RuntimeDyld.cpp revision 263508
1//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of the MC-JIT runtime dynamic linker.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "dyld"
15#include "llvm/ExecutionEngine/RuntimeDyld.h"
16#include "JITRegistrar.h"
17#include "ObjectImageCommon.h"
18#include "RuntimeDyldELF.h"
19#include "RuntimeDyldImpl.h"
20#include "RuntimeDyldMachO.h"
21#include "llvm/Support/FileSystem.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Support/MutexGuard.h"
24#include "llvm/Object/ELF.h"
25
26using namespace llvm;
27using namespace llvm::object;
28
29// Empty out-of-line virtual destructor as the key function.
30RuntimeDyldImpl::~RuntimeDyldImpl() {}
31
32// Pin the JITRegistrar's and ObjectImage*'s vtables to this file.
33void JITRegistrar::anchor() {}
34void ObjectImage::anchor() {}
35void ObjectImageCommon::anchor() {}
36
37namespace llvm {
38
39void RuntimeDyldImpl::registerEHFrames() {
40}
41
42void RuntimeDyldImpl::deregisterEHFrames() {
43}
44
45// Resolve the relocations for all symbols we currently know about.
46void RuntimeDyldImpl::resolveRelocations() {
47  MutexGuard locked(lock);
48
49  // First, resolve relocations associated with external symbols.
50  resolveExternalSymbols();
51
52  // Just iterate over the sections we have and resolve all the relocations
53  // in them. Gross overkill, but it gets the job done.
54  for (int i = 0, e = Sections.size(); i != e; ++i) {
55    // The Section here (Sections[i]) refers to the section in which the
56    // symbol for the relocation is located.  The SectionID in the relocation
57    // entry provides the section to which the relocation will be applied.
58    uint64_t Addr = Sections[i].LoadAddress;
59    DEBUG(dbgs() << "Resolving relocations Section #" << i
60            << "\t" << format("%p", (uint8_t *)Addr)
61            << "\n");
62    resolveRelocationList(Relocations[i], Addr);
63    Relocations.erase(i);
64  }
65}
66
67void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
68                                        uint64_t TargetAddress) {
69  MutexGuard locked(lock);
70  for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
71    if (Sections[i].Address == LocalAddress) {
72      reassignSectionAddress(i, TargetAddress);
73      return;
74    }
75  }
76  llvm_unreachable("Attempting to remap address of unknown section!");
77}
78
79// Subclasses can implement this method to create specialized image instances.
80// The caller owns the pointer that is returned.
81ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
82  return new ObjectImageCommon(InputBuffer);
83}
84
85ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
86  MutexGuard locked(lock);
87
88  OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
89  if (!obj)
90    report_fatal_error("Unable to create object image from memory buffer!");
91
92  // Save information about our target
93  Arch = (Triple::ArchType)obj->getArch();
94  IsTargetLittleEndian = obj->getObjectFile()->isLittleEndian();
95
96  // Symbols found in this object
97  StringMap<SymbolLoc> LocalSymbols;
98  // Used sections from the object file
99  ObjSectionToIDMap LocalSections;
100
101  // Common symbols requiring allocation, with their sizes and alignments
102  CommonSymbolMap CommonSymbols;
103  // Maximum required total memory to allocate all common symbols
104  uint64_t CommonSize = 0;
105
106  error_code err;
107  // Parse symbols
108  DEBUG(dbgs() << "Parse symbols:\n");
109  for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
110       i != e; i.increment(err)) {
111    Check(err);
112    object::SymbolRef::Type SymType;
113    StringRef Name;
114    Check(i->getType(SymType));
115    Check(i->getName(Name));
116
117    uint32_t flags;
118    Check(i->getFlags(flags));
119
120    bool isCommon = flags & SymbolRef::SF_Common;
121    if (isCommon) {
122      // Add the common symbols to a list.  We'll allocate them all below.
123      uint32_t Align;
124      Check(i->getAlignment(Align));
125      uint64_t Size = 0;
126      Check(i->getSize(Size));
127      CommonSize += Size + Align;
128      CommonSymbols[*i] = CommonSymbolInfo(Size, Align);
129    } else {
130      if (SymType == object::SymbolRef::ST_Function ||
131          SymType == object::SymbolRef::ST_Data ||
132          SymType == object::SymbolRef::ST_Unknown) {
133        uint64_t FileOffset;
134        StringRef SectionData;
135        bool IsCode;
136        section_iterator si = obj->end_sections();
137        Check(i->getFileOffset(FileOffset));
138        Check(i->getSection(si));
139        if (si == obj->end_sections()) continue;
140        Check(si->getContents(SectionData));
141        Check(si->isText(IsCode));
142        const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
143                                (uintptr_t)FileOffset;
144        uintptr_t SectOffset = (uintptr_t)(SymPtr -
145                                           (const uint8_t*)SectionData.begin());
146        unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections);
147        LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
148        DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
149                     << " flags: " << flags
150                     << " SID: " << SectionID
151                     << " Offset: " << format("%p", SectOffset));
152        GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
153      }
154    }
155    DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
156  }
157
158  // Allocate common symbols
159  if (CommonSize != 0)
160    emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
161
162  // Parse and process relocations
163  DEBUG(dbgs() << "Parse relocations:\n");
164  for (section_iterator si = obj->begin_sections(),
165       se = obj->end_sections(); si != se; si.increment(err)) {
166    Check(err);
167    bool isFirstRelocation = true;
168    unsigned SectionID = 0;
169    StubMap Stubs;
170    section_iterator RelocatedSection = si->getRelocatedSection();
171
172    for (relocation_iterator i = si->begin_relocations(),
173         e = si->end_relocations(); i != e; i.increment(err)) {
174      Check(err);
175
176      // If it's the first relocation in this section, find its SectionID
177      if (isFirstRelocation) {
178        SectionID =
179            findOrEmitSection(*obj, *RelocatedSection, true, LocalSections);
180        DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
181        isFirstRelocation = false;
182      }
183
184      processRelocationRef(SectionID, *i, *obj, LocalSections, LocalSymbols,
185			   Stubs);
186    }
187  }
188
189  // Give the subclasses a chance to tie-up any loose ends.
190  finalizeLoad(LocalSections);
191
192  return obj.take();
193}
194
195void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
196                                        const CommonSymbolMap &CommonSymbols,
197                                        uint64_t TotalSize,
198                                        SymbolTableMap &SymbolTable) {
199  // Allocate memory for the section
200  unsigned SectionID = Sections.size();
201  uint8_t *Addr = MemMgr->allocateDataSection(
202    TotalSize, sizeof(void*), SectionID, StringRef(), false);
203  if (!Addr)
204    report_fatal_error("Unable to allocate memory for common symbols!");
205  uint64_t Offset = 0;
206  Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
207  memset(Addr, 0, TotalSize);
208
209  DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
210               << " new addr: " << format("%p", Addr)
211               << " DataSize: " << TotalSize
212               << "\n");
213
214  // Assign the address of each symbol
215  for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
216       itEnd = CommonSymbols.end(); it != itEnd; it++) {
217    uint64_t Size = it->second.first;
218    uint64_t Align = it->second.second;
219    StringRef Name;
220    it->first.getName(Name);
221    if (Align) {
222      // This symbol has an alignment requirement.
223      uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
224      Addr += AlignOffset;
225      Offset += AlignOffset;
226      DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
227                      format("%p\n", Addr));
228    }
229    Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
230    SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
231    Offset += Size;
232    Addr += Size;
233  }
234}
235
236unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
237                                      const SectionRef &Section,
238                                      bool IsCode) {
239
240  unsigned StubBufSize = 0,
241           StubSize = getMaxStubSize();
242  error_code err;
243  const ObjectFile *ObjFile = Obj.getObjectFile();
244  // FIXME: this is an inefficient way to handle this. We should computed the
245  // necessary section allocation size in loadObject by walking all the sections
246  // once.
247  if (StubSize > 0) {
248    for (section_iterator SI = ObjFile->begin_sections(),
249           SE = ObjFile->end_sections();
250         SI != SE; SI.increment(err), Check(err)) {
251      section_iterator RelSecI = SI->getRelocatedSection();
252      if (!(RelSecI == Section))
253        continue;
254
255      for (relocation_iterator I = SI->begin_relocations(),
256             E = SI->end_relocations(); I != E; I.increment(err), Check(err)) {
257        StubBufSize += StubSize;
258      }
259    }
260  }
261
262  StringRef data;
263  uint64_t Alignment64;
264  Check(Section.getContents(data));
265  Check(Section.getAlignment(Alignment64));
266
267  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
268  bool IsRequired;
269  bool IsVirtual;
270  bool IsZeroInit;
271  bool IsReadOnly;
272  uint64_t DataSize;
273  unsigned PaddingSize = 0;
274  StringRef Name;
275  Check(Section.isRequiredForExecution(IsRequired));
276  Check(Section.isVirtual(IsVirtual));
277  Check(Section.isZeroInit(IsZeroInit));
278  Check(Section.isReadOnlyData(IsReadOnly));
279  Check(Section.getSize(DataSize));
280  Check(Section.getName(Name));
281  if (StubSize > 0) {
282    unsigned StubAlignment = getStubAlignment();
283    unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
284    if (StubAlignment > EndAlignment)
285      StubBufSize += StubAlignment - EndAlignment;
286  }
287
288  // The .eh_frame section (at least on Linux) needs an extra four bytes padded
289  // with zeroes added at the end.  For MachO objects, this section has a
290  // slightly different name, so this won't have any effect for MachO objects.
291  if (Name == ".eh_frame")
292    PaddingSize = 4;
293
294  unsigned Allocate;
295  unsigned SectionID = Sections.size();
296  uint8_t *Addr;
297  const char *pData = 0;
298
299  // Some sections, such as debug info, don't need to be loaded for execution.
300  // Leave those where they are.
301  if (IsRequired) {
302    Allocate = DataSize + PaddingSize + StubBufSize;
303    Addr = IsCode
304      ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID, Name)
305      : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, Name,
306                                    IsReadOnly);
307    if (!Addr)
308      report_fatal_error("Unable to allocate section memory!");
309
310    // Virtual sections have no data in the object image, so leave pData = 0
311    if (!IsVirtual)
312      pData = data.data();
313
314    // Zero-initialize or copy the data from the image
315    if (IsZeroInit || IsVirtual)
316      memset(Addr, 0, DataSize);
317    else
318      memcpy(Addr, pData, DataSize);
319
320    // Fill in any extra bytes we allocated for padding
321    if (PaddingSize != 0) {
322      memset(Addr + DataSize, 0, PaddingSize);
323      // Update the DataSize variable so that the stub offset is set correctly.
324      DataSize += PaddingSize;
325    }
326
327    DEBUG(dbgs() << "emitSection SectionID: " << SectionID
328                 << " Name: " << Name
329                 << " obj addr: " << format("%p", pData)
330                 << " new addr: " << format("%p", Addr)
331                 << " DataSize: " << DataSize
332                 << " StubBufSize: " << StubBufSize
333                 << " Allocate: " << Allocate
334                 << "\n");
335    Obj.updateSectionAddress(Section, (uint64_t)Addr);
336  }
337  else {
338    // Even if we didn't load the section, we need to record an entry for it
339    // to handle later processing (and by 'handle' I mean don't do anything
340    // with these sections).
341    Allocate = 0;
342    Addr = 0;
343    DEBUG(dbgs() << "emitSection SectionID: " << SectionID
344                 << " Name: " << Name
345                 << " obj addr: " << format("%p", data.data())
346                 << " new addr: 0"
347                 << " DataSize: " << DataSize
348                 << " StubBufSize: " << StubBufSize
349                 << " Allocate: " << Allocate
350                 << "\n");
351  }
352
353  Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
354  return SectionID;
355}
356
357unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
358                                            const SectionRef &Section,
359                                            bool IsCode,
360                                            ObjSectionToIDMap &LocalSections) {
361
362  unsigned SectionID = 0;
363  ObjSectionToIDMap::iterator i = LocalSections.find(Section);
364  if (i != LocalSections.end())
365    SectionID = i->second;
366  else {
367    SectionID = emitSection(Obj, Section, IsCode);
368    LocalSections[Section] = SectionID;
369  }
370  return SectionID;
371}
372
373void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
374                                              unsigned SectionID) {
375  Relocations[SectionID].push_back(RE);
376}
377
378void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
379                                             StringRef SymbolName) {
380  // Relocation by symbol.  If the symbol is found in the global symbol table,
381  // create an appropriate section relocation.  Otherwise, add it to
382  // ExternalSymbolRelocations.
383  SymbolTableMap::const_iterator Loc =
384      GlobalSymbolTable.find(SymbolName);
385  if (Loc == GlobalSymbolTable.end()) {
386    ExternalSymbolRelocations[SymbolName].push_back(RE);
387  } else {
388    // Copy the RE since we want to modify its addend.
389    RelocationEntry RECopy = RE;
390    RECopy.Addend += Loc->second.second;
391    Relocations[Loc->second.first].push_back(RECopy);
392  }
393}
394
395uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
396  if (Arch == Triple::aarch64) {
397    // This stub has to be able to access the full address space,
398    // since symbol lookup won't necessarily find a handy, in-range,
399    // PLT stub for functions which could be anywhere.
400    uint32_t *StubAddr = (uint32_t*)Addr;
401
402    // Stub can use ip0 (== x16) to calculate address
403    *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
404    StubAddr++;
405    *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
406    StubAddr++;
407    *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
408    StubAddr++;
409    *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
410    StubAddr++;
411    *StubAddr = 0xd61f0200; // br ip0
412
413    return Addr;
414  } else if (Arch == Triple::arm) {
415    // TODO: There is only ARM far stub now. We should add the Thumb stub,
416    // and stubs for branches Thumb - ARM and ARM - Thumb.
417    uint32_t *StubAddr = (uint32_t*)Addr;
418    *StubAddr = 0xe51ff004; // ldr pc,<label>
419    return (uint8_t*)++StubAddr;
420  } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
421    uint32_t *StubAddr = (uint32_t*)Addr;
422    // 0:   3c190000        lui     t9,%hi(addr).
423    // 4:   27390000        addiu   t9,t9,%lo(addr).
424    // 8:   03200008        jr      t9.
425    // c:   00000000        nop.
426    const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
427    const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
428
429    *StubAddr = LuiT9Instr;
430    StubAddr++;
431    *StubAddr = AdduiT9Instr;
432    StubAddr++;
433    *StubAddr = JrT9Instr;
434    StubAddr++;
435    *StubAddr = NopInstr;
436    return Addr;
437  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
438    // PowerPC64 stub: the address points to a function descriptor
439    // instead of the function itself. Load the function address
440    // on r11 and sets it to control register. Also loads the function
441    // TOC in r2 and environment pointer to r11.
442    writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
443    writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
444    writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
445    writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
446    writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
447    writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
448    writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
449    writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
450    writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
451    writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
452    writeInt32BE(Addr+40, 0x4E800420); // bctr
453
454    return Addr;
455  } else if (Arch == Triple::systemz) {
456    writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
457    writeInt16BE(Addr+2,  0x0000);
458    writeInt16BE(Addr+4,  0x0004);
459    writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
460    // 8-byte address stored at Addr + 8
461    return Addr;
462  } else if (Arch == Triple::x86_64) {
463    *Addr      = 0xFF; // jmp
464    *(Addr+1)  = 0x25; // rip
465    // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
466  }
467  return Addr;
468}
469
470// Assign an address to a symbol name and resolve all the relocations
471// associated with it.
472void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
473                                             uint64_t Addr) {
474  // The address to use for relocation resolution is not
475  // the address of the local section buffer. We must be doing
476  // a remote execution environment of some sort. Relocations can't
477  // be applied until all the sections have been moved.  The client must
478  // trigger this with a call to MCJIT::finalize() or
479  // RuntimeDyld::resolveRelocations().
480  //
481  // Addr is a uint64_t because we can't assume the pointer width
482  // of the target is the same as that of the host. Just use a generic
483  // "big enough" type.
484  Sections[SectionID].LoadAddress = Addr;
485}
486
487void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
488                                            uint64_t Value) {
489  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
490    const RelocationEntry &RE = Relocs[i];
491    // Ignore relocations for sections that were not loaded
492    if (Sections[RE.SectionID].Address == 0)
493      continue;
494    resolveRelocation(RE, Value);
495  }
496}
497
498void RuntimeDyldImpl::resolveExternalSymbols() {
499  while(!ExternalSymbolRelocations.empty()) {
500    StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
501
502    StringRef Name = i->first();
503    if (Name.size() == 0) {
504      // This is an absolute symbol, use an address of zero.
505      DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
506      RelocationList &Relocs = i->second;
507      resolveRelocationList(Relocs, 0);
508    } else {
509      uint64_t Addr = 0;
510      SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
511      if (Loc == GlobalSymbolTable.end()) {
512          // This is an external symbol, try to get its address from
513          // MemoryManager.
514          Addr = MemMgr->getSymbolAddress(Name.data());
515          // The call to getSymbolAddress may have caused additional modules to
516          // be loaded, which may have added new entries to the
517          // ExternalSymbolRelocations map.  Consquently, we need to update our
518          // iterator.  This is also why retrieval of the relocation list
519          // associated with this symbol is deferred until below this point.
520          // New entries may have been added to the relocation list.
521          i = ExternalSymbolRelocations.find(Name);
522      } else {
523        // We found the symbol in our global table.  It was probably in a
524        // Module that we loaded previously.
525        SymbolLoc SymLoc = Loc->second;
526        Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second;
527      }
528
529      // FIXME: Implement error handling that doesn't kill the host program!
530      if (!Addr)
531        report_fatal_error("Program used external function '" + Name +
532                          "' which could not be resolved!");
533
534      updateGOTEntries(Name, Addr);
535      DEBUG(dbgs() << "Resolving relocations Name: " << Name
536              << "\t" << format("0x%lx", Addr)
537              << "\n");
538      // This list may have been updated when we called getSymbolAddress, so
539      // don't change this code to get the list earlier.
540      RelocationList &Relocs = i->second;
541      resolveRelocationList(Relocs, Addr);
542    }
543
544    ExternalSymbolRelocations.erase(i);
545  }
546}
547
548
549//===----------------------------------------------------------------------===//
550// RuntimeDyld class implementation
551RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
552  // FIXME: There's a potential issue lurking here if a single instance of
553  // RuntimeDyld is used to load multiple objects.  The current implementation
554  // associates a single memory manager with a RuntimeDyld instance.  Even
555  // though the public class spawns a new 'impl' instance for each load,
556  // they share a single memory manager.  This can become a problem when page
557  // permissions are applied.
558  Dyld = 0;
559  MM = mm;
560}
561
562RuntimeDyld::~RuntimeDyld() {
563  delete Dyld;
564}
565
566ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
567  if (!Dyld) {
568    sys::fs::file_magic Type =
569        sys::fs::identify_magic(InputBuffer->getBuffer());
570    switch (Type) {
571    case sys::fs::file_magic::elf_relocatable:
572    case sys::fs::file_magic::elf_executable:
573    case sys::fs::file_magic::elf_shared_object:
574    case sys::fs::file_magic::elf_core:
575      Dyld = new RuntimeDyldELF(MM);
576      break;
577    case sys::fs::file_magic::macho_object:
578    case sys::fs::file_magic::macho_executable:
579    case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
580    case sys::fs::file_magic::macho_core:
581    case sys::fs::file_magic::macho_preload_executable:
582    case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
583    case sys::fs::file_magic::macho_dynamic_linker:
584    case sys::fs::file_magic::macho_bundle:
585    case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
586    case sys::fs::file_magic::macho_dsym_companion:
587      Dyld = new RuntimeDyldMachO(MM);
588      break;
589    case sys::fs::file_magic::unknown:
590    case sys::fs::file_magic::bitcode:
591    case sys::fs::file_magic::archive:
592    case sys::fs::file_magic::coff_object:
593    case sys::fs::file_magic::coff_import_library:
594    case sys::fs::file_magic::pecoff_executable:
595    case sys::fs::file_magic::macho_universal_binary:
596    case sys::fs::file_magic::windows_resource:
597      report_fatal_error("Incompatible object format!");
598    }
599  } else {
600    if (!Dyld->isCompatibleFormat(InputBuffer))
601      report_fatal_error("Incompatible object format!");
602  }
603
604  return Dyld->loadObject(InputBuffer);
605}
606
607void *RuntimeDyld::getSymbolAddress(StringRef Name) {
608  if (!Dyld)
609    return NULL;
610  return Dyld->getSymbolAddress(Name);
611}
612
613uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
614  if (!Dyld)
615    return 0;
616  return Dyld->getSymbolLoadAddress(Name);
617}
618
619void RuntimeDyld::resolveRelocations() {
620  Dyld->resolveRelocations();
621}
622
623void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
624                                         uint64_t Addr) {
625  Dyld->reassignSectionAddress(SectionID, Addr);
626}
627
628void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
629                                    uint64_t TargetAddress) {
630  Dyld->mapSectionAddress(LocalAddress, TargetAddress);
631}
632
633StringRef RuntimeDyld::getErrorString() {
634  return Dyld->getErrorString();
635}
636
637void RuntimeDyld::registerEHFrames() {
638  if (Dyld)
639    Dyld->registerEHFrames();
640}
641
642void RuntimeDyld::deregisterEHFrames() {
643  if (Dyld)
644    Dyld->deregisterEHFrames();
645}
646
647} // end namespace llvm
648