  = Op->getOperand(3);
2026  EVT ResTy = Op->getValueType(0);
2027  EVT PtrTy = Address->getValueType(0);
2028
2029  Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2030
2031  return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), false,
2032                     false, false, 16);
2033}
2034
2035SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2036                                                     SelectionDAG &DAG) const {
2037  unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2038  switch (Intr) {
2039  default:
2040    return SDValue();
2041  case Intrinsic::mips_extp:
2042    return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2043  case Intrinsic::mips_extpdp:
2044    return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2045  case Intrinsic::mips_extr_w:
2046    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2047  case Intrinsic::mips_extr_r_w:
2048    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2049  case Intrinsic::mips_extr_rs_w:
2050    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2051  case Intrinsic::mips_extr_s_h:
2052    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2053  case Intrinsic::mips_mthlip:
2054    return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2055  case Intrinsic::mips_mulsaq_s_w_ph:
2056    return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2057  case Intrinsic::mips_maq_s_w_phl:
2058    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2059  case Intrinsic::mips_maq_s_w_phr:
2060    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2061  case Intrinsic::mips_maq_sa_w_phl:
2062    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2063  case Intrinsic::mips_maq_sa_w_phr:
2064    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2065  case Intrinsic::mips_dpaq_s_w_ph:
2066    return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2067  case Intrinsic::mips_dpsq_s_w_ph:
2068    return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2069  case Intrinsic::mips_dpaq_sa_l_w:
2070    return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2071  case Intrinsic::mips_dpsq_sa_l_w:
2072    return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2073  case Intrinsic::mips_dpaqx_s_w_ph:
2074    return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2075  case Intrinsic::mips_dpaqx_sa_w_ph:
2076    return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2077  case Intrinsic::mips_dpsqx_s_w_ph:
2078    return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2079  case Intrinsic::mips_dpsqx_sa_w_ph:
2080    return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2081  case Intrinsic::mips_ld_b:
2082  case Intrinsic::mips_ld_h:
2083  case Intrinsic::mips_ld_w:
2084  case Intrinsic::mips_ld_d:
2085   return lowerMSALoadIntr(Op, DAG, Intr);
2086  }
2087}
2088
2089static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
2090  SDLoc DL(Op);
2091  SDValue ChainIn = Op->getOperand(0);
2092  SDValue Value   = Op->getOperand(2);
2093  SDValue Address = Op->getOperand(3);
2094  SDValue Offset  = Op->getOperand(4);
2095  EVT PtrTy = Address->getValueType(0);
2096
2097  Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2098
2099  return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), false,
2100                      false, 16);
2101}
2102
2103SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2104                                                  SelectionDAG &DAG) const {
2105  unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2106  switch (Intr) {
2107  default:
2108    return SDValue();
2109  case Intrinsic::mips_st_b:
2110  case Intrinsic::mips_st_h:
2111  case Intrinsic::mips_st_w:
2112  case Intrinsic::mips_st_d:
2113    return lowerMSAStoreIntr(Op, DAG, Intr);
2114  }
2115}
2116
2117/// \brief Check if the given BuildVectorSDNode is a splat.
2118/// This method currently relies on DAG nodes being reused when equivalent,
2119/// so it's possible for this to return false even when isConstantSplat returns
2120/// true.
2121static bool isSplatVector(const BuildVectorSDNode *N) {
2122  unsigned int nOps = N->getNumOperands();
2123  assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
2124
2125  SDValue Operand0 = N->getOperand(0);
2126
2127  for (unsigned int i = 1; i < nOps; ++i) {
2128    if (N->getOperand(i) != Operand0)
2129      return false;
2130  }
2131
2132  return true;
2133}
2134
2135// Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2136//
2137// The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2138// choose to sign-extend but we could have equally chosen zero-extend. The
2139// DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2140// result into this node later (possibly changing it to a zero-extend in the
2141// process).
2142SDValue MipsSETargetLowering::
2143lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2144  SDLoc DL(Op);
2145  EVT ResTy = Op->getValueType(0);
2146  SDValue Op0 = Op->getOperand(0);
2147  EVT VecTy = Op0->getValueType(0);
2148
2149  if (!VecTy.is128BitVector())
2150    return SDValue();
2151
2152  if (ResTy.isInteger()) {
2153    SDValue Op1 = Op->getOperand(1);
2154    EVT EltTy = VecTy.getVectorElementType();
2155    return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2156                       DAG.getValueType(EltTy));
2157  }
2158
2159  return Op;
2160}
2161
2162static bool isConstantOrUndef(const SDValue Op) {
2163  if (Op->getOpcode() == ISD::UNDEF)
2164    return true;
2165  if (dyn_cast<ConstantSDNode>(Op))
2166    return true;
2167  if (dyn_cast<ConstantFPSDNode>(Op))
2168    return true;
2169  return false;
2170}
2171
2172static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2173  for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2174    if (isConstantOrUndef(Op->getOperand(i)))
2175      return true;
2176  return false;
2177}
2178
2179// Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2180// backend.
2181//
2182// Lowers according to the following rules:
2183// - Constant splats are legal as-is as long as the SplatBitSize is a power of
2184//   2 less than or equal to 64 and the value fits into a signed 10-bit
2185//   immediate
2186// - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2187//   is a power of 2 less than or equal to 64 and the value does not fit into a
2188//   signed 10-bit immediate
2189// - Non-constant splats are legal as-is.
2190// - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2191// - All others are illegal and must be expanded.
2192SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2193                                                SelectionDAG &DAG) const {
2194  BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2195  EVT ResTy = Op->getValueType(0);
2196  SDLoc DL(Op);
2197  APInt SplatValue, SplatUndef;
2198  unsigned SplatBitSize;
2199  bool HasAnyUndefs;
2200
2201  if (!Subtarget->hasMSA() || !ResTy.is128BitVector())
2202    return SDValue();
2203
2204  if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2205                            HasAnyUndefs, 8,
2206                            !Subtarget->isLittle()) && SplatBitSize <= 64) {
2207    // We can only cope with 8, 16, 32, or 64-bit elements
2208    if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2209        SplatBitSize != 64)
2210      return SDValue();
2211
2212    // If the value fits into a simm10 then we can use ldi.[bhwd]
2213    // However, if it isn't an integer type we will have to bitcast from an
2214    // integer type first. Also, if there are any undefs, we must lower them
2215    // to defined values first.
2216    if (ResTy.isInteger() && !HasAnyUndefs && SplatValue.isSignedIntN(10))
2217      return Op;
2218
2219    EVT ViaVecTy;
2220
2221    switch (SplatBitSize) {
2222    default:
2223      return SDValue();
2224    case 8:
2225      ViaVecTy = MVT::v16i8;
2226      break;
2227    case 16:
2228      ViaVecTy = MVT::v8i16;
2229      break;
2230    case 32:
2231      ViaVecTy = MVT::v4i32;
2232      break;
2233    case 64:
2234      // There's no fill.d to fall back on for 64-bit values
2235      return SDValue();
2236    }
2237
2238    // SelectionDAG::getConstant will promote SplatValue appropriately.
2239    SDValue Result = DAG.getConstant(SplatValue, ViaVecTy);
2240
2241    // Bitcast to the type we originally wanted
2242    if (ViaVecTy != ResTy)
2243      Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2244
2245    return Result;
2246  } else if (isSplatVector(Node))
2247    return Op;
2248  else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2249    // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2250    // The resulting code is the same length as the expansion, but it doesn't
2251    // use memory operations
2252    EVT ResTy = Node->getValueType(0);
2253
2254    assert(ResTy.isVector());
2255
2256    unsigned NumElts = ResTy.getVectorNumElements();
2257    SDValue Vector = DAG.getUNDEF(ResTy);
2258    for (unsigned i = 0; i < NumElts; ++i) {
2259      Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2260                           Node->getOperand(i),
2261                           DAG.getConstant(i, MVT::i32));
2262    }
2263    return Vector;
2264  }
2265
2266  return SDValue();
2267}
2268
2269// Lower VECTOR_SHUFFLE into SHF (if possible).
2270//
2271// SHF splits the vector into blocks of four elements, then shuffles these
2272// elements according to a <4 x i2> constant (encoded as an integer immediate).
2273//
2274// It is therefore possible to lower into SHF when the mask takes the form:
2275//   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2276// When undef's appear they are treated as if they were whatever value is
2277// necessary in order to fit the above form.
2278//
2279// For example:
2280//   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2281//                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2282//                                 i32 7, i32 6, i32 5, i32 4>
2283// is lowered to:
2284//   (SHF_H $w0, $w1, 27)
2285// where the 27 comes from:
2286//   3 + (2 << 2) + (1 << 4) + (0 << 6)
2287static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2288                                       SmallVector<int, 16> Indices,
2289                                       SelectionDAG &DAG) {
2290  int SHFIndices[4] = { -1, -1, -1, -1 };
2291
2292  if (Indices.size() < 4)
2293    return SDValue();
2294
2295  for (unsigned i = 0; i < 4; ++i) {
2296    for (unsigned j = i; j < Indices.size(); j += 4) {
2297      int Idx = Indices[j];
2298
2299      // Convert from vector index to 4-element subvector index
2300      // If an index refers to an element outside of the subvector then give up
2301      if (Idx != -1) {
2302        Idx -= 4 * (j / 4);
2303        if (Idx < 0 || Idx >= 4)
2304          return SDValue();
2305      }
2306
2307      // If the mask has an undef, replace it with the current index.
2308      // Note that it might still be undef if the current index is also undef
2309      if (SHFIndices[i] == -1)
2310        SHFIndices[i] = Idx;
2311
2312      // Check that non-undef values are the same as in the mask. If they
2313      // aren't then give up
2314      if (!(Idx == -1 || Idx == SHFIndices[i]))
2315        return SDValue();
2316    }
2317  }
2318
2319  // Calculate the immediate. Replace any remaining undefs with zero
2320  APInt Imm(32, 0);
2321  for (int i = 3; i >= 0; --i) {
2322    int Idx = SHFIndices[i];
2323
2324    if (Idx == -1)
2325      Idx = 0;
2326
2327    Imm <<= 2;
2328    Imm |= Idx & 0x3;
2329  }
2330
2331  return DAG.getNode(MipsISD::SHF, SDLoc(Op), ResTy,
2332                     DAG.getConstant(Imm, MVT::i32), Op->getOperand(0));
2333}
2334
2335// Lower VECTOR_SHUFFLE into ILVEV (if possible).
2336//
2337// ILVEV interleaves the even elements from each vector.
2338//
2339// It is possible to lower into ILVEV when the mask takes the form:
2340//   <0, n, 2, n+2, 4, n+4, ...>
2341// where n is the number of elements in the vector.
2342//
2343// When undef's appear in the mask they are treated as if they were whatever
2344// value is necessary in order to fit the above form.
2345static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2346                                         SmallVector<int, 16> Indices,
2347                                         SelectionDAG &DAG) {
2348  assert ((Indices.size() % 2) == 0);
2349  int WsIdx = 0;
2350  int WtIdx = ResTy.getVectorNumElements();
2351
2352  for (unsigned i = 0; i < Indices.size(); i += 2) {
2353    if (Indices[i] != -1 && Indices[i] != WsIdx)
2354      return SDValue();
2355    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2356      return SDValue();
2357    WsIdx += 2;
2358    WtIdx += 2;
2359  }
2360
2361  return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Op->getOperand(0),
2362                     Op->getOperand(1));
2363}
2364
2365// Lower VECTOR_SHUFFLE into ILVOD (if possible).
2366//
2367// ILVOD interleaves the odd elements from each vector.
2368//
2369// It is possible to lower into ILVOD when the mask takes the form:
2370//   <1, n+1, 3, n+3, 5, n+5, ...>
2371// where n is the number of elements in the vector.
2372//
2373// When undef's appear in the mask they are treated as if they were whatever
2374// value is necessary in order to fit the above form.
2375static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2376                                         SmallVector<int, 16> Indices,
2377                                         SelectionDAG &DAG) {
2378  assert ((Indices.size() % 2) == 0);
2379  int WsIdx = 1;
2380  int WtIdx = ResTy.getVectorNumElements() + 1;
2381
2382  for (unsigned i = 0; i < Indices.size(); i += 2) {
2383    if (Indices[i] != -1 && Indices[i] != WsIdx)
2384      return SDValue();
2385    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2386      return SDValue();
2387    WsIdx += 2;
2388    WtIdx += 2;
2389  }
2390
2391  return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Op->getOperand(0),
2392                     Op->getOperand(1));
2393}
2394
2395// Lower VECTOR_SHUFFLE into ILVL (if possible).
2396//
2397// ILVL interleaves consecutive elements from the left half of each vector.
2398//
2399// It is possible to lower into ILVL when the mask takes the form:
2400//   <0, n, 1, n+1, 2, n+2, ...>
2401// where n is the number of elements in the vector.
2402//
2403// When undef's appear in the mask they are treated as if they were whatever
2404// value is necessary in order to fit the above form.
2405static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2406                                        SmallVector<int, 16> Indices,
2407                                        SelectionDAG &DAG) {
2408  assert ((Indices.size() % 2) == 0);
2409  int WsIdx = 0;
2410  int WtIdx = ResTy.getVectorNumElements();
2411
2412  for (unsigned i = 0; i < Indices.size(); i += 2) {
2413    if (Indices[i] != -1 && Indices[i] != WsIdx)
2414      return SDValue();
2415    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2416      return SDValue();
2417    WsIdx ++;
2418    WtIdx ++;
2419  }
2420
2421  return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Op->getOperand(0),
2422                     Op->getOperand(1));
2423}
2424
2425// Lower VECTOR_SHUFFLE into ILVR (if possible).
2426//
2427// ILVR interleaves consecutive elements from the right half of each vector.
2428//
2429// It is possible to lower into ILVR when the mask takes the form:
2430//   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2431// where n is the number of elements in the vector and x is half n.
2432//
2433// When undef's appear in the mask they are treated as if they were whatever
2434// value is necessary in order to fit the above form.
2435static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2436                                        SmallVector<int, 16> Indices,
2437                                        SelectionDAG &DAG) {
2438  assert ((Indices.size() % 2) == 0);
2439  unsigned NumElts = ResTy.getVectorNumElements();
2440  int WsIdx = NumElts / 2;
2441  int WtIdx = NumElts + NumElts / 2;
2442
2443  for (unsigned i = 0; i < Indices.size(); i += 2) {
2444    if (Indices[i] != -1 && Indices[i] != WsIdx)
2445      return SDValue();
2446    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2447      return SDValue();
2448    WsIdx ++;
2449    WtIdx ++;
2450  }
2451
2452  return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Op->getOperand(0),
2453                     Op->getOperand(1));
2454}
2455
2456// Lower VECTOR_SHUFFLE into PCKEV (if possible).
2457//
2458// PCKEV copies the even elements of each vector into the result vector.
2459//
2460// It is possible to lower into PCKEV when the mask takes the form:
2461//   <0, 2, 4, ..., n, n+2, n+4, ...>
2462// where n is the number of elements in the vector.
2463//
2464// When undef's appear in the mask they are treated as if they were whatever
2465// value is necessary in order to fit the above form.
2466static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2467                                         SmallVector<int, 16> Indices,
2468                                         SelectionDAG &DAG) {
2469  assert ((Indices.size() % 2) == 0);
2470  int Idx = 0;
2471
2472  for (unsigned i = 0; i < Indices.size(); ++i) {
2473    if (Indices[i] != -1 && Indices[i] != Idx)
2474      return SDValue();
2475    Idx += 2;
2476  }
2477
2478  return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Op->getOperand(0),
2479                     Op->getOperand(1));
2480}
2481
2482// Lower VECTOR_SHUFFLE into PCKOD (if possible).
2483//
2484// PCKOD copies the odd elements of each vector into the result vector.
2485//
2486// It is possible to lower into PCKOD when the mask takes the form:
2487//   <1, 3, 5, ..., n+1, n+3, n+5, ...>
2488// where n is the number of elements in the vector.
2489//
2490// When undef's appear in the mask they are treated as if they were whatever
2491// value is necessary in order to fit the above form.
2492static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2493                                         SmallVector<int, 16> Indices,
2494                                         SelectionDAG &DAG) {
2495  assert ((Indices.size() % 2) == 0);
2496  int Idx = 1;
2497
2498  for (unsigned i = 0; i < Indices.size(); ++i) {
2499    if (Indices[i] != -1 && Indices[i] != Idx)
2500      return SDValue();
2501    Idx += 2;
2502  }
2503
2504  return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Op->getOperand(0),
2505                     Op->getOperand(1));
2506}
2507
2508// Lower VECTOR_SHUFFLE into VSHF.
2509//
2510// This mostly consists of converting the shuffle indices in Indices into a
2511// BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2512// also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2513// if the type is v8i16 and all the indices are less than 8 then the second
2514// operand is unused and can be replaced with anything. We choose to replace it
2515// with the used operand since this reduces the number of instructions overall.
2516static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2517                                        SmallVector<int, 16> Indices,
2518                                        SelectionDAG &DAG) {
2519  SmallVector<SDValue, 16> Ops;
2520  SDValue Op0;
2521  SDValue Op1;
2522  EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2523  EVT MaskEltTy = MaskVecTy.getVectorElementType();
2524  bool Using1stVec = false;
2525  bool Using2ndVec = false;
2526  SDLoc DL(Op);
2527  int ResTyNumElts = ResTy.getVectorNumElements();
2528
2529  for (int i = 0; i < ResTyNumElts; ++i) {
2530    // Idx == -1 means UNDEF
2531    int Idx = Indices[i];
2532
2533    if (0 <= Idx && Idx < ResTyNumElts)
2534      Using1stVec = true;
2535    if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2536      Using2ndVec = true;
2537  }
2538
2539  for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
2540       ++I)
2541    Ops.push_back(DAG.getTargetConstant(*I, MaskEltTy));
2542
2543  SDValue MaskVec = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVecTy, &Ops[0],
2544                                Ops.size());
2545
2546  if (Using1stVec && Using2ndVec) {
2547    Op0 = Op->getOperand(0);
2548    Op1 = Op->getOperand(1);
2549  } else if (Using1stVec)
2550    Op0 = Op1 = Op->getOperand(0);
2551  else if (Using2ndVec)
2552    Op0 = Op1 = Op->getOperand(1);
2553  else
2554    llvm_unreachable("shuffle vector mask references neither vector operand?");
2555
2556  return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op0, Op1);
2557}
2558
2559// Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2560// indices in the shuffle.
2561SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2562                                                  SelectionDAG &DAG) const {
2563  ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2564  EVT ResTy = Op->getValueType(0);
2565
2566  if (!ResTy.is128BitVector())
2567    return SDValue();
2568
2569  int ResTyNumElts = ResTy.getVectorNumElements();
2570  SmallVector<int, 16> Indices;
2571
2572  for (int i = 0; i < ResTyNumElts; ++i)
2573    Indices.push_back(Node->getMaskElt(i));
2574
2575  SDValue Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG);
2576  if (Result.getNode())
2577    return Result;
2578  Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG);
2579  if (Result.getNode())
2580    return Result;
2581  Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG);
2582  if (Result.getNode())
2583    return Result;
2584  Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG);
2585  if (Result.getNode())
2586    return Result;
2587  Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG);
2588  if (Result.getNode())
2589    return Result;
2590  Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG);
2591  if (Result.getNode())
2592    return Result;
2593  Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG);
2594  if (Result.getNode())
2595    return Result;
2596  return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2597}
2598
2599MachineBasicBlock * MipsSETargetLowering::
2600emitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
2601  // $bb:
2602  //  bposge32_pseudo $vr0
2603  //  =>
2604  // $bb:
2605  //  bposge32 $tbb
2606  // $fbb:
2607  //  li $vr2, 0
2608  //  b $sink
2609  // $tbb:
2610  //  li $vr1, 1
2611  // $sink:
2612  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
2613
2614  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2615  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2616  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2617  DebugLoc DL = MI->getDebugLoc();
2618  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2619  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
2620  MachineFunction *F = BB->getParent();
2621  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
2622  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
2623  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
2624  F->insert(It, FBB);
2625  F->insert(It, TBB);
2626  F->insert(It, Sink);
2627
2628  // Transfer the remainder of BB and its successor edges to Sink.
2629  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
2630               BB->end());
2631  Sink->transferSuccessorsAndUpdatePHIs(BB);
2632
2633  // Add successors.
2634  BB->addSuccessor(FBB);
2635  BB->addSuccessor(TBB);
2636  FBB->addSuccessor(Sink);
2637  TBB->addSuccessor(Sink);
2638
2639  // Insert the real bposge32 instruction to $BB.
2640  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
2641
2642  // Fill $FBB.
2643  unsigned VR2 = RegInfo.createVirtualRegister(RC);
2644  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
2645    .addReg(Mips::ZERO).addImm(0);
2646  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
2647
2648  // Fill $TBB.
2649  unsigned VR1 = RegInfo.createVirtualRegister(RC);
2650  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
2651    .addReg(Mips::ZERO).addImm(1);
2652
2653  // Insert phi function to $Sink.
2654  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
2655          MI->getOperand(0).getReg())
2656    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
2657
2658  MI->eraseFromParent();   // The pseudo instruction is gone now.
2659  return Sink;
2660}
2661
2662MachineBasicBlock * MipsSETargetLowering::
2663emitMSACBranchPseudo(MachineInstr *MI, MachineBasicBlock *BB,
2664                     unsigned BranchOp) const{
2665  // $bb:
2666  //  vany_nonzero $rd, $ws
2667  //  =>
2668  // $bb:
2669  //  bnz.b $ws, $tbb
2670  //  b $fbb
2671  // $fbb:
2672  //  li $rd1, 0
2673  //  b $sink
2674  // $tbb:
2675  //  li $rd2, 1
2676  // $sink:
2677  //  $rd = phi($rd1, $fbb, $rd2, $tbb)
2678
2679  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2680  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2681  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2682  DebugLoc DL = MI->getDebugLoc();
2683  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2684  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
2685  MachineFunction *F = BB->getParent();
2686  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
2687  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
2688  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
2689  F->insert(It, FBB);
2690  F->insert(It, TBB);
2691  F->insert(It, Sink);
2692
2693  // Transfer the remainder of BB and its successor edges to Sink.
2694  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
2695               BB->end());
2696  Sink->transferSuccessorsAndUpdatePHIs(BB);
2697
2698  // Add successors.
2699  BB->addSuccessor(FBB);
2700  BB->addSuccessor(TBB);
2701  FBB->addSuccessor(Sink);
2702  TBB->addSuccessor(Sink);
2703
2704  // Insert the real bnz.b instruction to $BB.
2705  BuildMI(BB, DL, TII->get(BranchOp))
2706    .addReg(MI->getOperand(1).getReg())
2707    .addMBB(TBB);
2708
2709  // Fill $FBB.
2710  unsigned RD1 = RegInfo.createVirtualRegister(RC);
2711  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
2712    .addReg(Mips::ZERO).addImm(0);
2713  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
2714
2715  // Fill $TBB.
2716  unsigned RD2 = RegInfo.createVirtualRegister(RC);
2717  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
2718    .addReg(Mips::ZERO).addImm(1);
2719
2720  // Insert phi function to $Sink.
2721  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
2722          MI->getOperand(0).getReg())
2723    .addReg(RD1).addMBB(FBB).addReg(RD2).addMBB(TBB);
2724
2725  MI->eraseFromParent();   // The pseudo instruction is gone now.
2726  return Sink;
2727}
2728
2729// Emit the COPY_FW pseudo instruction.
2730//
2731// copy_fw_pseudo $fd, $ws, n
2732// =>
2733// copy_u_w $rt, $ws, $n
2734// mtc1     $rt, $fd
2735//
2736// When n is zero, the equivalent operation can be performed with (potentially)
2737// zero instructions due to register overlaps. This optimization is never valid
2738// for lane 1 because it would require FR=0 mode which isn't supported by MSA.
2739MachineBasicBlock * MipsSETargetLowering::
2740emitCOPY_FW(MachineInstr *MI, MachineBasicBlock *BB) const{
2741  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2742  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2743  DebugLoc DL = MI->getDebugLoc();
2744  unsigned Fd = MI->getOperand(0).getReg();
2745  unsigned Ws = MI->getOperand(1).getReg();
2746  unsigned Lane = MI->getOperand(2).getImm();
2747
2748  if (Lane == 0)
2749    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_lo);
2750  else {
2751    unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2752
2753    BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(1);
2754    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
2755  }
2756
2757  MI->eraseFromParent();   // The pseudo instruction is gone now.
2758  return BB;
2759}
2760
2761// Emit the COPY_FD pseudo instruction.
2762//
2763// copy_fd_pseudo $fd, $ws, n
2764// =>
2765// splati.d $wt, $ws, $n
2766// copy $fd, $wt:sub_64
2767//
2768// When n is zero, the equivalent operation can be performed with (potentially)
2769// zero instructions due to register overlaps. This optimization is always
2770// valid because FR=1 mode which is the only supported mode in MSA.
2771MachineBasicBlock * MipsSETargetLowering::
2772emitCOPY_FD(MachineInstr *MI, MachineBasicBlock *BB) const{
2773  assert(Subtarget->isFP64bit());
2774
2775  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2776  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2777  unsigned Fd  = MI->getOperand(0).getReg();
2778  unsigned Ws  = MI->getOperand(1).getReg();
2779  unsigned Lane = MI->getOperand(2).getImm() * 2;
2780  DebugLoc DL = MI->getDebugLoc();
2781
2782  if (Lane == 0)
2783    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
2784  else {
2785    unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2786
2787    BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
2788    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
2789  }
2790
2791  MI->eraseFromParent();   // The pseudo instruction is gone now.
2792  return BB;
2793}
2794
2795// Emit the INSERT_FW pseudo instruction.
2796//
2797// insert_fw_pseudo $wd, $wd_in, $n, $fs
2798// =>
2799// subreg_to_reg $wt:sub_lo, $fs
2800// insve_w $wd[$n], $wd_in, $wt[0]
2801MachineBasicBlock *
2802MipsSETargetLowering::emitINSERT_FW(MachineInstr *MI,
2803                                    MachineBasicBlock *BB) const {
2804  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2805  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2806  DebugLoc DL = MI->getDebugLoc();
2807  unsigned Wd = MI->getOperand(0).getReg();
2808  unsigned Wd_in = MI->getOperand(1).getReg();
2809  unsigned Lane = MI->getOperand(2).getImm();
2810  unsigned Fs = MI->getOperand(3).getReg();
2811  unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2812
2813  BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
2814      .addImm(0)
2815      .addReg(Fs)
2816      .addImm(Mips::sub_lo);
2817  BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
2818      .addReg(Wd_in)
2819      .addImm(Lane)
2820      .addReg(Wt);
2821
2822  MI->eraseFromParent(); // The pseudo instruction is gone now.
2823  return BB;
2824}
2825
2826// Emit the INSERT_FD pseudo instruction.
2827//
2828// insert_fd_pseudo $wd, $fs, n
2829// =>
2830// subreg_to_reg $wt:sub_64, $fs
2831// insve_d $wd[$n], $wd_in, $wt[0]
2832MachineBasicBlock *
2833MipsSETargetLowering::emitINSERT_FD(MachineInstr *MI,
2834                                    MachineBasicBlock *BB) const {
2835  assert(Subtarget->isFP64bit());
2836
2837  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2838  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2839  DebugLoc DL = MI->getDebugLoc();
2840  unsigned Wd = MI->getOperand(0).getReg();
2841  unsigned Wd_in = MI->getOperand(1).getReg();
2842  unsigned Lane = MI->getOperand(2).getImm();
2843  unsigned Fs = MI->getOperand(3).getReg();
2844  unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2845
2846  BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
2847      .addImm(0)
2848      .addReg(Fs)
2849      .addImm(Mips::sub_64);
2850  BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
2851      .addReg(Wd_in)
2852      .addImm(Lane)
2853      .addReg(Wt);
2854
2855  MI->eraseFromParent(); // The pseudo instruction is gone now.
2856  return BB;
2857}
2858
2859// Emit the FILL_FW pseudo instruction.
2860//
2861// fill_fw_pseudo $wd, $fs
2862// =>
2863// implicit_def $wt1
2864// insert_subreg $wt2:subreg_lo, $wt1, $fs
2865// splati.w $wd, $wt2[0]
2866MachineBasicBlock *
2867MipsSETargetLowering::emitFILL_FW(MachineInstr *MI,
2868                                  MachineBasicBlock *BB) const {
2869  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2870  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2871  DebugLoc DL = MI->getDebugLoc();
2872  unsigned Wd = MI->getOperand(0).getReg();
2873  unsigned Fs = MI->getOperand(1).getReg();
2874  unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2875  unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2876
2877  BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
2878  BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
2879      .addReg(Wt1)
2880      .addReg(Fs)
2881      .addImm(Mips::sub_lo);
2882  BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
2883
2884  MI->eraseFromParent(); // The pseudo instruction is gone now.
2885  return BB;
2886}
2887
2888// Emit the FILL_FD pseudo instruction.
2889//
2890// fill_fd_pseudo $wd, $fs
2891// =>
2892// implicit_def $wt1
2893// insert_subreg $wt2:subreg_64, $wt1, $fs
2894// splati.d $wd, $wt2[0]
2895MachineBasicBlock *
2896MipsSETargetLowering::emitFILL_FD(MachineInstr *MI,
2897                                  MachineBasicBlock *BB) const {
2898  assert(Subtarget->isFP64bit());
2899
2900  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2901  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2902  DebugLoc DL = MI->getDebugLoc();
2903  unsigned Wd = MI->getOperand(0).getReg();
2904  unsigned Fs = MI->getOperand(1).getReg();
2905  unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2906  unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2907
2908  BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
2909  BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
2910      .addReg(Wt1)
2911      .addReg(Fs)
2912      .addImm(Mips::sub_64);
2913  BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
2914
2915  MI->eraseFromParent();   // The pseudo instruction is gone now.
2916  return BB;
2917}
2918
2919// Emit the FEXP2_W_1 pseudo instructions.
2920//
2921// fexp2_w_1_pseudo $wd, $wt
2922// =>
2923// ldi.w $ws, 1
2924// fexp2.w $wd, $ws, $wt
2925MachineBasicBlock *
2926MipsSETargetLowering::emitFEXP2_W_1(MachineInstr *MI,
2927                                    MachineBasicBlock *BB) const {
2928  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2929  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2930  const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
2931  unsigned Ws1 = RegInfo.createVirtualRegister(RC);
2932  unsigned Ws2 = RegInfo.createVirtualRegister(RC);
2933  DebugLoc DL = MI->getDebugLoc();
2934
2935  // Splat 1.0 into a vector
2936  BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
2937  BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
2938
2939  // Emit 1.0 * fexp2(Wt)
2940  BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI->getOperand(0).getReg())
2941      .addReg(Ws2)
2942      .addReg(MI->getOperand(1).getReg());
2943
2944  MI->eraseFromParent(); // The pseudo instruction is gone now.
2945  return BB;
2946}
2947
2948// Emit the FEXP2_D_1 pseudo instructions.
2949//
2950// fexp2_d_1_pseudo $wd, $wt
2951// =>
2952// ldi.d $ws, 1
2953// fexp2.d $wd, $ws, $wt
2954MachineBasicBlock *
2955MipsSETargetLowering::emitFEXP2_D_1(MachineInstr *MI,
2956                                    MachineBasicBlock *BB) const {
2957  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2958  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2959  const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
2960  unsigned Ws1 = RegInfo.createVirtualRegister(RC);
2961  unsigned Ws2 = RegInfo.createVirtualRegister(RC);
2962  DebugLoc DL = MI->getDebugLoc();
2963
2964  // Splat 1.0 into a vector
2965  BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
2966  BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
2967
2968  // Emit 1.0 * fexp2(Wt)
2969  BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI->getOperand(0).getReg())
2970      .addReg(Ws2)
2971      .addReg(MI->getOperand(1).getReg());
2972
2973  MI->eraseFromParent(); // The pseudo instruction is gone now.
2974  return BB;
2975}
2976