HexagonISelLowering.cpp revision 263508
1//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the interfaces that Hexagon uses to lower LLVM code
11// into a selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "HexagonISelLowering.h"
16#include "HexagonMachineFunctionInfo.h"
17#include "HexagonSubtarget.h"
18#include "HexagonTargetMachine.h"
19#include "HexagonTargetObjectFile.h"
20#include "llvm/CodeGen/CallingConvLower.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAGISel.h"
27#include "llvm/CodeGen/ValueTypes.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/InlineAsm.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/raw_ostream.h"
39
40using namespace llvm;
41
42static cl::opt<bool>
43EmitJumpTables("hexagon-emit-jump-tables", cl::init(true), cl::Hidden,
44               cl::desc("Control jump table emission on Hexagon target"));
45
46namespace {
47class HexagonCCState : public CCState {
48  int NumNamedVarArgParams;
49
50public:
51  HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
52                 const TargetMachine &TM, SmallVectorImpl<CCValAssign> &locs,
53                 LLVMContext &C, int NumNamedVarArgParams)
54      : CCState(CC, isVarArg, MF, TM, locs, C),
55        NumNamedVarArgParams(NumNamedVarArgParams) {}
56
57  int getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
58};
59}
60
61// Implement calling convention for Hexagon.
62static bool
63CC_Hexagon(unsigned ValNo, MVT ValVT,
64           MVT LocVT, CCValAssign::LocInfo LocInfo,
65           ISD::ArgFlagsTy ArgFlags, CCState &State);
66
67static bool
68CC_Hexagon32(unsigned ValNo, MVT ValVT,
69             MVT LocVT, CCValAssign::LocInfo LocInfo,
70             ISD::ArgFlagsTy ArgFlags, CCState &State);
71
72static bool
73CC_Hexagon64(unsigned ValNo, MVT ValVT,
74             MVT LocVT, CCValAssign::LocInfo LocInfo,
75             ISD::ArgFlagsTy ArgFlags, CCState &State);
76
77static bool
78RetCC_Hexagon(unsigned ValNo, MVT ValVT,
79              MVT LocVT, CCValAssign::LocInfo LocInfo,
80              ISD::ArgFlagsTy ArgFlags, CCState &State);
81
82static bool
83RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
84                MVT LocVT, CCValAssign::LocInfo LocInfo,
85                ISD::ArgFlagsTy ArgFlags, CCState &State);
86
87static bool
88RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
89                MVT LocVT, CCValAssign::LocInfo LocInfo,
90                ISD::ArgFlagsTy ArgFlags, CCState &State);
91
92static bool
93CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT,
94            MVT LocVT, CCValAssign::LocInfo LocInfo,
95            ISD::ArgFlagsTy ArgFlags, CCState &State) {
96  HexagonCCState &HState = static_cast<HexagonCCState &>(State);
97
98  // NumNamedVarArgParams can not be zero for a VarArg function.
99  assert((HState.getNumNamedVarArgParams() > 0) &&
100         "NumNamedVarArgParams is not bigger than zero.");
101
102  if ((int)ValNo < HState.getNumNamedVarArgParams()) {
103    // Deal with named arguments.
104    return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
105  }
106
107  // Deal with un-named arguments.
108  unsigned ofst;
109  if (ArgFlags.isByVal()) {
110    // If pass-by-value, the size allocated on stack is decided
111    // by ArgFlags.getByValSize(), not by the size of LocVT.
112    assert ((ArgFlags.getByValSize() > 8) &&
113            "ByValSize must be bigger than 8 bytes");
114    ofst = State.AllocateStack(ArgFlags.getByValSize(), 4);
115    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
116    return false;
117  }
118  if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
119    LocVT = MVT::i32;
120    ValVT = MVT::i32;
121    if (ArgFlags.isSExt())
122      LocInfo = CCValAssign::SExt;
123    else if (ArgFlags.isZExt())
124      LocInfo = CCValAssign::ZExt;
125    else
126      LocInfo = CCValAssign::AExt;
127  }
128  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
129    ofst = State.AllocateStack(4, 4);
130    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
131    return false;
132  }
133  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
134    ofst = State.AllocateStack(8, 8);
135    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
136    return false;
137  }
138  llvm_unreachable(0);
139}
140
141
142static bool
143CC_Hexagon (unsigned ValNo, MVT ValVT,
144            MVT LocVT, CCValAssign::LocInfo LocInfo,
145            ISD::ArgFlagsTy ArgFlags, CCState &State) {
146
147  if (ArgFlags.isByVal()) {
148    // Passed on stack.
149    assert ((ArgFlags.getByValSize() > 8) &&
150            "ByValSize must be bigger than 8 bytes");
151    unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 4);
152    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
153    return false;
154  }
155
156  if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
157    LocVT = MVT::i32;
158    ValVT = MVT::i32;
159    if (ArgFlags.isSExt())
160      LocInfo = CCValAssign::SExt;
161    else if (ArgFlags.isZExt())
162      LocInfo = CCValAssign::ZExt;
163    else
164      LocInfo = CCValAssign::AExt;
165  }
166
167  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
168    if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
169      return false;
170  }
171
172  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
173    if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
174      return false;
175  }
176
177  return true;  // CC didn't match.
178}
179
180
181static bool CC_Hexagon32(unsigned ValNo, MVT ValVT,
182                         MVT LocVT, CCValAssign::LocInfo LocInfo,
183                         ISD::ArgFlagsTy ArgFlags, CCState &State) {
184
185  static const uint16_t RegList[] = {
186    Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
187    Hexagon::R5
188  };
189  if (unsigned Reg = State.AllocateReg(RegList, 6)) {
190    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
191    return false;
192  }
193
194  unsigned Offset = State.AllocateStack(4, 4);
195  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
196  return false;
197}
198
199static bool CC_Hexagon64(unsigned ValNo, MVT ValVT,
200                         MVT LocVT, CCValAssign::LocInfo LocInfo,
201                         ISD::ArgFlagsTy ArgFlags, CCState &State) {
202
203  if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
204    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
205    return false;
206  }
207
208  static const uint16_t RegList1[] = {
209    Hexagon::D1, Hexagon::D2
210  };
211  static const uint16_t RegList2[] = {
212    Hexagon::R1, Hexagon::R3
213  };
214  if (unsigned Reg = State.AllocateReg(RegList1, RegList2, 2)) {
215    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
216    return false;
217  }
218
219  unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2);
220  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
221  return false;
222}
223
224static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT,
225                          MVT LocVT, CCValAssign::LocInfo LocInfo,
226                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
227
228
229  if (LocVT == MVT::i1 ||
230      LocVT == MVT::i8 ||
231      LocVT == MVT::i16) {
232    LocVT = MVT::i32;
233    ValVT = MVT::i32;
234    if (ArgFlags.isSExt())
235      LocInfo = CCValAssign::SExt;
236    else if (ArgFlags.isZExt())
237      LocInfo = CCValAssign::ZExt;
238    else
239      LocInfo = CCValAssign::AExt;
240  }
241
242  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
243    if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
244    return false;
245  }
246
247  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
248    if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
249    return false;
250  }
251
252  return true;  // CC didn't match.
253}
254
255static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
256                            MVT LocVT, CCValAssign::LocInfo LocInfo,
257                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
258
259  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
260    if (unsigned Reg = State.AllocateReg(Hexagon::R0)) {
261      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
262      return false;
263    }
264  }
265
266  unsigned Offset = State.AllocateStack(4, 4);
267  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
268  return false;
269}
270
271static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
272                            MVT LocVT, CCValAssign::LocInfo LocInfo,
273                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
274  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
275    if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
276      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
277      return false;
278    }
279  }
280
281  unsigned Offset = State.AllocateStack(8, 8);
282  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
283  return false;
284}
285
286SDValue
287HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
288const {
289  return SDValue();
290}
291
292/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
293/// by "Src" to address "Dst" of size "Size".  Alignment information is
294/// specified by the specific parameter attribute. The copy will be passed as
295/// a byval function parameter.  Sometimes what we are copying is the end of a
296/// larger object, the part that does not fit in registers.
297static SDValue
298CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
299                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
300                          SDLoc dl) {
301
302  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
303  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
304                       /*isVolatile=*/false, /*AlwaysInline=*/false,
305                       MachinePointerInfo(), MachinePointerInfo());
306}
307
308
309// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
310// passed by value, the function prototype is modified to return void and
311// the value is stored in memory pointed by a pointer passed by caller.
312SDValue
313HexagonTargetLowering::LowerReturn(SDValue Chain,
314                                   CallingConv::ID CallConv, bool isVarArg,
315                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
316                                   const SmallVectorImpl<SDValue> &OutVals,
317                                   SDLoc dl, SelectionDAG &DAG) const {
318
319  // CCValAssign - represent the assignment of the return value to locations.
320  SmallVector<CCValAssign, 16> RVLocs;
321
322  // CCState - Info about the registers and stack slot.
323  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
324                 getTargetMachine(), RVLocs, *DAG.getContext());
325
326  // Analyze return values of ISD::RET
327  CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
328
329  SDValue Flag;
330  SmallVector<SDValue, 4> RetOps(1, Chain);
331
332  // Copy the result values into the output registers.
333  for (unsigned i = 0; i != RVLocs.size(); ++i) {
334    CCValAssign &VA = RVLocs[i];
335
336    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
337
338    // Guarantee that all emitted copies are stuck together with flags.
339    Flag = Chain.getValue(1);
340    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
341  }
342
343  RetOps[0] = Chain;  // Update chain.
344
345  // Add the flag if we have it.
346  if (Flag.getNode())
347    RetOps.push_back(Flag);
348
349  return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other,
350                     &RetOps[0], RetOps.size());
351}
352
353
354
355
356/// LowerCallResult - Lower the result values of an ISD::CALL into the
357/// appropriate copies out of appropriate physical registers.  This assumes that
358/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
359/// being lowered. Returns a SDNode with the same number of values as the
360/// ISD::CALL.
361SDValue
362HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
363                                       CallingConv::ID CallConv, bool isVarArg,
364                                       const
365                                       SmallVectorImpl<ISD::InputArg> &Ins,
366                                       SDLoc dl, SelectionDAG &DAG,
367                                       SmallVectorImpl<SDValue> &InVals,
368                                       const SmallVectorImpl<SDValue> &OutVals,
369                                       SDValue Callee) const {
370
371  // Assign locations to each value returned by this call.
372  SmallVector<CCValAssign, 16> RVLocs;
373
374  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
375                 getTargetMachine(), RVLocs, *DAG.getContext());
376
377  CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
378
379  // Copy all of the result registers out of their specified physreg.
380  for (unsigned i = 0; i != RVLocs.size(); ++i) {
381    Chain = DAG.getCopyFromReg(Chain, dl,
382                               RVLocs[i].getLocReg(),
383                               RVLocs[i].getValVT(), InFlag).getValue(1);
384    InFlag = Chain.getValue(2);
385    InVals.push_back(Chain.getValue(0));
386  }
387
388  return Chain;
389}
390
391/// LowerCall - Functions arguments are copied from virtual regs to
392/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
393SDValue
394HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
395                                 SmallVectorImpl<SDValue> &InVals) const {
396  SelectionDAG &DAG                     = CLI.DAG;
397  SDLoc &dl                             = CLI.DL;
398  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
399  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
400  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
401  SDValue Chain                         = CLI.Chain;
402  SDValue Callee                        = CLI.Callee;
403  bool &isTailCall                      = CLI.IsTailCall;
404  CallingConv::ID CallConv              = CLI.CallConv;
405  bool isVarArg                         = CLI.IsVarArg;
406
407  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
408
409  // Check for varargs.
410  int NumNamedVarArgParams = -1;
411  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee))
412  {
413    const Function* CalleeFn = NULL;
414    Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, MVT::i32);
415    if ((CalleeFn = dyn_cast<Function>(GA->getGlobal())))
416    {
417      // If a function has zero args and is a vararg function, that's
418      // disallowed so it must be an undeclared function.  Do not assume
419      // varargs if the callee is undefined.
420      if (CalleeFn->isVarArg() &&
421          CalleeFn->getFunctionType()->getNumParams() != 0) {
422        NumNamedVarArgParams = CalleeFn->getFunctionType()->getNumParams();
423      }
424    }
425  }
426
427  // Analyze operands of the call, assigning locations to each operand.
428  SmallVector<CCValAssign, 16> ArgLocs;
429  HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
430                        getTargetMachine(), ArgLocs, *DAG.getContext(),
431                        NumNamedVarArgParams);
432
433  if (NumNamedVarArgParams > 0)
434    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg);
435  else
436    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
437
438
439  if(isTailCall) {
440    bool StructAttrFlag =
441      DAG.getMachineFunction().getFunction()->hasStructRetAttr();
442    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
443                                                   isVarArg, IsStructRet,
444                                                   StructAttrFlag,
445                                                   Outs, OutVals, Ins, DAG);
446    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i){
447      CCValAssign &VA = ArgLocs[i];
448      if (VA.isMemLoc()) {
449        isTailCall = false;
450        break;
451      }
452    }
453    if (isTailCall) {
454      DEBUG(dbgs () << "Eligible for Tail Call\n");
455    } else {
456      DEBUG(dbgs () <<
457            "Argument must be passed on stack. Not eligible for Tail Call\n");
458    }
459  }
460  // Get a count of how many bytes are to be pushed on the stack.
461  unsigned NumBytes = CCInfo.getNextStackOffset();
462  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
463  SmallVector<SDValue, 8> MemOpChains;
464
465  SDValue StackPtr =
466    DAG.getCopyFromReg(Chain, dl, TM.getRegisterInfo()->getStackRegister(),
467                       getPointerTy());
468
469  // Walk the register/memloc assignments, inserting copies/loads.
470  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
471    CCValAssign &VA = ArgLocs[i];
472    SDValue Arg = OutVals[i];
473    ISD::ArgFlagsTy Flags = Outs[i].Flags;
474
475    // Promote the value if needed.
476    switch (VA.getLocInfo()) {
477      default:
478        // Loc info must be one of Full, SExt, ZExt, or AExt.
479        llvm_unreachable("Unknown loc info!");
480      case CCValAssign::Full:
481        break;
482      case CCValAssign::SExt:
483        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
484        break;
485      case CCValAssign::ZExt:
486        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
487        break;
488      case CCValAssign::AExt:
489        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
490        break;
491    }
492
493    if (VA.isMemLoc()) {
494      unsigned LocMemOffset = VA.getLocMemOffset();
495      SDValue PtrOff = DAG.getConstant(LocMemOffset, StackPtr.getValueType());
496      PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
497
498      if (Flags.isByVal()) {
499        // The argument is a struct passed by value. According to LLVM, "Arg"
500        // is is pointer.
501        MemOpChains.push_back(CreateCopyOfByValArgument(Arg, PtrOff, Chain,
502                                                        Flags, DAG, dl));
503      } else {
504        // The argument is not passed by value. "Arg" is a buildin type. It is
505        // not a pointer.
506        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
507                                           MachinePointerInfo(),false, false,
508                                           0));
509      }
510      continue;
511    }
512
513    // Arguments that can be passed on register must be kept at RegsToPass
514    // vector.
515    if (VA.isRegLoc()) {
516      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
517    }
518  }
519
520  // Transform all store nodes into one single node because all store
521  // nodes are independent of each other.
522  if (!MemOpChains.empty()) {
523    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0],
524                        MemOpChains.size());
525  }
526
527  if (!isTailCall)
528    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes,
529                                                        getPointerTy(), true),
530                                 dl);
531
532  // Build a sequence of copy-to-reg nodes chained together with token
533  // chain and flag operands which copy the outgoing args into registers.
534  // The InFlag in necessary since all emitted instructions must be
535  // stuck together.
536  SDValue InFlag;
537  if (!isTailCall) {
538    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
539      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
540                               RegsToPass[i].second, InFlag);
541      InFlag = Chain.getValue(1);
542    }
543  }
544
545  // For tail calls lower the arguments to the 'real' stack slot.
546  if (isTailCall) {
547    // Force all the incoming stack arguments to be loaded from the stack
548    // before any new outgoing arguments are stored to the stack, because the
549    // outgoing stack slots may alias the incoming argument stack slots, and
550    // the alias isn't otherwise explicit. This is slightly more conservative
551    // than necessary, because it means that each store effectively depends
552    // on every argument instead of just those arguments it would clobber.
553    //
554    // Do not flag preceding copytoreg stuff together with the following stuff.
555    InFlag = SDValue();
556    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
557      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
558                               RegsToPass[i].second, InFlag);
559      InFlag = Chain.getValue(1);
560    }
561    InFlag =SDValue();
562  }
563
564  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
565  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
566  // node so that legalize doesn't hack it.
567  if (flag_aligned_memcpy) {
568    const char *MemcpyName =
569      "__hexagon_memcpy_likely_aligned_min32bytes_mult8bytes";
570    Callee =
571      DAG.getTargetExternalSymbol(MemcpyName, getPointerTy());
572    flag_aligned_memcpy = false;
573  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
574    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy());
575  } else if (ExternalSymbolSDNode *S =
576             dyn_cast<ExternalSymbolSDNode>(Callee)) {
577    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
578  }
579
580  // Returns a chain & a flag for retval copy to use.
581  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
582  SmallVector<SDValue, 8> Ops;
583  Ops.push_back(Chain);
584  Ops.push_back(Callee);
585
586  // Add argument registers to the end of the list so that they are
587  // known live into the call.
588  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
589    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
590                                  RegsToPass[i].second.getValueType()));
591  }
592
593  if (InFlag.getNode()) {
594    Ops.push_back(InFlag);
595  }
596
597  if (isTailCall)
598    return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
599
600  Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
601  InFlag = Chain.getValue(1);
602
603  // Create the CALLSEQ_END node.
604  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
605                             DAG.getIntPtrConstant(0, true), InFlag, dl);
606  InFlag = Chain.getValue(1);
607
608  // Handle result values, copying them out of physregs into vregs that we
609  // return.
610  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
611                         InVals, OutVals, Callee);
612}
613
614static bool getIndexedAddressParts(SDNode *Ptr, EVT VT,
615                                   bool isSEXTLoad, SDValue &Base,
616                                   SDValue &Offset, bool &isInc,
617                                   SelectionDAG &DAG) {
618  if (Ptr->getOpcode() != ISD::ADD)
619  return false;
620
621  if (VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
622    isInc = (Ptr->getOpcode() == ISD::ADD);
623    Base = Ptr->getOperand(0);
624    Offset = Ptr->getOperand(1);
625    // Ensure that Offset is a constant.
626    return (isa<ConstantSDNode>(Offset));
627  }
628
629  return false;
630}
631
632// TODO: Put this function along with the other isS* functions in
633// HexagonISelDAGToDAG.cpp into a common file. Or better still, use the
634// functions defined in HexagonOperands.td.
635static bool Is_PostInc_S4_Offset(SDNode * S, int ShiftAmount) {
636  ConstantSDNode *N = cast<ConstantSDNode>(S);
637
638  // immS4 predicate - True if the immediate fits in a 4-bit sign extended.
639  // field.
640  int64_t v = (int64_t)N->getSExtValue();
641  int64_t m = 0;
642  if (ShiftAmount > 0) {
643    m = v % ShiftAmount;
644    v = v >> ShiftAmount;
645  }
646  return (v <= 7) && (v >= -8) && (m == 0);
647}
648
649/// getPostIndexedAddressParts - returns true by value, base pointer and
650/// offset pointer and addressing mode by reference if this node can be
651/// combined with a load / store to form a post-indexed load / store.
652bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
653                                                       SDValue &Base,
654                                                       SDValue &Offset,
655                                                       ISD::MemIndexedMode &AM,
656                                                       SelectionDAG &DAG) const
657{
658  EVT VT;
659  SDValue Ptr;
660  bool isSEXTLoad = false;
661
662  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
663    VT  = LD->getMemoryVT();
664    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
665  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
666    VT  = ST->getMemoryVT();
667    if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) {
668      return false;
669    }
670  } else {
671    return false;
672  }
673
674  bool isInc = false;
675  bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
676                                        isInc, DAG);
677  // ShiftAmount = number of left-shifted bits in the Hexagon instruction.
678  int ShiftAmount = VT.getSizeInBits() / 16;
679  if (isLegal && Is_PostInc_S4_Offset(Offset.getNode(), ShiftAmount)) {
680    AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
681    return true;
682  }
683
684  return false;
685}
686
687SDValue HexagonTargetLowering::LowerINLINEASM(SDValue Op,
688                                              SelectionDAG &DAG) const {
689  SDNode *Node = Op.getNode();
690  MachineFunction &MF = DAG.getMachineFunction();
691  HexagonMachineFunctionInfo *FuncInfo =
692    MF.getInfo<HexagonMachineFunctionInfo>();
693  switch (Node->getOpcode()) {
694    case ISD::INLINEASM: {
695      unsigned NumOps = Node->getNumOperands();
696      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
697        --NumOps;  // Ignore the flag operand.
698
699      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
700        if (FuncInfo->hasClobberLR())
701          break;
702        unsigned Flags =
703          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
704        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
705        ++i;  // Skip the ID value.
706
707        switch (InlineAsm::getKind(Flags)) {
708        default: llvm_unreachable("Bad flags!");
709          case InlineAsm::Kind_RegDef:
710          case InlineAsm::Kind_RegUse:
711          case InlineAsm::Kind_Imm:
712          case InlineAsm::Kind_Clobber:
713          case InlineAsm::Kind_Mem: {
714            for (; NumVals; --NumVals, ++i) {}
715            break;
716          }
717          case InlineAsm::Kind_RegDefEarlyClobber: {
718            for (; NumVals; --NumVals, ++i) {
719              unsigned Reg =
720                cast<RegisterSDNode>(Node->getOperand(i))->getReg();
721
722              // Check it to be lr
723              if (Reg == TM.getRegisterInfo()->getRARegister()) {
724                FuncInfo->setHasClobberLR(true);
725                break;
726              }
727            }
728            break;
729          }
730        }
731      }
732    }
733  } // Node->getOpcode
734  return Op;
735}
736
737
738//
739// Taken from the XCore backend.
740//
741SDValue HexagonTargetLowering::
742LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
743{
744  SDValue Chain = Op.getOperand(0);
745  SDValue Table = Op.getOperand(1);
746  SDValue Index = Op.getOperand(2);
747  SDLoc dl(Op);
748  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
749  unsigned JTI = JT->getIndex();
750  MachineFunction &MF = DAG.getMachineFunction();
751  const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
752  SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
753
754  // Mark all jump table targets as address taken.
755  const std::vector<MachineJumpTableEntry> &JTE = MJTI->getJumpTables();
756  const std::vector<MachineBasicBlock*> &JTBBs = JTE[JTI].MBBs;
757  for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
758    MachineBasicBlock *MBB = JTBBs[i];
759    MBB->setHasAddressTaken();
760    // This line is needed to set the hasAddressTaken flag on the BasicBlock
761    // object.
762    BlockAddress::get(const_cast<BasicBlock *>(MBB->getBasicBlock()));
763  }
764
765  SDValue JumpTableBase = DAG.getNode(HexagonISD::WrapperJT, dl,
766                                      getPointerTy(), TargetJT);
767  SDValue ShiftIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
768                                   DAG.getConstant(2, MVT::i32));
769  SDValue JTAddress = DAG.getNode(ISD::ADD, dl, MVT::i32, JumpTableBase,
770                                  ShiftIndex);
771  SDValue LoadTarget = DAG.getLoad(MVT::i32, dl, Chain, JTAddress,
772                                   MachinePointerInfo(), false, false, false,
773                                   0);
774  return DAG.getNode(HexagonISD::BR_JT, dl, MVT::Other, Chain, LoadTarget);
775}
776
777
778SDValue
779HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
780                                               SelectionDAG &DAG) const {
781  SDValue Chain = Op.getOperand(0);
782  SDValue Size = Op.getOperand(1);
783  SDLoc dl(Op);
784
785  unsigned SPReg = getStackPointerRegisterToSaveRestore();
786
787  // Get a reference to the stack pointer.
788  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SPReg, MVT::i32);
789
790  // Subtract the dynamic size from the actual stack size to
791  // obtain the new stack size.
792  SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);
793
794  //
795  // For Hexagon, the outgoing memory arguments area should be on top of the
796  // alloca area on the stack i.e., the outgoing memory arguments should be
797  // at a lower address than the alloca area. Move the alloca area down the
798  // stack by adding back the space reserved for outgoing arguments to SP
799  // here.
800  //
801  // We do not know what the size of the outgoing args is at this point.
802  // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
803  // stack pointer. We patch this instruction with the correct, known
804  // offset in emitPrologue().
805  //
806  // Use a placeholder immediate (zero) for now. This will be patched up
807  // by emitPrologue().
808  SDValue ArgAdjust = DAG.getNode(HexagonISD::ADJDYNALLOC, dl,
809                                  MVT::i32,
810                                  Sub,
811                                  DAG.getConstant(0, MVT::i32));
812
813  // The Sub result contains the new stack start address, so it
814  // must be placed in the stack pointer register.
815  SDValue CopyChain = DAG.getCopyToReg(Chain, dl,
816                                       TM.getRegisterInfo()->getStackRegister(),
817                                       Sub);
818
819  SDValue Ops[2] = { ArgAdjust, CopyChain };
820  return DAG.getMergeValues(Ops, 2, dl);
821}
822
823SDValue
824HexagonTargetLowering::LowerFormalArguments(SDValue Chain,
825                                            CallingConv::ID CallConv,
826                                            bool isVarArg,
827                                            const
828                                            SmallVectorImpl<ISD::InputArg> &Ins,
829                                            SDLoc dl, SelectionDAG &DAG,
830                                            SmallVectorImpl<SDValue> &InVals)
831const {
832
833  MachineFunction &MF = DAG.getMachineFunction();
834  MachineFrameInfo *MFI = MF.getFrameInfo();
835  MachineRegisterInfo &RegInfo = MF.getRegInfo();
836  HexagonMachineFunctionInfo *FuncInfo =
837    MF.getInfo<HexagonMachineFunctionInfo>();
838
839
840  // Assign locations to all of the incoming arguments.
841  SmallVector<CCValAssign, 16> ArgLocs;
842  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
843                 getTargetMachine(), ArgLocs, *DAG.getContext());
844
845  CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
846
847  // For LLVM, in the case when returning a struct by value (>8byte),
848  // the first argument is a pointer that points to the location on caller's
849  // stack where the return value will be stored. For Hexagon, the location on
850  // caller's stack is passed only when the struct size is smaller than (and
851  // equal to) 8 bytes. If not, no address will be passed into callee and
852  // callee return the result direclty through R0/R1.
853
854  SmallVector<SDValue, 4> MemOps;
855
856  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
857    CCValAssign &VA = ArgLocs[i];
858    ISD::ArgFlagsTy Flags = Ins[i].Flags;
859    unsigned ObjSize;
860    unsigned StackLocation;
861    int FI;
862
863    if (   (VA.isRegLoc() && !Flags.isByVal())
864        || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) {
865      // Arguments passed in registers
866      // 1. int, long long, ptr args that get allocated in register.
867      // 2. Large struct that gets an register to put its address in.
868      EVT RegVT = VA.getLocVT();
869      if (RegVT == MVT::i8 || RegVT == MVT::i16 ||
870          RegVT == MVT::i32 || RegVT == MVT::f32) {
871        unsigned VReg =
872          RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass);
873        RegInfo.addLiveIn(VA.getLocReg(), VReg);
874        InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
875      } else if (RegVT == MVT::i64) {
876        unsigned VReg =
877          RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
878        RegInfo.addLiveIn(VA.getLocReg(), VReg);
879        InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
880      } else {
881        assert (0);
882      }
883    } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) {
884      assert (0 && "ByValSize must be bigger than 8 bytes");
885    } else {
886      // Sanity check.
887      assert(VA.isMemLoc());
888
889      if (Flags.isByVal()) {
890        // If it's a byval parameter, then we need to compute the
891        // "real" size, not the size of the pointer.
892        ObjSize = Flags.getByValSize();
893      } else {
894        ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3;
895      }
896
897      StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
898      // Create the frame index object for this incoming parameter...
899      FI = MFI->CreateFixedObject(ObjSize, StackLocation, true);
900
901      // Create the SelectionDAG nodes cordl, responding to a load
902      // from this parameter.
903      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
904
905      if (Flags.isByVal()) {
906        // If it's a pass-by-value aggregate, then do not dereference the stack
907        // location. Instead, we should generate a reference to the stack
908        // location.
909        InVals.push_back(FIN);
910      } else {
911        InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
912                                     MachinePointerInfo(), false, false,
913                                     false, 0));
914      }
915    }
916  }
917
918  if (!MemOps.empty())
919    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0],
920                        MemOps.size());
921
922  if (isVarArg) {
923    // This will point to the next argument passed via stack.
924    int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize,
925                                            HEXAGON_LRFP_SIZE +
926                                            CCInfo.getNextStackOffset(),
927                                            true);
928    FuncInfo->setVarArgsFrameIndex(FrameIndex);
929  }
930
931  return Chain;
932}
933
934SDValue
935HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
936  // VASTART stores the address of the VarArgsFrameIndex slot into the
937  // memory location argument.
938  MachineFunction &MF = DAG.getMachineFunction();
939  HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
940  SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
941  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
942  return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr,
943                      Op.getOperand(1), MachinePointerInfo(SV), false,
944                      false, 0);
945}
946
947SDValue
948HexagonTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
949  SDValue LHS = Op.getOperand(0);
950  SDValue RHS = Op.getOperand(1);
951  SDValue CC = Op.getOperand(4);
952  SDValue TrueVal = Op.getOperand(2);
953  SDValue FalseVal = Op.getOperand(3);
954  SDLoc dl(Op);
955  SDNode* OpNode = Op.getNode();
956  EVT SVT = OpNode->getValueType(0);
957
958  SDValue Cond = DAG.getNode(ISD::SETCC, dl, MVT::i1, LHS, RHS, CC);
959  return DAG.getNode(ISD::SELECT, dl, SVT, Cond, TrueVal, FalseVal);
960}
961
962SDValue
963HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
964  EVT ValTy = Op.getValueType();
965  SDLoc dl(Op);
966  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
967  SDValue Res;
968  if (CP->isMachineConstantPoolEntry())
969    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), ValTy,
970                                    CP->getAlignment());
971  else
972    Res = DAG.getTargetConstantPool(CP->getConstVal(), ValTy,
973                                    CP->getAlignment());
974  return DAG.getNode(HexagonISD::CONST32, dl, ValTy, Res);
975}
976
977SDValue
978HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
979  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
980  MachineFunction &MF = DAG.getMachineFunction();
981  MachineFrameInfo *MFI = MF.getFrameInfo();
982  MFI->setReturnAddressIsTaken(true);
983
984  EVT VT = Op.getValueType();
985  SDLoc dl(Op);
986  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
987  if (Depth) {
988    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
989    SDValue Offset = DAG.getConstant(4, MVT::i32);
990    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
991                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
992                       MachinePointerInfo(), false, false, false, 0);
993  }
994
995  // Return LR, which contains the return address. Mark it an implicit live-in.
996  unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
997  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
998}
999
1000SDValue
1001HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1002  const HexagonRegisterInfo  *TRI = TM.getRegisterInfo();
1003  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1004  MFI->setFrameAddressIsTaken(true);
1005
1006  EVT VT = Op.getValueType();
1007  SDLoc dl(Op);
1008  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1009  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1010                                         TRI->getFrameRegister(), VT);
1011  while (Depth--)
1012    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1013                            MachinePointerInfo(),
1014                            false, false, false, 0);
1015  return FrameAddr;
1016}
1017
1018SDValue HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op,
1019                                                 SelectionDAG& DAG) const {
1020  SDLoc dl(Op);
1021  return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1022}
1023
1024
1025SDValue HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op,
1026                                                  SelectionDAG &DAG) const {
1027  SDValue Result;
1028  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1029  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1030  SDLoc dl(Op);
1031  Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
1032
1033  const HexagonTargetObjectFile &TLOF =
1034      static_cast<const HexagonTargetObjectFile &>(getObjFileLowering());
1035  if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1036    return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), Result);
1037  }
1038
1039  return DAG.getNode(HexagonISD::CONST32, dl, getPointerTy(), Result);
1040}
1041
1042SDValue
1043HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1044  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1045  SDValue BA_SD =  DAG.getTargetBlockAddress(BA, MVT::i32);
1046  SDLoc dl(Op);
1047  return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), BA_SD);
1048}
1049
1050//===----------------------------------------------------------------------===//
1051// TargetLowering Implementation
1052//===----------------------------------------------------------------------===//
1053
1054HexagonTargetLowering::HexagonTargetLowering(HexagonTargetMachine
1055                                             &targetmachine)
1056  : TargetLowering(targetmachine, new HexagonTargetObjectFile()),
1057    TM(targetmachine) {
1058
1059    const HexagonRegisterInfo* QRI = TM.getRegisterInfo();
1060
1061    // Set up the register classes.
1062    addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
1063    addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
1064
1065    if (QRI->Subtarget.hasV5TOps()) {
1066      addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1067      addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1068    }
1069
1070    addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
1071
1072    computeRegisterProperties();
1073
1074    // Align loop entry
1075    setPrefLoopAlignment(4);
1076
1077    // Limits for inline expansion of memcpy/memmove
1078    MaxStoresPerMemcpy = 6;
1079    MaxStoresPerMemmove = 6;
1080
1081    //
1082    // Library calls for unsupported operations
1083    //
1084
1085    setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1086    setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1087
1088    setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1089    setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1090
1091    setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1092    setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1093
1094    setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1095    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
1096    setLibcallName(RTLIB::SREM_I32, "__hexagon_umodsi3");
1097    setOperationAction(ISD::SREM,  MVT::i32, Expand);
1098
1099    setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1100    setOperationAction(ISD::SDIV,  MVT::i64, Expand);
1101    setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1102    setOperationAction(ISD::SREM,  MVT::i64, Expand);
1103
1104    setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1105    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
1106
1107    setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1108    setOperationAction(ISD::UDIV,  MVT::i64, Expand);
1109
1110    setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1111    setOperationAction(ISD::UREM,  MVT::i32, Expand);
1112
1113    setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1114    setOperationAction(ISD::UREM,  MVT::i64, Expand);
1115
1116    setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1117    setOperationAction(ISD::FDIV,  MVT::f32, Expand);
1118
1119    setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1120    setOperationAction(ISD::FDIV,  MVT::f64, Expand);
1121
1122    setOperationAction(ISD::FSQRT,  MVT::f32, Expand);
1123    setOperationAction(ISD::FSQRT,  MVT::f64, Expand);
1124    setOperationAction(ISD::FSIN,  MVT::f32, Expand);
1125    setOperationAction(ISD::FSIN,  MVT::f64, Expand);
1126
1127    if (QRI->Subtarget.hasV5TOps()) {
1128      // Hexagon V5 Support.
1129      setOperationAction(ISD::FADD,       MVT::f32, Legal);
1130      setOperationAction(ISD::FADD,       MVT::f64, Legal);
1131      setOperationAction(ISD::FP_EXTEND,  MVT::f32, Legal);
1132      setCondCodeAction(ISD::SETOEQ,      MVT::f32, Legal);
1133      setCondCodeAction(ISD::SETOEQ,      MVT::f64, Legal);
1134      setCondCodeAction(ISD::SETUEQ,      MVT::f32, Legal);
1135      setCondCodeAction(ISD::SETUEQ,      MVT::f64, Legal);
1136
1137      setCondCodeAction(ISD::SETOGE,      MVT::f32, Legal);
1138      setCondCodeAction(ISD::SETOGE,      MVT::f64, Legal);
1139      setCondCodeAction(ISD::SETUGE,      MVT::f32, Legal);
1140      setCondCodeAction(ISD::SETUGE,      MVT::f64, Legal);
1141
1142      setCondCodeAction(ISD::SETOGT,      MVT::f32, Legal);
1143      setCondCodeAction(ISD::SETOGT,      MVT::f64, Legal);
1144      setCondCodeAction(ISD::SETUGT,      MVT::f32, Legal);
1145      setCondCodeAction(ISD::SETUGT,      MVT::f64, Legal);
1146
1147      setCondCodeAction(ISD::SETOLE,      MVT::f32, Legal);
1148      setCondCodeAction(ISD::SETOLE,      MVT::f64, Legal);
1149      setCondCodeAction(ISD::SETOLT,      MVT::f32, Legal);
1150      setCondCodeAction(ISD::SETOLT,      MVT::f64, Legal);
1151
1152      setOperationAction(ISD::ConstantFP,  MVT::f32, Legal);
1153      setOperationAction(ISD::ConstantFP,  MVT::f64, Legal);
1154
1155      setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
1156      setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
1157      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
1158      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
1159
1160      setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
1161      setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
1162      setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
1163      setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
1164
1165      setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1166      setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1167      setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1168      setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1169
1170      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
1171      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
1172      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
1173      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
1174
1175      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Legal);
1176      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Legal);
1177      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Legal);
1178      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Legal);
1179
1180      setOperationAction(ISD::FABS,  MVT::f32, Legal);
1181      setOperationAction(ISD::FABS,  MVT::f64, Expand);
1182
1183      setOperationAction(ISD::FNEG,  MVT::f32, Legal);
1184      setOperationAction(ISD::FNEG,  MVT::f64, Expand);
1185    } else {
1186
1187      // Expand fp<->uint.
1188      setOperationAction(ISD::FP_TO_SINT,  MVT::i32, Expand);
1189      setOperationAction(ISD::FP_TO_UINT,  MVT::i32, Expand);
1190
1191      setOperationAction(ISD::SINT_TO_FP,  MVT::i32, Expand);
1192      setOperationAction(ISD::UINT_TO_FP,  MVT::i32, Expand);
1193
1194      setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
1195      setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
1196
1197      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
1198      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
1199
1200      setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
1201      setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
1202
1203      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
1204      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
1205
1206      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
1207      setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
1208
1209      setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
1210      setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
1211
1212      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
1213      setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
1214
1215      setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1216      setOperationAction(ISD::FADD,  MVT::f64, Expand);
1217
1218      setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
1219      setOperationAction(ISD::FADD,  MVT::f32, Expand);
1220
1221      setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2");
1222      setOperationAction(ISD::FP_EXTEND,  MVT::f32, Expand);
1223
1224      setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
1225      setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
1226
1227      setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
1228      setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
1229
1230      setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
1231      setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
1232
1233      setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
1234      setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
1235
1236      setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
1237      setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
1238
1239      setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
1240      setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
1241
1242      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
1243      setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
1244
1245      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
1246      setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
1247
1248      setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
1249      setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
1250
1251      setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
1252      setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
1253
1254      setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
1255      setCondCodeAction(ISD::SETOLT, MVT::f64, Expand);
1256
1257      setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
1258      setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
1259
1260      setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1261      setOperationAction(ISD::FMUL, MVT::f64, Expand);
1262
1263      setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
1264      setOperationAction(ISD::MUL, MVT::f32, Expand);
1265
1266      setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
1267      setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
1268
1269      setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
1270
1271      setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1272      setOperationAction(ISD::SUB, MVT::f64, Expand);
1273
1274      setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
1275      setOperationAction(ISD::SUB, MVT::f32, Expand);
1276
1277      setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2");
1278      setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);
1279
1280      setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2");
1281      setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
1282
1283      setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2");
1284      setCondCodeAction(ISD::SETO, MVT::f64, Expand);
1285
1286      setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2");
1287      setCondCodeAction(ISD::SETO, MVT::f32, Expand);
1288
1289      setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2");
1290      setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
1291
1292      setOperationAction(ISD::FABS,  MVT::f32, Expand);
1293      setOperationAction(ISD::FABS,  MVT::f64, Expand);
1294      setOperationAction(ISD::FNEG,  MVT::f32, Expand);
1295      setOperationAction(ISD::FNEG,  MVT::f64, Expand);
1296    }
1297
1298    setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1299    setOperationAction(ISD::SREM, MVT::i32, Expand);
1300
1301    setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
1302    setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
1303    setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
1304    setIndexedLoadAction(ISD::POST_INC, MVT::i64, Legal);
1305
1306    setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
1307    setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
1308    setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
1309    setIndexedStoreAction(ISD::POST_INC, MVT::i64, Legal);
1310
1311    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
1312
1313    // Turn FP extload into load/fextend.
1314    setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
1315    // Hexagon has a i1 sign extending load.
1316    setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
1317    // Turn FP truncstore into trunc + store.
1318    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1319
1320    // Custom legalize GlobalAddress nodes into CONST32.
1321    setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1322    setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
1323    setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1324    // Truncate action?
1325    setOperationAction(ISD::TRUNCATE, MVT::i64, Expand);
1326
1327    // Hexagon doesn't have sext_inreg, replace them with shl/sra.
1328    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
1329
1330    // Hexagon has no REM or DIVREM operations.
1331    setOperationAction(ISD::UREM, MVT::i32, Expand);
1332    setOperationAction(ISD::SREM, MVT::i32, Expand);
1333    setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1334    setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1335    setOperationAction(ISD::SREM, MVT::i64, Expand);
1336    setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
1337    setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
1338
1339    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
1340
1341    // Lower SELECT_CC to SETCC and SELECT.
1342    setOperationAction(ISD::SELECT_CC, MVT::i32,   Custom);
1343    setOperationAction(ISD::SELECT_CC, MVT::i64,   Custom);
1344
1345    if (QRI->Subtarget.hasV5TOps()) {
1346
1347      // We need to make the operation type of SELECT node to be Custom,
1348      // such that we don't go into the infinite loop of
1349      // select ->  setcc -> select_cc -> select loop.
1350      setOperationAction(ISD::SELECT, MVT::f32, Custom);
1351      setOperationAction(ISD::SELECT, MVT::f64, Custom);
1352
1353      setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
1354      setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
1355      setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
1356
1357    } else {
1358
1359      // Hexagon has no select or setcc: expand to SELECT_CC.
1360      setOperationAction(ISD::SELECT, MVT::f32, Expand);
1361      setOperationAction(ISD::SELECT, MVT::f64, Expand);
1362
1363      // This is a workaround documented in DAGCombiner.cpp:2892 We don't
1364      // support SELECT_CC on every type.
1365      setOperationAction(ISD::SELECT_CC, MVT::Other,   Expand);
1366
1367    }
1368
1369    if (EmitJumpTables) {
1370      setOperationAction(ISD::BR_JT, MVT::Other, Custom);
1371    } else {
1372      setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1373    }
1374    // Increase jump tables cutover to 5, was 4.
1375    setMinimumJumpTableEntries(5);
1376
1377    setOperationAction(ISD::BR_CC, MVT::f32, Expand);
1378    setOperationAction(ISD::BR_CC, MVT::f64, Expand);
1379    setOperationAction(ISD::BR_CC, MVT::i1,  Expand);
1380    setOperationAction(ISD::BR_CC, MVT::i32, Expand);
1381    setOperationAction(ISD::BR_CC, MVT::i64, Expand);
1382
1383    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1384
1385    setOperationAction(ISD::FSIN , MVT::f64, Expand);
1386    setOperationAction(ISD::FCOS , MVT::f64, Expand);
1387    setOperationAction(ISD::FREM , MVT::f64, Expand);
1388    setOperationAction(ISD::FSIN , MVT::f32, Expand);
1389    setOperationAction(ISD::FCOS , MVT::f32, Expand);
1390    setOperationAction(ISD::FREM , MVT::f32, Expand);
1391    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1392    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1393
1394    // In V4, we have double word add/sub with carry. The problem with
1395    // modelling this instruction is that it produces 2 results - Rdd and Px.
1396    // To model update of Px, we will have to use Defs[p0..p3] which will
1397    // cause any predicate live range to spill. So, we pretend we dont't
1398    // have these instructions.
1399    setOperationAction(ISD::ADDE, MVT::i8, Expand);
1400    setOperationAction(ISD::ADDE, MVT::i16, Expand);
1401    setOperationAction(ISD::ADDE, MVT::i32, Expand);
1402    setOperationAction(ISD::ADDE, MVT::i64, Expand);
1403    setOperationAction(ISD::SUBE, MVT::i8, Expand);
1404    setOperationAction(ISD::SUBE, MVT::i16, Expand);
1405    setOperationAction(ISD::SUBE, MVT::i32, Expand);
1406    setOperationAction(ISD::SUBE, MVT::i64, Expand);
1407    setOperationAction(ISD::ADDC, MVT::i8, Expand);
1408    setOperationAction(ISD::ADDC, MVT::i16, Expand);
1409    setOperationAction(ISD::ADDC, MVT::i32, Expand);
1410    setOperationAction(ISD::ADDC, MVT::i64, Expand);
1411    setOperationAction(ISD::SUBC, MVT::i8, Expand);
1412    setOperationAction(ISD::SUBC, MVT::i16, Expand);
1413    setOperationAction(ISD::SUBC, MVT::i32, Expand);
1414    setOperationAction(ISD::SUBC, MVT::i64, Expand);
1415
1416    setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1417    setOperationAction(ISD::CTPOP, MVT::i64, Expand);
1418    setOperationAction(ISD::CTTZ , MVT::i32, Expand);
1419    setOperationAction(ISD::CTTZ , MVT::i64, Expand);
1420    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
1421    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
1422    setOperationAction(ISD::CTLZ , MVT::i32, Expand);
1423    setOperationAction(ISD::CTLZ , MVT::i64, Expand);
1424    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
1425    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
1426    setOperationAction(ISD::ROTL , MVT::i32, Expand);
1427    setOperationAction(ISD::ROTR , MVT::i32, Expand);
1428    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1429    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
1430    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
1431    setOperationAction(ISD::FPOW , MVT::f64, Expand);
1432    setOperationAction(ISD::FPOW , MVT::f32, Expand);
1433
1434    setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1435    setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1436    setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1437
1438    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1439    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1440
1441    setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
1442    setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
1443
1444    setOperationAction(ISD::EH_RETURN,     MVT::Other, Custom);
1445
1446    if (TM.getSubtargetImpl()->isSubtargetV2()) {
1447      setExceptionPointerRegister(Hexagon::R20);
1448      setExceptionSelectorRegister(Hexagon::R21);
1449    } else {
1450      setExceptionPointerRegister(Hexagon::R0);
1451      setExceptionSelectorRegister(Hexagon::R1);
1452    }
1453
1454    // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1455    setOperationAction(ISD::VASTART           , MVT::Other, Custom);
1456
1457    // Use the default implementation.
1458    setOperationAction(ISD::VAARG             , MVT::Other, Expand);
1459    setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
1460    setOperationAction(ISD::VAEND             , MVT::Other, Expand);
1461    setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
1462    setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
1463
1464
1465    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
1466    setOperationAction(ISD::INLINEASM         , MVT::Other, Custom);
1467
1468    setMinFunctionAlignment(2);
1469
1470    // Needed for DYNAMIC_STACKALLOC expansion.
1471    unsigned StackRegister = TM.getRegisterInfo()->getStackRegister();
1472    setStackPointerRegisterToSaveRestore(StackRegister);
1473    setSchedulingPreference(Sched::VLIW);
1474}
1475
1476
1477const char*
1478HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1479  switch (Opcode) {
1480    default: return 0;
1481    case HexagonISD::CONST32:     return "HexagonISD::CONST32";
1482    case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
1483    case HexagonISD::CONST32_Int_Real: return "HexagonISD::CONST32_Int_Real";
1484    case HexagonISD::ADJDYNALLOC: return "HexagonISD::ADJDYNALLOC";
1485    case HexagonISD::CMPICC:      return "HexagonISD::CMPICC";
1486    case HexagonISD::CMPFCC:      return "HexagonISD::CMPFCC";
1487    case HexagonISD::BRICC:       return "HexagonISD::BRICC";
1488    case HexagonISD::BRFCC:       return "HexagonISD::BRFCC";
1489    case HexagonISD::SELECT_ICC:  return "HexagonISD::SELECT_ICC";
1490    case HexagonISD::SELECT_FCC:  return "HexagonISD::SELECT_FCC";
1491    case HexagonISD::Hi:          return "HexagonISD::Hi";
1492    case HexagonISD::Lo:          return "HexagonISD::Lo";
1493    case HexagonISD::FTOI:        return "HexagonISD::FTOI";
1494    case HexagonISD::ITOF:        return "HexagonISD::ITOF";
1495    case HexagonISD::CALL:        return "HexagonISD::CALL";
1496    case HexagonISD::RET_FLAG:    return "HexagonISD::RET_FLAG";
1497    case HexagonISD::BR_JT:       return "HexagonISD::BR_JT";
1498    case HexagonISD::TC_RETURN:   return "HexagonISD::TC_RETURN";
1499  case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
1500  }
1501}
1502
1503bool
1504HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
1505  EVT MTy1 = EVT::getEVT(Ty1);
1506  EVT MTy2 = EVT::getEVT(Ty2);
1507  if (!MTy1.isSimple() || !MTy2.isSimple()) {
1508    return false;
1509  }
1510  return ((MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32));
1511}
1512
1513bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1514  if (!VT1.isSimple() || !VT2.isSimple()) {
1515    return false;
1516  }
1517  return ((VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32));
1518}
1519
1520bool
1521HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
1522  // Assuming the caller does not have either a signext or zeroext modifier, and
1523  // only one value is accepted, any reasonable truncation is allowed.
1524  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
1525    return false;
1526
1527  // FIXME: in principle up to 64-bit could be made safe, but it would be very
1528  // fragile at the moment: any support for multiple value returns would be
1529  // liable to disallow tail calls involving i64 -> iN truncation in many cases.
1530  return Ty1->getPrimitiveSizeInBits() <= 32;
1531}
1532
1533SDValue
1534HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
1535  SDValue Chain     = Op.getOperand(0);
1536  SDValue Offset    = Op.getOperand(1);
1537  SDValue Handler   = Op.getOperand(2);
1538  SDLoc dl(Op);
1539
1540  // Mark function as containing a call to EH_RETURN.
1541  HexagonMachineFunctionInfo *FuncInfo =
1542    DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
1543  FuncInfo->setHasEHReturn();
1544
1545  unsigned OffsetReg = Hexagon::R28;
1546
1547  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(),
1548                                  DAG.getRegister(Hexagon::R30, getPointerTy()),
1549                                  DAG.getIntPtrConstant(4));
1550  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
1551                       false, false, 0);
1552  Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
1553
1554  // Not needed we already use it as explict input to EH_RETURN.
1555  // MF.getRegInfo().addLiveOut(OffsetReg);
1556
1557  return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
1558}
1559
1560SDValue
1561HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
1562  switch (Op.getOpcode()) {
1563    default: llvm_unreachable("Should not custom lower this!");
1564    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
1565    case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
1566      // Frame & Return address.  Currently unimplemented.
1567    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
1568    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
1569    case ISD::GlobalTLSAddress:
1570                          llvm_unreachable("TLS not implemented for Hexagon.");
1571    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
1572    case ISD::GlobalAddress:      return LowerGLOBALADDRESS(Op, DAG);
1573    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
1574    case ISD::VASTART:            return LowerVASTART(Op, DAG);
1575    case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
1576
1577    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1578    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
1579    case ISD::SELECT:             return Op;
1580    case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1581    case ISD::INLINEASM:          return LowerINLINEASM(Op, DAG);
1582
1583  }
1584}
1585
1586
1587
1588//===----------------------------------------------------------------------===//
1589//                           Hexagon Scheduler Hooks
1590//===----------------------------------------------------------------------===//
1591MachineBasicBlock *
1592HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1593                                                   MachineBasicBlock *BB)
1594const {
1595  switch (MI->getOpcode()) {
1596    case Hexagon::ADJDYNALLOC: {
1597      MachineFunction *MF = BB->getParent();
1598      HexagonMachineFunctionInfo *FuncInfo =
1599        MF->getInfo<HexagonMachineFunctionInfo>();
1600      FuncInfo->addAllocaAdjustInst(MI);
1601      return BB;
1602    }
1603    default: llvm_unreachable("Unexpected instr type to insert");
1604  } // switch
1605}
1606
1607//===----------------------------------------------------------------------===//
1608// Inline Assembly Support
1609//===----------------------------------------------------------------------===//
1610
1611std::pair<unsigned, const TargetRegisterClass*>
1612HexagonTargetLowering::getRegForInlineAsmConstraint(const
1613                                                    std::string &Constraint,
1614                                                    MVT VT) const {
1615  if (Constraint.size() == 1) {
1616    switch (Constraint[0]) {
1617    case 'r':   // R0-R31
1618       switch (VT.SimpleTy) {
1619       default:
1620         llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
1621       case MVT::i32:
1622       case MVT::i16:
1623       case MVT::i8:
1624       case MVT::f32:
1625         return std::make_pair(0U, &Hexagon::IntRegsRegClass);
1626       case MVT::i64:
1627       case MVT::f64:
1628         return std::make_pair(0U, &Hexagon::DoubleRegsRegClass);
1629      }
1630    default:
1631      llvm_unreachable("Unknown asm register class");
1632    }
1633  }
1634
1635  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
1636}
1637
1638/// isFPImmLegal - Returns true if the target can instruction select the
1639/// specified FP immediate natively. If false, the legalizer will
1640/// materialize the FP immediate as a load from a constant pool.
1641bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
1642  const HexagonRegisterInfo* QRI = TM.getRegisterInfo();
1643  return QRI->Subtarget.hasV5TOps();
1644}
1645
1646/// isLegalAddressingMode - Return true if the addressing mode represented by
1647/// AM is legal for this target, for a load/store of the specified type.
1648bool HexagonTargetLowering::isLegalAddressingMode(const AddrMode &AM,
1649                                                  Type *Ty) const {
1650  // Allows a signed-extended 11-bit immediate field.
1651  if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1) {
1652    return false;
1653  }
1654
1655  // No global is ever allowed as a base.
1656  if (AM.BaseGV) {
1657    return false;
1658  }
1659
1660  int Scale = AM.Scale;
1661  if (Scale < 0) Scale = -Scale;
1662  switch (Scale) {
1663  case 0:  // No scale reg, "r+i", "r", or just "i".
1664    break;
1665  default: // No scaled addressing mode.
1666    return false;
1667  }
1668  return true;
1669}
1670
1671/// isLegalICmpImmediate - Return true if the specified immediate is legal
1672/// icmp immediate, that is the target has icmp instructions which can compare
1673/// a register against the immediate without having to materialize the
1674/// immediate into a register.
1675bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1676  return Imm >= -512 && Imm <= 511;
1677}
1678
1679/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1680/// for tail call optimization. Targets which want to do tail call
1681/// optimization should implement this function.
1682bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
1683                                 SDValue Callee,
1684                                 CallingConv::ID CalleeCC,
1685                                 bool isVarArg,
1686                                 bool isCalleeStructRet,
1687                                 bool isCallerStructRet,
1688                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
1689                                 const SmallVectorImpl<SDValue> &OutVals,
1690                                 const SmallVectorImpl<ISD::InputArg> &Ins,
1691                                 SelectionDAG& DAG) const {
1692  const Function *CallerF = DAG.getMachineFunction().getFunction();
1693  CallingConv::ID CallerCC = CallerF->getCallingConv();
1694  bool CCMatch = CallerCC == CalleeCC;
1695
1696  // ***************************************************************************
1697  //  Look for obvious safe cases to perform tail call optimization that do not
1698  //  require ABI changes.
1699  // ***************************************************************************
1700
1701  // If this is a tail call via a function pointer, then don't do it!
1702  if (!(dyn_cast<GlobalAddressSDNode>(Callee))
1703      && !(dyn_cast<ExternalSymbolSDNode>(Callee))) {
1704    return false;
1705  }
1706
1707  // Do not optimize if the calling conventions do not match.
1708  if (!CCMatch)
1709    return false;
1710
1711  // Do not tail call optimize vararg calls.
1712  if (isVarArg)
1713    return false;
1714
1715  // Also avoid tail call optimization if either caller or callee uses struct
1716  // return semantics.
1717  if (isCalleeStructRet || isCallerStructRet)
1718    return false;
1719
1720  // In addition to the cases above, we also disable Tail Call Optimization if
1721  // the calling convention code that at least one outgoing argument needs to
1722  // go on the stack. We cannot check that here because at this point that
1723  // information is not available.
1724  return true;
1725}
1726