AsmWriter.cpp revision 263508
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "AsmWriter.h"
18
19#include "llvm/Assembly/Writer.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/Assembly/AssemblyAnnotationWriter.h"
25#include "llvm/Assembly/PrintModulePass.h"
26#include "llvm/DebugInfo.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/InlineAsm.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/Module.h"
34#include "llvm/IR/Operator.h"
35#include "llvm/IR/TypeFinder.h"
36#include "llvm/IR/ValueSymbolTable.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/Dwarf.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/FormattedStream.h"
42#include "llvm/Support/MathExtras.h"
43
44#include <algorithm>
45#include <cctype>
46using namespace llvm;
47
48// Make virtual table appear in this compilation unit.
49AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
50
51//===----------------------------------------------------------------------===//
52// Helper Functions
53//===----------------------------------------------------------------------===//
54
55static const Module *getModuleFromVal(const Value *V) {
56  if (const Argument *MA = dyn_cast<Argument>(V))
57    return MA->getParent() ? MA->getParent()->getParent() : 0;
58
59  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
60    return BB->getParent() ? BB->getParent()->getParent() : 0;
61
62  if (const Instruction *I = dyn_cast<Instruction>(V)) {
63    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
64    return M ? M->getParent() : 0;
65  }
66
67  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
68    return GV->getParent();
69  return 0;
70}
71
72static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
73  switch (cc) {
74  default:                         Out << "cc" << cc; break;
75  case CallingConv::Fast:          Out << "fastcc"; break;
76  case CallingConv::Cold:          Out << "coldcc"; break;
77  case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
78  case CallingConv::AnyReg:        Out << "anyregcc"; break;
79  case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
80  case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
81  case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
82  case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
83  case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
84  case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
85  case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
86  case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
87  case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
88  case CallingConv::PTX_Device:    Out << "ptx_device"; break;
89  case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
90  case CallingConv::X86_64_Win64:  Out << "x86_64_win64cc"; break;
91  }
92}
93
94// PrintEscapedString - Print each character of the specified string, escaping
95// it if it is not printable or if it is an escape char.
96static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
97  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
98    unsigned char C = Name[i];
99    if (isprint(C) && C != '\\' && C != '"')
100      Out << C;
101    else
102      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
103  }
104}
105
106enum PrefixType {
107  GlobalPrefix,
108  LabelPrefix,
109  LocalPrefix,
110  NoPrefix
111};
112
113/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
114/// prefixed with % (if the string only contains simple characters) or is
115/// surrounded with ""'s (if it has special chars in it).  Print it out.
116static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
117  assert(!Name.empty() && "Cannot get empty name!");
118  switch (Prefix) {
119  case NoPrefix: break;
120  case GlobalPrefix: OS << '@'; break;
121  case LabelPrefix:  break;
122  case LocalPrefix:  OS << '%'; break;
123  }
124
125  // Scan the name to see if it needs quotes first.
126  bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
127  if (!NeedsQuotes) {
128    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
129      // By making this unsigned, the value passed in to isalnum will always be
130      // in the range 0-255.  This is important when building with MSVC because
131      // its implementation will assert.  This situation can arise when dealing
132      // with UTF-8 multibyte characters.
133      unsigned char C = Name[i];
134      if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
135          C != '_') {
136        NeedsQuotes = true;
137        break;
138      }
139    }
140  }
141
142  // If we didn't need any quotes, just write out the name in one blast.
143  if (!NeedsQuotes) {
144    OS << Name;
145    return;
146  }
147
148  // Okay, we need quotes.  Output the quotes and escape any scary characters as
149  // needed.
150  OS << '"';
151  PrintEscapedString(Name, OS);
152  OS << '"';
153}
154
155/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
156/// prefixed with % (if the string only contains simple characters) or is
157/// surrounded with ""'s (if it has special chars in it).  Print it out.
158static void PrintLLVMName(raw_ostream &OS, const Value *V) {
159  PrintLLVMName(OS, V->getName(),
160                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
161}
162
163
164namespace llvm {
165
166void TypePrinting::incorporateTypes(const Module &M) {
167  NamedTypes.run(M, false);
168
169  // The list of struct types we got back includes all the struct types, split
170  // the unnamed ones out to a numbering and remove the anonymous structs.
171  unsigned NextNumber = 0;
172
173  std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
174  for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
175    StructType *STy = *I;
176
177    // Ignore anonymous types.
178    if (STy->isLiteral())
179      continue;
180
181    if (STy->getName().empty())
182      NumberedTypes[STy] = NextNumber++;
183    else
184      *NextToUse++ = STy;
185  }
186
187  NamedTypes.erase(NextToUse, NamedTypes.end());
188}
189
190
191/// CalcTypeName - Write the specified type to the specified raw_ostream, making
192/// use of type names or up references to shorten the type name where possible.
193void TypePrinting::print(Type *Ty, raw_ostream &OS) {
194  switch (Ty->getTypeID()) {
195  case Type::VoidTyID:      OS << "void"; break;
196  case Type::HalfTyID:      OS << "half"; break;
197  case Type::FloatTyID:     OS << "float"; break;
198  case Type::DoubleTyID:    OS << "double"; break;
199  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
200  case Type::FP128TyID:     OS << "fp128"; break;
201  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
202  case Type::LabelTyID:     OS << "label"; break;
203  case Type::MetadataTyID:  OS << "metadata"; break;
204  case Type::X86_MMXTyID:   OS << "x86_mmx"; break;
205  case Type::IntegerTyID:
206    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
207    return;
208
209  case Type::FunctionTyID: {
210    FunctionType *FTy = cast<FunctionType>(Ty);
211    print(FTy->getReturnType(), OS);
212    OS << " (";
213    for (FunctionType::param_iterator I = FTy->param_begin(),
214         E = FTy->param_end(); I != E; ++I) {
215      if (I != FTy->param_begin())
216        OS << ", ";
217      print(*I, OS);
218    }
219    if (FTy->isVarArg()) {
220      if (FTy->getNumParams()) OS << ", ";
221      OS << "...";
222    }
223    OS << ')';
224    return;
225  }
226  case Type::StructTyID: {
227    StructType *STy = cast<StructType>(Ty);
228
229    if (STy->isLiteral())
230      return printStructBody(STy, OS);
231
232    if (!STy->getName().empty())
233      return PrintLLVMName(OS, STy->getName(), LocalPrefix);
234
235    DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
236    if (I != NumberedTypes.end())
237      OS << '%' << I->second;
238    else  // Not enumerated, print the hex address.
239      OS << "%\"type " << STy << '\"';
240    return;
241  }
242  case Type::PointerTyID: {
243    PointerType *PTy = cast<PointerType>(Ty);
244    print(PTy->getElementType(), OS);
245    if (unsigned AddressSpace = PTy->getAddressSpace())
246      OS << " addrspace(" << AddressSpace << ')';
247    OS << '*';
248    return;
249  }
250  case Type::ArrayTyID: {
251    ArrayType *ATy = cast<ArrayType>(Ty);
252    OS << '[' << ATy->getNumElements() << " x ";
253    print(ATy->getElementType(), OS);
254    OS << ']';
255    return;
256  }
257  case Type::VectorTyID: {
258    VectorType *PTy = cast<VectorType>(Ty);
259    OS << "<" << PTy->getNumElements() << " x ";
260    print(PTy->getElementType(), OS);
261    OS << '>';
262    return;
263  }
264  default:
265    OS << "<unrecognized-type>";
266    return;
267  }
268}
269
270void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
271  if (STy->isOpaque()) {
272    OS << "opaque";
273    return;
274  }
275
276  if (STy->isPacked())
277    OS << '<';
278
279  if (STy->getNumElements() == 0) {
280    OS << "{}";
281  } else {
282    StructType::element_iterator I = STy->element_begin();
283    OS << "{ ";
284    print(*I++, OS);
285    for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
286      OS << ", ";
287      print(*I, OS);
288    }
289
290    OS << " }";
291  }
292  if (STy->isPacked())
293    OS << '>';
294}
295
296//===----------------------------------------------------------------------===//
297// SlotTracker Class: Enumerate slot numbers for unnamed values
298//===----------------------------------------------------------------------===//
299/// This class provides computation of slot numbers for LLVM Assembly writing.
300///
301class SlotTracker {
302public:
303  /// ValueMap - A mapping of Values to slot numbers.
304  typedef DenseMap<const Value*, unsigned> ValueMap;
305
306private:
307  /// TheModule - The module for which we are holding slot numbers.
308  const Module* TheModule;
309
310  /// TheFunction - The function for which we are holding slot numbers.
311  const Function* TheFunction;
312  bool FunctionProcessed;
313
314  /// mMap - The slot map for the module level data.
315  ValueMap mMap;
316  unsigned mNext;
317
318  /// fMap - The slot map for the function level data.
319  ValueMap fMap;
320  unsigned fNext;
321
322  /// mdnMap - Map for MDNodes.
323  DenseMap<const MDNode*, unsigned> mdnMap;
324  unsigned mdnNext;
325
326  /// asMap - The slot map for attribute sets.
327  DenseMap<AttributeSet, unsigned> asMap;
328  unsigned asNext;
329public:
330  /// Construct from a module
331  explicit SlotTracker(const Module *M);
332  /// Construct from a function, starting out in incorp state.
333  explicit SlotTracker(const Function *F);
334
335  /// Return the slot number of the specified value in it's type
336  /// plane.  If something is not in the SlotTracker, return -1.
337  int getLocalSlot(const Value *V);
338  int getGlobalSlot(const GlobalValue *V);
339  int getMetadataSlot(const MDNode *N);
340  int getAttributeGroupSlot(AttributeSet AS);
341
342  /// If you'd like to deal with a function instead of just a module, use
343  /// this method to get its data into the SlotTracker.
344  void incorporateFunction(const Function *F) {
345    TheFunction = F;
346    FunctionProcessed = false;
347  }
348
349  /// After calling incorporateFunction, use this method to remove the
350  /// most recently incorporated function from the SlotTracker. This
351  /// will reset the state of the machine back to just the module contents.
352  void purgeFunction();
353
354  /// MDNode map iterators.
355  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
356  mdn_iterator mdn_begin() { return mdnMap.begin(); }
357  mdn_iterator mdn_end() { return mdnMap.end(); }
358  unsigned mdn_size() const { return mdnMap.size(); }
359  bool mdn_empty() const { return mdnMap.empty(); }
360
361  /// AttributeSet map iterators.
362  typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
363  as_iterator as_begin()   { return asMap.begin(); }
364  as_iterator as_end()     { return asMap.end(); }
365  unsigned as_size() const { return asMap.size(); }
366  bool as_empty() const    { return asMap.empty(); }
367
368  /// This function does the actual initialization.
369  inline void initialize();
370
371  // Implementation Details
372private:
373  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
374  void CreateModuleSlot(const GlobalValue *V);
375
376  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
377  void CreateMetadataSlot(const MDNode *N);
378
379  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
380  void CreateFunctionSlot(const Value *V);
381
382  /// \brief Insert the specified AttributeSet into the slot table.
383  void CreateAttributeSetSlot(AttributeSet AS);
384
385  /// Add all of the module level global variables (and their initializers)
386  /// and function declarations, but not the contents of those functions.
387  void processModule();
388
389  /// Add all of the functions arguments, basic blocks, and instructions.
390  void processFunction();
391
392  SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
393  void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
394};
395
396SlotTracker *createSlotTracker(const Module *M) {
397  return new SlotTracker(M);
398}
399
400static SlotTracker *createSlotTracker(const Value *V) {
401  if (const Argument *FA = dyn_cast<Argument>(V))
402    return new SlotTracker(FA->getParent());
403
404  if (const Instruction *I = dyn_cast<Instruction>(V))
405    if (I->getParent())
406      return new SlotTracker(I->getParent()->getParent());
407
408  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
409    return new SlotTracker(BB->getParent());
410
411  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
412    return new SlotTracker(GV->getParent());
413
414  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
415    return new SlotTracker(GA->getParent());
416
417  if (const Function *Func = dyn_cast<Function>(V))
418    return new SlotTracker(Func);
419
420  if (const MDNode *MD = dyn_cast<MDNode>(V)) {
421    if (!MD->isFunctionLocal())
422      return new SlotTracker(MD->getFunction());
423
424    return new SlotTracker((Function *)0);
425  }
426
427  return 0;
428}
429
430#if 0
431#define ST_DEBUG(X) dbgs() << X
432#else
433#define ST_DEBUG(X)
434#endif
435
436// Module level constructor. Causes the contents of the Module (sans functions)
437// to be added to the slot table.
438SlotTracker::SlotTracker(const Module *M)
439  : TheModule(M), TheFunction(0), FunctionProcessed(false),
440    mNext(0), fNext(0),  mdnNext(0), asNext(0) {
441}
442
443// Function level constructor. Causes the contents of the Module and the one
444// function provided to be added to the slot table.
445SlotTracker::SlotTracker(const Function *F)
446  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
447    mNext(0), fNext(0), mdnNext(0), asNext(0) {
448}
449
450inline void SlotTracker::initialize() {
451  if (TheModule) {
452    processModule();
453    TheModule = 0; ///< Prevent re-processing next time we're called.
454  }
455
456  if (TheFunction && !FunctionProcessed)
457    processFunction();
458}
459
460// Iterate through all the global variables, functions, and global
461// variable initializers and create slots for them.
462void SlotTracker::processModule() {
463  ST_DEBUG("begin processModule!\n");
464
465  // Add all of the unnamed global variables to the value table.
466  for (Module::const_global_iterator I = TheModule->global_begin(),
467         E = TheModule->global_end(); I != E; ++I) {
468    if (!I->hasName())
469      CreateModuleSlot(I);
470  }
471
472  // Add metadata used by named metadata.
473  for (Module::const_named_metadata_iterator
474         I = TheModule->named_metadata_begin(),
475         E = TheModule->named_metadata_end(); I != E; ++I) {
476    const NamedMDNode *NMD = I;
477    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
478      CreateMetadataSlot(NMD->getOperand(i));
479  }
480
481  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
482       I != E; ++I) {
483    if (!I->hasName())
484      // Add all the unnamed functions to the table.
485      CreateModuleSlot(I);
486
487    // Add all the function attributes to the table.
488    // FIXME: Add attributes of other objects?
489    AttributeSet FnAttrs = I->getAttributes().getFnAttributes();
490    if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
491      CreateAttributeSetSlot(FnAttrs);
492  }
493
494  ST_DEBUG("end processModule!\n");
495}
496
497// Process the arguments, basic blocks, and instructions  of a function.
498void SlotTracker::processFunction() {
499  ST_DEBUG("begin processFunction!\n");
500  fNext = 0;
501
502  // Add all the function arguments with no names.
503  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
504      AE = TheFunction->arg_end(); AI != AE; ++AI)
505    if (!AI->hasName())
506      CreateFunctionSlot(AI);
507
508  ST_DEBUG("Inserting Instructions:\n");
509
510  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
511
512  // Add all of the basic blocks and instructions with no names.
513  for (Function::const_iterator BB = TheFunction->begin(),
514       E = TheFunction->end(); BB != E; ++BB) {
515    if (!BB->hasName())
516      CreateFunctionSlot(BB);
517
518    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
519         ++I) {
520      if (!I->getType()->isVoidTy() && !I->hasName())
521        CreateFunctionSlot(I);
522
523      // Intrinsics can directly use metadata.  We allow direct calls to any
524      // llvm.foo function here, because the target may not be linked into the
525      // optimizer.
526      if (const CallInst *CI = dyn_cast<CallInst>(I)) {
527        if (Function *F = CI->getCalledFunction())
528          if (F->getName().startswith("llvm."))
529            for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
530              if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
531                CreateMetadataSlot(N);
532
533        // Add all the call attributes to the table.
534        AttributeSet Attrs = CI->getAttributes().getFnAttributes();
535        if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
536          CreateAttributeSetSlot(Attrs);
537      } else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
538        // Add all the call attributes to the table.
539        AttributeSet Attrs = II->getAttributes().getFnAttributes();
540        if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
541          CreateAttributeSetSlot(Attrs);
542      }
543
544      // Process metadata attached with this instruction.
545      I->getAllMetadata(MDForInst);
546      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
547        CreateMetadataSlot(MDForInst[i].second);
548      MDForInst.clear();
549    }
550  }
551
552  FunctionProcessed = true;
553
554  ST_DEBUG("end processFunction!\n");
555}
556
557/// Clean up after incorporating a function. This is the only way to get out of
558/// the function incorporation state that affects get*Slot/Create*Slot. Function
559/// incorporation state is indicated by TheFunction != 0.
560void SlotTracker::purgeFunction() {
561  ST_DEBUG("begin purgeFunction!\n");
562  fMap.clear(); // Simply discard the function level map
563  TheFunction = 0;
564  FunctionProcessed = false;
565  ST_DEBUG("end purgeFunction!\n");
566}
567
568/// getGlobalSlot - Get the slot number of a global value.
569int SlotTracker::getGlobalSlot(const GlobalValue *V) {
570  // Check for uninitialized state and do lazy initialization.
571  initialize();
572
573  // Find the value in the module map
574  ValueMap::iterator MI = mMap.find(V);
575  return MI == mMap.end() ? -1 : (int)MI->second;
576}
577
578/// getMetadataSlot - Get the slot number of a MDNode.
579int SlotTracker::getMetadataSlot(const MDNode *N) {
580  // Check for uninitialized state and do lazy initialization.
581  initialize();
582
583  // Find the MDNode in the module map
584  mdn_iterator MI = mdnMap.find(N);
585  return MI == mdnMap.end() ? -1 : (int)MI->second;
586}
587
588
589/// getLocalSlot - Get the slot number for a value that is local to a function.
590int SlotTracker::getLocalSlot(const Value *V) {
591  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
592
593  // Check for uninitialized state and do lazy initialization.
594  initialize();
595
596  ValueMap::iterator FI = fMap.find(V);
597  return FI == fMap.end() ? -1 : (int)FI->second;
598}
599
600int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
601  // Check for uninitialized state and do lazy initialization.
602  initialize();
603
604  // Find the AttributeSet in the module map.
605  as_iterator AI = asMap.find(AS);
606  return AI == asMap.end() ? -1 : (int)AI->second;
607}
608
609/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
610void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
611  assert(V && "Can't insert a null Value into SlotTracker!");
612  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
613  assert(!V->hasName() && "Doesn't need a slot!");
614
615  unsigned DestSlot = mNext++;
616  mMap[V] = DestSlot;
617
618  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
619           DestSlot << " [");
620  // G = Global, F = Function, A = Alias, o = other
621  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
622            (isa<Function>(V) ? 'F' :
623             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
624}
625
626/// CreateSlot - Create a new slot for the specified value if it has no name.
627void SlotTracker::CreateFunctionSlot(const Value *V) {
628  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
629
630  unsigned DestSlot = fNext++;
631  fMap[V] = DestSlot;
632
633  // G = Global, F = Function, o = other
634  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
635           DestSlot << " [o]\n");
636}
637
638/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
639void SlotTracker::CreateMetadataSlot(const MDNode *N) {
640  assert(N && "Can't insert a null Value into SlotTracker!");
641
642  // Don't insert if N is a function-local metadata, these are always printed
643  // inline.
644  if (!N->isFunctionLocal()) {
645    mdn_iterator I = mdnMap.find(N);
646    if (I != mdnMap.end())
647      return;
648
649    unsigned DestSlot = mdnNext++;
650    mdnMap[N] = DestSlot;
651  }
652
653  // Recursively add any MDNodes referenced by operands.
654  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
655    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
656      CreateMetadataSlot(Op);
657}
658
659void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
660  assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
661         "Doesn't need a slot!");
662
663  as_iterator I = asMap.find(AS);
664  if (I != asMap.end())
665    return;
666
667  unsigned DestSlot = asNext++;
668  asMap[AS] = DestSlot;
669}
670
671//===----------------------------------------------------------------------===//
672// AsmWriter Implementation
673//===----------------------------------------------------------------------===//
674
675static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
676                                   TypePrinting *TypePrinter,
677                                   SlotTracker *Machine,
678                                   const Module *Context);
679
680
681
682static const char *getPredicateText(unsigned predicate) {
683  const char * pred = "unknown";
684  switch (predicate) {
685  case FCmpInst::FCMP_FALSE: pred = "false"; break;
686  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
687  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
688  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
689  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
690  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
691  case FCmpInst::FCMP_ONE:   pred = "one"; break;
692  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
693  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
694  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
695  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
696  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
697  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
698  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
699  case FCmpInst::FCMP_UNE:   pred = "une"; break;
700  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
701  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
702  case ICmpInst::ICMP_NE:    pred = "ne"; break;
703  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
704  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
705  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
706  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
707  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
708  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
709  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
710  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
711  }
712  return pred;
713}
714
715static void writeAtomicRMWOperation(raw_ostream &Out,
716                                    AtomicRMWInst::BinOp Op) {
717  switch (Op) {
718  default: Out << " <unknown operation " << Op << ">"; break;
719  case AtomicRMWInst::Xchg: Out << " xchg"; break;
720  case AtomicRMWInst::Add:  Out << " add"; break;
721  case AtomicRMWInst::Sub:  Out << " sub"; break;
722  case AtomicRMWInst::And:  Out << " and"; break;
723  case AtomicRMWInst::Nand: Out << " nand"; break;
724  case AtomicRMWInst::Or:   Out << " or"; break;
725  case AtomicRMWInst::Xor:  Out << " xor"; break;
726  case AtomicRMWInst::Max:  Out << " max"; break;
727  case AtomicRMWInst::Min:  Out << " min"; break;
728  case AtomicRMWInst::UMax: Out << " umax"; break;
729  case AtomicRMWInst::UMin: Out << " umin"; break;
730  }
731}
732
733static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
734  if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
735    // Unsafe algebra implies all the others, no need to write them all out
736    if (FPO->hasUnsafeAlgebra())
737      Out << " fast";
738    else {
739      if (FPO->hasNoNaNs())
740        Out << " nnan";
741      if (FPO->hasNoInfs())
742        Out << " ninf";
743      if (FPO->hasNoSignedZeros())
744        Out << " nsz";
745      if (FPO->hasAllowReciprocal())
746        Out << " arcp";
747    }
748  }
749
750  if (const OverflowingBinaryOperator *OBO =
751        dyn_cast<OverflowingBinaryOperator>(U)) {
752    if (OBO->hasNoUnsignedWrap())
753      Out << " nuw";
754    if (OBO->hasNoSignedWrap())
755      Out << " nsw";
756  } else if (const PossiblyExactOperator *Div =
757               dyn_cast<PossiblyExactOperator>(U)) {
758    if (Div->isExact())
759      Out << " exact";
760  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
761    if (GEP->isInBounds())
762      Out << " inbounds";
763  }
764}
765
766static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
767                                  TypePrinting &TypePrinter,
768                                  SlotTracker *Machine,
769                                  const Module *Context) {
770  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
771    if (CI->getType()->isIntegerTy(1)) {
772      Out << (CI->getZExtValue() ? "true" : "false");
773      return;
774    }
775    Out << CI->getValue();
776    return;
777  }
778
779  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
780    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
781        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
782      // We would like to output the FP constant value in exponential notation,
783      // but we cannot do this if doing so will lose precision.  Check here to
784      // make sure that we only output it in exponential format if we can parse
785      // the value back and get the same value.
786      //
787      bool ignored;
788      bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
789      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
790      bool isInf = CFP->getValueAPF().isInfinity();
791      bool isNaN = CFP->getValueAPF().isNaN();
792      if (!isHalf && !isInf && !isNaN) {
793        double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
794                                CFP->getValueAPF().convertToFloat();
795        SmallString<128> StrVal;
796        raw_svector_ostream(StrVal) << Val;
797
798        // Check to make sure that the stringized number is not some string like
799        // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
800        // that the string matches the "[-+]?[0-9]" regex.
801        //
802        if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
803            ((StrVal[0] == '-' || StrVal[0] == '+') &&
804             (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
805          // Reparse stringized version!
806          if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
807            Out << StrVal.str();
808            return;
809          }
810        }
811      }
812      // Otherwise we could not reparse it to exactly the same value, so we must
813      // output the string in hexadecimal format!  Note that loading and storing
814      // floating point types changes the bits of NaNs on some hosts, notably
815      // x86, so we must not use these types.
816      assert(sizeof(double) == sizeof(uint64_t) &&
817             "assuming that double is 64 bits!");
818      char Buffer[40];
819      APFloat apf = CFP->getValueAPF();
820      // Halves and floats are represented in ASCII IR as double, convert.
821      if (!isDouble)
822        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
823                          &ignored);
824      Out << "0x" <<
825              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
826                            Buffer+40);
827      return;
828    }
829
830    // Either half, or some form of long double.
831    // These appear as a magic letter identifying the type, then a
832    // fixed number of hex digits.
833    Out << "0x";
834    // Bit position, in the current word, of the next nibble to print.
835    int shiftcount;
836
837    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
838      Out << 'K';
839      // api needed to prevent premature destruction
840      APInt api = CFP->getValueAPF().bitcastToAPInt();
841      const uint64_t* p = api.getRawData();
842      uint64_t word = p[1];
843      shiftcount = 12;
844      int width = api.getBitWidth();
845      for (int j=0; j<width; j+=4, shiftcount-=4) {
846        unsigned int nibble = (word>>shiftcount) & 15;
847        if (nibble < 10)
848          Out << (unsigned char)(nibble + '0');
849        else
850          Out << (unsigned char)(nibble - 10 + 'A');
851        if (shiftcount == 0 && j+4 < width) {
852          word = *p;
853          shiftcount = 64;
854          if (width-j-4 < 64)
855            shiftcount = width-j-4;
856        }
857      }
858      return;
859    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
860      shiftcount = 60;
861      Out << 'L';
862    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
863      shiftcount = 60;
864      Out << 'M';
865    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
866      shiftcount = 12;
867      Out << 'H';
868    } else
869      llvm_unreachable("Unsupported floating point type");
870    // api needed to prevent premature destruction
871    APInt api = CFP->getValueAPF().bitcastToAPInt();
872    const uint64_t* p = api.getRawData();
873    uint64_t word = *p;
874    int width = api.getBitWidth();
875    for (int j=0; j<width; j+=4, shiftcount-=4) {
876      unsigned int nibble = (word>>shiftcount) & 15;
877      if (nibble < 10)
878        Out << (unsigned char)(nibble + '0');
879      else
880        Out << (unsigned char)(nibble - 10 + 'A');
881      if (shiftcount == 0 && j+4 < width) {
882        word = *(++p);
883        shiftcount = 64;
884        if (width-j-4 < 64)
885          shiftcount = width-j-4;
886      }
887    }
888    return;
889  }
890
891  if (isa<ConstantAggregateZero>(CV)) {
892    Out << "zeroinitializer";
893    return;
894  }
895
896  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
897    Out << "blockaddress(";
898    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
899                           Context);
900    Out << ", ";
901    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
902                           Context);
903    Out << ")";
904    return;
905  }
906
907  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
908    Type *ETy = CA->getType()->getElementType();
909    Out << '[';
910    TypePrinter.print(ETy, Out);
911    Out << ' ';
912    WriteAsOperandInternal(Out, CA->getOperand(0),
913                           &TypePrinter, Machine,
914                           Context);
915    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
916      Out << ", ";
917      TypePrinter.print(ETy, Out);
918      Out << ' ';
919      WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
920                             Context);
921    }
922    Out << ']';
923    return;
924  }
925
926  if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
927    // As a special case, print the array as a string if it is an array of
928    // i8 with ConstantInt values.
929    if (CA->isString()) {
930      Out << "c\"";
931      PrintEscapedString(CA->getAsString(), Out);
932      Out << '"';
933      return;
934    }
935
936    Type *ETy = CA->getType()->getElementType();
937    Out << '[';
938    TypePrinter.print(ETy, Out);
939    Out << ' ';
940    WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
941                           &TypePrinter, Machine,
942                           Context);
943    for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
944      Out << ", ";
945      TypePrinter.print(ETy, Out);
946      Out << ' ';
947      WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
948                             Machine, Context);
949    }
950    Out << ']';
951    return;
952  }
953
954
955  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
956    if (CS->getType()->isPacked())
957      Out << '<';
958    Out << '{';
959    unsigned N = CS->getNumOperands();
960    if (N) {
961      Out << ' ';
962      TypePrinter.print(CS->getOperand(0)->getType(), Out);
963      Out << ' ';
964
965      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
966                             Context);
967
968      for (unsigned i = 1; i < N; i++) {
969        Out << ", ";
970        TypePrinter.print(CS->getOperand(i)->getType(), Out);
971        Out << ' ';
972
973        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
974                               Context);
975      }
976      Out << ' ';
977    }
978
979    Out << '}';
980    if (CS->getType()->isPacked())
981      Out << '>';
982    return;
983  }
984
985  if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
986    Type *ETy = CV->getType()->getVectorElementType();
987    Out << '<';
988    TypePrinter.print(ETy, Out);
989    Out << ' ';
990    WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
991                           Machine, Context);
992    for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
993      Out << ", ";
994      TypePrinter.print(ETy, Out);
995      Out << ' ';
996      WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
997                             Machine, Context);
998    }
999    Out << '>';
1000    return;
1001  }
1002
1003  if (isa<ConstantPointerNull>(CV)) {
1004    Out << "null";
1005    return;
1006  }
1007
1008  if (isa<UndefValue>(CV)) {
1009    Out << "undef";
1010    return;
1011  }
1012
1013  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1014    Out << CE->getOpcodeName();
1015    WriteOptimizationInfo(Out, CE);
1016    if (CE->isCompare())
1017      Out << ' ' << getPredicateText(CE->getPredicate());
1018    Out << " (";
1019
1020    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1021      TypePrinter.print((*OI)->getType(), Out);
1022      Out << ' ';
1023      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1024      if (OI+1 != CE->op_end())
1025        Out << ", ";
1026    }
1027
1028    if (CE->hasIndices()) {
1029      ArrayRef<unsigned> Indices = CE->getIndices();
1030      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1031        Out << ", " << Indices[i];
1032    }
1033
1034    if (CE->isCast()) {
1035      Out << " to ";
1036      TypePrinter.print(CE->getType(), Out);
1037    }
1038
1039    Out << ')';
1040    return;
1041  }
1042
1043  Out << "<placeholder or erroneous Constant>";
1044}
1045
1046static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1047                                    TypePrinting *TypePrinter,
1048                                    SlotTracker *Machine,
1049                                    const Module *Context) {
1050  Out << "!{";
1051  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1052    const Value *V = Node->getOperand(mi);
1053    if (V == 0)
1054      Out << "null";
1055    else {
1056      TypePrinter->print(V->getType(), Out);
1057      Out << ' ';
1058      WriteAsOperandInternal(Out, Node->getOperand(mi),
1059                             TypePrinter, Machine, Context);
1060    }
1061    if (mi + 1 != me)
1062      Out << ", ";
1063  }
1064
1065  Out << "}";
1066}
1067
1068
1069/// WriteAsOperand - Write the name of the specified value out to the specified
1070/// ostream.  This can be useful when you just want to print int %reg126, not
1071/// the whole instruction that generated it.
1072///
1073static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1074                                   TypePrinting *TypePrinter,
1075                                   SlotTracker *Machine,
1076                                   const Module *Context) {
1077  if (V->hasName()) {
1078    PrintLLVMName(Out, V);
1079    return;
1080  }
1081
1082  const Constant *CV = dyn_cast<Constant>(V);
1083  if (CV && !isa<GlobalValue>(CV)) {
1084    assert(TypePrinter && "Constants require TypePrinting!");
1085    WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1086    return;
1087  }
1088
1089  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1090    Out << "asm ";
1091    if (IA->hasSideEffects())
1092      Out << "sideeffect ";
1093    if (IA->isAlignStack())
1094      Out << "alignstack ";
1095    // We don't emit the AD_ATT dialect as it's the assumed default.
1096    if (IA->getDialect() == InlineAsm::AD_Intel)
1097      Out << "inteldialect ";
1098    Out << '"';
1099    PrintEscapedString(IA->getAsmString(), Out);
1100    Out << "\", \"";
1101    PrintEscapedString(IA->getConstraintString(), Out);
1102    Out << '"';
1103    return;
1104  }
1105
1106  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1107    if (N->isFunctionLocal()) {
1108      // Print metadata inline, not via slot reference number.
1109      WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
1110      return;
1111    }
1112
1113    if (!Machine) {
1114      if (N->isFunctionLocal())
1115        Machine = new SlotTracker(N->getFunction());
1116      else
1117        Machine = new SlotTracker(Context);
1118    }
1119    int Slot = Machine->getMetadataSlot(N);
1120    if (Slot == -1)
1121      Out << "<badref>";
1122    else
1123      Out << '!' << Slot;
1124    return;
1125  }
1126
1127  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1128    Out << "!\"";
1129    PrintEscapedString(MDS->getString(), Out);
1130    Out << '"';
1131    return;
1132  }
1133
1134  if (V->getValueID() == Value::PseudoSourceValueVal ||
1135      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1136    V->print(Out);
1137    return;
1138  }
1139
1140  char Prefix = '%';
1141  int Slot;
1142  // If we have a SlotTracker, use it.
1143  if (Machine) {
1144    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1145      Slot = Machine->getGlobalSlot(GV);
1146      Prefix = '@';
1147    } else {
1148      Slot = Machine->getLocalSlot(V);
1149
1150      // If the local value didn't succeed, then we may be referring to a value
1151      // from a different function.  Translate it, as this can happen when using
1152      // address of blocks.
1153      if (Slot == -1)
1154        if ((Machine = createSlotTracker(V))) {
1155          Slot = Machine->getLocalSlot(V);
1156          delete Machine;
1157        }
1158    }
1159  } else if ((Machine = createSlotTracker(V))) {
1160    // Otherwise, create one to get the # and then destroy it.
1161    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1162      Slot = Machine->getGlobalSlot(GV);
1163      Prefix = '@';
1164    } else {
1165      Slot = Machine->getLocalSlot(V);
1166    }
1167    delete Machine;
1168    Machine = 0;
1169  } else {
1170    Slot = -1;
1171  }
1172
1173  if (Slot != -1)
1174    Out << Prefix << Slot;
1175  else
1176    Out << "<badref>";
1177}
1178
1179void WriteAsOperand(raw_ostream &Out, const Value *V,
1180                    bool PrintType, const Module *Context) {
1181
1182  // Fast path: Don't construct and populate a TypePrinting object if we
1183  // won't be needing any types printed.
1184  if (!PrintType &&
1185      ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
1186       V->hasName() || isa<GlobalValue>(V))) {
1187    WriteAsOperandInternal(Out, V, 0, 0, Context);
1188    return;
1189  }
1190
1191  if (Context == 0) Context = getModuleFromVal(V);
1192
1193  TypePrinting TypePrinter;
1194  if (Context)
1195    TypePrinter.incorporateTypes(*Context);
1196  if (PrintType) {
1197    TypePrinter.print(V->getType(), Out);
1198    Out << ' ';
1199  }
1200
1201  WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
1202}
1203
1204void AssemblyWriter::init() {
1205  if (TheModule)
1206    TypePrinter.incorporateTypes(*TheModule);
1207}
1208
1209
1210AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1211                               const Module *M,
1212                               AssemblyAnnotationWriter *AAW)
1213  : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW) {
1214  init();
1215}
1216
1217AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M,
1218                               AssemblyAnnotationWriter *AAW)
1219  : Out(o), TheModule(M), ModuleSlotTracker(createSlotTracker(M)),
1220    Machine(*ModuleSlotTracker), AnnotationWriter(AAW) {
1221  init();
1222}
1223
1224AssemblyWriter::~AssemblyWriter() { }
1225
1226void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1227  if (Operand == 0) {
1228    Out << "<null operand!>";
1229    return;
1230  }
1231  if (PrintType) {
1232    TypePrinter.print(Operand->getType(), Out);
1233    Out << ' ';
1234  }
1235  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1236}
1237
1238void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
1239                                 SynchronizationScope SynchScope) {
1240  if (Ordering == NotAtomic)
1241    return;
1242
1243  switch (SynchScope) {
1244  case SingleThread: Out << " singlethread"; break;
1245  case CrossThread: break;
1246  }
1247
1248  switch (Ordering) {
1249  default: Out << " <bad ordering " << int(Ordering) << ">"; break;
1250  case Unordered: Out << " unordered"; break;
1251  case Monotonic: Out << " monotonic"; break;
1252  case Acquire: Out << " acquire"; break;
1253  case Release: Out << " release"; break;
1254  case AcquireRelease: Out << " acq_rel"; break;
1255  case SequentiallyConsistent: Out << " seq_cst"; break;
1256  }
1257}
1258
1259void AssemblyWriter::writeParamOperand(const Value *Operand,
1260                                       AttributeSet Attrs, unsigned Idx) {
1261  if (Operand == 0) {
1262    Out << "<null operand!>";
1263    return;
1264  }
1265
1266  // Print the type
1267  TypePrinter.print(Operand->getType(), Out);
1268  // Print parameter attributes list
1269  if (Attrs.hasAttributes(Idx))
1270    Out << ' ' << Attrs.getAsString(Idx);
1271  Out << ' ';
1272  // Print the operand
1273  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1274}
1275
1276void AssemblyWriter::printModule(const Module *M) {
1277  Machine.initialize();
1278
1279  if (!M->getModuleIdentifier().empty() &&
1280      // Don't print the ID if it will start a new line (which would
1281      // require a comment char before it).
1282      M->getModuleIdentifier().find('\n') == std::string::npos)
1283    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1284
1285  if (!M->getDataLayout().empty())
1286    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1287  if (!M->getTargetTriple().empty())
1288    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1289
1290  if (!M->getModuleInlineAsm().empty()) {
1291    // Split the string into lines, to make it easier to read the .ll file.
1292    std::string Asm = M->getModuleInlineAsm();
1293    size_t CurPos = 0;
1294    size_t NewLine = Asm.find_first_of('\n', CurPos);
1295    Out << '\n';
1296    while (NewLine != std::string::npos) {
1297      // We found a newline, print the portion of the asm string from the
1298      // last newline up to this newline.
1299      Out << "module asm \"";
1300      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1301                         Out);
1302      Out << "\"\n";
1303      CurPos = NewLine+1;
1304      NewLine = Asm.find_first_of('\n', CurPos);
1305    }
1306    std::string rest(Asm.begin()+CurPos, Asm.end());
1307    if (!rest.empty()) {
1308      Out << "module asm \"";
1309      PrintEscapedString(rest, Out);
1310      Out << "\"\n";
1311    }
1312  }
1313
1314  printTypeIdentities();
1315
1316  // Output all globals.
1317  if (!M->global_empty()) Out << '\n';
1318  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1319       I != E; ++I) {
1320    printGlobal(I); Out << '\n';
1321  }
1322
1323  // Output all aliases.
1324  if (!M->alias_empty()) Out << "\n";
1325  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1326       I != E; ++I)
1327    printAlias(I);
1328
1329  // Output all of the functions.
1330  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1331    printFunction(I);
1332
1333  // Output all attribute groups.
1334  if (!Machine.as_empty()) {
1335    Out << '\n';
1336    writeAllAttributeGroups();
1337  }
1338
1339  // Output named metadata.
1340  if (!M->named_metadata_empty()) Out << '\n';
1341
1342  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1343       E = M->named_metadata_end(); I != E; ++I)
1344    printNamedMDNode(I);
1345
1346  // Output metadata.
1347  if (!Machine.mdn_empty()) {
1348    Out << '\n';
1349    writeAllMDNodes();
1350  }
1351}
1352
1353void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1354  Out << '!';
1355  StringRef Name = NMD->getName();
1356  if (Name.empty()) {
1357    Out << "<empty name> ";
1358  } else {
1359    if (isalpha(static_cast<unsigned char>(Name[0])) ||
1360        Name[0] == '-' || Name[0] == '$' ||
1361        Name[0] == '.' || Name[0] == '_')
1362      Out << Name[0];
1363    else
1364      Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
1365    for (unsigned i = 1, e = Name.size(); i != e; ++i) {
1366      unsigned char C = Name[i];
1367      if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
1368          C == '.' || C == '_')
1369        Out << C;
1370      else
1371        Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
1372    }
1373  }
1374  Out << " = !{";
1375  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1376    if (i) Out << ", ";
1377    int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
1378    if (Slot == -1)
1379      Out << "<badref>";
1380    else
1381      Out << '!' << Slot;
1382  }
1383  Out << "}\n";
1384}
1385
1386
1387static void PrintLinkage(GlobalValue::LinkageTypes LT,
1388                         formatted_raw_ostream &Out) {
1389  switch (LT) {
1390  case GlobalValue::ExternalLinkage: break;
1391  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1392  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1393  case GlobalValue::LinkerPrivateWeakLinkage:
1394    Out << "linker_private_weak ";
1395    break;
1396  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1397  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1398  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1399  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1400  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1401  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1402  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1403  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1404  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1405  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1406  case GlobalValue::AvailableExternallyLinkage:
1407    Out << "available_externally ";
1408    break;
1409  }
1410}
1411
1412
1413static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1414                            formatted_raw_ostream &Out) {
1415  switch (Vis) {
1416  case GlobalValue::DefaultVisibility: break;
1417  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1418  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1419  }
1420}
1421
1422static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
1423                                  formatted_raw_ostream &Out) {
1424  switch (TLM) {
1425    case GlobalVariable::NotThreadLocal:
1426      break;
1427    case GlobalVariable::GeneralDynamicTLSModel:
1428      Out << "thread_local ";
1429      break;
1430    case GlobalVariable::LocalDynamicTLSModel:
1431      Out << "thread_local(localdynamic) ";
1432      break;
1433    case GlobalVariable::InitialExecTLSModel:
1434      Out << "thread_local(initialexec) ";
1435      break;
1436    case GlobalVariable::LocalExecTLSModel:
1437      Out << "thread_local(localexec) ";
1438      break;
1439  }
1440}
1441
1442void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1443  if (GV->isMaterializable())
1444    Out << "; Materializable\n";
1445
1446  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
1447  Out << " = ";
1448
1449  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1450    Out << "external ";
1451
1452  PrintLinkage(GV->getLinkage(), Out);
1453  PrintVisibility(GV->getVisibility(), Out);
1454  PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
1455
1456  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1457    Out << "addrspace(" << AddressSpace << ") ";
1458  if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
1459  if (GV->isExternallyInitialized()) Out << "externally_initialized ";
1460  Out << (GV->isConstant() ? "constant " : "global ");
1461  TypePrinter.print(GV->getType()->getElementType(), Out);
1462
1463  if (GV->hasInitializer()) {
1464    Out << ' ';
1465    writeOperand(GV->getInitializer(), false);
1466  }
1467
1468  if (GV->hasSection()) {
1469    Out << ", section \"";
1470    PrintEscapedString(GV->getSection(), Out);
1471    Out << '"';
1472  }
1473  if (GV->getAlignment())
1474    Out << ", align " << GV->getAlignment();
1475
1476  printInfoComment(*GV);
1477}
1478
1479void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1480  if (GA->isMaterializable())
1481    Out << "; Materializable\n";
1482
1483  // Don't crash when dumping partially built GA
1484  if (!GA->hasName())
1485    Out << "<<nameless>> = ";
1486  else {
1487    PrintLLVMName(Out, GA);
1488    Out << " = ";
1489  }
1490  PrintVisibility(GA->getVisibility(), Out);
1491
1492  Out << "alias ";
1493
1494  PrintLinkage(GA->getLinkage(), Out);
1495
1496  const Constant *Aliasee = GA->getAliasee();
1497
1498  if (Aliasee == 0) {
1499    TypePrinter.print(GA->getType(), Out);
1500    Out << " <<NULL ALIASEE>>";
1501  } else {
1502    writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
1503  }
1504
1505  printInfoComment(*GA);
1506  Out << '\n';
1507}
1508
1509void AssemblyWriter::printTypeIdentities() {
1510  if (TypePrinter.NumberedTypes.empty() &&
1511      TypePrinter.NamedTypes.empty())
1512    return;
1513
1514  Out << '\n';
1515
1516  // We know all the numbers that each type is used and we know that it is a
1517  // dense assignment.  Convert the map to an index table.
1518  std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
1519  for (DenseMap<StructType*, unsigned>::iterator I =
1520       TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
1521       I != E; ++I) {
1522    assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
1523    NumberedTypes[I->second] = I->first;
1524  }
1525
1526  // Emit all numbered types.
1527  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1528    Out << '%' << i << " = type ";
1529
1530    // Make sure we print out at least one level of the type structure, so
1531    // that we do not get %2 = type %2
1532    TypePrinter.printStructBody(NumberedTypes[i], Out);
1533    Out << '\n';
1534  }
1535
1536  for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
1537    PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
1538    Out << " = type ";
1539
1540    // Make sure we print out at least one level of the type structure, so
1541    // that we do not get %FILE = type %FILE
1542    TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
1543    Out << '\n';
1544  }
1545}
1546
1547/// printFunction - Print all aspects of a function.
1548///
1549void AssemblyWriter::printFunction(const Function *F) {
1550  // Print out the return type and name.
1551  Out << '\n';
1552
1553  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1554
1555  if (F->isMaterializable())
1556    Out << "; Materializable\n";
1557
1558  const AttributeSet &Attrs = F->getAttributes();
1559  if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
1560    AttributeSet AS = Attrs.getFnAttributes();
1561    std::string AttrStr;
1562
1563    unsigned Idx = 0;
1564    for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
1565      if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
1566        break;
1567
1568    for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
1569         I != E; ++I) {
1570      Attribute Attr = *I;
1571      if (!Attr.isStringAttribute()) {
1572        if (!AttrStr.empty()) AttrStr += ' ';
1573        AttrStr += Attr.getAsString();
1574      }
1575    }
1576
1577    if (!AttrStr.empty())
1578      Out << "; Function Attrs: " << AttrStr << '\n';
1579  }
1580
1581  if (F->isDeclaration())
1582    Out << "declare ";
1583  else
1584    Out << "define ";
1585
1586  PrintLinkage(F->getLinkage(), Out);
1587  PrintVisibility(F->getVisibility(), Out);
1588
1589  // Print the calling convention.
1590  if (F->getCallingConv() != CallingConv::C) {
1591    PrintCallingConv(F->getCallingConv(), Out);
1592    Out << " ";
1593  }
1594
1595  FunctionType *FT = F->getFunctionType();
1596  if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
1597    Out <<  Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
1598  TypePrinter.print(F->getReturnType(), Out);
1599  Out << ' ';
1600  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1601  Out << '(';
1602  Machine.incorporateFunction(F);
1603
1604  // Loop over the arguments, printing them...
1605
1606  unsigned Idx = 1;
1607  if (!F->isDeclaration()) {
1608    // If this isn't a declaration, print the argument names as well.
1609    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1610         I != E; ++I) {
1611      // Insert commas as we go... the first arg doesn't get a comma
1612      if (I != F->arg_begin()) Out << ", ";
1613      printArgument(I, Attrs, Idx);
1614      Idx++;
1615    }
1616  } else {
1617    // Otherwise, print the types from the function type.
1618    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1619      // Insert commas as we go... the first arg doesn't get a comma
1620      if (i) Out << ", ";
1621
1622      // Output type...
1623      TypePrinter.print(FT->getParamType(i), Out);
1624
1625      if (Attrs.hasAttributes(i+1))
1626        Out << ' ' << Attrs.getAsString(i+1);
1627    }
1628  }
1629
1630  // Finish printing arguments...
1631  if (FT->isVarArg()) {
1632    if (FT->getNumParams()) Out << ", ";
1633    Out << "...";  // Output varargs portion of signature!
1634  }
1635  Out << ')';
1636  if (F->hasUnnamedAddr())
1637    Out << " unnamed_addr";
1638  if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
1639    Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
1640  if (F->hasSection()) {
1641    Out << " section \"";
1642    PrintEscapedString(F->getSection(), Out);
1643    Out << '"';
1644  }
1645  if (F->getAlignment())
1646    Out << " align " << F->getAlignment();
1647  if (F->hasGC())
1648    Out << " gc \"" << F->getGC() << '"';
1649  if (F->hasPrefixData()) {
1650    Out << " prefix ";
1651    writeOperand(F->getPrefixData(), true);
1652  }
1653  if (F->isDeclaration()) {
1654    Out << '\n';
1655  } else {
1656    Out << " {";
1657    // Output all of the function's basic blocks.
1658    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1659      printBasicBlock(I);
1660
1661    Out << "}\n";
1662  }
1663
1664  Machine.purgeFunction();
1665}
1666
1667/// printArgument - This member is called for every argument that is passed into
1668/// the function.  Simply print it out
1669///
1670void AssemblyWriter::printArgument(const Argument *Arg,
1671                                   AttributeSet Attrs, unsigned Idx) {
1672  // Output type...
1673  TypePrinter.print(Arg->getType(), Out);
1674
1675  // Output parameter attributes list
1676  if (Attrs.hasAttributes(Idx))
1677    Out << ' ' << Attrs.getAsString(Idx);
1678
1679  // Output name, if available...
1680  if (Arg->hasName()) {
1681    Out << ' ';
1682    PrintLLVMName(Out, Arg);
1683  }
1684}
1685
1686/// printBasicBlock - This member is called for each basic block in a method.
1687///
1688void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1689  if (BB->hasName()) {              // Print out the label if it exists...
1690    Out << "\n";
1691    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1692    Out << ':';
1693  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1694    Out << "\n; <label>:";
1695    int Slot = Machine.getLocalSlot(BB);
1696    if (Slot != -1)
1697      Out << Slot;
1698    else
1699      Out << "<badref>";
1700  }
1701
1702  if (BB->getParent() == 0) {
1703    Out.PadToColumn(50);
1704    Out << "; Error: Block without parent!";
1705  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1706    // Output predecessors for the block.
1707    Out.PadToColumn(50);
1708    Out << ";";
1709    const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1710
1711    if (PI == PE) {
1712      Out << " No predecessors!";
1713    } else {
1714      Out << " preds = ";
1715      writeOperand(*PI, false);
1716      for (++PI; PI != PE; ++PI) {
1717        Out << ", ";
1718        writeOperand(*PI, false);
1719      }
1720    }
1721  }
1722
1723  Out << "\n";
1724
1725  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1726
1727  // Output all of the instructions in the basic block...
1728  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1729    printInstructionLine(*I);
1730  }
1731
1732  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1733}
1734
1735/// printInstructionLine - Print an instruction and a newline character.
1736void AssemblyWriter::printInstructionLine(const Instruction &I) {
1737  printInstruction(I);
1738  Out << '\n';
1739}
1740
1741/// printInfoComment - Print a little comment after the instruction indicating
1742/// which slot it occupies.
1743///
1744void AssemblyWriter::printInfoComment(const Value &V) {
1745  if (AnnotationWriter)
1746    AnnotationWriter->printInfoComment(V, Out);
1747}
1748
1749// This member is called for each Instruction in a function..
1750void AssemblyWriter::printInstruction(const Instruction &I) {
1751  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1752
1753  // Print out indentation for an instruction.
1754  Out << "  ";
1755
1756  // Print out name if it exists...
1757  if (I.hasName()) {
1758    PrintLLVMName(Out, &I);
1759    Out << " = ";
1760  } else if (!I.getType()->isVoidTy()) {
1761    // Print out the def slot taken.
1762    int SlotNum = Machine.getLocalSlot(&I);
1763    if (SlotNum == -1)
1764      Out << "<badref> = ";
1765    else
1766      Out << '%' << SlotNum << " = ";
1767  }
1768
1769  if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall())
1770    Out << "tail ";
1771
1772  // Print out the opcode...
1773  Out << I.getOpcodeName();
1774
1775  // If this is an atomic load or store, print out the atomic marker.
1776  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
1777      (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
1778    Out << " atomic";
1779
1780  // If this is a volatile operation, print out the volatile marker.
1781  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1782      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
1783      (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
1784      (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
1785    Out << " volatile";
1786
1787  // Print out optimization information.
1788  WriteOptimizationInfo(Out, &I);
1789
1790  // Print out the compare instruction predicates
1791  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1792    Out << ' ' << getPredicateText(CI->getPredicate());
1793
1794  // Print out the atomicrmw operation
1795  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
1796    writeAtomicRMWOperation(Out, RMWI->getOperation());
1797
1798  // Print out the type of the operands...
1799  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1800
1801  // Special case conditional branches to swizzle the condition out to the front
1802  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1803    const BranchInst &BI(cast<BranchInst>(I));
1804    Out << ' ';
1805    writeOperand(BI.getCondition(), true);
1806    Out << ", ";
1807    writeOperand(BI.getSuccessor(0), true);
1808    Out << ", ";
1809    writeOperand(BI.getSuccessor(1), true);
1810
1811  } else if (isa<SwitchInst>(I)) {
1812    const SwitchInst& SI(cast<SwitchInst>(I));
1813    // Special case switch instruction to get formatting nice and correct.
1814    Out << ' ';
1815    writeOperand(SI.getCondition(), true);
1816    Out << ", ";
1817    writeOperand(SI.getDefaultDest(), true);
1818    Out << " [";
1819    for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1820         i != e; ++i) {
1821      Out << "\n    ";
1822      writeOperand(i.getCaseValue(), true);
1823      Out << ", ";
1824      writeOperand(i.getCaseSuccessor(), true);
1825    }
1826    Out << "\n  ]";
1827  } else if (isa<IndirectBrInst>(I)) {
1828    // Special case indirectbr instruction to get formatting nice and correct.
1829    Out << ' ';
1830    writeOperand(Operand, true);
1831    Out << ", [";
1832
1833    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1834      if (i != 1)
1835        Out << ", ";
1836      writeOperand(I.getOperand(i), true);
1837    }
1838    Out << ']';
1839  } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
1840    Out << ' ';
1841    TypePrinter.print(I.getType(), Out);
1842    Out << ' ';
1843
1844    for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
1845      if (op) Out << ", ";
1846      Out << "[ ";
1847      writeOperand(PN->getIncomingValue(op), false); Out << ", ";
1848      writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
1849    }
1850  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1851    Out << ' ';
1852    writeOperand(I.getOperand(0), true);
1853    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1854      Out << ", " << *i;
1855  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1856    Out << ' ';
1857    writeOperand(I.getOperand(0), true); Out << ", ";
1858    writeOperand(I.getOperand(1), true);
1859    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1860      Out << ", " << *i;
1861  } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
1862    Out << ' ';
1863    TypePrinter.print(I.getType(), Out);
1864    Out << " personality ";
1865    writeOperand(I.getOperand(0), true); Out << '\n';
1866
1867    if (LPI->isCleanup())
1868      Out << "          cleanup";
1869
1870    for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
1871      if (i != 0 || LPI->isCleanup()) Out << "\n";
1872      if (LPI->isCatch(i))
1873        Out << "          catch ";
1874      else
1875        Out << "          filter ";
1876
1877      writeOperand(LPI->getClause(i), true);
1878    }
1879  } else if (isa<ReturnInst>(I) && !Operand) {
1880    Out << " void";
1881  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1882    // Print the calling convention being used.
1883    if (CI->getCallingConv() != CallingConv::C) {
1884      Out << " ";
1885      PrintCallingConv(CI->getCallingConv(), Out);
1886    }
1887
1888    Operand = CI->getCalledValue();
1889    PointerType *PTy = cast<PointerType>(Operand->getType());
1890    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1891    Type *RetTy = FTy->getReturnType();
1892    const AttributeSet &PAL = CI->getAttributes();
1893
1894    if (PAL.hasAttributes(AttributeSet::ReturnIndex))
1895      Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
1896
1897    // If possible, print out the short form of the call instruction.  We can
1898    // only do this if the first argument is a pointer to a nonvararg function,
1899    // and if the return type is not a pointer to a function.
1900    //
1901    Out << ' ';
1902    if (!FTy->isVarArg() &&
1903        (!RetTy->isPointerTy() ||
1904         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1905      TypePrinter.print(RetTy, Out);
1906      Out << ' ';
1907      writeOperand(Operand, false);
1908    } else {
1909      writeOperand(Operand, true);
1910    }
1911    Out << '(';
1912    for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
1913      if (op > 0)
1914        Out << ", ";
1915      writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
1916    }
1917    Out << ')';
1918    if (PAL.hasAttributes(AttributeSet::FunctionIndex))
1919      Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
1920  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1921    Operand = II->getCalledValue();
1922    PointerType *PTy = cast<PointerType>(Operand->getType());
1923    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1924    Type *RetTy = FTy->getReturnType();
1925    const AttributeSet &PAL = II->getAttributes();
1926
1927    // Print the calling convention being used.
1928    if (II->getCallingConv() != CallingConv::C) {
1929      Out << " ";
1930      PrintCallingConv(II->getCallingConv(), Out);
1931    }
1932
1933    if (PAL.hasAttributes(AttributeSet::ReturnIndex))
1934      Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
1935
1936    // If possible, print out the short form of the invoke instruction. We can
1937    // only do this if the first argument is a pointer to a nonvararg function,
1938    // and if the return type is not a pointer to a function.
1939    //
1940    Out << ' ';
1941    if (!FTy->isVarArg() &&
1942        (!RetTy->isPointerTy() ||
1943         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1944      TypePrinter.print(RetTy, Out);
1945      Out << ' ';
1946      writeOperand(Operand, false);
1947    } else {
1948      writeOperand(Operand, true);
1949    }
1950    Out << '(';
1951    for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
1952      if (op)
1953        Out << ", ";
1954      writeParamOperand(II->getArgOperand(op), PAL, op + 1);
1955    }
1956
1957    Out << ')';
1958    if (PAL.hasAttributes(AttributeSet::FunctionIndex))
1959      Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
1960
1961    Out << "\n          to ";
1962    writeOperand(II->getNormalDest(), true);
1963    Out << " unwind ";
1964    writeOperand(II->getUnwindDest(), true);
1965
1966  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1967    Out << ' ';
1968    TypePrinter.print(AI->getAllocatedType(), Out);
1969    if (!AI->getArraySize() || AI->isArrayAllocation()) {
1970      Out << ", ";
1971      writeOperand(AI->getArraySize(), true);
1972    }
1973    if (AI->getAlignment()) {
1974      Out << ", align " << AI->getAlignment();
1975    }
1976  } else if (isa<CastInst>(I)) {
1977    if (Operand) {
1978      Out << ' ';
1979      writeOperand(Operand, true);   // Work with broken code
1980    }
1981    Out << " to ";
1982    TypePrinter.print(I.getType(), Out);
1983  } else if (isa<VAArgInst>(I)) {
1984    if (Operand) {
1985      Out << ' ';
1986      writeOperand(Operand, true);   // Work with broken code
1987    }
1988    Out << ", ";
1989    TypePrinter.print(I.getType(), Out);
1990  } else if (Operand) {   // Print the normal way.
1991
1992    // PrintAllTypes - Instructions who have operands of all the same type
1993    // omit the type from all but the first operand.  If the instruction has
1994    // different type operands (for example br), then they are all printed.
1995    bool PrintAllTypes = false;
1996    Type *TheType = Operand->getType();
1997
1998    // Select, Store and ShuffleVector always print all types.
1999    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
2000        || isa<ReturnInst>(I)) {
2001      PrintAllTypes = true;
2002    } else {
2003      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
2004        Operand = I.getOperand(i);
2005        // note that Operand shouldn't be null, but the test helps make dump()
2006        // more tolerant of malformed IR
2007        if (Operand && Operand->getType() != TheType) {
2008          PrintAllTypes = true;    // We have differing types!  Print them all!
2009          break;
2010        }
2011      }
2012    }
2013
2014    if (!PrintAllTypes) {
2015      Out << ' ';
2016      TypePrinter.print(TheType, Out);
2017    }
2018
2019    Out << ' ';
2020    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
2021      if (i) Out << ", ";
2022      writeOperand(I.getOperand(i), PrintAllTypes);
2023    }
2024  }
2025
2026  // Print atomic ordering/alignment for memory operations
2027  if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
2028    if (LI->isAtomic())
2029      writeAtomic(LI->getOrdering(), LI->getSynchScope());
2030    if (LI->getAlignment())
2031      Out << ", align " << LI->getAlignment();
2032  } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
2033    if (SI->isAtomic())
2034      writeAtomic(SI->getOrdering(), SI->getSynchScope());
2035    if (SI->getAlignment())
2036      Out << ", align " << SI->getAlignment();
2037  } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
2038    writeAtomic(CXI->getOrdering(), CXI->getSynchScope());
2039  } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
2040    writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
2041  } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
2042    writeAtomic(FI->getOrdering(), FI->getSynchScope());
2043  }
2044
2045  // Print Metadata info.
2046  SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
2047  I.getAllMetadata(InstMD);
2048  if (!InstMD.empty()) {
2049    SmallVector<StringRef, 8> MDNames;
2050    I.getType()->getContext().getMDKindNames(MDNames);
2051    for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
2052      unsigned Kind = InstMD[i].first;
2053       if (Kind < MDNames.size()) {
2054         Out << ", !" << MDNames[Kind];
2055       } else {
2056         Out << ", !<unknown kind #" << Kind << ">";
2057       }
2058      Out << ' ';
2059      WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
2060                             TheModule);
2061    }
2062  }
2063  printInfoComment(I);
2064}
2065
2066static void WriteMDNodeComment(const MDNode *Node,
2067                               formatted_raw_ostream &Out) {
2068  if (Node->getNumOperands() < 1)
2069    return;
2070
2071  Value *Op = Node->getOperand(0);
2072  if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32)
2073    return;
2074
2075  DIDescriptor Desc(Node);
2076  if (!Desc.Verify())
2077    return;
2078
2079  unsigned Tag = Desc.getTag();
2080  Out.PadToColumn(50);
2081  if (dwarf::TagString(Tag)) {
2082    Out << "; ";
2083    Desc.print(Out);
2084  } else if (Tag == dwarf::DW_TAG_user_base) {
2085    Out << "; [ DW_TAG_user_base ]";
2086  }
2087}
2088
2089void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
2090  Out << '!' << Slot << " = metadata ";
2091  printMDNodeBody(Node);
2092}
2093
2094void AssemblyWriter::writeAllMDNodes() {
2095  SmallVector<const MDNode *, 16> Nodes;
2096  Nodes.resize(Machine.mdn_size());
2097  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2098       I != E; ++I)
2099    Nodes[I->second] = cast<MDNode>(I->first);
2100
2101  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2102    writeMDNode(i, Nodes[i]);
2103  }
2104}
2105
2106void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2107  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
2108  WriteMDNodeComment(Node, Out);
2109  Out << "\n";
2110}
2111
2112void AssemblyWriter::writeAllAttributeGroups() {
2113  std::vector<std::pair<AttributeSet, unsigned> > asVec;
2114  asVec.resize(Machine.as_size());
2115
2116  for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
2117       I != E; ++I)
2118    asVec[I->second] = *I;
2119
2120  for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
2121         I = asVec.begin(), E = asVec.end(); I != E; ++I)
2122    Out << "attributes #" << I->second << " = { "
2123        << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
2124}
2125
2126} // namespace llvm
2127
2128//===----------------------------------------------------------------------===//
2129//                       External Interface declarations
2130//===----------------------------------------------------------------------===//
2131
2132void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2133  SlotTracker SlotTable(this);
2134  formatted_raw_ostream OS(ROS);
2135  AssemblyWriter W(OS, SlotTable, this, AAW);
2136  W.printModule(this);
2137}
2138
2139void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2140  SlotTracker SlotTable(getParent());
2141  formatted_raw_ostream OS(ROS);
2142  AssemblyWriter W(OS, SlotTable, getParent(), AAW);
2143  W.printNamedMDNode(this);
2144}
2145
2146void Type::print(raw_ostream &OS) const {
2147  if (this == 0) {
2148    OS << "<null Type>";
2149    return;
2150  }
2151  TypePrinting TP;
2152  TP.print(const_cast<Type*>(this), OS);
2153
2154  // If the type is a named struct type, print the body as well.
2155  if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
2156    if (!STy->isLiteral()) {
2157      OS << " = type ";
2158      TP.printStructBody(STy, OS);
2159    }
2160}
2161
2162void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2163  if (this == 0) {
2164    ROS << "printing a <null> value\n";
2165    return;
2166  }
2167  formatted_raw_ostream OS(ROS);
2168  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2169    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2170    SlotTracker SlotTable(F);
2171    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2172    W.printInstruction(*I);
2173  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2174    SlotTracker SlotTable(BB->getParent());
2175    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2176    W.printBasicBlock(BB);
2177  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2178    SlotTracker SlotTable(GV->getParent());
2179    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2180    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2181      W.printGlobal(V);
2182    else if (const Function *F = dyn_cast<Function>(GV))
2183      W.printFunction(F);
2184    else
2185      W.printAlias(cast<GlobalAlias>(GV));
2186  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2187    const Function *F = N->getFunction();
2188    SlotTracker SlotTable(F);
2189    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2190    W.printMDNodeBody(N);
2191  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2192    TypePrinting TypePrinter;
2193    TypePrinter.print(C->getType(), OS);
2194    OS << ' ';
2195    WriteConstantInternal(OS, C, TypePrinter, 0, 0);
2196  } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2197             isa<Argument>(this)) {
2198    WriteAsOperand(OS, this, true, 0);
2199  } else {
2200    // Otherwise we don't know what it is. Call the virtual function to
2201    // allow a subclass to print itself.
2202    printCustom(OS);
2203  }
2204}
2205
2206// Value::printCustom - subclasses should override this to implement printing.
2207void Value::printCustom(raw_ostream &OS) const {
2208  llvm_unreachable("Unknown value to print out!");
2209}
2210
2211// Value::dump - allow easy printing of Values from the debugger.
2212void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2213
2214// Type::dump - allow easy printing of Types from the debugger.
2215void Type::dump() const { print(dbgs()); }
2216
2217// Module::dump() - Allow printing of Modules from the debugger.
2218void Module::dump() const { print(dbgs(), 0); }
2219
2220// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
2221void NamedMDNode::dump() const { print(dbgs(), 0); }
2222