ARMInstrThumb.td revision 263508
1//===-- ARMInstrThumb.td - Thumb support for ARM -----------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Thumb instruction set.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Thumb specific DAG Nodes.
16//
17
18def ARMtcall : SDNode<"ARMISD::tCALL", SDT_ARMcall,
19                      [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
20                       SDNPVariadic]>;
21
22def imm_sr_XFORM: SDNodeXForm<imm, [{
23  unsigned Imm = N->getZExtValue();
24  return CurDAG->getTargetConstant((Imm == 32 ? 0 : Imm), MVT::i32);
25}]>;
26def ThumbSRImmAsmOperand: AsmOperandClass { let Name = "ImmThumbSR"; }
27def imm_sr : Operand<i32>, PatLeaf<(imm), [{
28  uint64_t Imm = N->getZExtValue();
29  return Imm > 0 && Imm <= 32;
30}], imm_sr_XFORM> {
31  let PrintMethod = "printThumbSRImm";
32  let ParserMatchClass = ThumbSRImmAsmOperand;
33}
34
35def imm_comp_XFORM : SDNodeXForm<imm, [{
36  return CurDAG->getTargetConstant(~((uint32_t)N->getZExtValue()), MVT::i32);
37}]>;
38
39def imm0_7_neg : PatLeaf<(i32 imm), [{
40  return (uint32_t)-N->getZExtValue() < 8;
41}], imm_neg_XFORM>;
42
43def imm0_255_comp : PatLeaf<(i32 imm), [{
44  return ~((uint32_t)N->getZExtValue()) < 256;
45}]>;
46
47def imm8_255 : ImmLeaf<i32, [{
48  return Imm >= 8 && Imm < 256;
49}]>;
50def imm8_255_neg : PatLeaf<(i32 imm), [{
51  unsigned Val = -N->getZExtValue();
52  return Val >= 8 && Val < 256;
53}], imm_neg_XFORM>;
54
55// Break imm's up into two pieces: an immediate + a left shift. This uses
56// thumb_immshifted to match and thumb_immshifted_val and thumb_immshifted_shamt
57// to get the val/shift pieces.
58def thumb_immshifted : PatLeaf<(imm), [{
59  return ARM_AM::isThumbImmShiftedVal((unsigned)N->getZExtValue());
60}]>;
61
62def thumb_immshifted_val : SDNodeXForm<imm, [{
63  unsigned V = ARM_AM::getThumbImmNonShiftedVal((unsigned)N->getZExtValue());
64  return CurDAG->getTargetConstant(V, MVT::i32);
65}]>;
66
67def thumb_immshifted_shamt : SDNodeXForm<imm, [{
68  unsigned V = ARM_AM::getThumbImmValShift((unsigned)N->getZExtValue());
69  return CurDAG->getTargetConstant(V, MVT::i32);
70}]>;
71
72// Scaled 4 immediate.
73def t_imm0_1020s4_asmoperand: AsmOperandClass { let Name = "Imm0_1020s4"; }
74def t_imm0_1020s4 : Operand<i32> {
75  let PrintMethod = "printThumbS4ImmOperand";
76  let ParserMatchClass = t_imm0_1020s4_asmoperand;
77  let OperandType = "OPERAND_IMMEDIATE";
78}
79
80def t_imm0_508s4_asmoperand: AsmOperandClass { let Name = "Imm0_508s4"; }
81def t_imm0_508s4 : Operand<i32> {
82  let PrintMethod = "printThumbS4ImmOperand";
83  let ParserMatchClass = t_imm0_508s4_asmoperand;
84  let OperandType = "OPERAND_IMMEDIATE";
85}
86// Alias use only, so no printer is necessary.
87def t_imm0_508s4_neg_asmoperand: AsmOperandClass { let Name = "Imm0_508s4Neg"; }
88def t_imm0_508s4_neg : Operand<i32> {
89  let ParserMatchClass = t_imm0_508s4_neg_asmoperand;
90  let OperandType = "OPERAND_IMMEDIATE";
91}
92
93// Define Thumb specific addressing modes.
94
95// unsigned 8-bit, 2-scaled memory offset
96class OperandUnsignedOffset_b8s2 : AsmOperandClass {
97  let Name = "UnsignedOffset_b8s2";
98  let PredicateMethod = "isUnsignedOffset<8, 2>";
99}
100
101def UnsignedOffset_b8s2 : OperandUnsignedOffset_b8s2;
102
103// thumb style PC relative operand. signed, 8 bits magnitude,
104// two bits shift. can be represented as either [pc, #imm], #imm,
105// or relocatable expression...
106def ThumbMemPC : AsmOperandClass {
107  let Name = "ThumbMemPC";
108}
109
110let OperandType = "OPERAND_PCREL" in {
111def t_brtarget : Operand<OtherVT> {
112  let EncoderMethod = "getThumbBRTargetOpValue";
113  let DecoderMethod = "DecodeThumbBROperand";
114}
115
116// ADR instruction labels.
117def t_adrlabel : Operand<i32> {
118  let EncoderMethod = "getThumbAdrLabelOpValue";
119  let PrintMethod = "printAdrLabelOperand<2>";
120  let ParserMatchClass = UnsignedOffset_b8s2;
121}
122
123def t_bcctarget : Operand<i32> {
124  let EncoderMethod = "getThumbBCCTargetOpValue";
125  let DecoderMethod = "DecodeThumbBCCTargetOperand";
126}
127
128def t_cbtarget : Operand<i32> {
129  let EncoderMethod = "getThumbCBTargetOpValue";
130  let DecoderMethod = "DecodeThumbCmpBROperand";
131}
132
133def t_bltarget : Operand<i32> {
134  let EncoderMethod = "getThumbBLTargetOpValue";
135  let DecoderMethod = "DecodeThumbBLTargetOperand";
136}
137
138def t_blxtarget : Operand<i32> {
139  let EncoderMethod = "getThumbBLXTargetOpValue";
140  let DecoderMethod = "DecodeThumbBLXOffset";
141}
142
143// t_addrmode_pc := <label> => pc + imm8 * 4
144//
145def t_addrmode_pc : Operand<i32> {
146  let EncoderMethod = "getAddrModePCOpValue";
147  let DecoderMethod = "DecodeThumbAddrModePC";
148  let PrintMethod = "printThumbLdrLabelOperand";
149  let ParserMatchClass = ThumbMemPC;
150}
151}
152
153// t_addrmode_rr := reg + reg
154//
155def t_addrmode_rr_asm_operand : AsmOperandClass { let Name = "MemThumbRR"; }
156def t_addrmode_rr : Operand<i32>,
157                    ComplexPattern<i32, 2, "SelectThumbAddrModeRR", []> {
158  let EncoderMethod = "getThumbAddrModeRegRegOpValue";
159  let PrintMethod = "printThumbAddrModeRROperand";
160  let DecoderMethod = "DecodeThumbAddrModeRR";
161  let ParserMatchClass = t_addrmode_rr_asm_operand;
162  let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
163}
164
165// t_addrmode_rrs := reg + reg
166//
167// We use separate scaled versions because the Select* functions need
168// to explicitly check for a matching constant and return false here so that
169// the reg+imm forms will match instead. This is a horrible way to do that,
170// as it forces tight coupling between the methods, but it's how selectiondag
171// currently works.
172def t_addrmode_rrs1 : Operand<i32>,
173                      ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S1", []> {
174  let EncoderMethod = "getThumbAddrModeRegRegOpValue";
175  let PrintMethod = "printThumbAddrModeRROperand";
176  let DecoderMethod = "DecodeThumbAddrModeRR";
177  let ParserMatchClass = t_addrmode_rr_asm_operand;
178  let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
179}
180def t_addrmode_rrs2 : Operand<i32>,
181                      ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S2", []> {
182  let EncoderMethod = "getThumbAddrModeRegRegOpValue";
183  let DecoderMethod = "DecodeThumbAddrModeRR";
184  let PrintMethod = "printThumbAddrModeRROperand";
185  let ParserMatchClass = t_addrmode_rr_asm_operand;
186  let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
187}
188def t_addrmode_rrs4 : Operand<i32>,
189                      ComplexPattern<i32, 2, "SelectThumbAddrModeRI5S4", []> {
190  let EncoderMethod = "getThumbAddrModeRegRegOpValue";
191  let DecoderMethod = "DecodeThumbAddrModeRR";
192  let PrintMethod = "printThumbAddrModeRROperand";
193  let ParserMatchClass = t_addrmode_rr_asm_operand;
194  let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
195}
196
197// t_addrmode_is4 := reg + imm5 * 4
198//
199def t_addrmode_is4_asm_operand : AsmOperandClass { let Name = "MemThumbRIs4"; }
200def t_addrmode_is4 : Operand<i32>,
201                     ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S4", []> {
202  let EncoderMethod = "getAddrModeISOpValue";
203  let DecoderMethod = "DecodeThumbAddrModeIS";
204  let PrintMethod = "printThumbAddrModeImm5S4Operand";
205  let ParserMatchClass = t_addrmode_is4_asm_operand;
206  let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
207}
208
209// t_addrmode_is2 := reg + imm5 * 2
210//
211def t_addrmode_is2_asm_operand : AsmOperandClass { let Name = "MemThumbRIs2"; }
212def t_addrmode_is2 : Operand<i32>,
213                     ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S2", []> {
214  let EncoderMethod = "getAddrModeISOpValue";
215  let DecoderMethod = "DecodeThumbAddrModeIS";
216  let PrintMethod = "printThumbAddrModeImm5S2Operand";
217  let ParserMatchClass = t_addrmode_is2_asm_operand;
218  let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
219}
220
221// t_addrmode_is1 := reg + imm5
222//
223def t_addrmode_is1_asm_operand : AsmOperandClass { let Name = "MemThumbRIs1"; }
224def t_addrmode_is1 : Operand<i32>,
225                     ComplexPattern<i32, 2, "SelectThumbAddrModeImm5S1", []> {
226  let EncoderMethod = "getAddrModeISOpValue";
227  let DecoderMethod = "DecodeThumbAddrModeIS";
228  let PrintMethod = "printThumbAddrModeImm5S1Operand";
229  let ParserMatchClass = t_addrmode_is1_asm_operand;
230  let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm);
231}
232
233// t_addrmode_sp := sp + imm8 * 4
234//
235// FIXME: This really shouldn't have an explicit SP operand at all. It should
236// be implicit, just like in the instruction encoding itself.
237def t_addrmode_sp_asm_operand : AsmOperandClass { let Name = "MemThumbSPI"; }
238def t_addrmode_sp : Operand<i32>,
239                    ComplexPattern<i32, 2, "SelectThumbAddrModeSP", []> {
240  let EncoderMethod = "getAddrModeThumbSPOpValue";
241  let DecoderMethod = "DecodeThumbAddrModeSP";
242  let PrintMethod = "printThumbAddrModeSPOperand";
243  let ParserMatchClass = t_addrmode_sp_asm_operand;
244  let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
245}
246
247//===----------------------------------------------------------------------===//
248//  Miscellaneous Instructions.
249//
250
251// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
252// from removing one half of the matched pairs. That breaks PEI, which assumes
253// these will always be in pairs, and asserts if it finds otherwise. Better way?
254let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
255def tADJCALLSTACKUP :
256  PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), NoItinerary,
257             [(ARMcallseq_end imm:$amt1, imm:$amt2)]>,
258            Requires<[IsThumb, IsThumb1Only]>;
259
260def tADJCALLSTACKDOWN :
261  PseudoInst<(outs), (ins i32imm:$amt), NoItinerary,
262             [(ARMcallseq_start imm:$amt)]>,
263            Requires<[IsThumb, IsThumb1Only]>;
264}
265
266class T1SystemEncoding<bits<8> opc>
267  : T1Encoding<0b101111> {
268  let Inst{9-8} = 0b11;
269  let Inst{7-0} = opc;
270}
271
272def tHINT : T1pI<(outs), (ins imm0_15:$imm), NoItinerary, "hint", "\t$imm", []>,
273            T1SystemEncoding<0x00>,
274            Requires<[IsThumb, HasV6M]> {
275  bits<4> imm;
276  let Inst{7-4} = imm;
277}
278
279class tHintAlias<string Asm, dag Result> : tInstAlias<Asm, Result> {
280  let Predicates = [IsThumb, HasV6M];
281}
282
283def : tHintAlias<"nop$p", (tHINT 0, pred:$p)>; // A8.6.110
284def : tHintAlias<"yield$p", (tHINT 1, pred:$p)>; // A8.6.410
285def : tHintAlias<"wfe$p", (tHINT 2, pred:$p)>; // A8.6.408
286def : tHintAlias<"wfi$p", (tHINT 3, pred:$p)>; // A8.6.409
287def : tHintAlias<"sev$p", (tHINT 4, pred:$p)>; // A8.6.157
288def : tInstAlias<"sevl$p", (tHINT 5, pred:$p)> {
289  let Predicates = [IsThumb2, HasV8];
290}
291def : T2Pat<(int_arm_sevl), (tHINT 5)>;
292
293// The imm operand $val can be used by a debugger to store more information
294// about the breakpoint.
295def tBKPT : T1I<(outs), (ins imm0_255:$val), NoItinerary, "bkpt\t$val",
296                []>,
297           T1Encoding<0b101111> {
298  let Inst{9-8} = 0b10;
299  // A8.6.22
300  bits<8> val;
301  let Inst{7-0} = val;
302}
303
304def tHLT : T1I<(outs), (ins imm0_63:$val), NoItinerary, "hlt\t$val",
305                []>, T1Encoding<0b101110>, Requires<[IsThumb, HasV8]> {
306  let Inst{9-6} = 0b1010;
307  bits<6> val;
308  let Inst{5-0} = val;
309}
310
311def tSETEND : T1I<(outs), (ins setend_op:$end), NoItinerary, "setend\t$end",
312                  []>, T1Encoding<0b101101>, Deprecated<HasV8Ops> {
313  bits<1> end;
314  // A8.6.156
315  let Inst{9-5} = 0b10010;
316  let Inst{4}   = 1;
317  let Inst{3}   = end;
318  let Inst{2-0} = 0b000;
319}
320
321// Change Processor State is a system instruction -- for disassembly only.
322def tCPS : T1I<(outs), (ins imod_op:$imod, iflags_op:$iflags),
323                NoItinerary, "cps$imod $iflags", []>,
324           T1Misc<0b0110011> {
325  // A8.6.38 & B6.1.1
326  bit imod;
327  bits<3> iflags;
328
329  let Inst{4}   = imod;
330  let Inst{3}   = 0;
331  let Inst{2-0} = iflags;
332  let DecoderMethod = "DecodeThumbCPS";
333}
334
335// For both thumb1 and thumb2.
336let isNotDuplicable = 1, isCodeGenOnly = 1 in
337def tPICADD : TIt<(outs GPR:$dst), (ins GPR:$lhs, pclabel:$cp), IIC_iALUr, "",
338                  [(set GPR:$dst, (ARMpic_add GPR:$lhs, imm:$cp))]>,
339              T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
340  // A8.6.6
341  bits<3> dst;
342  let Inst{6-3} = 0b1111; // Rm = pc
343  let Inst{2-0} = dst;
344}
345
346// ADD <Rd>, sp, #<imm8>
347// FIXME: This should not be marked as having side effects, and it should be
348// rematerializable. Clearing the side effect bit causes miscompilations,
349// probably because the instruction can be moved around.
350def tADDrSPi : T1pI<(outs tGPR:$dst), (ins GPRsp:$sp, t_imm0_1020s4:$imm),
351                    IIC_iALUi, "add", "\t$dst, $sp, $imm", []>,
352               T1Encoding<{1,0,1,0,1,?}>, Sched<[WriteALU]> {
353  // A6.2 & A8.6.8
354  bits<3> dst;
355  bits<8> imm;
356  let Inst{10-8} = dst;
357  let Inst{7-0}  = imm;
358  let DecoderMethod = "DecodeThumbAddSpecialReg";
359}
360
361// ADD sp, sp, #<imm7>
362def tADDspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm),
363                     IIC_iALUi, "add", "\t$Rdn, $imm", []>,
364              T1Misc<{0,0,0,0,0,?,?}>, Sched<[WriteALU]> {
365  // A6.2.5 & A8.6.8
366  bits<7> imm;
367  let Inst{6-0} = imm;
368  let DecoderMethod = "DecodeThumbAddSPImm";
369}
370
371// SUB sp, sp, #<imm7>
372// FIXME: The encoding and the ASM string don't match up.
373def tSUBspi : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, t_imm0_508s4:$imm),
374                    IIC_iALUi, "sub", "\t$Rdn, $imm", []>,
375              T1Misc<{0,0,0,0,1,?,?}>, Sched<[WriteALU]> {
376  // A6.2.5 & A8.6.214
377  bits<7> imm;
378  let Inst{6-0} = imm;
379  let DecoderMethod = "DecodeThumbAddSPImm";
380}
381
382def : tInstAlias<"add${p} sp, $imm",
383                 (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>;
384def : tInstAlias<"add${p} sp, sp, $imm",
385                 (tSUBspi SP, t_imm0_508s4_neg:$imm, pred:$p)>;
386
387// Can optionally specify SP as a three operand instruction.
388def : tInstAlias<"add${p} sp, sp, $imm",
389                 (tADDspi SP, t_imm0_508s4:$imm, pred:$p)>;
390def : tInstAlias<"sub${p} sp, sp, $imm",
391                 (tSUBspi SP, t_imm0_508s4:$imm, pred:$p)>;
392
393// ADD <Rm>, sp
394def tADDrSP : T1pI<(outs GPR:$Rdn), (ins GPRsp:$sp, GPR:$Rn), IIC_iALUr,
395                   "add", "\t$Rdn, $sp, $Rn", []>,
396              T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
397  // A8.6.9 Encoding T1
398  bits<4> Rdn;
399  let Inst{7}   = Rdn{3};
400  let Inst{6-3} = 0b1101;
401  let Inst{2-0} = Rdn{2-0};
402  let DecoderMethod = "DecodeThumbAddSPReg";
403}
404
405// ADD sp, <Rm>
406def tADDspr : T1pIt<(outs GPRsp:$Rdn), (ins GPRsp:$Rn, GPR:$Rm), IIC_iALUr,
407                  "add", "\t$Rdn, $Rm", []>,
408              T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
409  // A8.6.9 Encoding T2
410  bits<4> Rm;
411  let Inst{7} = 1;
412  let Inst{6-3} = Rm;
413  let Inst{2-0} = 0b101;
414  let DecoderMethod = "DecodeThumbAddSPReg";
415}
416
417//===----------------------------------------------------------------------===//
418//  Control Flow Instructions.
419//
420
421// Indirect branches
422let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
423  def tBX : TI<(outs), (ins GPR:$Rm, pred:$p), IIC_Br, "bx${p}\t$Rm", []>,
424            T1Special<{1,1,0,?}>, Sched<[WriteBr]> {
425    // A6.2.3 & A8.6.25
426    bits<4> Rm;
427    let Inst{6-3} = Rm;
428    let Inst{2-0} = 0b000;
429    let Unpredictable{2-0} = 0b111;
430  }
431}
432
433let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
434  def tBX_RET : tPseudoExpand<(outs), (ins pred:$p), 2, IIC_Br,
435                   [(ARMretflag)], (tBX LR, pred:$p)>, Sched<[WriteBr]>;
436
437  // Alternative return instruction used by vararg functions.
438  def tBX_RET_vararg : tPseudoExpand<(outs), (ins tGPR:$Rm, pred:$p),
439                   2, IIC_Br, [],
440                   (tBX GPR:$Rm, pred:$p)>, Sched<[WriteBr]>;
441}
442
443// All calls clobber the non-callee saved registers. SP is marked as a use to
444// prevent stack-pointer assignments that appear immediately before calls from
445// potentially appearing dead.
446let isCall = 1,
447  Defs = [LR], Uses = [SP] in {
448  // Also used for Thumb2
449  def tBL  : TIx2<0b11110, 0b11, 1,
450                  (outs), (ins pred:$p, t_bltarget:$func), IIC_Br,
451                  "bl${p}\t$func",
452                  [(ARMtcall tglobaladdr:$func)]>,
453             Requires<[IsThumb]>, Sched<[WriteBrL]> {
454    bits<24> func;
455    let Inst{26} = func{23};
456    let Inst{25-16} = func{20-11};
457    let Inst{13} = func{22};
458    let Inst{11} = func{21};
459    let Inst{10-0} = func{10-0};
460  }
461
462  // ARMv5T and above, also used for Thumb2
463  def tBLXi : TIx2<0b11110, 0b11, 0,
464                 (outs), (ins pred:$p, t_blxtarget:$func), IIC_Br,
465                   "blx${p}\t$func",
466                   [(ARMcall tglobaladdr:$func)]>,
467              Requires<[IsThumb, HasV5T]>, Sched<[WriteBrL]> {
468    bits<24> func;
469    let Inst{26} = func{23};
470    let Inst{25-16} = func{20-11};
471    let Inst{13} = func{22};
472    let Inst{11} = func{21};
473    let Inst{10-1} = func{10-1};
474    let Inst{0} = 0; // func{0} is assumed zero
475  }
476
477  // Also used for Thumb2
478  def tBLXr : TI<(outs), (ins pred:$p, GPR:$func), IIC_Br,
479                  "blx${p}\t$func",
480                  [(ARMtcall GPR:$func)]>,
481              Requires<[IsThumb, HasV5T]>,
482              T1Special<{1,1,1,?}>, Sched<[WriteBrL]> { // A6.2.3 & A8.6.24;
483    bits<4> func;
484    let Inst{6-3} = func;
485    let Inst{2-0} = 0b000;
486  }
487
488  // ARMv4T
489  def tBX_CALL : tPseudoInst<(outs), (ins tGPR:$func),
490                  4, IIC_Br,
491                  [(ARMcall_nolink tGPR:$func)]>,
492            Requires<[IsThumb, IsThumb1Only]>, Sched<[WriteBr]>;
493}
494
495let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
496  let isPredicable = 1 in
497  def tB   : T1pI<(outs), (ins t_brtarget:$target), IIC_Br,
498                 "b", "\t$target", [(br bb:$target)]>,
499             T1Encoding<{1,1,1,0,0,?}>, Sched<[WriteBr]> {
500    bits<11> target;
501    let Inst{10-0} = target;
502    let AsmMatchConverter = "cvtThumbBranches";
503 }
504
505  // Far jump
506  // Just a pseudo for a tBL instruction. Needed to let regalloc know about
507  // the clobber of LR.
508  let Defs = [LR] in
509  def tBfar : tPseudoExpand<(outs), (ins t_bltarget:$target, pred:$p),
510                          4, IIC_Br, [], (tBL pred:$p, t_bltarget:$target)>,
511                          Sched<[WriteBrTbl]>;
512
513  def tBR_JTr : tPseudoInst<(outs),
514                      (ins tGPR:$target, i32imm:$jt, i32imm:$id),
515                      0, IIC_Br,
516                      [(ARMbrjt tGPR:$target, tjumptable:$jt, imm:$id)]>,
517                      Sched<[WriteBrTbl]> {
518    list<Predicate> Predicates = [IsThumb, IsThumb1Only];
519  }
520}
521
522// FIXME: should be able to write a pattern for ARMBrcond, but can't use
523// a two-value operand where a dag node expects two operands. :(
524let isBranch = 1, isTerminator = 1 in
525  def tBcc : T1I<(outs), (ins t_bcctarget:$target, pred:$p), IIC_Br,
526                 "b${p}\t$target",
527                 [/*(ARMbrcond bb:$target, imm:$cc)*/]>,
528             T1BranchCond<{1,1,0,1}>, Sched<[WriteBr]> {
529  bits<4> p;
530  bits<8> target;
531  let Inst{11-8} = p;
532  let Inst{7-0} = target;
533  let AsmMatchConverter = "cvtThumbBranches";
534}
535
536
537// Tail calls
538let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
539  // IOS versions.
540  let Uses = [SP] in {
541    def tTAILJMPr : tPseudoExpand<(outs), (ins tcGPR:$dst),
542                     4, IIC_Br, [],
543                     (tBX GPR:$dst, (ops 14, zero_reg))>,
544                     Requires<[IsThumb]>, Sched<[WriteBr]>;
545  }
546  // tTAILJMPd: IOS version uses a Thumb2 branch (no Thumb1 tail calls
547  // on IOS), so it's in ARMInstrThumb2.td.
548  // Non-IOS version:
549  let Uses = [SP] in {
550    def tTAILJMPdND : tPseudoExpand<(outs),
551                   (ins t_brtarget:$dst, pred:$p),
552                   4, IIC_Br, [],
553                   (tB t_brtarget:$dst, pred:$p)>,
554                 Requires<[IsThumb, IsNotIOS]>, Sched<[WriteBr]>;
555  }
556}
557
558
559// A8.6.218 Supervisor Call (Software Interrupt)
560// A8.6.16 B: Encoding T1
561// If Inst{11-8} == 0b1111 then SEE SVC
562let isCall = 1, Uses = [SP] in
563def tSVC : T1pI<(outs), (ins imm0_255:$imm), IIC_Br,
564                "svc", "\t$imm", []>, Encoding16, Sched<[WriteBr]> {
565  bits<8> imm;
566  let Inst{15-12} = 0b1101;
567  let Inst{11-8}  = 0b1111;
568  let Inst{7-0}   = imm;
569}
570
571// The assembler uses 0xDEFE for a trap instruction.
572let isBarrier = 1, isTerminator = 1 in
573def tTRAP : TI<(outs), (ins), IIC_Br,
574               "trap", [(trap)]>, Encoding16, Sched<[WriteBr]> {
575  let Inst = 0xdefe;
576}
577
578//===----------------------------------------------------------------------===//
579//  Load Store Instructions.
580//
581
582// Loads: reg/reg and reg/imm5
583let canFoldAsLoad = 1, isReMaterializable = 1 in
584multiclass thumb_ld_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc,
585                              Operand AddrMode_r, Operand AddrMode_i,
586                              AddrMode am, InstrItinClass itin_r,
587                              InstrItinClass itin_i, string asm,
588                              PatFrag opnode> {
589  def r : // reg/reg
590    T1pILdStEncode<reg_opc,
591                   (outs tGPR:$Rt), (ins AddrMode_r:$addr),
592                   am, itin_r, asm, "\t$Rt, $addr",
593                   [(set tGPR:$Rt, (opnode AddrMode_r:$addr))]>;
594  def i : // reg/imm5
595    T1pILdStEncodeImm<imm_opc, 1 /* Load */,
596                      (outs tGPR:$Rt), (ins AddrMode_i:$addr),
597                      am, itin_i, asm, "\t$Rt, $addr",
598                      [(set tGPR:$Rt, (opnode AddrMode_i:$addr))]>;
599}
600// Stores: reg/reg and reg/imm5
601multiclass thumb_st_rr_ri_enc<bits<3> reg_opc, bits<4> imm_opc,
602                              Operand AddrMode_r, Operand AddrMode_i,
603                              AddrMode am, InstrItinClass itin_r,
604                              InstrItinClass itin_i, string asm,
605                              PatFrag opnode> {
606  def r : // reg/reg
607    T1pILdStEncode<reg_opc,
608                   (outs), (ins tGPR:$Rt, AddrMode_r:$addr),
609                   am, itin_r, asm, "\t$Rt, $addr",
610                   [(opnode tGPR:$Rt, AddrMode_r:$addr)]>;
611  def i : // reg/imm5
612    T1pILdStEncodeImm<imm_opc, 0 /* Store */,
613                      (outs), (ins tGPR:$Rt, AddrMode_i:$addr),
614                      am, itin_i, asm, "\t$Rt, $addr",
615                      [(opnode tGPR:$Rt, AddrMode_i:$addr)]>;
616}
617
618// A8.6.57 & A8.6.60
619defm tLDR  : thumb_ld_rr_ri_enc<0b100, 0b0110, t_addrmode_rrs4,
620                                t_addrmode_is4, AddrModeT1_4,
621                                IIC_iLoad_r, IIC_iLoad_i, "ldr",
622                                UnOpFrag<(load node:$Src)>>;
623
624// A8.6.64 & A8.6.61
625defm tLDRB : thumb_ld_rr_ri_enc<0b110, 0b0111, t_addrmode_rrs1,
626                                t_addrmode_is1, AddrModeT1_1,
627                                IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrb",
628                                UnOpFrag<(zextloadi8 node:$Src)>>;
629
630// A8.6.76 & A8.6.73
631defm tLDRH : thumb_ld_rr_ri_enc<0b101, 0b1000, t_addrmode_rrs2,
632                                t_addrmode_is2, AddrModeT1_2,
633                                IIC_iLoad_bh_r, IIC_iLoad_bh_i, "ldrh",
634                                UnOpFrag<(zextloadi16 node:$Src)>>;
635
636let AddedComplexity = 10 in
637def tLDRSB :                    // A8.6.80
638  T1pILdStEncode<0b011, (outs tGPR:$Rt), (ins t_addrmode_rr:$addr),
639                 AddrModeT1_1, IIC_iLoad_bh_r,
640                 "ldrsb", "\t$Rt, $addr",
641                 [(set tGPR:$Rt, (sextloadi8 t_addrmode_rr:$addr))]>;
642
643let AddedComplexity = 10 in
644def tLDRSH :                    // A8.6.84
645  T1pILdStEncode<0b111, (outs tGPR:$Rt), (ins t_addrmode_rr:$addr),
646                 AddrModeT1_2, IIC_iLoad_bh_r,
647                 "ldrsh", "\t$Rt, $addr",
648                 [(set tGPR:$Rt, (sextloadi16 t_addrmode_rr:$addr))]>;
649
650let canFoldAsLoad = 1 in
651def tLDRspi : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_sp:$addr), IIC_iLoad_i,
652                    "ldr", "\t$Rt, $addr",
653                    [(set tGPR:$Rt, (load t_addrmode_sp:$addr))]>,
654              T1LdStSP<{1,?,?}> {
655  bits<3> Rt;
656  bits<8> addr;
657  let Inst{10-8} = Rt;
658  let Inst{7-0} = addr;
659}
660
661let canFoldAsLoad = 1, isReMaterializable = 1 in
662def tLDRpci : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_pc:$addr), IIC_iLoad_i,
663                  "ldr", "\t$Rt, $addr",
664                  [(set tGPR:$Rt, (load (ARMWrapper tconstpool:$addr)))]>,
665              T1Encoding<{0,1,0,0,1,?}> {
666  // A6.2 & A8.6.59
667  bits<3> Rt;
668  bits<8> addr;
669  let Inst{10-8} = Rt;
670  let Inst{7-0}  = addr;
671}
672
673// A8.6.194 & A8.6.192
674defm tSTR  : thumb_st_rr_ri_enc<0b000, 0b0110, t_addrmode_rrs4,
675                                t_addrmode_is4, AddrModeT1_4,
676                                IIC_iStore_r, IIC_iStore_i, "str",
677                                BinOpFrag<(store node:$LHS, node:$RHS)>>;
678
679// A8.6.197 & A8.6.195
680defm tSTRB : thumb_st_rr_ri_enc<0b010, 0b0111, t_addrmode_rrs1,
681                                t_addrmode_is1, AddrModeT1_1,
682                                IIC_iStore_bh_r, IIC_iStore_bh_i, "strb",
683                                BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>;
684
685// A8.6.207 & A8.6.205
686defm tSTRH : thumb_st_rr_ri_enc<0b001, 0b1000, t_addrmode_rrs2,
687                               t_addrmode_is2, AddrModeT1_2,
688                               IIC_iStore_bh_r, IIC_iStore_bh_i, "strh",
689                               BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>;
690
691
692def tSTRspi : T1pIs<(outs), (ins tGPR:$Rt, t_addrmode_sp:$addr), IIC_iStore_i,
693                    "str", "\t$Rt, $addr",
694                    [(store tGPR:$Rt, t_addrmode_sp:$addr)]>,
695              T1LdStSP<{0,?,?}> {
696  bits<3> Rt;
697  bits<8> addr;
698  let Inst{10-8} = Rt;
699  let Inst{7-0} = addr;
700}
701
702//===----------------------------------------------------------------------===//
703//  Load / store multiple Instructions.
704//
705
706// These require base address to be written back or one of the loaded regs.
707let neverHasSideEffects = 1 in {
708
709let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
710def tLDMIA : T1I<(outs), (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops),
711        IIC_iLoad_m, "ldm${p}\t$Rn, $regs", []>, T1Encoding<{1,1,0,0,1,?}> {
712  bits<3> Rn;
713  bits<8> regs;
714  let Inst{10-8} = Rn;
715  let Inst{7-0}  = regs;
716}
717
718// Writeback version is just a pseudo, as there's no encoding difference.
719// Writeback happens iff the base register is not in the destination register
720// list.
721def tLDMIA_UPD :
722    InstTemplate<AddrModeNone, 0, IndexModeNone, Pseudo, GenericDomain,
723                 "$Rn = $wb", IIC_iLoad_mu>,
724    PseudoInstExpansion<(tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)> {
725  let Size = 2;
726  let OutOperandList = (outs GPR:$wb);
727  let InOperandList = (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops);
728  let Pattern = [];
729  let isCodeGenOnly = 1;
730  let isPseudo = 1;
731  list<Predicate> Predicates = [IsThumb];
732}
733
734// There is no non-writeback version of STM for Thumb.
735let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
736def tSTMIA_UPD : Thumb1I<(outs GPR:$wb),
737                         (ins tGPR:$Rn, pred:$p, reglist:$regs, variable_ops),
738                         AddrModeNone, 2, IIC_iStore_mu,
739                         "stm${p}\t$Rn!, $regs", "$Rn = $wb", []>,
740                     T1Encoding<{1,1,0,0,0,?}> {
741  bits<3> Rn;
742  bits<8> regs;
743  let Inst{10-8} = Rn;
744  let Inst{7-0}  = regs;
745}
746
747} // neverHasSideEffects
748
749def : InstAlias<"ldm${p} $Rn!, $regs",
750                (tLDMIA tGPR:$Rn, pred:$p, reglist:$regs)>,
751        Requires<[IsThumb, IsThumb1Only]>;
752
753let mayLoad = 1, Uses = [SP], Defs = [SP], hasExtraDefRegAllocReq = 1 in
754def tPOP : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
755               IIC_iPop,
756               "pop${p}\t$regs", []>,
757           T1Misc<{1,1,0,?,?,?,?}> {
758  bits<16> regs;
759  let Inst{8}   = regs{15};
760  let Inst{7-0} = regs{7-0};
761}
762
763let mayStore = 1, Uses = [SP], Defs = [SP], hasExtraSrcRegAllocReq = 1 in
764def tPUSH : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
765                IIC_iStore_m,
766                "push${p}\t$regs", []>,
767            T1Misc<{0,1,0,?,?,?,?}> {
768  bits<16> regs;
769  let Inst{8}   = regs{14};
770  let Inst{7-0} = regs{7-0};
771}
772
773//===----------------------------------------------------------------------===//
774//  Arithmetic Instructions.
775//
776
777// Helper classes for encoding T1pI patterns:
778class T1pIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
779                   string opc, string asm, list<dag> pattern>
780    : T1pI<oops, iops, itin, opc, asm, pattern>,
781      T1DataProcessing<opA> {
782  bits<3> Rm;
783  bits<3> Rn;
784  let Inst{5-3} = Rm;
785  let Inst{2-0} = Rn;
786}
787class T1pIMiscEncode<bits<7> opA, dag oops, dag iops, InstrItinClass itin,
788                     string opc, string asm, list<dag> pattern>
789    : T1pI<oops, iops, itin, opc, asm, pattern>,
790      T1Misc<opA> {
791  bits<3> Rm;
792  bits<3> Rd;
793  let Inst{5-3} = Rm;
794  let Inst{2-0} = Rd;
795}
796
797// Helper classes for encoding T1sI patterns:
798class T1sIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
799                   string opc, string asm, list<dag> pattern>
800    : T1sI<oops, iops, itin, opc, asm, pattern>,
801      T1DataProcessing<opA> {
802  bits<3> Rd;
803  bits<3> Rn;
804  let Inst{5-3} = Rn;
805  let Inst{2-0} = Rd;
806}
807class T1sIGenEncode<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
808                    string opc, string asm, list<dag> pattern>
809    : T1sI<oops, iops, itin, opc, asm, pattern>,
810      T1General<opA> {
811  bits<3> Rm;
812  bits<3> Rn;
813  bits<3> Rd;
814  let Inst{8-6} = Rm;
815  let Inst{5-3} = Rn;
816  let Inst{2-0} = Rd;
817}
818class T1sIGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
819                       string opc, string asm, list<dag> pattern>
820    : T1sI<oops, iops, itin, opc, asm, pattern>,
821      T1General<opA> {
822  bits<3> Rd;
823  bits<3> Rm;
824  let Inst{5-3} = Rm;
825  let Inst{2-0} = Rd;
826}
827
828// Helper classes for encoding T1sIt patterns:
829class T1sItDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
830                    string opc, string asm, list<dag> pattern>
831    : T1sIt<oops, iops, itin, opc, asm, pattern>,
832      T1DataProcessing<opA> {
833  bits<3> Rdn;
834  bits<3> Rm;
835  let Inst{5-3} = Rm;
836  let Inst{2-0} = Rdn;
837}
838class T1sItGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
839                        string opc, string asm, list<dag> pattern>
840    : T1sIt<oops, iops, itin, opc, asm, pattern>,
841      T1General<opA> {
842  bits<3> Rdn;
843  bits<8> imm8;
844  let Inst{10-8} = Rdn;
845  let Inst{7-0}  = imm8;
846}
847
848// Add with carry register
849let isCommutable = 1, Uses = [CPSR] in
850def tADC :                      // A8.6.2
851  T1sItDPEncode<0b0101, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr,
852                "adc", "\t$Rdn, $Rm",
853                [(set tGPR:$Rdn, (adde tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
854
855// Add immediate
856def tADDi3 :                    // A8.6.4 T1
857  T1sIGenEncodeImm<0b01110, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
858                   IIC_iALUi,
859                   "add", "\t$Rd, $Rm, $imm3",
860                   [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7:$imm3))]>,
861                   Sched<[WriteALU]> {
862  bits<3> imm3;
863  let Inst{8-6} = imm3;
864}
865
866def tADDi8 :                    // A8.6.4 T2
867  T1sItGenEncodeImm<{1,1,0,?,?}, (outs tGPR:$Rdn),
868                    (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi,
869                    "add", "\t$Rdn, $imm8",
870                    [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255:$imm8))]>,
871                    Sched<[WriteALU]>;
872
873// Add register
874let isCommutable = 1 in
875def tADDrr :                    // A8.6.6 T1
876  T1sIGenEncode<0b01100, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
877                IIC_iALUr,
878                "add", "\t$Rd, $Rn, $Rm",
879                [(set tGPR:$Rd, (add tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
880
881let neverHasSideEffects = 1 in
882def tADDhirr : T1pIt<(outs GPR:$Rdn), (ins GPR:$Rn, GPR:$Rm), IIC_iALUr,
883                     "add", "\t$Rdn, $Rm", []>,
884               T1Special<{0,0,?,?}>, Sched<[WriteALU]> {
885  // A8.6.6 T2
886  bits<4> Rdn;
887  bits<4> Rm;
888  let Inst{7}   = Rdn{3};
889  let Inst{6-3} = Rm;
890  let Inst{2-0} = Rdn{2-0};
891}
892
893// AND register
894let isCommutable = 1 in
895def tAND :                      // A8.6.12
896  T1sItDPEncode<0b0000, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
897                IIC_iBITr,
898                "and", "\t$Rdn, $Rm",
899                [(set tGPR:$Rdn, (and tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
900
901// ASR immediate
902def tASRri :                    // A8.6.14
903  T1sIGenEncodeImm<{0,1,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5),
904                   IIC_iMOVsi,
905                   "asr", "\t$Rd, $Rm, $imm5",
906                   [(set tGPR:$Rd, (sra tGPR:$Rm, (i32 imm_sr:$imm5)))]>,
907                   Sched<[WriteALU]> {
908  bits<5> imm5;
909  let Inst{10-6} = imm5;
910}
911
912// ASR register
913def tASRrr :                    // A8.6.15
914  T1sItDPEncode<0b0100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
915                IIC_iMOVsr,
916                "asr", "\t$Rdn, $Rm",
917                [(set tGPR:$Rdn, (sra tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
918
919// BIC register
920def tBIC :                      // A8.6.20
921  T1sItDPEncode<0b1110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
922                IIC_iBITr,
923                "bic", "\t$Rdn, $Rm",
924                [(set tGPR:$Rdn, (and tGPR:$Rn, (not tGPR:$Rm)))]>,
925                Sched<[WriteALU]>;
926
927// CMN register
928let isCompare = 1, Defs = [CPSR] in {
929//FIXME: Disable CMN, as CCodes are backwards from compare expectations
930//       Compare-to-zero still works out, just not the relationals
931//def tCMN :                     // A8.6.33
932//  T1pIDPEncode<0b1011, (outs), (ins tGPR:$lhs, tGPR:$rhs),
933//               IIC_iCMPr,
934//               "cmn", "\t$lhs, $rhs",
935//               [(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>;
936
937def tCMNz :                     // A8.6.33
938  T1pIDPEncode<0b1011, (outs), (ins tGPR:$Rn, tGPR:$Rm),
939               IIC_iCMPr,
940               "cmn", "\t$Rn, $Rm",
941               [(ARMcmpZ tGPR:$Rn, (ineg tGPR:$Rm))]>, Sched<[WriteCMP]>;
942
943} // isCompare = 1, Defs = [CPSR]
944
945// CMP immediate
946let isCompare = 1, Defs = [CPSR] in {
947def tCMPi8 : T1pI<(outs), (ins tGPR:$Rn, imm0_255:$imm8), IIC_iCMPi,
948                  "cmp", "\t$Rn, $imm8",
949                  [(ARMcmp tGPR:$Rn, imm0_255:$imm8)]>,
950             T1General<{1,0,1,?,?}>, Sched<[WriteCMP]> {
951  // A8.6.35
952  bits<3> Rn;
953  bits<8> imm8;
954  let Inst{10-8} = Rn;
955  let Inst{7-0}  = imm8;
956}
957
958// CMP register
959def tCMPr :                     // A8.6.36 T1
960  T1pIDPEncode<0b1010, (outs), (ins tGPR:$Rn, tGPR:$Rm),
961               IIC_iCMPr,
962               "cmp", "\t$Rn, $Rm",
963               [(ARMcmp tGPR:$Rn, tGPR:$Rm)]>, Sched<[WriteCMP]>;
964
965def tCMPhir : T1pI<(outs), (ins GPR:$Rn, GPR:$Rm), IIC_iCMPr,
966                   "cmp", "\t$Rn, $Rm", []>,
967              T1Special<{0,1,?,?}>, Sched<[WriteCMP]> {
968  // A8.6.36 T2
969  bits<4> Rm;
970  bits<4> Rn;
971  let Inst{7}   = Rn{3};
972  let Inst{6-3} = Rm;
973  let Inst{2-0} = Rn{2-0};
974}
975} // isCompare = 1, Defs = [CPSR]
976
977
978// XOR register
979let isCommutable = 1 in
980def tEOR :                      // A8.6.45
981  T1sItDPEncode<0b0001, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
982                IIC_iBITr,
983                "eor", "\t$Rdn, $Rm",
984                [(set tGPR:$Rdn, (xor tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
985
986// LSL immediate
987def tLSLri :                    // A8.6.88
988  T1sIGenEncodeImm<{0,0,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_31:$imm5),
989                   IIC_iMOVsi,
990                   "lsl", "\t$Rd, $Rm, $imm5",
991                   [(set tGPR:$Rd, (shl tGPR:$Rm, (i32 imm:$imm5)))]>,
992                   Sched<[WriteALU]> {
993  bits<5> imm5;
994  let Inst{10-6} = imm5;
995}
996
997// LSL register
998def tLSLrr :                    // A8.6.89
999  T1sItDPEncode<0b0010, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1000                IIC_iMOVsr,
1001                "lsl", "\t$Rdn, $Rm",
1002                [(set tGPR:$Rdn, (shl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
1003
1004// LSR immediate
1005def tLSRri :                    // A8.6.90
1006  T1sIGenEncodeImm<{0,0,1,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, imm_sr:$imm5),
1007                   IIC_iMOVsi,
1008                   "lsr", "\t$Rd, $Rm, $imm5",
1009                   [(set tGPR:$Rd, (srl tGPR:$Rm, (i32 imm_sr:$imm5)))]>,
1010                   Sched<[WriteALU]> {
1011  bits<5> imm5;
1012  let Inst{10-6} = imm5;
1013}
1014
1015// LSR register
1016def tLSRrr :                    // A8.6.91
1017  T1sItDPEncode<0b0011, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1018                IIC_iMOVsr,
1019                "lsr", "\t$Rdn, $Rm",
1020                [(set tGPR:$Rdn, (srl tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
1021
1022// Move register
1023let isMoveImm = 1 in
1024def tMOVi8 : T1sI<(outs tGPR:$Rd), (ins imm0_255:$imm8), IIC_iMOVi,
1025                  "mov", "\t$Rd, $imm8",
1026                  [(set tGPR:$Rd, imm0_255:$imm8)]>,
1027             T1General<{1,0,0,?,?}>, Sched<[WriteALU]> {
1028  // A8.6.96
1029  bits<3> Rd;
1030  bits<8> imm8;
1031  let Inst{10-8} = Rd;
1032  let Inst{7-0}  = imm8;
1033}
1034// Because we have an explicit tMOVSr below, we need an alias to handle
1035// the immediate "movs" form here. Blech.
1036def : tInstAlias <"movs $Rdn, $imm",
1037                 (tMOVi8 tGPR:$Rdn, CPSR, imm0_255:$imm, 14, 0)>;
1038
1039// A7-73: MOV(2) - mov setting flag.
1040
1041let neverHasSideEffects = 1 in {
1042def tMOVr : Thumb1pI<(outs GPR:$Rd), (ins GPR:$Rm), AddrModeNone,
1043                      2, IIC_iMOVr,
1044                      "mov", "\t$Rd, $Rm", "", []>,
1045                  T1Special<{1,0,?,?}>, Sched<[WriteALU]> {
1046  // A8.6.97
1047  bits<4> Rd;
1048  bits<4> Rm;
1049  let Inst{7}   = Rd{3};
1050  let Inst{6-3} = Rm;
1051  let Inst{2-0} = Rd{2-0};
1052}
1053let Defs = [CPSR] in
1054def tMOVSr      : T1I<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iMOVr,
1055                      "movs\t$Rd, $Rm", []>, Encoding16, Sched<[WriteALU]> {
1056  // A8.6.97
1057  bits<3> Rd;
1058  bits<3> Rm;
1059  let Inst{15-6} = 0b0000000000;
1060  let Inst{5-3}  = Rm;
1061  let Inst{2-0}  = Rd;
1062}
1063} // neverHasSideEffects
1064
1065// Multiply register
1066let isCommutable = 1 in
1067def tMUL :                      // A8.6.105 T1
1068  Thumb1sI<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), AddrModeNone, 2,
1069           IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm", "$Rm = $Rd",
1070           [(set tGPR:$Rd, (mul tGPR:$Rn, tGPR:$Rm))]>,
1071      T1DataProcessing<0b1101> {
1072  bits<3> Rd;
1073  bits<3> Rn;
1074  let Inst{5-3} = Rn;
1075  let Inst{2-0} = Rd;
1076  let AsmMatchConverter = "cvtThumbMultiply";
1077}
1078
1079def :tInstAlias<"mul${s}${p} $Rdm, $Rn", (tMUL tGPR:$Rdm, s_cc_out:$s, tGPR:$Rn,
1080                                               pred:$p)>;
1081
1082// Move inverse register
1083def tMVN :                      // A8.6.107
1084  T1sIDPEncode<0b1111, (outs tGPR:$Rd), (ins tGPR:$Rn), IIC_iMVNr,
1085               "mvn", "\t$Rd, $Rn",
1086               [(set tGPR:$Rd, (not tGPR:$Rn))]>, Sched<[WriteALU]>;
1087
1088// Bitwise or register
1089let isCommutable = 1 in
1090def tORR :                      // A8.6.114
1091  T1sItDPEncode<0b1100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1092                IIC_iBITr,
1093                "orr", "\t$Rdn, $Rm",
1094                [(set tGPR:$Rdn, (or tGPR:$Rn, tGPR:$Rm))]>, Sched<[WriteALU]>;
1095
1096// Swaps
1097def tREV :                      // A8.6.134
1098  T1pIMiscEncode<{1,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1099                 IIC_iUNAr,
1100                 "rev", "\t$Rd, $Rm",
1101                 [(set tGPR:$Rd, (bswap tGPR:$Rm))]>,
1102                 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
1103
1104def tREV16 :                    // A8.6.135
1105  T1pIMiscEncode<{1,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1106                 IIC_iUNAr,
1107                 "rev16", "\t$Rd, $Rm",
1108             [(set tGPR:$Rd, (rotr (bswap tGPR:$Rm), (i32 16)))]>,
1109                Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
1110
1111def tREVSH :                    // A8.6.136
1112  T1pIMiscEncode<{1,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1113                 IIC_iUNAr,
1114                 "revsh", "\t$Rd, $Rm",
1115                 [(set tGPR:$Rd, (sra (bswap tGPR:$Rm), (i32 16)))]>,
1116                 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
1117
1118// Rotate right register
1119def tROR :                      // A8.6.139
1120  T1sItDPEncode<0b0111, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1121                IIC_iMOVsr,
1122                "ror", "\t$Rdn, $Rm",
1123                [(set tGPR:$Rdn, (rotr tGPR:$Rn, tGPR:$Rm))]>,
1124                Sched<[WriteALU]>;
1125
1126// Negate register
1127def tRSB :                      // A8.6.141
1128  T1sIDPEncode<0b1001, (outs tGPR:$Rd), (ins tGPR:$Rn),
1129               IIC_iALUi,
1130               "rsb", "\t$Rd, $Rn, #0",
1131               [(set tGPR:$Rd, (ineg tGPR:$Rn))]>, Sched<[WriteALU]>;
1132
1133// Subtract with carry register
1134let Uses = [CPSR] in
1135def tSBC :                      // A8.6.151
1136  T1sItDPEncode<0b0110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
1137                IIC_iALUr,
1138                "sbc", "\t$Rdn, $Rm",
1139                [(set tGPR:$Rdn, (sube tGPR:$Rn, tGPR:$Rm))]>,
1140                Sched<[WriteALU]>;
1141
1142// Subtract immediate
1143def tSUBi3 :                    // A8.6.210 T1
1144  T1sIGenEncodeImm<0b01111, (outs tGPR:$Rd), (ins tGPR:$Rm, imm0_7:$imm3),
1145                   IIC_iALUi,
1146                   "sub", "\t$Rd, $Rm, $imm3",
1147                   [(set tGPR:$Rd, (add tGPR:$Rm, imm0_7_neg:$imm3))]>,
1148                   Sched<[WriteALU]> {
1149  bits<3> imm3;
1150  let Inst{8-6} = imm3;
1151}
1152
1153def tSUBi8 :                    // A8.6.210 T2
1154  T1sItGenEncodeImm<{1,1,1,?,?}, (outs tGPR:$Rdn),
1155                    (ins tGPR:$Rn, imm0_255:$imm8), IIC_iALUi,
1156                    "sub", "\t$Rdn, $imm8",
1157                    [(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255_neg:$imm8))]>,
1158                    Sched<[WriteALU]>;
1159
1160// Subtract register
1161def tSUBrr :                    // A8.6.212
1162  T1sIGenEncode<0b01101, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
1163                IIC_iALUr,
1164                "sub", "\t$Rd, $Rn, $Rm",
1165                [(set tGPR:$Rd, (sub tGPR:$Rn, tGPR:$Rm))]>,
1166                Sched<[WriteALU]>;
1167
1168// Sign-extend byte
1169def tSXTB :                     // A8.6.222
1170  T1pIMiscEncode<{0,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1171                 IIC_iUNAr,
1172                 "sxtb", "\t$Rd, $Rm",
1173                 [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i8))]>,
1174                 Requires<[IsThumb, IsThumb1Only, HasV6]>,
1175                 Sched<[WriteALU]>;
1176
1177// Sign-extend short
1178def tSXTH :                     // A8.6.224
1179  T1pIMiscEncode<{0,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1180                 IIC_iUNAr,
1181                 "sxth", "\t$Rd, $Rm",
1182                 [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i16))]>,
1183                 Requires<[IsThumb, IsThumb1Only, HasV6]>,
1184                 Sched<[WriteALU]>;
1185
1186// Test
1187let isCompare = 1, isCommutable = 1, Defs = [CPSR] in
1188def tTST :                      // A8.6.230
1189  T1pIDPEncode<0b1000, (outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iTSTr,
1190               "tst", "\t$Rn, $Rm",
1191               [(ARMcmpZ (and_su tGPR:$Rn, tGPR:$Rm), 0)]>,
1192               Sched<[WriteALU]>;
1193
1194// Zero-extend byte
1195def tUXTB :                     // A8.6.262
1196  T1pIMiscEncode<{0,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1197                 IIC_iUNAr,
1198                 "uxtb", "\t$Rd, $Rm",
1199                 [(set tGPR:$Rd, (and tGPR:$Rm, 0xFF))]>,
1200                 Requires<[IsThumb, IsThumb1Only, HasV6]>,
1201                 Sched<[WriteALU]>;
1202
1203// Zero-extend short
1204def tUXTH :                     // A8.6.264
1205  T1pIMiscEncode<{0,0,1,0,1,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
1206                 IIC_iUNAr,
1207                 "uxth", "\t$Rd, $Rm",
1208                 [(set tGPR:$Rd, (and tGPR:$Rm, 0xFFFF))]>,
1209                 Requires<[IsThumb, IsThumb1Only, HasV6]>, Sched<[WriteALU]>;
1210
1211// Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC operation.
1212// Expanded after instruction selection into a branch sequence.
1213let usesCustomInserter = 1 in  // Expanded after instruction selection.
1214  def tMOVCCr_pseudo :
1215  PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, cmovpred:$p),
1216             NoItinerary,
1217             [(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, cmovpred:$p))]>;
1218
1219// tLEApcrel - Load a pc-relative address into a register without offending the
1220// assembler.
1221
1222def tADR : T1I<(outs tGPR:$Rd), (ins t_adrlabel:$addr, pred:$p),
1223               IIC_iALUi, "adr{$p}\t$Rd, $addr", []>,
1224               T1Encoding<{1,0,1,0,0,?}>, Sched<[WriteALU]> {
1225  bits<3> Rd;
1226  bits<8> addr;
1227  let Inst{10-8} = Rd;
1228  let Inst{7-0} = addr;
1229  let DecoderMethod = "DecodeThumbAddSpecialReg";
1230}
1231
1232let neverHasSideEffects = 1, isReMaterializable = 1 in
1233def tLEApcrel   : tPseudoInst<(outs tGPR:$Rd), (ins i32imm:$label, pred:$p),
1234                              2, IIC_iALUi, []>, Sched<[WriteALU]>;
1235
1236let hasSideEffects = 1 in
1237def tLEApcrelJT : tPseudoInst<(outs tGPR:$Rd),
1238                              (ins i32imm:$label, nohash_imm:$id, pred:$p),
1239                              2, IIC_iALUi, []>, Sched<[WriteALU]>;
1240
1241//===----------------------------------------------------------------------===//
1242// TLS Instructions
1243//
1244
1245// __aeabi_read_tp preserves the registers r1-r3.
1246// This is a pseudo inst so that we can get the encoding right,
1247// complete with fixup for the aeabi_read_tp function.
1248let isCall = 1, Defs = [R0, R12, LR, CPSR], Uses = [SP] in
1249def tTPsoft : tPseudoInst<(outs), (ins), 4, IIC_Br,
1250                          [(set R0, ARMthread_pointer)]>,
1251                          Sched<[WriteBr]>;
1252
1253//===----------------------------------------------------------------------===//
1254// SJLJ Exception handling intrinsics
1255//
1256
1257// eh_sjlj_setjmp() is an instruction sequence to store the return address and
1258// save #0 in R0 for the non-longjmp case.  Since by its nature we may be coming
1259// from some other function to get here, and we're using the stack frame for the
1260// containing function to save/restore registers, we can't keep anything live in
1261// regs across the eh_sjlj_setjmp(), else it will almost certainly have been
1262// tromped upon when we get here from a longjmp(). We force everything out of
1263// registers except for our own input by listing the relevant registers in
1264// Defs. By doing so, we also cause the prologue/epilogue code to actively
1265// preserve all of the callee-saved resgisters, which is exactly what we want.
1266// $val is a scratch register for our use.
1267let Defs = [ R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7, R12, CPSR ],
1268    hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
1269    usesCustomInserter = 1 in
1270def tInt_eh_sjlj_setjmp : ThumbXI<(outs),(ins tGPR:$src, tGPR:$val),
1271                                  AddrModeNone, 0, NoItinerary, "","",
1272                          [(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>;
1273
1274// FIXME: Non-IOS version(s)
1275let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1,
1276    Defs = [ R7, LR, SP ] in
1277def tInt_eh_sjlj_longjmp : XI<(outs), (ins GPR:$src, GPR:$scratch),
1278                              AddrModeNone, 0, IndexModeNone,
1279                              Pseudo, NoItinerary, "", "",
1280                              [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
1281                             Requires<[IsThumb, IsIOS]>;
1282
1283//===----------------------------------------------------------------------===//
1284// Non-Instruction Patterns
1285//
1286
1287// Comparisons
1288def : T1Pat<(ARMcmpZ tGPR:$Rn, imm0_255:$imm8),
1289            (tCMPi8  tGPR:$Rn, imm0_255:$imm8)>;
1290def : T1Pat<(ARMcmpZ tGPR:$Rn, tGPR:$Rm),
1291            (tCMPr   tGPR:$Rn, tGPR:$Rm)>;
1292
1293// Add with carry
1294def : T1Pat<(addc   tGPR:$lhs, imm0_7:$rhs),
1295            (tADDi3 tGPR:$lhs, imm0_7:$rhs)>;
1296def : T1Pat<(addc   tGPR:$lhs, imm8_255:$rhs),
1297            (tADDi8 tGPR:$lhs, imm8_255:$rhs)>;
1298def : T1Pat<(addc   tGPR:$lhs, tGPR:$rhs),
1299            (tADDrr tGPR:$lhs, tGPR:$rhs)>;
1300
1301// Subtract with carry
1302def : T1Pat<(addc   tGPR:$lhs, imm0_7_neg:$rhs),
1303            (tSUBi3 tGPR:$lhs, imm0_7_neg:$rhs)>;
1304def : T1Pat<(addc   tGPR:$lhs, imm8_255_neg:$rhs),
1305            (tSUBi8 tGPR:$lhs, imm8_255_neg:$rhs)>;
1306def : T1Pat<(subc   tGPR:$lhs, tGPR:$rhs),
1307            (tSUBrr tGPR:$lhs, tGPR:$rhs)>;
1308
1309// ConstantPool, GlobalAddress
1310def : T1Pat<(ARMWrapper  tglobaladdr :$dst), (tLEApcrel tglobaladdr :$dst)>;
1311def : T1Pat<(ARMWrapper  tconstpool  :$dst), (tLEApcrel tconstpool  :$dst)>;
1312
1313// JumpTable
1314def : T1Pat<(ARMWrapperJT tjumptable:$dst, imm:$id),
1315            (tLEApcrelJT tjumptable:$dst, imm:$id)>;
1316
1317// Direct calls
1318def : T1Pat<(ARMtcall texternalsym:$func), (tBL texternalsym:$func)>,
1319      Requires<[IsThumb]>;
1320
1321def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi texternalsym:$func)>,
1322      Requires<[IsThumb, HasV5T]>;
1323
1324// Indirect calls to ARM routines
1325def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr GPR:$dst)>,
1326      Requires<[IsThumb, HasV5T]>;
1327
1328// zextload i1 -> zextload i8
1329def : T1Pat<(zextloadi1 t_addrmode_rrs1:$addr),
1330            (tLDRBr t_addrmode_rrs1:$addr)>;
1331def : T1Pat<(zextloadi1 t_addrmode_is1:$addr),
1332            (tLDRBi t_addrmode_is1:$addr)>;
1333
1334// extload -> zextload
1335def : T1Pat<(extloadi1  t_addrmode_rrs1:$addr), (tLDRBr t_addrmode_rrs1:$addr)>;
1336def : T1Pat<(extloadi1  t_addrmode_is1:$addr),  (tLDRBi t_addrmode_is1:$addr)>;
1337def : T1Pat<(extloadi8  t_addrmode_rrs1:$addr), (tLDRBr t_addrmode_rrs1:$addr)>;
1338def : T1Pat<(extloadi8  t_addrmode_is1:$addr),  (tLDRBi t_addrmode_is1:$addr)>;
1339def : T1Pat<(extloadi16 t_addrmode_rrs2:$addr), (tLDRHr t_addrmode_rrs2:$addr)>;
1340def : T1Pat<(extloadi16 t_addrmode_is2:$addr),  (tLDRHi t_addrmode_is2:$addr)>;
1341
1342// If it's impossible to use [r,r] address mode for sextload, select to
1343// ldr{b|h} + sxt{b|h} instead.
1344def : T1Pat<(sextloadi8 t_addrmode_is1:$addr),
1345            (tSXTB (tLDRBi t_addrmode_is1:$addr))>,
1346      Requires<[IsThumb, IsThumb1Only, HasV6]>;
1347def : T1Pat<(sextloadi8 t_addrmode_rrs1:$addr),
1348            (tSXTB (tLDRBr t_addrmode_rrs1:$addr))>,
1349      Requires<[IsThumb, IsThumb1Only, HasV6]>;
1350def : T1Pat<(sextloadi16 t_addrmode_is2:$addr),
1351            (tSXTH (tLDRHi t_addrmode_is2:$addr))>,
1352      Requires<[IsThumb, IsThumb1Only, HasV6]>;
1353def : T1Pat<(sextloadi16 t_addrmode_rrs2:$addr),
1354            (tSXTH (tLDRHr t_addrmode_rrs2:$addr))>,
1355      Requires<[IsThumb, IsThumb1Only, HasV6]>;
1356
1357def : T1Pat<(sextloadi8 t_addrmode_rrs1:$addr),
1358            (tASRri (tLSLri (tLDRBr t_addrmode_rrs1:$addr), 24), 24)>;
1359def : T1Pat<(sextloadi8 t_addrmode_is1:$addr),
1360            (tASRri (tLSLri (tLDRBi t_addrmode_is1:$addr), 24), 24)>;
1361def : T1Pat<(sextloadi16 t_addrmode_rrs2:$addr),
1362            (tASRri (tLSLri (tLDRHr t_addrmode_rrs2:$addr), 16), 16)>;
1363def : T1Pat<(sextloadi16 t_addrmode_is2:$addr),
1364            (tASRri (tLSLri (tLDRHi t_addrmode_is2:$addr), 16), 16)>;
1365
1366def : T1Pat<(atomic_load_8 t_addrmode_is1:$src),
1367             (tLDRBi t_addrmode_is1:$src)>;
1368def : T1Pat<(atomic_load_8 t_addrmode_rrs1:$src),
1369             (tLDRBr t_addrmode_rrs1:$src)>;
1370def : T1Pat<(atomic_load_16 t_addrmode_is2:$src),
1371             (tLDRHi t_addrmode_is2:$src)>;
1372def : T1Pat<(atomic_load_16 t_addrmode_rrs2:$src),
1373             (tLDRHr t_addrmode_rrs2:$src)>;
1374def : T1Pat<(atomic_load_32 t_addrmode_is4:$src),
1375             (tLDRi t_addrmode_is4:$src)>;
1376def : T1Pat<(atomic_load_32 t_addrmode_rrs4:$src),
1377             (tLDRr t_addrmode_rrs4:$src)>;
1378def : T1Pat<(atomic_store_8 t_addrmode_is1:$ptr, tGPR:$val),
1379             (tSTRBi tGPR:$val, t_addrmode_is1:$ptr)>;
1380def : T1Pat<(atomic_store_8 t_addrmode_rrs1:$ptr, tGPR:$val),
1381             (tSTRBr tGPR:$val, t_addrmode_rrs1:$ptr)>;
1382def : T1Pat<(atomic_store_16 t_addrmode_is2:$ptr, tGPR:$val),
1383             (tSTRHi tGPR:$val, t_addrmode_is2:$ptr)>;
1384def : T1Pat<(atomic_store_16 t_addrmode_rrs2:$ptr, tGPR:$val),
1385             (tSTRHr tGPR:$val, t_addrmode_rrs2:$ptr)>;
1386def : T1Pat<(atomic_store_32 t_addrmode_is4:$ptr, tGPR:$val),
1387             (tSTRi tGPR:$val, t_addrmode_is4:$ptr)>;
1388def : T1Pat<(atomic_store_32 t_addrmode_rrs4:$ptr, tGPR:$val),
1389             (tSTRr tGPR:$val, t_addrmode_rrs4:$ptr)>;
1390
1391// Large immediate handling.
1392
1393// Two piece imms.
1394def : T1Pat<(i32 thumb_immshifted:$src),
1395            (tLSLri (tMOVi8 (thumb_immshifted_val imm:$src)),
1396                    (thumb_immshifted_shamt imm:$src))>;
1397
1398def : T1Pat<(i32 imm0_255_comp:$src),
1399            (tMVN (tMOVi8 (imm_comp_XFORM imm:$src)))>;
1400
1401// Pseudo instruction that combines ldr from constpool and add pc. This should
1402// be expanded into two instructions late to allow if-conversion and
1403// scheduling.
1404let isReMaterializable = 1 in
1405def tLDRpci_pic : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr, pclabel:$cp),
1406                             NoItinerary,
1407               [(set GPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)),
1408                                           imm:$cp))]>,
1409               Requires<[IsThumb, IsThumb1Only]>;
1410
1411// Pseudo-instruction for merged POP and return.
1412// FIXME: remove when we have a way to marking a MI with these properties.
1413let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
1414    hasExtraDefRegAllocReq = 1 in
1415def tPOP_RET : tPseudoExpand<(outs), (ins pred:$p, reglist:$regs, variable_ops),
1416                           2, IIC_iPop_Br, [],
1417                           (tPOP pred:$p, reglist:$regs)>, Sched<[WriteBrL]>;
1418
1419// Indirect branch using "mov pc, $Rm"
1420let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
1421  def tBRIND : tPseudoExpand<(outs), (ins GPR:$Rm, pred:$p),
1422                  2, IIC_Br, [(brind GPR:$Rm)],
1423                  (tMOVr PC, GPR:$Rm, pred:$p)>, Sched<[WriteBr]>;
1424}
1425
1426
1427// In Thumb1, "nop" is encoded as a "mov r8, r8". Technically, the bf00
1428// encoding is available on ARMv6K, but we don't differentiate that finely.
1429def : InstAlias<"nop", (tMOVr R8, R8, 14, 0)>,Requires<[IsThumb, IsThumb1Only]>;
1430
1431
1432// For round-trip assembly/disassembly, we have to handle a CPS instruction
1433// without any iflags. That's not, strictly speaking, valid syntax, but it's
1434// a useful extension and assembles to defined behaviour (the insn does
1435// nothing).
1436def : tInstAlias<"cps$imod", (tCPS imod_op:$imod, 0)>;
1437def : tInstAlias<"cps$imod", (tCPS imod_op:$imod, 0)>;
1438
1439// "neg" is and alias for "rsb rd, rn, #0"
1440def : tInstAlias<"neg${s}${p} $Rd, $Rm",
1441                 (tRSB tGPR:$Rd, s_cc_out:$s, tGPR:$Rm, pred:$p)>;
1442
1443
1444// Implied destination operand forms for shifts.
1445def : tInstAlias<"lsl${s}${p} $Rdm, $imm",
1446             (tLSLri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm0_31:$imm, pred:$p)>;
1447def : tInstAlias<"lsr${s}${p} $Rdm, $imm",
1448             (tLSRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>;
1449def : tInstAlias<"asr${s}${p} $Rdm, $imm",
1450             (tASRri tGPR:$Rdm, cc_out:$s, tGPR:$Rdm, imm_sr:$imm, pred:$p)>;
1451