ARMCodeEmitter.cpp revision 263508
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMRelocations.h"
20#include "ARMSubtarget.h"
21#include "ARMTargetMachine.h"
22#include "MCTargetDesc/ARMAddressingModes.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/JITCodeEmitter.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFunctionPass.h"
27#include "llvm/CodeGen/MachineInstr.h"
28#include "llvm/CodeGen/MachineJumpTableInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/Passes.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/PassManager.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45namespace {
46
47  class ARMCodeEmitter : public MachineFunctionPass {
48    ARMJITInfo                *JTI;
49    const ARMBaseInstrInfo    *II;
50    const DataLayout          *TD;
51    const ARMSubtarget        *Subtarget;
52    TargetMachine             &TM;
53    JITCodeEmitter            &MCE;
54    MachineModuleInfo *MMI;
55    const std::vector<MachineConstantPoolEntry> *MCPEs;
56    const std::vector<MachineJumpTableEntry> *MJTEs;
57    bool IsPIC;
58    bool IsThumb;
59
60    void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.addRequired<MachineModuleInfo>();
62      MachineFunctionPass::getAnalysisUsage(AU);
63    }
64
65    static char ID;
66  public:
67    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68      : MachineFunctionPass(ID), JTI(0),
69        II((const ARMBaseInstrInfo *)tm.getInstrInfo()),
70        TD(tm.getDataLayout()), TM(tm),
71        MCE(mce), MCPEs(0), MJTEs(0),
72        IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73
74    /// getBinaryCodeForInstr - This function, generated by the
75    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76    /// machine instructions.
77    uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
78
79    bool runOnMachineFunction(MachineFunction &MF);
80
81    virtual const char *getPassName() const {
82      return "ARM Machine Code Emitter";
83    }
84
85    void emitInstruction(const MachineInstr &MI);
86
87  private:
88
89    void emitWordLE(unsigned Binary);
90    void emitDWordLE(uint64_t Binary);
91    void emitConstPoolInstruction(const MachineInstr &MI);
92    void emitMOVi32immInstruction(const MachineInstr &MI);
93    void emitMOVi2piecesInstruction(const MachineInstr &MI);
94    void emitLEApcrelJTInstruction(const MachineInstr &MI);
95    void emitPseudoMoveInstruction(const MachineInstr &MI);
96    void addPCLabel(unsigned LabelID);
97    void emitPseudoInstruction(const MachineInstr &MI);
98    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
99                                    const MCInstrDesc &MCID,
100                                    const MachineOperand &MO,
101                                    unsigned OpIdx);
102
103    unsigned getMachineSoImmOpValue(unsigned SoImm);
104    unsigned getAddrModeSBit(const MachineInstr &MI,
105                             const MCInstrDesc &MCID) const;
106
107    void emitDataProcessingInstruction(const MachineInstr &MI,
108                                       unsigned ImplicitRd = 0,
109                                       unsigned ImplicitRn = 0);
110
111    void emitLoadStoreInstruction(const MachineInstr &MI,
112                                  unsigned ImplicitRd = 0,
113                                  unsigned ImplicitRn = 0);
114
115    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
116                                      unsigned ImplicitRn = 0);
117
118    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
119
120    void emitMulFrmInstruction(const MachineInstr &MI);
121
122    void emitExtendInstruction(const MachineInstr &MI);
123
124    void emitMiscArithInstruction(const MachineInstr &MI);
125
126    void emitSaturateInstruction(const MachineInstr &MI);
127
128    void emitBranchInstruction(const MachineInstr &MI);
129
130    void emitInlineJumpTable(unsigned JTIndex);
131
132    void emitMiscBranchInstruction(const MachineInstr &MI);
133
134    void emitVFPArithInstruction(const MachineInstr &MI);
135
136    void emitVFPConversionInstruction(const MachineInstr &MI);
137
138    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
139
140    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
141
142    void emitNEONLaneInstruction(const MachineInstr &MI);
143    void emitNEONDupInstruction(const MachineInstr &MI);
144    void emitNEON1RegModImmInstruction(const MachineInstr &MI);
145    void emitNEON2RegInstruction(const MachineInstr &MI);
146    void emitNEON3RegInstruction(const MachineInstr &MI);
147
148    /// getMachineOpValue - Return binary encoding of operand. If the machine
149    /// operand requires relocation, record the relocation and return zero.
150    unsigned getMachineOpValue(const MachineInstr &MI,
151                               const MachineOperand &MO) const;
152    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
153      return getMachineOpValue(MI, MI.getOperand(OpIdx));
154    }
155
156    // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
157    //  TableGen'erated getBinaryCodeForInstr() function to encode any
158    //  operand values, instead querying getMachineOpValue() directly for
159    //  each operand it needs to encode. Thus, any of the new encoder
160    //  helper functions can simply return 0 as the values the return
161    //  are already handled elsewhere. They are placeholders to allow this
162    //  encoder to continue to function until the MC encoder is sufficiently
163    //  far along that this one can be eliminated entirely.
164    unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
165      const { return 0; }
166    unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
167      const { return 0; }
168    unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
169      const { return 0; }
170    unsigned NEONThumb2V8PostEncoder(const MachineInstr &MI,unsigned Val)
171      const { return 0; }
172    unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
173      const { return 0; }
174    unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
175      const { return 0; }
176    unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
177      const { return 0; }
178    unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
179      const { return 0; }
180    unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
181      const { return 0; }
182    unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
183      const { return 0; }
184    unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
185      const { return 0; }
186    unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
187      const { return 0; }
188    unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
189      const { return 0; }
190    unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
191      unsigned Op) const { return 0; }
192    unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
193      const { return 0; }
194    unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op)
195      const { return 0; }
196    unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
197      const { return 0; }
198    unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
199      const { return 0; }
200    unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
201      const { return 0; }
202    unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
203      const { return 0; }
204    unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
205      const { return 0; }
206    unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
207      const { return 0; }
208    unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
209      const { return 0; }
210    unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
211      const { return 0; }
212    unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
213      const { return 0; }
214    unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
215      const { return 0; }
216    unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
217      const { return 0; }
218    unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
219      const { return 0; }
220    unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
221      const { return 0; }
222    unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
223      const { return 0; }
224    unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
225      const { return 0; }
226    unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
227      const { return 0; }
228    unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
229      const { return 0; }
230    unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
231      const { return 0; }
232    unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
233                                                 unsigned Op)
234      const { return 0; }
235    unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
236      const { return 0; }
237    unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
238      const { return 0; }
239    unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
240                                            unsigned Op) const { return 0; }
241    unsigned getSsatBitPosValue(const MachineInstr &MI,
242                                unsigned Op) const { return 0; }
243    uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
244      const {return 0; }
245    uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
246      const { return 0; }
247
248    unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
249      const {
250      // {17-13} = reg
251      // {12}    = (U)nsigned (add == '1', sub == '0')
252      // {11-0}  = imm12
253      const MachineOperand &MO  = MI.getOperand(Op);
254      const MachineOperand &MO1 = MI.getOperand(Op + 1);
255      if (!MO.isReg()) {
256        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
257        return 0;
258      }
259      unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
260      int32_t Imm12 = MO1.getImm();
261      uint32_t Binary;
262      Binary = Imm12 & 0xfff;
263      if (Imm12 >= 0)
264        Binary |= (1 << 12);
265      Binary |= (Reg << 13);
266      return Binary;
267    }
268
269    unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const {
270      return 0;
271    }
272
273    uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
274      const { return 0;}
275    uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
276      const { return 0;}
277    uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
278      const { return 0;}
279    uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
280      const { return 0;}
281    uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
282      const { return 0; }
283    uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
284      const { return 0; }
285    uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
286      const { return 0; }
287    uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
288      const { return 0; }
289    uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
290      const { return 0; }
291    uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
292      // {17-13} = reg
293      // {12}    = (U)nsigned (add == '1', sub == '0')
294      // {11-0}  = imm12
295      const MachineOperand &MO  = MI.getOperand(Op);
296      const MachineOperand &MO1 = MI.getOperand(Op + 1);
297      if (!MO.isReg()) {
298        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
299        return 0;
300      }
301      unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
302      int32_t Imm12 = MO1.getImm();
303
304      // Special value for #-0
305      if (Imm12 == INT32_MIN)
306        Imm12 = 0;
307
308      // Immediate is always encoded as positive. The 'U' bit controls add vs
309      // sub.
310      bool isAdd = true;
311      if (Imm12 < 0) {
312        Imm12 = -Imm12;
313        isAdd = false;
314      }
315
316      uint32_t Binary = Imm12 & 0xfff;
317      if (isAdd)
318        Binary |= (1 << 12);
319      Binary |= (Reg << 13);
320      return Binary;
321    }
322    unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
323      const { return 0; }
324
325    unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
326      const { return 0; }
327
328    unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
329      const { return 0; }
330    unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
331      const { return 0; }
332    unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
333      const { return 0; }
334    unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
335      const { return 0; }
336
337    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
338    /// machine operand requires relocation, record the relocation and return
339    /// zero.
340    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
341                            unsigned Reloc);
342
343    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
344    ///
345    unsigned getShiftOp(unsigned Imm) const ;
346
347    /// Routines that handle operands which add machine relocations which are
348    /// fixed up by the relocation stage.
349    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
350                           bool MayNeedFarStub,  bool Indirect,
351                           intptr_t ACPV = 0) const;
352    void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
353    void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
354    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
355    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
356                               intptr_t JTBase = 0) const;
357    unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) const;
358    unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) const;
359    unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) const;
360    unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) const;
361    unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) const;
362    unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) const;
363  };
364}
365
366char ARMCodeEmitter::ID = 0;
367
368/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
369/// code to the specified MCE object.
370FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
371                                                JITCodeEmitter &JCE) {
372  return new ARMCodeEmitter(TM, JCE);
373}
374
375bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
376  TargetMachine &Target = const_cast<TargetMachine&>(MF.getTarget());
377
378  assert((Target.getRelocationModel() != Reloc::Default ||
379          Target.getRelocationModel() != Reloc::Static) &&
380         "JIT relocation model must be set to static or default!");
381
382  JTI = static_cast<ARMJITInfo*>(Target.getJITInfo());
383  II = static_cast<const ARMBaseInstrInfo*>(Target.getInstrInfo());
384  TD = Target.getDataLayout();
385
386  Subtarget = &TM.getSubtarget<ARMSubtarget>();
387  MCPEs = &MF.getConstantPool()->getConstants();
388  MJTEs = 0;
389  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
390  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
391  IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
392  JTI->Initialize(MF, IsPIC);
393  MMI = &getAnalysis<MachineModuleInfo>();
394  MCE.setModuleInfo(MMI);
395
396  do {
397    DEBUG(errs() << "JITTing function '"
398          << MF.getName() << "'\n");
399    MCE.startFunction(MF);
400    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
401         MBB != E; ++MBB) {
402      MCE.StartMachineBasicBlock(MBB);
403      for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
404           I != E; ++I)
405        emitInstruction(*I);
406    }
407  } while (MCE.finishFunction(MF));
408
409  return false;
410}
411
412/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
413///
414unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
415  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
416  default: llvm_unreachable("Unknown shift opc!");
417  case ARM_AM::asr: return 2;
418  case ARM_AM::lsl: return 0;
419  case ARM_AM::lsr: return 1;
420  case ARM_AM::ror:
421  case ARM_AM::rrx: return 3;
422  }
423}
424
425/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
426/// machine operand requires relocation, record the relocation and return zero.
427unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
428                                        const MachineOperand &MO,
429                                        unsigned Reloc) {
430  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
431      && "Relocation to this function should be for movt or movw");
432
433  if (MO.isImm())
434    return static_cast<unsigned>(MO.getImm());
435  else if (MO.isGlobal())
436    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
437  else if (MO.isSymbol())
438    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
439  else if (MO.isMBB())
440    emitMachineBasicBlock(MO.getMBB(), Reloc);
441  else {
442#ifndef NDEBUG
443    errs() << MO;
444#endif
445    llvm_unreachable("Unsupported operand type for movw/movt");
446  }
447  return 0;
448}
449
450/// getMachineOpValue - Return binary encoding of operand. If the machine
451/// operand requires relocation, record the relocation and return zero.
452unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
453                                           const MachineOperand &MO) const {
454  if (MO.isReg())
455    return II->getRegisterInfo().getEncodingValue(MO.getReg());
456  else if (MO.isImm())
457    return static_cast<unsigned>(MO.getImm());
458  else if (MO.isGlobal())
459    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
460  else if (MO.isSymbol())
461    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
462  else if (MO.isCPI()) {
463    const MCInstrDesc &MCID = MI.getDesc();
464    // For VFP load, the immediate offset is multiplied by 4.
465    unsigned Reloc =  ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
466      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
467    emitConstPoolAddress(MO.getIndex(), Reloc);
468  } else if (MO.isJTI())
469    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
470  else if (MO.isMBB())
471    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
472  else
473    llvm_unreachable("Unable to encode MachineOperand!");
474  return 0;
475}
476
477/// emitGlobalAddress - Emit the specified address to the code stream.
478///
479void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
480                                       bool MayNeedFarStub, bool Indirect,
481                                       intptr_t ACPV) const {
482  MachineRelocation MR = Indirect
483    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
484                                           const_cast<GlobalValue *>(GV),
485                                           ACPV, MayNeedFarStub)
486    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
487                               const_cast<GlobalValue *>(GV), ACPV,
488                               MayNeedFarStub);
489  MCE.addRelocation(MR);
490}
491
492/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
493/// be emitted to the current location in the function, and allow it to be PC
494/// relative.
495void ARMCodeEmitter::
496emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
497  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
498                                                 Reloc, ES));
499}
500
501/// emitConstPoolAddress - Arrange for the address of an constant pool
502/// to be emitted to the current location in the function, and allow it to be PC
503/// relative.
504void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
505  // Tell JIT emitter we'll resolve the address.
506  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
507                                                    Reloc, CPI, 0, true));
508}
509
510/// emitJumpTableAddress - Arrange for the address of a jump table to
511/// be emitted to the current location in the function, and allow it to be PC
512/// relative.
513void ARMCodeEmitter::
514emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
515  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
516                                                    Reloc, JTIndex, 0, true));
517}
518
519/// emitMachineBasicBlock - Emit the specified address basic block.
520void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
521                                           unsigned Reloc,
522                                           intptr_t JTBase) const {
523  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
524                                             Reloc, BB, JTBase));
525}
526
527void ARMCodeEmitter::emitWordLE(unsigned Binary) {
528  DEBUG(errs() << "  0x";
529        errs().write_hex(Binary) << "\n");
530  MCE.emitWordLE(Binary);
531}
532
533void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
534  DEBUG(errs() << "  0x";
535        errs().write_hex(Binary) << "\n");
536  MCE.emitDWordLE(Binary);
537}
538
539void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
540  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
541
542  MCE.processDebugLoc(MI.getDebugLoc(), true);
543
544  ++NumEmitted;  // Keep track of the # of mi's emitted
545  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
546  default: {
547    llvm_unreachable("Unhandled instruction encoding format!");
548  }
549  case ARMII::MiscFrm:
550    if (MI.getOpcode() == ARM::LEApcrelJT) {
551      // Materialize jumptable address.
552      emitLEApcrelJTInstruction(MI);
553      break;
554    }
555    llvm_unreachable("Unhandled instruction encoding!");
556  case ARMII::Pseudo:
557    emitPseudoInstruction(MI);
558    break;
559  case ARMII::DPFrm:
560  case ARMII::DPSoRegFrm:
561    emitDataProcessingInstruction(MI);
562    break;
563  case ARMII::LdFrm:
564  case ARMII::StFrm:
565    emitLoadStoreInstruction(MI);
566    break;
567  case ARMII::LdMiscFrm:
568  case ARMII::StMiscFrm:
569    emitMiscLoadStoreInstruction(MI);
570    break;
571  case ARMII::LdStMulFrm:
572    emitLoadStoreMultipleInstruction(MI);
573    break;
574  case ARMII::MulFrm:
575    emitMulFrmInstruction(MI);
576    break;
577  case ARMII::ExtFrm:
578    emitExtendInstruction(MI);
579    break;
580  case ARMII::ArithMiscFrm:
581    emitMiscArithInstruction(MI);
582    break;
583  case ARMII::SatFrm:
584    emitSaturateInstruction(MI);
585    break;
586  case ARMII::BrFrm:
587    emitBranchInstruction(MI);
588    break;
589  case ARMII::BrMiscFrm:
590    emitMiscBranchInstruction(MI);
591    break;
592  // VFP instructions.
593  case ARMII::VFPUnaryFrm:
594  case ARMII::VFPBinaryFrm:
595    emitVFPArithInstruction(MI);
596    break;
597  case ARMII::VFPConv1Frm:
598  case ARMII::VFPConv2Frm:
599  case ARMII::VFPConv3Frm:
600  case ARMII::VFPConv4Frm:
601  case ARMII::VFPConv5Frm:
602    emitVFPConversionInstruction(MI);
603    break;
604  case ARMII::VFPLdStFrm:
605    emitVFPLoadStoreInstruction(MI);
606    break;
607  case ARMII::VFPLdStMulFrm:
608    emitVFPLoadStoreMultipleInstruction(MI);
609    break;
610
611  // NEON instructions.
612  case ARMII::NGetLnFrm:
613  case ARMII::NSetLnFrm:
614    emitNEONLaneInstruction(MI);
615    break;
616  case ARMII::NDupFrm:
617    emitNEONDupInstruction(MI);
618    break;
619  case ARMII::N1RegModImmFrm:
620    emitNEON1RegModImmInstruction(MI);
621    break;
622  case ARMII::N2RegFrm:
623    emitNEON2RegInstruction(MI);
624    break;
625  case ARMII::N3RegFrm:
626    emitNEON3RegInstruction(MI);
627    break;
628  }
629  MCE.processDebugLoc(MI.getDebugLoc(), false);
630}
631
632void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
633  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
634  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
635  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
636
637  // Remember the CONSTPOOL_ENTRY address for later relocation.
638  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
639
640  // Emit constpool island entry. In most cases, the actual values will be
641  // resolved and relocated after code emission.
642  if (MCPE.isMachineConstantPoolEntry()) {
643    ARMConstantPoolValue *ACPV =
644      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
645
646    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
647          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
648
649    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
650    const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
651    if (GV) {
652      Reloc::Model RelocM = TM.getRelocationModel();
653      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
654                        isa<Function>(GV),
655                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
656                        (intptr_t)ACPV);
657    } else  {
658      const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
659      emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
660    }
661    emitWordLE(0);
662  } else {
663    const Constant *CV = MCPE.Val.ConstVal;
664
665    DEBUG({
666        errs() << "  ** Constant pool #" << CPI << " @ "
667               << (void*)MCE.getCurrentPCValue() << " ";
668        if (const Function *F = dyn_cast<Function>(CV))
669          errs() << F->getName();
670        else
671          errs() << *CV;
672        errs() << '\n';
673      });
674
675    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
676      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
677      emitWordLE(0);
678    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
679      uint32_t Val = uint32_t(*CI->getValue().getRawData());
680      emitWordLE(Val);
681    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
682      if (CFP->getType()->isFloatTy())
683        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
684      else if (CFP->getType()->isDoubleTy())
685        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
686      else {
687        llvm_unreachable("Unable to handle this constantpool entry!");
688      }
689    } else {
690      llvm_unreachable("Unable to handle this constantpool entry!");
691    }
692  }
693}
694
695void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
696  const MachineOperand &MO0 = MI.getOperand(0);
697  const MachineOperand &MO1 = MI.getOperand(1);
698
699  // Emit the 'movw' instruction.
700  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
701
702  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
703
704  // Set the conditional execution predicate.
705  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
706
707  // Encode Rd.
708  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
709
710  // Encode imm16 as imm4:imm12
711  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
712  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
713  emitWordLE(Binary);
714
715  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
716  // Emit the 'movt' instruction.
717  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
718
719  // Set the conditional execution predicate.
720  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
721
722  // Encode Rd.
723  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
724
725  // Encode imm16 as imm4:imm1, same as movw above.
726  Binary |= Hi16 & 0xFFF;
727  Binary |= ((Hi16 >> 12) & 0xF) << 16;
728  emitWordLE(Binary);
729}
730
731void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
732  const MachineOperand &MO0 = MI.getOperand(0);
733  const MachineOperand &MO1 = MI.getOperand(1);
734  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
735                                                  "Not a valid so_imm value!");
736  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
737  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
738
739  // Emit the 'mov' instruction.
740  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
741
742  // Set the conditional execution predicate.
743  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
744
745  // Encode Rd.
746  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
747
748  // Encode so_imm.
749  // Set bit I(25) to identify this is the immediate form of <shifter_op>
750  Binary |= 1 << ARMII::I_BitShift;
751  Binary |= getMachineSoImmOpValue(V1);
752  emitWordLE(Binary);
753
754  // Now the 'orr' instruction.
755  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
756
757  // Set the conditional execution predicate.
758  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
759
760  // Encode Rd.
761  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
762
763  // Encode Rn.
764  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
765
766  // Encode so_imm.
767  // Set bit I(25) to identify this is the immediate form of <shifter_op>
768  Binary |= 1 << ARMII::I_BitShift;
769  Binary |= getMachineSoImmOpValue(V2);
770  emitWordLE(Binary);
771}
772
773void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
774  // It's basically add r, pc, (LJTI - $+8)
775
776  const MCInstrDesc &MCID = MI.getDesc();
777
778  // Emit the 'add' instruction.
779  unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
780
781  // Set the conditional execution predicate
782  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
783
784  // Encode S bit if MI modifies CPSR.
785  Binary |= getAddrModeSBit(MI, MCID);
786
787  // Encode Rd.
788  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
789
790  // Encode Rn which is PC.
791  Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
792
793  // Encode the displacement.
794  Binary |= 1 << ARMII::I_BitShift;
795  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
796
797  emitWordLE(Binary);
798}
799
800void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
801  unsigned Opcode = MI.getDesc().Opcode;
802
803  // Part of binary is determined by TableGn.
804  unsigned Binary = getBinaryCodeForInstr(MI);
805
806  // Set the conditional execution predicate
807  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
808
809  // Encode S bit if MI modifies CPSR.
810  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
811    Binary |= 1 << ARMII::S_BitShift;
812
813  // Encode register def if there is one.
814  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
815
816  // Encode the shift operation.
817  switch (Opcode) {
818  default: break;
819  case ARM::RRX:
820    // rrx
821    Binary |= 0x6 << 4;
822    break;
823  case ARM::MOVsrl_flag:
824    // lsr #1
825    Binary |= (0x2 << 4) | (1 << 7);
826    break;
827  case ARM::MOVsra_flag:
828    // asr #1
829    Binary |= (0x4 << 4) | (1 << 7);
830    break;
831  }
832
833  // Encode register Rm.
834  Binary |= getMachineOpValue(MI, 1);
835
836  emitWordLE(Binary);
837}
838
839void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
840  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
841        << (void*)MCE.getCurrentPCValue() << '\n');
842  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
843}
844
845void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
846  unsigned Opcode = MI.getDesc().Opcode;
847  switch (Opcode) {
848  default:
849    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
850  case ARM::BX_CALL:
851  case ARM::BMOVPCRX_CALL: {
852    // First emit mov lr, pc
853    unsigned Binary = 0x01a0e00f;
854    Binary |= II->getPredicate(&MI) << ARMII::CondShift;
855    emitWordLE(Binary);
856
857    // and then emit the branch.
858    emitMiscBranchInstruction(MI);
859    break;
860  }
861  case TargetOpcode::INLINEASM: {
862    // We allow inline assembler nodes with empty bodies - they can
863    // implicitly define registers, which is ok for JIT.
864    if (MI.getOperand(0).getSymbolName()[0]) {
865      report_fatal_error("JIT does not support inline asm!");
866    }
867    break;
868  }
869  case TargetOpcode::PROLOG_LABEL:
870  case TargetOpcode::EH_LABEL:
871    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
872    break;
873  case TargetOpcode::IMPLICIT_DEF:
874  case TargetOpcode::KILL:
875    // Do nothing.
876    break;
877  case ARM::CONSTPOOL_ENTRY:
878    emitConstPoolInstruction(MI);
879    break;
880  case ARM::PICADD: {
881    // Remember of the address of the PC label for relocation later.
882    addPCLabel(MI.getOperand(2).getImm());
883    // PICADD is just an add instruction that implicitly read pc.
884    emitDataProcessingInstruction(MI, 0, ARM::PC);
885    break;
886  }
887  case ARM::PICLDR:
888  case ARM::PICLDRB:
889  case ARM::PICSTR:
890  case ARM::PICSTRB: {
891    // Remember of the address of the PC label for relocation later.
892    addPCLabel(MI.getOperand(2).getImm());
893    // These are just load / store instructions that implicitly read pc.
894    emitLoadStoreInstruction(MI, 0, ARM::PC);
895    break;
896  }
897  case ARM::PICLDRH:
898  case ARM::PICLDRSH:
899  case ARM::PICLDRSB:
900  case ARM::PICSTRH: {
901    // Remember of the address of the PC label for relocation later.
902    addPCLabel(MI.getOperand(2).getImm());
903    // These are just load / store instructions that implicitly read pc.
904    emitMiscLoadStoreInstruction(MI, ARM::PC);
905    break;
906  }
907
908  case ARM::MOVi32imm:
909    // Two instructions to materialize a constant.
910    if (Subtarget->hasV6T2Ops())
911      emitMOVi32immInstruction(MI);
912    else
913      emitMOVi2piecesInstruction(MI);
914    break;
915
916  case ARM::LEApcrelJT:
917    // Materialize jumptable address.
918    emitLEApcrelJTInstruction(MI);
919    break;
920  case ARM::RRX:
921  case ARM::MOVsrl_flag:
922  case ARM::MOVsra_flag:
923    emitPseudoMoveInstruction(MI);
924    break;
925  }
926}
927
928unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
929                                                const MCInstrDesc &MCID,
930                                                const MachineOperand &MO,
931                                                unsigned OpIdx) {
932  unsigned Binary = getMachineOpValue(MI, MO);
933
934  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
935  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
936  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
937
938  // Encode the shift opcode.
939  unsigned SBits = 0;
940  unsigned Rs = MO1.getReg();
941  if (Rs) {
942    // Set shift operand (bit[7:4]).
943    // LSL - 0001
944    // LSR - 0011
945    // ASR - 0101
946    // ROR - 0111
947    // RRX - 0110 and bit[11:8] clear.
948    switch (SOpc) {
949    default: llvm_unreachable("Unknown shift opc!");
950    case ARM_AM::lsl: SBits = 0x1; break;
951    case ARM_AM::lsr: SBits = 0x3; break;
952    case ARM_AM::asr: SBits = 0x5; break;
953    case ARM_AM::ror: SBits = 0x7; break;
954    case ARM_AM::rrx: SBits = 0x6; break;
955    }
956  } else {
957    // Set shift operand (bit[6:4]).
958    // LSL - 000
959    // LSR - 010
960    // ASR - 100
961    // ROR - 110
962    switch (SOpc) {
963    default: llvm_unreachable("Unknown shift opc!");
964    case ARM_AM::lsl: SBits = 0x0; break;
965    case ARM_AM::lsr: SBits = 0x2; break;
966    case ARM_AM::asr: SBits = 0x4; break;
967    case ARM_AM::ror: SBits = 0x6; break;
968    }
969  }
970  Binary |= SBits << 4;
971  if (SOpc == ARM_AM::rrx)
972    return Binary;
973
974  // Encode the shift operation Rs or shift_imm (except rrx).
975  if (Rs) {
976    // Encode Rs bit[11:8].
977    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
978    return Binary | (II->getRegisterInfo().getEncodingValue(Rs) << ARMII::RegRsShift);
979  }
980
981  // Encode shift_imm bit[11:7].
982  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
983}
984
985unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
986  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
987  assert(SoImmVal != -1 && "Not a valid so_imm value!");
988
989  // Encode rotate_imm.
990  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
991    << ARMII::SoRotImmShift;
992
993  // Encode immed_8.
994  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
995  return Binary;
996}
997
998unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
999                                         const MCInstrDesc &MCID) const {
1000  for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
1001    const MachineOperand &MO = MI.getOperand(i-1);
1002    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
1003      return 1 << ARMII::S_BitShift;
1004  }
1005  return 0;
1006}
1007
1008void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
1009                                                   unsigned ImplicitRd,
1010                                                   unsigned ImplicitRn) {
1011  const MCInstrDesc &MCID = MI.getDesc();
1012
1013  // Part of binary is determined by TableGn.
1014  unsigned Binary = getBinaryCodeForInstr(MI);
1015
1016  // Set the conditional execution predicate
1017  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1018
1019  // Encode S bit if MI modifies CPSR.
1020  Binary |= getAddrModeSBit(MI, MCID);
1021
1022  // Encode register def if there is one.
1023  unsigned NumDefs = MCID.getNumDefs();
1024  unsigned OpIdx = 0;
1025  if (NumDefs)
1026    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1027  else if (ImplicitRd)
1028    // Special handling for implicit use (e.g. PC).
1029    Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
1030
1031  if (MCID.Opcode == ARM::MOVi16) {
1032      // Get immediate from MI.
1033      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
1034                      ARM::reloc_arm_movw);
1035      // Encode imm which is the same as in emitMOVi32immInstruction().
1036      Binary |= Lo16 & 0xFFF;
1037      Binary |= ((Lo16 >> 12) & 0xF) << 16;
1038      emitWordLE(Binary);
1039      return;
1040  } else if(MCID.Opcode == ARM::MOVTi16) {
1041      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
1042                       ARM::reloc_arm_movt) >> 16);
1043      Binary |= Hi16 & 0xFFF;
1044      Binary |= ((Hi16 >> 12) & 0xF) << 16;
1045      emitWordLE(Binary);
1046      return;
1047  } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
1048      uint32_t v = ~MI.getOperand(2).getImm();
1049      int32_t lsb = countTrailingZeros(v);
1050      int32_t msb = (32 - countLeadingZeros(v)) - 1;
1051      // Instr{20-16} = msb, Instr{11-7} = lsb
1052      Binary |= (msb & 0x1F) << 16;
1053      Binary |= (lsb & 0x1F) << 7;
1054      emitWordLE(Binary);
1055      return;
1056  } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
1057      // Encode Rn in Instr{0-3}
1058      Binary |= getMachineOpValue(MI, OpIdx++);
1059
1060      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
1061      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
1062
1063      // Instr{20-16} = widthm1, Instr{11-7} = lsb
1064      Binary |= (widthm1 & 0x1F) << 16;
1065      Binary |= (lsb & 0x1F) << 7;
1066      emitWordLE(Binary);
1067      return;
1068  }
1069
1070  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1071  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1072    ++OpIdx;
1073
1074  // Encode first non-shifter register operand if there is one.
1075  bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
1076  if (!isUnary) {
1077    if (ImplicitRn)
1078      // Special handling for implicit use (e.g. PC).
1079      Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1080    else {
1081      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
1082      ++OpIdx;
1083    }
1084  }
1085
1086  // Encode shifter operand.
1087  const MachineOperand &MO = MI.getOperand(OpIdx);
1088  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
1089    // Encode SoReg.
1090    emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
1091    return;
1092  }
1093
1094  if (MO.isReg()) {
1095    // Encode register Rm.
1096    emitWordLE(Binary | II->getRegisterInfo().getEncodingValue(MO.getReg()));
1097    return;
1098  }
1099
1100  // Encode so_imm.
1101  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1102
1103  emitWordLE(Binary);
1104}
1105
1106void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1107                                              unsigned ImplicitRd,
1108                                              unsigned ImplicitRn) {
1109  const MCInstrDesc &MCID = MI.getDesc();
1110  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1111  bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1112
1113  // Part of binary is determined by TableGn.
1114  unsigned Binary = getBinaryCodeForInstr(MI);
1115
1116  // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1117  if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1118      MI.getOpcode() == ARM::STRi12) {
1119    emitWordLE(Binary);
1120    return;
1121  }
1122
1123  // Set the conditional execution predicate
1124  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1125
1126  unsigned OpIdx = 0;
1127
1128  // Operand 0 of a pre- and post-indexed store is the address base
1129  // writeback. Skip it.
1130  bool Skipped = false;
1131  if (IsPrePost && Form == ARMII::StFrm) {
1132    ++OpIdx;
1133    Skipped = true;
1134  }
1135
1136  // Set first operand
1137  if (ImplicitRd)
1138    // Special handling for implicit use (e.g. PC).
1139    Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
1140  else
1141    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1142
1143  // Set second operand
1144  if (ImplicitRn)
1145    // Special handling for implicit use (e.g. PC).
1146    Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1147  else
1148    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1149
1150  // If this is a two-address operand, skip it. e.g. LDR_PRE.
1151  if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1152    ++OpIdx;
1153
1154  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1155  unsigned AM2Opc = (ImplicitRn == ARM::PC)
1156    ? 0 : MI.getOperand(OpIdx+1).getImm();
1157
1158  // Set bit U(23) according to sign of immed value (positive or negative).
1159  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1160             ARMII::U_BitShift);
1161  if (!MO2.getReg()) { // is immediate
1162    if (ARM_AM::getAM2Offset(AM2Opc))
1163      // Set the value of offset_12 field
1164      Binary |= ARM_AM::getAM2Offset(AM2Opc);
1165    emitWordLE(Binary);
1166    return;
1167  }
1168
1169  // Set bit I(25), because this is not in immediate encoding.
1170  Binary |= 1 << ARMII::I_BitShift;
1171  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1172  // Set bit[3:0] to the corresponding Rm register
1173  Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
1174
1175  // If this instr is in scaled register offset/index instruction, set
1176  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1177  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1178    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
1179    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
1180  }
1181
1182  emitWordLE(Binary);
1183}
1184
1185void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1186                                                  unsigned ImplicitRn) {
1187  const MCInstrDesc &MCID = MI.getDesc();
1188  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1189  bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1190
1191  // Part of binary is determined by TableGn.
1192  unsigned Binary = getBinaryCodeForInstr(MI);
1193
1194  // Set the conditional execution predicate
1195  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1196
1197  unsigned OpIdx = 0;
1198
1199  // Operand 0 of a pre- and post-indexed store is the address base
1200  // writeback. Skip it.
1201  bool Skipped = false;
1202  if (IsPrePost && Form == ARMII::StMiscFrm) {
1203    ++OpIdx;
1204    Skipped = true;
1205  }
1206
1207  // Set first operand
1208  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1209
1210  // Skip LDRD and STRD's second operand.
1211  if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
1212    ++OpIdx;
1213
1214  // Set second operand
1215  if (ImplicitRn)
1216    // Special handling for implicit use (e.g. PC).
1217    Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1218  else
1219    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1220
1221  // If this is a two-address operand, skip it. e.g. LDRH_POST.
1222  if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1223    ++OpIdx;
1224
1225  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1226  unsigned AM3Opc = (ImplicitRn == ARM::PC)
1227    ? 0 : MI.getOperand(OpIdx+1).getImm();
1228
1229  // Set bit U(23) according to sign of immed value (positive or negative)
1230  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1231             ARMII::U_BitShift);
1232
1233  // If this instr is in register offset/index encoding, set bit[3:0]
1234  // to the corresponding Rm register.
1235  if (MO2.getReg()) {
1236    Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
1237    emitWordLE(Binary);
1238    return;
1239  }
1240
1241  // This instr is in immediate offset/index encoding, set bit 22 to 1.
1242  Binary |= 1 << ARMII::AM3_I_BitShift;
1243  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1244    // Set operands
1245    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1246    Binary |= (ImmOffs & 0xF);                      // immedL
1247  }
1248
1249  emitWordLE(Binary);
1250}
1251
1252static unsigned getAddrModeUPBits(unsigned Mode) {
1253  unsigned Binary = 0;
1254
1255  // Set addressing mode by modifying bits U(23) and P(24)
1256  // IA - Increment after  - bit U = 1 and bit P = 0
1257  // IB - Increment before - bit U = 1 and bit P = 1
1258  // DA - Decrement after  - bit U = 0 and bit P = 0
1259  // DB - Decrement before - bit U = 0 and bit P = 1
1260  switch (Mode) {
1261  default: llvm_unreachable("Unknown addressing sub-mode!");
1262  case ARM_AM::da:                                     break;
1263  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1264  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1265  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1266  }
1267
1268  return Binary;
1269}
1270
1271void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1272  const MCInstrDesc &MCID = MI.getDesc();
1273  bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1274
1275  // Part of binary is determined by TableGn.
1276  unsigned Binary = getBinaryCodeForInstr(MI);
1277
1278  // Set the conditional execution predicate
1279  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1280
1281  // Skip operand 0 of an instruction with base register update.
1282  unsigned OpIdx = 0;
1283  if (IsUpdating)
1284    ++OpIdx;
1285
1286  // Set base address operand
1287  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1288
1289  // Set addressing mode by modifying bits U(23) and P(24)
1290  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1291  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1292
1293  // Set bit W(21)
1294  if (IsUpdating)
1295    Binary |= 0x1 << ARMII::W_BitShift;
1296
1297  // Set registers
1298  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1299    const MachineOperand &MO = MI.getOperand(i);
1300    if (!MO.isReg() || MO.isImplicit())
1301      break;
1302    unsigned RegNum = II->getRegisterInfo().getEncodingValue(MO.getReg());
1303    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1304           RegNum < 16);
1305    Binary |= 0x1 << RegNum;
1306  }
1307
1308  emitWordLE(Binary);
1309}
1310
1311void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1312  const MCInstrDesc &MCID = MI.getDesc();
1313
1314  // Part of binary is determined by TableGn.
1315  unsigned Binary = getBinaryCodeForInstr(MI);
1316
1317  // Set the conditional execution predicate
1318  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1319
1320  // Encode S bit if MI modifies CPSR.
1321  Binary |= getAddrModeSBit(MI, MCID);
1322
1323  // 32x32->64bit operations have two destination registers. The number
1324  // of register definitions will tell us if that's what we're dealing with.
1325  unsigned OpIdx = 0;
1326  if (MCID.getNumDefs() == 2)
1327    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1328
1329  // Encode Rd
1330  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1331
1332  // Encode Rm
1333  Binary |= getMachineOpValue(MI, OpIdx++);
1334
1335  // Encode Rs
1336  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1337
1338  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1339  // it as Rn (for multiply, that's in the same offset as RdLo.
1340  if (MCID.getNumOperands() > OpIdx &&
1341      !MCID.OpInfo[OpIdx].isPredicate() &&
1342      !MCID.OpInfo[OpIdx].isOptionalDef())
1343    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1344
1345  emitWordLE(Binary);
1346}
1347
1348void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1349  const MCInstrDesc &MCID = MI.getDesc();
1350
1351  // Part of binary is determined by TableGn.
1352  unsigned Binary = getBinaryCodeForInstr(MI);
1353
1354  // Set the conditional execution predicate
1355  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1356
1357  unsigned OpIdx = 0;
1358
1359  // Encode Rd
1360  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1361
1362  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1363  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1364  if (MO2.isReg()) {
1365    // Two register operand form.
1366    // Encode Rn.
1367    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1368
1369    // Encode Rm.
1370    Binary |= getMachineOpValue(MI, MO2);
1371    ++OpIdx;
1372  } else {
1373    Binary |= getMachineOpValue(MI, MO1);
1374  }
1375
1376  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1377  if (MI.getOperand(OpIdx).isImm() &&
1378      !MCID.OpInfo[OpIdx].isPredicate() &&
1379      !MCID.OpInfo[OpIdx].isOptionalDef())
1380    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1381
1382  emitWordLE(Binary);
1383}
1384
1385void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1386  const MCInstrDesc &MCID = MI.getDesc();
1387
1388  // Part of binary is determined by TableGn.
1389  unsigned Binary = getBinaryCodeForInstr(MI);
1390
1391  // Set the conditional execution predicate
1392  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1393
1394  // PKH instructions are finished at this point
1395  if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
1396    emitWordLE(Binary);
1397    return;
1398  }
1399
1400  unsigned OpIdx = 0;
1401
1402  // Encode Rd
1403  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1404
1405  const MachineOperand &MO = MI.getOperand(OpIdx++);
1406  if (OpIdx == MCID.getNumOperands() ||
1407      MCID.OpInfo[OpIdx].isPredicate() ||
1408      MCID.OpInfo[OpIdx].isOptionalDef()) {
1409    // Encode Rm and it's done.
1410    Binary |= getMachineOpValue(MI, MO);
1411    emitWordLE(Binary);
1412    return;
1413  }
1414
1415  // Encode Rn.
1416  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1417
1418  // Encode Rm.
1419  Binary |= getMachineOpValue(MI, OpIdx++);
1420
1421  // Encode shift_imm.
1422  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1423  if (MCID.Opcode == ARM::PKHTB) {
1424    assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1425    if (ShiftAmt == 32)
1426      ShiftAmt = 0;
1427  }
1428  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1429  Binary |= ShiftAmt << ARMII::ShiftShift;
1430
1431  emitWordLE(Binary);
1432}
1433
1434void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1435  const MCInstrDesc &MCID = MI.getDesc();
1436
1437  // Part of binary is determined by TableGen.
1438  unsigned Binary = getBinaryCodeForInstr(MI);
1439
1440  // Set the conditional execution predicate
1441  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1442
1443  // Encode Rd
1444  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1445
1446  // Encode saturate bit position.
1447  unsigned Pos = MI.getOperand(1).getImm();
1448  if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
1449    Pos -= 1;
1450  assert((Pos < 16 || (Pos < 32 &&
1451                       MCID.Opcode != ARM::SSAT16 &&
1452                       MCID.Opcode != ARM::USAT16)) &&
1453         "saturate bit position out of range");
1454  Binary |= Pos << 16;
1455
1456  // Encode Rm
1457  Binary |= getMachineOpValue(MI, 2);
1458
1459  // Encode shift_imm.
1460  if (MCID.getNumOperands() == 4) {
1461    unsigned ShiftOp = MI.getOperand(3).getImm();
1462    ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1463    if (Opc == ARM_AM::asr)
1464      Binary |= (1 << 6);
1465    unsigned ShiftAmt = MI.getOperand(3).getImm();
1466    if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1467      ShiftAmt = 0;
1468    assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1469    Binary |= ShiftAmt << ARMII::ShiftShift;
1470  }
1471
1472  emitWordLE(Binary);
1473}
1474
1475void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1476  const MCInstrDesc &MCID = MI.getDesc();
1477
1478  if (MCID.Opcode == ARM::TPsoft) {
1479    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1480  }
1481
1482  // Part of binary is determined by TableGn.
1483  unsigned Binary = getBinaryCodeForInstr(MI);
1484
1485  // Set the conditional execution predicate
1486  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1487
1488  // Set signed_immed_24 field
1489  Binary |= getMachineOpValue(MI, 0);
1490
1491  emitWordLE(Binary);
1492}
1493
1494void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1495  // Remember the base address of the inline jump table.
1496  uintptr_t JTBase = MCE.getCurrentPCValue();
1497  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1498  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1499               << '\n');
1500
1501  // Now emit the jump table entries.
1502  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1503  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1504    if (IsPIC)
1505      // DestBB address - JT base.
1506      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1507    else
1508      // Absolute DestBB address.
1509      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1510    emitWordLE(0);
1511  }
1512}
1513
1514void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1515  const MCInstrDesc &MCID = MI.getDesc();
1516
1517  // Handle jump tables.
1518  if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
1519    // First emit a ldr pc, [] instruction.
1520    emitDataProcessingInstruction(MI, ARM::PC);
1521
1522    // Then emit the inline jump table.
1523    unsigned JTIndex =
1524      (MCID.Opcode == ARM::BR_JTr)
1525      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1526    emitInlineJumpTable(JTIndex);
1527    return;
1528  } else if (MCID.Opcode == ARM::BR_JTm) {
1529    // First emit a ldr pc, [] instruction.
1530    emitLoadStoreInstruction(MI, ARM::PC);
1531
1532    // Then emit the inline jump table.
1533    emitInlineJumpTable(MI.getOperand(3).getIndex());
1534    return;
1535  }
1536
1537  // Part of binary is determined by TableGn.
1538  unsigned Binary = getBinaryCodeForInstr(MI);
1539
1540  // Set the conditional execution predicate
1541  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1542
1543  if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
1544    // The return register is LR.
1545    Binary |= II->getRegisterInfo().getEncodingValue(ARM::LR);
1546  else
1547    // otherwise, set the return register
1548    Binary |= getMachineOpValue(MI, 0);
1549
1550  emitWordLE(Binary);
1551}
1552
1553unsigned ARMCodeEmitter::encodeVFPRd(const MachineInstr &MI,
1554                                     unsigned OpIdx) const {
1555  unsigned RegD = MI.getOperand(OpIdx).getReg();
1556  unsigned Binary = 0;
1557  bool isSPVFP = ARM::SPRRegClass.contains(RegD);
1558  RegD = II->getRegisterInfo().getEncodingValue(RegD);
1559  if (!isSPVFP)
1560    Binary |=   RegD               << ARMII::RegRdShift;
1561  else {
1562    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1563    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1564  }
1565  return Binary;
1566}
1567
1568unsigned ARMCodeEmitter::encodeVFPRn(const MachineInstr &MI,
1569                                     unsigned OpIdx) const {
1570  unsigned RegN = MI.getOperand(OpIdx).getReg();
1571  unsigned Binary = 0;
1572  bool isSPVFP = ARM::SPRRegClass.contains(RegN);
1573  RegN = II->getRegisterInfo().getEncodingValue(RegN);
1574  if (!isSPVFP)
1575    Binary |=   RegN               << ARMII::RegRnShift;
1576  else {
1577    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1578    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1579  }
1580  return Binary;
1581}
1582
1583unsigned ARMCodeEmitter::encodeVFPRm(const MachineInstr &MI,
1584                                     unsigned OpIdx) const {
1585  unsigned RegM = MI.getOperand(OpIdx).getReg();
1586  unsigned Binary = 0;
1587  bool isSPVFP = ARM::SPRRegClass.contains(RegM);
1588  RegM = II->getRegisterInfo().getEncodingValue(RegM);
1589  if (!isSPVFP)
1590    Binary |=   RegM;
1591  else {
1592    Binary |= ((RegM & 0x1E) >> 1);
1593    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1594  }
1595  return Binary;
1596}
1597
1598void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1599  const MCInstrDesc &MCID = MI.getDesc();
1600
1601  // Part of binary is determined by TableGn.
1602  unsigned Binary = getBinaryCodeForInstr(MI);
1603
1604  // Set the conditional execution predicate
1605  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1606
1607  unsigned OpIdx = 0;
1608  assert((Binary & ARMII::D_BitShift) == 0 &&
1609         (Binary & ARMII::N_BitShift) == 0 &&
1610         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1611
1612  // Encode Dd / Sd.
1613  Binary |= encodeVFPRd(MI, OpIdx++);
1614
1615  // If this is a two-address operand, skip it, e.g. FMACD.
1616  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1617    ++OpIdx;
1618
1619  // Encode Dn / Sn.
1620  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1621    Binary |= encodeVFPRn(MI, OpIdx++);
1622
1623  if (OpIdx == MCID.getNumOperands() ||
1624      MCID.OpInfo[OpIdx].isPredicate() ||
1625      MCID.OpInfo[OpIdx].isOptionalDef()) {
1626    // FCMPEZD etc. has only one operand.
1627    emitWordLE(Binary);
1628    return;
1629  }
1630
1631  // Encode Dm / Sm.
1632  Binary |= encodeVFPRm(MI, OpIdx);
1633
1634  emitWordLE(Binary);
1635}
1636
1637void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1638  const MCInstrDesc &MCID = MI.getDesc();
1639  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1640
1641  // Part of binary is determined by TableGn.
1642  unsigned Binary = getBinaryCodeForInstr(MI);
1643
1644  // Set the conditional execution predicate
1645  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1646
1647  switch (Form) {
1648  default: break;
1649  case ARMII::VFPConv1Frm:
1650  case ARMII::VFPConv2Frm:
1651  case ARMII::VFPConv3Frm:
1652    // Encode Dd / Sd.
1653    Binary |= encodeVFPRd(MI, 0);
1654    break;
1655  case ARMII::VFPConv4Frm:
1656    // Encode Dn / Sn.
1657    Binary |= encodeVFPRn(MI, 0);
1658    break;
1659  case ARMII::VFPConv5Frm:
1660    // Encode Dm / Sm.
1661    Binary |= encodeVFPRm(MI, 0);
1662    break;
1663  }
1664
1665  switch (Form) {
1666  default: break;
1667  case ARMII::VFPConv1Frm:
1668    // Encode Dm / Sm.
1669    Binary |= encodeVFPRm(MI, 1);
1670    break;
1671  case ARMII::VFPConv2Frm:
1672  case ARMII::VFPConv3Frm:
1673    // Encode Dn / Sn.
1674    Binary |= encodeVFPRn(MI, 1);
1675    break;
1676  case ARMII::VFPConv4Frm:
1677  case ARMII::VFPConv5Frm:
1678    // Encode Dd / Sd.
1679    Binary |= encodeVFPRd(MI, 1);
1680    break;
1681  }
1682
1683  if (Form == ARMII::VFPConv5Frm)
1684    // Encode Dn / Sn.
1685    Binary |= encodeVFPRn(MI, 2);
1686  else if (Form == ARMII::VFPConv3Frm)
1687    // Encode Dm / Sm.
1688    Binary |= encodeVFPRm(MI, 2);
1689
1690  emitWordLE(Binary);
1691}
1692
1693void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1694  // Part of binary is determined by TableGn.
1695  unsigned Binary = getBinaryCodeForInstr(MI);
1696
1697  // Set the conditional execution predicate
1698  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1699
1700  unsigned OpIdx = 0;
1701
1702  // Encode Dd / Sd.
1703  Binary |= encodeVFPRd(MI, OpIdx++);
1704
1705  // Encode address base.
1706  const MachineOperand &Base = MI.getOperand(OpIdx++);
1707  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1708
1709  // If there is a non-zero immediate offset, encode it.
1710  if (Base.isReg()) {
1711    const MachineOperand &Offset = MI.getOperand(OpIdx);
1712    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1713      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1714        Binary |= 1 << ARMII::U_BitShift;
1715      Binary |= ImmOffs;
1716      emitWordLE(Binary);
1717      return;
1718    }
1719  }
1720
1721  // If immediate offset is omitted, default to +0.
1722  Binary |= 1 << ARMII::U_BitShift;
1723
1724  emitWordLE(Binary);
1725}
1726
1727void
1728ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1729  const MCInstrDesc &MCID = MI.getDesc();
1730  bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1731
1732  // Part of binary is determined by TableGn.
1733  unsigned Binary = getBinaryCodeForInstr(MI);
1734
1735  // Set the conditional execution predicate
1736  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1737
1738  // Skip operand 0 of an instruction with base register update.
1739  unsigned OpIdx = 0;
1740  if (IsUpdating)
1741    ++OpIdx;
1742
1743  // Set base address operand
1744  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1745
1746  // Set addressing mode by modifying bits U(23) and P(24)
1747  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1748  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1749
1750  // Set bit W(21)
1751  if (IsUpdating)
1752    Binary |= 0x1 << ARMII::W_BitShift;
1753
1754  // First register is encoded in Dd.
1755  Binary |= encodeVFPRd(MI, OpIdx+2);
1756
1757  // Count the number of registers.
1758  unsigned NumRegs = 1;
1759  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1760    const MachineOperand &MO = MI.getOperand(i);
1761    if (!MO.isReg() || MO.isImplicit())
1762      break;
1763    ++NumRegs;
1764  }
1765  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1766  // Otherwise, it will be 0, in the case of 32-bit registers.
1767  if(Binary & 0x100)
1768    Binary |= NumRegs * 2;
1769  else
1770    Binary |= NumRegs;
1771
1772  emitWordLE(Binary);
1773}
1774
1775unsigned ARMCodeEmitter::encodeNEONRd(const MachineInstr &MI,
1776                                      unsigned OpIdx) const {
1777  unsigned RegD = MI.getOperand(OpIdx).getReg();
1778  unsigned Binary = 0;
1779  RegD = II->getRegisterInfo().getEncodingValue(RegD);
1780  Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1781  Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1782  return Binary;
1783}
1784
1785unsigned ARMCodeEmitter::encodeNEONRn(const MachineInstr &MI,
1786                                      unsigned OpIdx) const {
1787  unsigned RegN = MI.getOperand(OpIdx).getReg();
1788  unsigned Binary = 0;
1789  RegN = II->getRegisterInfo().getEncodingValue(RegN);
1790  Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1791  Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1792  return Binary;
1793}
1794
1795unsigned ARMCodeEmitter::encodeNEONRm(const MachineInstr &MI,
1796                                      unsigned OpIdx) const {
1797  unsigned RegM = MI.getOperand(OpIdx).getReg();
1798  unsigned Binary = 0;
1799  RegM = II->getRegisterInfo().getEncodingValue(RegM);
1800  Binary |= (RegM & 0xf);
1801  Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1802  return Binary;
1803}
1804
1805/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1806/// data-processing instruction to the corresponding Thumb encoding.
1807static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1808  assert((Binary & 0xfe000000) == 0xf2000000 &&
1809         "not an ARM NEON data-processing instruction");
1810  unsigned UBit = (Binary >> 24) & 1;
1811  return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1812}
1813
1814void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1815  unsigned Binary = getBinaryCodeForInstr(MI);
1816
1817  unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1818  const MCInstrDesc &MCID = MI.getDesc();
1819  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1820    RegTOpIdx = 0;
1821    RegNOpIdx = 1;
1822    LnOpIdx = 2;
1823  } else { // ARMII::NSetLnFrm
1824    RegTOpIdx = 2;
1825    RegNOpIdx = 0;
1826    LnOpIdx = 3;
1827  }
1828
1829  // Set the conditional execution predicate
1830  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1831
1832  unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1833  RegT = II->getRegisterInfo().getEncodingValue(RegT);
1834  Binary |= (RegT << ARMII::RegRdShift);
1835  Binary |= encodeNEONRn(MI, RegNOpIdx);
1836
1837  unsigned LaneShift;
1838  if ((Binary & (1 << 22)) != 0)
1839    LaneShift = 0; // 8-bit elements
1840  else if ((Binary & (1 << 5)) != 0)
1841    LaneShift = 1; // 16-bit elements
1842  else
1843    LaneShift = 2; // 32-bit elements
1844
1845  unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1846  unsigned Opc1 = Lane >> 2;
1847  unsigned Opc2 = Lane & 3;
1848  assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1849  Binary |= (Opc1 << 21);
1850  Binary |= (Opc2 << 5);
1851
1852  emitWordLE(Binary);
1853}
1854
1855void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1856  unsigned Binary = getBinaryCodeForInstr(MI);
1857
1858  // Set the conditional execution predicate
1859  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1860
1861  unsigned RegT = MI.getOperand(1).getReg();
1862  RegT = II->getRegisterInfo().getEncodingValue(RegT);
1863  Binary |= (RegT << ARMII::RegRdShift);
1864  Binary |= encodeNEONRn(MI, 0);
1865  emitWordLE(Binary);
1866}
1867
1868void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1869  unsigned Binary = getBinaryCodeForInstr(MI);
1870  // Destination register is encoded in Dd.
1871  Binary |= encodeNEONRd(MI, 0);
1872  // Immediate fields: Op, Cmode, I, Imm3, Imm4
1873  unsigned Imm = MI.getOperand(1).getImm();
1874  unsigned Op = (Imm >> 12) & 1;
1875  unsigned Cmode = (Imm >> 8) & 0xf;
1876  unsigned I = (Imm >> 7) & 1;
1877  unsigned Imm3 = (Imm >> 4) & 0x7;
1878  unsigned Imm4 = Imm & 0xf;
1879  Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1880  if (IsThumb)
1881    Binary = convertNEONDataProcToThumb(Binary);
1882  emitWordLE(Binary);
1883}
1884
1885void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1886  const MCInstrDesc &MCID = MI.getDesc();
1887  unsigned Binary = getBinaryCodeForInstr(MI);
1888  // Destination register is encoded in Dd; source register in Dm.
1889  unsigned OpIdx = 0;
1890  Binary |= encodeNEONRd(MI, OpIdx++);
1891  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1892    ++OpIdx;
1893  Binary |= encodeNEONRm(MI, OpIdx);
1894  if (IsThumb)
1895    Binary = convertNEONDataProcToThumb(Binary);
1896  // FIXME: This does not handle VDUPfdf or VDUPfqf.
1897  emitWordLE(Binary);
1898}
1899
1900void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
1901  const MCInstrDesc &MCID = MI.getDesc();
1902  unsigned Binary = getBinaryCodeForInstr(MI);
1903  // Destination register is encoded in Dd; source registers in Dn and Dm.
1904  unsigned OpIdx = 0;
1905  Binary |= encodeNEONRd(MI, OpIdx++);
1906  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1907    ++OpIdx;
1908  Binary |= encodeNEONRn(MI, OpIdx++);
1909  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1910    ++OpIdx;
1911  Binary |= encodeNEONRm(MI, OpIdx);
1912  if (IsThumb)
1913    Binary = convertNEONDataProcToThumb(Binary);
1914  // FIXME: This does not handle VMOVDneon or VMOVQ.
1915  emitWordLE(Binary);
1916}
1917
1918#include "ARMGenCodeEmitter.inc"
1919