HexagonMachineScheduler.cpp revision 263508
1//===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// MachineScheduler schedules machine instructions after phi elimination. It
11// preserves LiveIntervals so it can be invoked before register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16
17#include "HexagonMachineScheduler.h"
18#include "llvm/CodeGen/MachineLoopInfo.h"
19#include "llvm/IR/Function.h"
20
21using namespace llvm;
22
23/// Platform specific modifications to DAG.
24void VLIWMachineScheduler::postprocessDAG() {
25  SUnit* LastSequentialCall = NULL;
26  // Currently we only catch the situation when compare gets scheduled
27  // before preceding call.
28  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
29    // Remember the call.
30    if (SUnits[su].getInstr()->isCall())
31      LastSequentialCall = &(SUnits[su]);
32    // Look for a compare that defines a predicate.
33    else if (SUnits[su].getInstr()->isCompare() && LastSequentialCall)
34      SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier));
35  }
36}
37
38/// Check if scheduling of this SU is possible
39/// in the current packet.
40/// It is _not_ precise (statefull), it is more like
41/// another heuristic. Many corner cases are figured
42/// empirically.
43bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
44  if (!SU || !SU->getInstr())
45    return false;
46
47  // First see if the pipeline could receive this instruction
48  // in the current cycle.
49  switch (SU->getInstr()->getOpcode()) {
50  default:
51    if (!ResourcesModel->canReserveResources(SU->getInstr()))
52      return false;
53  case TargetOpcode::EXTRACT_SUBREG:
54  case TargetOpcode::INSERT_SUBREG:
55  case TargetOpcode::SUBREG_TO_REG:
56  case TargetOpcode::REG_SEQUENCE:
57  case TargetOpcode::IMPLICIT_DEF:
58  case TargetOpcode::COPY:
59  case TargetOpcode::INLINEASM:
60    break;
61  }
62
63  // Now see if there are no other dependencies to instructions already
64  // in the packet.
65  for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
66    if (Packet[i]->Succs.size() == 0)
67      continue;
68    for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
69         E = Packet[i]->Succs.end(); I != E; ++I) {
70      // Since we do not add pseudos to packets, might as well
71      // ignore order dependencies.
72      if (I->isCtrl())
73        continue;
74
75      if (I->getSUnit() == SU)
76        return false;
77    }
78  }
79  return true;
80}
81
82/// Keep track of available resources.
83bool VLIWResourceModel::reserveResources(SUnit *SU) {
84  bool startNewCycle = false;
85  // Artificially reset state.
86  if (!SU) {
87    ResourcesModel->clearResources();
88    Packet.clear();
89    TotalPackets++;
90    return false;
91  }
92  // If this SU does not fit in the packet
93  // start a new one.
94  if (!isResourceAvailable(SU)) {
95    ResourcesModel->clearResources();
96    Packet.clear();
97    TotalPackets++;
98    startNewCycle = true;
99  }
100
101  switch (SU->getInstr()->getOpcode()) {
102  default:
103    ResourcesModel->reserveResources(SU->getInstr());
104    break;
105  case TargetOpcode::EXTRACT_SUBREG:
106  case TargetOpcode::INSERT_SUBREG:
107  case TargetOpcode::SUBREG_TO_REG:
108  case TargetOpcode::REG_SEQUENCE:
109  case TargetOpcode::IMPLICIT_DEF:
110  case TargetOpcode::KILL:
111  case TargetOpcode::PROLOG_LABEL:
112  case TargetOpcode::EH_LABEL:
113  case TargetOpcode::COPY:
114  case TargetOpcode::INLINEASM:
115    break;
116  }
117  Packet.push_back(SU);
118
119#ifndef NDEBUG
120  DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
121  for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
122    DEBUG(dbgs() << "\t[" << i << "] SU(");
123    DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
124    DEBUG(Packet[i]->getInstr()->dump());
125  }
126#endif
127
128  // If packet is now full, reset the state so in the next cycle
129  // we start fresh.
130  if (Packet.size() >= SchedModel->getIssueWidth()) {
131    ResourcesModel->clearResources();
132    Packet.clear();
133    TotalPackets++;
134    startNewCycle = true;
135  }
136
137  return startNewCycle;
138}
139
140/// schedule - Called back from MachineScheduler::runOnMachineFunction
141/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
142/// only includes instructions that have DAG nodes, not scheduling boundaries.
143void VLIWMachineScheduler::schedule() {
144  DEBUG(dbgs()
145        << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
146        << " " << BB->getName()
147        << " in_func " << BB->getParent()->getFunction()->getName()
148        << " at loop depth "  << MLI.getLoopDepth(BB)
149        << " \n");
150
151  buildDAGWithRegPressure();
152
153  // Postprocess the DAG to add platform specific artificial dependencies.
154  postprocessDAG();
155
156  SmallVector<SUnit*, 8> TopRoots, BotRoots;
157  findRootsAndBiasEdges(TopRoots, BotRoots);
158
159  // Initialize the strategy before modifying the DAG.
160  SchedImpl->initialize(this);
161
162  // To view Height/Depth correctly, they should be accessed at least once.
163  //
164  // FIXME: SUnit::dumpAll always recompute depth and height now. The max
165  // depth/height could be computed directly from the roots and leaves.
166  DEBUG(unsigned maxH = 0;
167        for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
168          if (SUnits[su].getHeight() > maxH)
169            maxH = SUnits[su].getHeight();
170        dbgs() << "Max Height " << maxH << "\n";);
171  DEBUG(unsigned maxD = 0;
172        for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
173          if (SUnits[su].getDepth() > maxD)
174            maxD = SUnits[su].getDepth();
175        dbgs() << "Max Depth " << maxD << "\n";);
176  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
177          SUnits[su].dumpAll(this));
178
179  initQueues(TopRoots, BotRoots);
180
181  bool IsTopNode = false;
182  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
183    if (!checkSchedLimit())
184      break;
185
186    scheduleMI(SU, IsTopNode);
187
188    updateQueues(SU, IsTopNode);
189  }
190  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
191
192  placeDebugValues();
193}
194
195void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
196  DAG = static_cast<VLIWMachineScheduler*>(dag);
197  SchedModel = DAG->getSchedModel();
198
199  Top.init(DAG, SchedModel);
200  Bot.init(DAG, SchedModel);
201
202  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
203  // are disabled, then these HazardRecs will be disabled.
204  const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
205  const TargetMachine &TM = DAG->MF.getTarget();
206  delete Top.HazardRec;
207  delete Bot.HazardRec;
208  Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
209  Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
210
211  delete Top.ResourceModel;
212  delete Bot.ResourceModel;
213  Top.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
214  Bot.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
215
216  assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) &&
217         "-misched-topdown incompatible with -misched-bottomup");
218}
219
220void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
221  if (SU->isScheduled)
222    return;
223
224  for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
225       I != E; ++I) {
226    unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
227    unsigned MinLatency = I->getLatency();
228#ifndef NDEBUG
229    Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
230#endif
231    if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
232      SU->TopReadyCycle = PredReadyCycle + MinLatency;
233  }
234  Top.releaseNode(SU, SU->TopReadyCycle);
235}
236
237void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
238  if (SU->isScheduled)
239    return;
240
241  assert(SU->getInstr() && "Scheduled SUnit must have instr");
242
243  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
244       I != E; ++I) {
245    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
246    unsigned MinLatency = I->getLatency();
247#ifndef NDEBUG
248    Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
249#endif
250    if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
251      SU->BotReadyCycle = SuccReadyCycle + MinLatency;
252  }
253  Bot.releaseNode(SU, SU->BotReadyCycle);
254}
255
256/// Does this SU have a hazard within the current instruction group.
257///
258/// The scheduler supports two modes of hazard recognition. The first is the
259/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
260/// supports highly complicated in-order reservation tables
261/// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
262///
263/// The second is a streamlined mechanism that checks for hazards based on
264/// simple counters that the scheduler itself maintains. It explicitly checks
265/// for instruction dispatch limitations, including the number of micro-ops that
266/// can dispatch per cycle.
267///
268/// TODO: Also check whether the SU must start a new group.
269bool ConvergingVLIWScheduler::SchedBoundary::checkHazard(SUnit *SU) {
270  if (HazardRec->isEnabled())
271    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
272
273  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
274  if (IssueCount + uops > SchedModel->getIssueWidth())
275    return true;
276
277  return false;
278}
279
280void ConvergingVLIWScheduler::SchedBoundary::releaseNode(SUnit *SU,
281                                                     unsigned ReadyCycle) {
282  if (ReadyCycle < MinReadyCycle)
283    MinReadyCycle = ReadyCycle;
284
285  // Check for interlocks first. For the purpose of other heuristics, an
286  // instruction that cannot issue appears as if it's not in the ReadyQueue.
287  if (ReadyCycle > CurrCycle || checkHazard(SU))
288
289    Pending.push(SU);
290  else
291    Available.push(SU);
292}
293
294/// Move the boundary of scheduled code by one cycle.
295void ConvergingVLIWScheduler::SchedBoundary::bumpCycle() {
296  unsigned Width = SchedModel->getIssueWidth();
297  IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
298
299  assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
300  unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
301
302  if (!HazardRec->isEnabled()) {
303    // Bypass HazardRec virtual calls.
304    CurrCycle = NextCycle;
305  } else {
306    // Bypass getHazardType calls in case of long latency.
307    for (; CurrCycle != NextCycle; ++CurrCycle) {
308      if (isTop())
309        HazardRec->AdvanceCycle();
310      else
311        HazardRec->RecedeCycle();
312    }
313  }
314  CheckPending = true;
315
316  DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
317        << CurrCycle << '\n');
318}
319
320/// Move the boundary of scheduled code by one SUnit.
321void ConvergingVLIWScheduler::SchedBoundary::bumpNode(SUnit *SU) {
322  bool startNewCycle = false;
323
324  // Update the reservation table.
325  if (HazardRec->isEnabled()) {
326    if (!isTop() && SU->isCall) {
327      // Calls are scheduled with their preceding instructions. For bottom-up
328      // scheduling, clear the pipeline state before emitting.
329      HazardRec->Reset();
330    }
331    HazardRec->EmitInstruction(SU);
332  }
333
334  // Update DFA model.
335  startNewCycle = ResourceModel->reserveResources(SU);
336
337  // Check the instruction group dispatch limit.
338  // TODO: Check if this SU must end a dispatch group.
339  IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
340  if (startNewCycle) {
341    DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
342    bumpCycle();
343  }
344  else
345    DEBUG(dbgs() << "*** IssueCount " << IssueCount
346          << " at cycle " << CurrCycle << '\n');
347}
348
349/// Release pending ready nodes in to the available queue. This makes them
350/// visible to heuristics.
351void ConvergingVLIWScheduler::SchedBoundary::releasePending() {
352  // If the available queue is empty, it is safe to reset MinReadyCycle.
353  if (Available.empty())
354    MinReadyCycle = UINT_MAX;
355
356  // Check to see if any of the pending instructions are ready to issue.  If
357  // so, add them to the available queue.
358  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
359    SUnit *SU = *(Pending.begin()+i);
360    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
361
362    if (ReadyCycle < MinReadyCycle)
363      MinReadyCycle = ReadyCycle;
364
365    if (ReadyCycle > CurrCycle)
366      continue;
367
368    if (checkHazard(SU))
369      continue;
370
371    Available.push(SU);
372    Pending.remove(Pending.begin()+i);
373    --i; --e;
374  }
375  CheckPending = false;
376}
377
378/// Remove SU from the ready set for this boundary.
379void ConvergingVLIWScheduler::SchedBoundary::removeReady(SUnit *SU) {
380  if (Available.isInQueue(SU))
381    Available.remove(Available.find(SU));
382  else {
383    assert(Pending.isInQueue(SU) && "bad ready count");
384    Pending.remove(Pending.find(SU));
385  }
386}
387
388/// If this queue only has one ready candidate, return it. As a side effect,
389/// advance the cycle until at least one node is ready. If multiple instructions
390/// are ready, return NULL.
391SUnit *ConvergingVLIWScheduler::SchedBoundary::pickOnlyChoice() {
392  if (CheckPending)
393    releasePending();
394
395  for (unsigned i = 0; Available.empty(); ++i) {
396    assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
397           "permanent hazard"); (void)i;
398    ResourceModel->reserveResources(0);
399    bumpCycle();
400    releasePending();
401  }
402  if (Available.size() == 1)
403    return *Available.begin();
404  return NULL;
405}
406
407#ifndef NDEBUG
408void ConvergingVLIWScheduler::traceCandidate(const char *Label,
409                                             const ReadyQueue &Q,
410                                             SUnit *SU, PressureChange P) {
411  dbgs() << Label << " " << Q.getName() << " ";
412  if (P.isValid())
413    dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":"
414           << P.getUnitInc() << " ";
415  else
416    dbgs() << "     ";
417  SU->dump(DAG);
418}
419#endif
420
421/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
422/// of SU, return it, otherwise return null.
423static SUnit *getSingleUnscheduledPred(SUnit *SU) {
424  SUnit *OnlyAvailablePred = 0;
425  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
426       I != E; ++I) {
427    SUnit &Pred = *I->getSUnit();
428    if (!Pred.isScheduled) {
429      // We found an available, but not scheduled, predecessor.  If it's the
430      // only one we have found, keep track of it... otherwise give up.
431      if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
432        return 0;
433      OnlyAvailablePred = &Pred;
434    }
435  }
436  return OnlyAvailablePred;
437}
438
439/// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
440/// of SU, return it, otherwise return null.
441static SUnit *getSingleUnscheduledSucc(SUnit *SU) {
442  SUnit *OnlyAvailableSucc = 0;
443  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
444       I != E; ++I) {
445    SUnit &Succ = *I->getSUnit();
446    if (!Succ.isScheduled) {
447      // We found an available, but not scheduled, successor.  If it's the
448      // only one we have found, keep track of it... otherwise give up.
449      if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
450        return 0;
451      OnlyAvailableSucc = &Succ;
452    }
453  }
454  return OnlyAvailableSucc;
455}
456
457// Constants used to denote relative importance of
458// heuristic components for cost computation.
459static const unsigned PriorityOne = 200;
460static const unsigned PriorityTwo = 50;
461static const unsigned ScaleTwo = 10;
462static const unsigned FactorOne = 2;
463
464/// Single point to compute overall scheduling cost.
465/// TODO: More heuristics will be used soon.
466int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
467                                            SchedCandidate &Candidate,
468                                            RegPressureDelta &Delta,
469                                            bool verbose) {
470  // Initial trivial priority.
471  int ResCount = 1;
472
473  // Do not waste time on a node that is already scheduled.
474  if (!SU || SU->isScheduled)
475    return ResCount;
476
477  // Forced priority is high.
478  if (SU->isScheduleHigh)
479    ResCount += PriorityOne;
480
481  // Critical path first.
482  if (Q.getID() == TopQID) {
483    ResCount += (SU->getHeight() * ScaleTwo);
484
485    // If resources are available for it, multiply the
486    // chance of scheduling.
487    if (Top.ResourceModel->isResourceAvailable(SU))
488      ResCount <<= FactorOne;
489  } else {
490    ResCount += (SU->getDepth() * ScaleTwo);
491
492    // If resources are available for it, multiply the
493    // chance of scheduling.
494    if (Bot.ResourceModel->isResourceAvailable(SU))
495      ResCount <<= FactorOne;
496  }
497
498  unsigned NumNodesBlocking = 0;
499  if (Q.getID() == TopQID) {
500    // How many SUs does it block from scheduling?
501    // Look at all of the successors of this node.
502    // Count the number of nodes that
503    // this node is the sole unscheduled node for.
504    for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
505         I != E; ++I)
506      if (getSingleUnscheduledPred(I->getSUnit()) == SU)
507        ++NumNodesBlocking;
508  } else {
509    // How many unscheduled predecessors block this node?
510    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
511         I != E; ++I)
512      if (getSingleUnscheduledSucc(I->getSUnit()) == SU)
513        ++NumNodesBlocking;
514  }
515  ResCount += (NumNodesBlocking * ScaleTwo);
516
517  // Factor in reg pressure as a heuristic.
518  ResCount -= (Delta.Excess.getUnitInc()*PriorityTwo);
519  ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityTwo);
520
521  DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")");
522
523  return ResCount;
524}
525
526/// Pick the best candidate from the top queue.
527///
528/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
529/// DAG building. To adjust for the current scheduling location we need to
530/// maintain the number of vreg uses remaining to be top-scheduled.
531ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
532pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
533                  SchedCandidate &Candidate) {
534  DEBUG(Q.dump());
535
536  // getMaxPressureDelta temporarily modifies the tracker.
537  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
538
539  // BestSU remains NULL if no top candidates beat the best existing candidate.
540  CandResult FoundCandidate = NoCand;
541  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
542    RegPressureDelta RPDelta;
543    TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
544                                    DAG->getRegionCriticalPSets(),
545                                    DAG->getRegPressure().MaxSetPressure);
546
547    int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
548
549    // Initialize the candidate if needed.
550    if (!Candidate.SU) {
551      Candidate.SU = *I;
552      Candidate.RPDelta = RPDelta;
553      Candidate.SCost = CurrentCost;
554      FoundCandidate = NodeOrder;
555      continue;
556    }
557
558    // Best cost.
559    if (CurrentCost > Candidate.SCost) {
560      DEBUG(traceCandidate("CCAND", Q, *I));
561      Candidate.SU = *I;
562      Candidate.RPDelta = RPDelta;
563      Candidate.SCost = CurrentCost;
564      FoundCandidate = BestCost;
565      continue;
566    }
567
568    // Fall through to original instruction order.
569    // Only consider node order if Candidate was chosen from this Q.
570    if (FoundCandidate == NoCand)
571      continue;
572  }
573  return FoundCandidate;
574}
575
576/// Pick the best candidate node from either the top or bottom queue.
577SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
578  // Schedule as far as possible in the direction of no choice. This is most
579  // efficient, but also provides the best heuristics for CriticalPSets.
580  if (SUnit *SU = Bot.pickOnlyChoice()) {
581    IsTopNode = false;
582    return SU;
583  }
584  if (SUnit *SU = Top.pickOnlyChoice()) {
585    IsTopNode = true;
586    return SU;
587  }
588  SchedCandidate BotCand;
589  // Prefer bottom scheduling when heuristics are silent.
590  CandResult BotResult = pickNodeFromQueue(Bot.Available,
591                                           DAG->getBotRPTracker(), BotCand);
592  assert(BotResult != NoCand && "failed to find the first candidate");
593
594  // If either Q has a single candidate that provides the least increase in
595  // Excess pressure, we can immediately schedule from that Q.
596  //
597  // RegionCriticalPSets summarizes the pressure within the scheduled region and
598  // affects picking from either Q. If scheduling in one direction must
599  // increase pressure for one of the excess PSets, then schedule in that
600  // direction first to provide more freedom in the other direction.
601  if (BotResult == SingleExcess || BotResult == SingleCritical) {
602    IsTopNode = false;
603    return BotCand.SU;
604  }
605  // Check if the top Q has a better candidate.
606  SchedCandidate TopCand;
607  CandResult TopResult = pickNodeFromQueue(Top.Available,
608                                           DAG->getTopRPTracker(), TopCand);
609  assert(TopResult != NoCand && "failed to find the first candidate");
610
611  if (TopResult == SingleExcess || TopResult == SingleCritical) {
612    IsTopNode = true;
613    return TopCand.SU;
614  }
615  // If either Q has a single candidate that minimizes pressure above the
616  // original region's pressure pick it.
617  if (BotResult == SingleMax) {
618    IsTopNode = false;
619    return BotCand.SU;
620  }
621  if (TopResult == SingleMax) {
622    IsTopNode = true;
623    return TopCand.SU;
624  }
625  if (TopCand.SCost > BotCand.SCost) {
626    IsTopNode = true;
627    return TopCand.SU;
628  }
629  // Otherwise prefer the bottom candidate in node order.
630  IsTopNode = false;
631  return BotCand.SU;
632}
633
634/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
635SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
636  if (DAG->top() == DAG->bottom()) {
637    assert(Top.Available.empty() && Top.Pending.empty() &&
638           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
639    return NULL;
640  }
641  SUnit *SU;
642  if (llvm::ForceTopDown) {
643    SU = Top.pickOnlyChoice();
644    if (!SU) {
645      SchedCandidate TopCand;
646      CandResult TopResult =
647        pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
648      assert(TopResult != NoCand && "failed to find the first candidate");
649      (void)TopResult;
650      SU = TopCand.SU;
651    }
652    IsTopNode = true;
653  } else if (llvm::ForceBottomUp) {
654    SU = Bot.pickOnlyChoice();
655    if (!SU) {
656      SchedCandidate BotCand;
657      CandResult BotResult =
658        pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
659      assert(BotResult != NoCand && "failed to find the first candidate");
660      (void)BotResult;
661      SU = BotCand.SU;
662    }
663    IsTopNode = false;
664  } else {
665    SU = pickNodeBidrectional(IsTopNode);
666  }
667  if (SU->isTopReady())
668    Top.removeReady(SU);
669  if (SU->isBottomReady())
670    Bot.removeReady(SU);
671
672  DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
673        << " Scheduling Instruction in cycle "
674        << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
675        SU->dump(DAG));
676  return SU;
677}
678
679/// Update the scheduler's state after scheduling a node. This is the same node
680/// that was just returned by pickNode(). However, VLIWMachineScheduler needs
681/// to update it's state based on the current cycle before MachineSchedStrategy
682/// does.
683void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
684  if (IsTopNode) {
685    SU->TopReadyCycle = Top.CurrCycle;
686    Top.bumpNode(SU);
687  } else {
688    SU->BotReadyCycle = Bot.CurrCycle;
689    Bot.bumpNode(SU);
690  }
691}
692