Execution.cpp revision 263508
1//===-- Execution.cpp - Implement code to simulate the program ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file contains the actual instruction interpreter.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "interpreter"
15#include "Interpreter.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/CodeGen/IntrinsicLowering.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/DerivedTypes.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/GetElementPtrTypeIterator.h"
26#include "llvm/Support/MathExtras.h"
27#include <algorithm>
28#include <cmath>
29using namespace llvm;
30
31STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
32
33static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
34          cl::desc("make the interpreter print every volatile load and store"));
35
36//===----------------------------------------------------------------------===//
37//                     Various Helper Functions
38//===----------------------------------------------------------------------===//
39
40static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
41  SF.Values[V] = Val;
42}
43
44//===----------------------------------------------------------------------===//
45//                    Binary Instruction Implementations
46//===----------------------------------------------------------------------===//
47
48#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
49   case Type::TY##TyID: \
50     Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
51     break
52
53static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
54                            GenericValue Src2, Type *Ty) {
55  switch (Ty->getTypeID()) {
56    IMPLEMENT_BINARY_OPERATOR(+, Float);
57    IMPLEMENT_BINARY_OPERATOR(+, Double);
58  default:
59    dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
60    llvm_unreachable(0);
61  }
62}
63
64static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
65                            GenericValue Src2, Type *Ty) {
66  switch (Ty->getTypeID()) {
67    IMPLEMENT_BINARY_OPERATOR(-, Float);
68    IMPLEMENT_BINARY_OPERATOR(-, Double);
69  default:
70    dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
71    llvm_unreachable(0);
72  }
73}
74
75static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
76                            GenericValue Src2, Type *Ty) {
77  switch (Ty->getTypeID()) {
78    IMPLEMENT_BINARY_OPERATOR(*, Float);
79    IMPLEMENT_BINARY_OPERATOR(*, Double);
80  default:
81    dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
82    llvm_unreachable(0);
83  }
84}
85
86static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
87                            GenericValue Src2, Type *Ty) {
88  switch (Ty->getTypeID()) {
89    IMPLEMENT_BINARY_OPERATOR(/, Float);
90    IMPLEMENT_BINARY_OPERATOR(/, Double);
91  default:
92    dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
93    llvm_unreachable(0);
94  }
95}
96
97static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
98                            GenericValue Src2, Type *Ty) {
99  switch (Ty->getTypeID()) {
100  case Type::FloatTyID:
101    Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
102    break;
103  case Type::DoubleTyID:
104    Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
105    break;
106  default:
107    dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
108    llvm_unreachable(0);
109  }
110}
111
112#define IMPLEMENT_INTEGER_ICMP(OP, TY) \
113   case Type::IntegerTyID:  \
114      Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
115      break;
116
117#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY)                        \
118  case Type::VectorTyID: {                                           \
119    assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());    \
120    Dest.AggregateVal.resize( Src1.AggregateVal.size() );            \
121    for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++)             \
122      Dest.AggregateVal[_i].IntVal = APInt(1,                        \
123      Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
124  } break;
125
126// Handle pointers specially because they must be compared with only as much
127// width as the host has.  We _do not_ want to be comparing 64 bit values when
128// running on a 32-bit target, otherwise the upper 32 bits might mess up
129// comparisons if they contain garbage.
130#define IMPLEMENT_POINTER_ICMP(OP) \
131   case Type::PointerTyID: \
132      Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
133                            (void*)(intptr_t)Src2.PointerVal); \
134      break;
135
136static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
137                                   Type *Ty) {
138  GenericValue Dest;
139  switch (Ty->getTypeID()) {
140    IMPLEMENT_INTEGER_ICMP(eq,Ty);
141    IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
142    IMPLEMENT_POINTER_ICMP(==);
143  default:
144    dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
145    llvm_unreachable(0);
146  }
147  return Dest;
148}
149
150static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
151                                   Type *Ty) {
152  GenericValue Dest;
153  switch (Ty->getTypeID()) {
154    IMPLEMENT_INTEGER_ICMP(ne,Ty);
155    IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
156    IMPLEMENT_POINTER_ICMP(!=);
157  default:
158    dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
159    llvm_unreachable(0);
160  }
161  return Dest;
162}
163
164static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
165                                    Type *Ty) {
166  GenericValue Dest;
167  switch (Ty->getTypeID()) {
168    IMPLEMENT_INTEGER_ICMP(ult,Ty);
169    IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
170    IMPLEMENT_POINTER_ICMP(<);
171  default:
172    dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
173    llvm_unreachable(0);
174  }
175  return Dest;
176}
177
178static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
179                                    Type *Ty) {
180  GenericValue Dest;
181  switch (Ty->getTypeID()) {
182    IMPLEMENT_INTEGER_ICMP(slt,Ty);
183    IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
184    IMPLEMENT_POINTER_ICMP(<);
185  default:
186    dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
187    llvm_unreachable(0);
188  }
189  return Dest;
190}
191
192static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
193                                    Type *Ty) {
194  GenericValue Dest;
195  switch (Ty->getTypeID()) {
196    IMPLEMENT_INTEGER_ICMP(ugt,Ty);
197    IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
198    IMPLEMENT_POINTER_ICMP(>);
199  default:
200    dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
201    llvm_unreachable(0);
202  }
203  return Dest;
204}
205
206static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
207                                    Type *Ty) {
208  GenericValue Dest;
209  switch (Ty->getTypeID()) {
210    IMPLEMENT_INTEGER_ICMP(sgt,Ty);
211    IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
212    IMPLEMENT_POINTER_ICMP(>);
213  default:
214    dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
215    llvm_unreachable(0);
216  }
217  return Dest;
218}
219
220static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
221                                    Type *Ty) {
222  GenericValue Dest;
223  switch (Ty->getTypeID()) {
224    IMPLEMENT_INTEGER_ICMP(ule,Ty);
225    IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
226    IMPLEMENT_POINTER_ICMP(<=);
227  default:
228    dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
229    llvm_unreachable(0);
230  }
231  return Dest;
232}
233
234static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
235                                    Type *Ty) {
236  GenericValue Dest;
237  switch (Ty->getTypeID()) {
238    IMPLEMENT_INTEGER_ICMP(sle,Ty);
239    IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
240    IMPLEMENT_POINTER_ICMP(<=);
241  default:
242    dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
243    llvm_unreachable(0);
244  }
245  return Dest;
246}
247
248static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
249                                    Type *Ty) {
250  GenericValue Dest;
251  switch (Ty->getTypeID()) {
252    IMPLEMENT_INTEGER_ICMP(uge,Ty);
253    IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
254    IMPLEMENT_POINTER_ICMP(>=);
255  default:
256    dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
257    llvm_unreachable(0);
258  }
259  return Dest;
260}
261
262static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
263                                    Type *Ty) {
264  GenericValue Dest;
265  switch (Ty->getTypeID()) {
266    IMPLEMENT_INTEGER_ICMP(sge,Ty);
267    IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
268    IMPLEMENT_POINTER_ICMP(>=);
269  default:
270    dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
271    llvm_unreachable(0);
272  }
273  return Dest;
274}
275
276void Interpreter::visitICmpInst(ICmpInst &I) {
277  ExecutionContext &SF = ECStack.back();
278  Type *Ty    = I.getOperand(0)->getType();
279  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
280  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
281  GenericValue R;   // Result
282
283  switch (I.getPredicate()) {
284  case ICmpInst::ICMP_EQ:  R = executeICMP_EQ(Src1,  Src2, Ty); break;
285  case ICmpInst::ICMP_NE:  R = executeICMP_NE(Src1,  Src2, Ty); break;
286  case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
287  case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
288  case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
289  case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
290  case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
291  case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
292  case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
293  case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
294  default:
295    dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
296    llvm_unreachable(0);
297  }
298
299  SetValue(&I, R, SF);
300}
301
302#define IMPLEMENT_FCMP(OP, TY) \
303   case Type::TY##TyID: \
304     Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
305     break
306
307#define IMPLEMENT_VECTOR_FCMP_T(OP, TY)                             \
308  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());     \
309  Dest.AggregateVal.resize( Src1.AggregateVal.size() );             \
310  for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++)              \
311    Dest.AggregateVal[_i].IntVal = APInt(1,                         \
312    Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
313  break;
314
315#define IMPLEMENT_VECTOR_FCMP(OP)                                   \
316  case Type::VectorTyID:                                            \
317    if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {   \
318      IMPLEMENT_VECTOR_FCMP_T(OP, Float);                           \
319    } else {                                                        \
320        IMPLEMENT_VECTOR_FCMP_T(OP, Double);                        \
321    }
322
323static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
324                                   Type *Ty) {
325  GenericValue Dest;
326  switch (Ty->getTypeID()) {
327    IMPLEMENT_FCMP(==, Float);
328    IMPLEMENT_FCMP(==, Double);
329    IMPLEMENT_VECTOR_FCMP(==);
330  default:
331    dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
332    llvm_unreachable(0);
333  }
334  return Dest;
335}
336
337#define IMPLEMENT_SCALAR_NANS(TY, X,Y)                                      \
338  if (TY->isFloatTy()) {                                                    \
339    if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {             \
340      Dest.IntVal = APInt(1,false);                                         \
341      return Dest;                                                          \
342    }                                                                       \
343  } else {                                                                  \
344    if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) {         \
345      Dest.IntVal = APInt(1,false);                                         \
346      return Dest;                                                          \
347    }                                                                       \
348  }
349
350#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG)                                   \
351  assert(X.AggregateVal.size() == Y.AggregateVal.size());                   \
352  Dest.AggregateVal.resize( X.AggregateVal.size() );                        \
353  for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) {                       \
354    if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val ||         \
355        Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val)           \
356      Dest.AggregateVal[_i].IntVal = APInt(1,FLAG);                         \
357    else  {                                                                 \
358      Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG);                        \
359    }                                                                       \
360  }
361
362#define MASK_VECTOR_NANS(TY, X,Y, FLAG)                                     \
363  if (TY->isVectorTy()) {                                                   \
364    if (dyn_cast<VectorType>(TY)->getElementType()->isFloatTy()) {          \
365      MASK_VECTOR_NANS_T(X, Y, Float, FLAG)                                 \
366    } else {                                                                \
367      MASK_VECTOR_NANS_T(X, Y, Double, FLAG)                                \
368    }                                                                       \
369  }                                                                         \
370
371
372
373static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
374                                    Type *Ty)
375{
376  GenericValue Dest;
377  // if input is scalar value and Src1 or Src2 is NaN return false
378  IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
379  // if vector input detect NaNs and fill mask
380  MASK_VECTOR_NANS(Ty, Src1, Src2, false)
381  GenericValue DestMask = Dest;
382  switch (Ty->getTypeID()) {
383    IMPLEMENT_FCMP(!=, Float);
384    IMPLEMENT_FCMP(!=, Double);
385    IMPLEMENT_VECTOR_FCMP(!=);
386    default:
387      dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
388      llvm_unreachable(0);
389  }
390  // in vector case mask out NaN elements
391  if (Ty->isVectorTy())
392    for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
393      if (DestMask.AggregateVal[_i].IntVal == false)
394        Dest.AggregateVal[_i].IntVal = APInt(1,false);
395
396  return Dest;
397}
398
399static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
400                                   Type *Ty) {
401  GenericValue Dest;
402  switch (Ty->getTypeID()) {
403    IMPLEMENT_FCMP(<=, Float);
404    IMPLEMENT_FCMP(<=, Double);
405    IMPLEMENT_VECTOR_FCMP(<=);
406  default:
407    dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
408    llvm_unreachable(0);
409  }
410  return Dest;
411}
412
413static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
414                                   Type *Ty) {
415  GenericValue Dest;
416  switch (Ty->getTypeID()) {
417    IMPLEMENT_FCMP(>=, Float);
418    IMPLEMENT_FCMP(>=, Double);
419    IMPLEMENT_VECTOR_FCMP(>=);
420  default:
421    dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
422    llvm_unreachable(0);
423  }
424  return Dest;
425}
426
427static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
428                                   Type *Ty) {
429  GenericValue Dest;
430  switch (Ty->getTypeID()) {
431    IMPLEMENT_FCMP(<, Float);
432    IMPLEMENT_FCMP(<, Double);
433    IMPLEMENT_VECTOR_FCMP(<);
434  default:
435    dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
436    llvm_unreachable(0);
437  }
438  return Dest;
439}
440
441static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
442                                     Type *Ty) {
443  GenericValue Dest;
444  switch (Ty->getTypeID()) {
445    IMPLEMENT_FCMP(>, Float);
446    IMPLEMENT_FCMP(>, Double);
447    IMPLEMENT_VECTOR_FCMP(>);
448  default:
449    dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
450    llvm_unreachable(0);
451  }
452  return Dest;
453}
454
455#define IMPLEMENT_UNORDERED(TY, X,Y)                                     \
456  if (TY->isFloatTy()) {                                                 \
457    if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {          \
458      Dest.IntVal = APInt(1,true);                                       \
459      return Dest;                                                       \
460    }                                                                    \
461  } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
462    Dest.IntVal = APInt(1,true);                                         \
463    return Dest;                                                         \
464  }
465
466#define IMPLEMENT_VECTOR_UNORDERED(TY, X,Y, _FUNC)                       \
467  if (TY->isVectorTy()) {                                                \
468    GenericValue DestMask = Dest;                                        \
469    Dest = _FUNC(Src1, Src2, Ty);                                        \
470      for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)               \
471        if (DestMask.AggregateVal[_i].IntVal == true)                    \
472          Dest.AggregateVal[_i].IntVal = APInt(1,true);                  \
473      return Dest;                                                       \
474  }
475
476static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
477                                   Type *Ty) {
478  GenericValue Dest;
479  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
480  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
481  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
482  return executeFCMP_OEQ(Src1, Src2, Ty);
483
484}
485
486static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
487                                   Type *Ty) {
488  GenericValue Dest;
489  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
490  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
491  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
492  return executeFCMP_ONE(Src1, Src2, Ty);
493}
494
495static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
496                                   Type *Ty) {
497  GenericValue Dest;
498  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
499  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
500  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
501  return executeFCMP_OLE(Src1, Src2, Ty);
502}
503
504static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
505                                   Type *Ty) {
506  GenericValue Dest;
507  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
508  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
509  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
510  return executeFCMP_OGE(Src1, Src2, Ty);
511}
512
513static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
514                                   Type *Ty) {
515  GenericValue Dest;
516  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
517  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
518  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
519  return executeFCMP_OLT(Src1, Src2, Ty);
520}
521
522static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
523                                     Type *Ty) {
524  GenericValue Dest;
525  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
526  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
527  IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
528  return executeFCMP_OGT(Src1, Src2, Ty);
529}
530
531static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
532                                     Type *Ty) {
533  GenericValue Dest;
534  if(Ty->isVectorTy()) {
535    assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
536    Dest.AggregateVal.resize( Src1.AggregateVal.size() );
537    if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
538      for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
539        Dest.AggregateVal[_i].IntVal = APInt(1,
540        ( (Src1.AggregateVal[_i].FloatVal ==
541        Src1.AggregateVal[_i].FloatVal) &&
542        (Src2.AggregateVal[_i].FloatVal ==
543        Src2.AggregateVal[_i].FloatVal)));
544    } else {
545      for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
546        Dest.AggregateVal[_i].IntVal = APInt(1,
547        ( (Src1.AggregateVal[_i].DoubleVal ==
548        Src1.AggregateVal[_i].DoubleVal) &&
549        (Src2.AggregateVal[_i].DoubleVal ==
550        Src2.AggregateVal[_i].DoubleVal)));
551    }
552  } else if (Ty->isFloatTy())
553    Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
554                           Src2.FloatVal == Src2.FloatVal));
555  else {
556    Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
557                           Src2.DoubleVal == Src2.DoubleVal));
558  }
559  return Dest;
560}
561
562static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
563                                     Type *Ty) {
564  GenericValue Dest;
565  if(Ty->isVectorTy()) {
566    assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
567    Dest.AggregateVal.resize( Src1.AggregateVal.size() );
568    if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
569      for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
570        Dest.AggregateVal[_i].IntVal = APInt(1,
571        ( (Src1.AggregateVal[_i].FloatVal !=
572           Src1.AggregateVal[_i].FloatVal) ||
573          (Src2.AggregateVal[_i].FloatVal !=
574           Src2.AggregateVal[_i].FloatVal)));
575      } else {
576        for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
577          Dest.AggregateVal[_i].IntVal = APInt(1,
578          ( (Src1.AggregateVal[_i].DoubleVal !=
579             Src1.AggregateVal[_i].DoubleVal) ||
580            (Src2.AggregateVal[_i].DoubleVal !=
581             Src2.AggregateVal[_i].DoubleVal)));
582      }
583  } else if (Ty->isFloatTy())
584    Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
585                           Src2.FloatVal != Src2.FloatVal));
586  else {
587    Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
588                           Src2.DoubleVal != Src2.DoubleVal));
589  }
590  return Dest;
591}
592
593static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
594                                    const Type *Ty, const bool val) {
595  GenericValue Dest;
596    if(Ty->isVectorTy()) {
597      assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
598      Dest.AggregateVal.resize( Src1.AggregateVal.size() );
599      for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
600        Dest.AggregateVal[_i].IntVal = APInt(1,val);
601    } else {
602      Dest.IntVal = APInt(1, val);
603    }
604
605    return Dest;
606}
607
608void Interpreter::visitFCmpInst(FCmpInst &I) {
609  ExecutionContext &SF = ECStack.back();
610  Type *Ty    = I.getOperand(0)->getType();
611  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
612  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
613  GenericValue R;   // Result
614
615  switch (I.getPredicate()) {
616  default:
617    dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
618    llvm_unreachable(0);
619  break;
620  case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
621  break;
622  case FCmpInst::FCMP_TRUE:  R = executeFCMP_BOOL(Src1, Src2, Ty, true);
623  break;
624  case FCmpInst::FCMP_ORD:   R = executeFCMP_ORD(Src1, Src2, Ty); break;
625  case FCmpInst::FCMP_UNO:   R = executeFCMP_UNO(Src1, Src2, Ty); break;
626  case FCmpInst::FCMP_UEQ:   R = executeFCMP_UEQ(Src1, Src2, Ty); break;
627  case FCmpInst::FCMP_OEQ:   R = executeFCMP_OEQ(Src1, Src2, Ty); break;
628  case FCmpInst::FCMP_UNE:   R = executeFCMP_UNE(Src1, Src2, Ty); break;
629  case FCmpInst::FCMP_ONE:   R = executeFCMP_ONE(Src1, Src2, Ty); break;
630  case FCmpInst::FCMP_ULT:   R = executeFCMP_ULT(Src1, Src2, Ty); break;
631  case FCmpInst::FCMP_OLT:   R = executeFCMP_OLT(Src1, Src2, Ty); break;
632  case FCmpInst::FCMP_UGT:   R = executeFCMP_UGT(Src1, Src2, Ty); break;
633  case FCmpInst::FCMP_OGT:   R = executeFCMP_OGT(Src1, Src2, Ty); break;
634  case FCmpInst::FCMP_ULE:   R = executeFCMP_ULE(Src1, Src2, Ty); break;
635  case FCmpInst::FCMP_OLE:   R = executeFCMP_OLE(Src1, Src2, Ty); break;
636  case FCmpInst::FCMP_UGE:   R = executeFCMP_UGE(Src1, Src2, Ty); break;
637  case FCmpInst::FCMP_OGE:   R = executeFCMP_OGE(Src1, Src2, Ty); break;
638  }
639
640  SetValue(&I, R, SF);
641}
642
643static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
644                                   GenericValue Src2, Type *Ty) {
645  GenericValue Result;
646  switch (predicate) {
647  case ICmpInst::ICMP_EQ:    return executeICMP_EQ(Src1, Src2, Ty);
648  case ICmpInst::ICMP_NE:    return executeICMP_NE(Src1, Src2, Ty);
649  case ICmpInst::ICMP_UGT:   return executeICMP_UGT(Src1, Src2, Ty);
650  case ICmpInst::ICMP_SGT:   return executeICMP_SGT(Src1, Src2, Ty);
651  case ICmpInst::ICMP_ULT:   return executeICMP_ULT(Src1, Src2, Ty);
652  case ICmpInst::ICMP_SLT:   return executeICMP_SLT(Src1, Src2, Ty);
653  case ICmpInst::ICMP_UGE:   return executeICMP_UGE(Src1, Src2, Ty);
654  case ICmpInst::ICMP_SGE:   return executeICMP_SGE(Src1, Src2, Ty);
655  case ICmpInst::ICMP_ULE:   return executeICMP_ULE(Src1, Src2, Ty);
656  case ICmpInst::ICMP_SLE:   return executeICMP_SLE(Src1, Src2, Ty);
657  case FCmpInst::FCMP_ORD:   return executeFCMP_ORD(Src1, Src2, Ty);
658  case FCmpInst::FCMP_UNO:   return executeFCMP_UNO(Src1, Src2, Ty);
659  case FCmpInst::FCMP_OEQ:   return executeFCMP_OEQ(Src1, Src2, Ty);
660  case FCmpInst::FCMP_UEQ:   return executeFCMP_UEQ(Src1, Src2, Ty);
661  case FCmpInst::FCMP_ONE:   return executeFCMP_ONE(Src1, Src2, Ty);
662  case FCmpInst::FCMP_UNE:   return executeFCMP_UNE(Src1, Src2, Ty);
663  case FCmpInst::FCMP_OLT:   return executeFCMP_OLT(Src1, Src2, Ty);
664  case FCmpInst::FCMP_ULT:   return executeFCMP_ULT(Src1, Src2, Ty);
665  case FCmpInst::FCMP_OGT:   return executeFCMP_OGT(Src1, Src2, Ty);
666  case FCmpInst::FCMP_UGT:   return executeFCMP_UGT(Src1, Src2, Ty);
667  case FCmpInst::FCMP_OLE:   return executeFCMP_OLE(Src1, Src2, Ty);
668  case FCmpInst::FCMP_ULE:   return executeFCMP_ULE(Src1, Src2, Ty);
669  case FCmpInst::FCMP_OGE:   return executeFCMP_OGE(Src1, Src2, Ty);
670  case FCmpInst::FCMP_UGE:   return executeFCMP_UGE(Src1, Src2, Ty);
671  case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
672  case FCmpInst::FCMP_TRUE:  return executeFCMP_BOOL(Src1, Src2, Ty, true);
673  default:
674    dbgs() << "Unhandled Cmp predicate\n";
675    llvm_unreachable(0);
676  }
677}
678
679void Interpreter::visitBinaryOperator(BinaryOperator &I) {
680  ExecutionContext &SF = ECStack.back();
681  Type *Ty    = I.getOperand(0)->getType();
682  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
683  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
684  GenericValue R;   // Result
685
686  // First process vector operation
687  if (Ty->isVectorTy()) {
688    assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
689    R.AggregateVal.resize(Src1.AggregateVal.size());
690
691    // Macros to execute binary operation 'OP' over integer vectors
692#define INTEGER_VECTOR_OPERATION(OP)                               \
693    for (unsigned i = 0; i < R.AggregateVal.size(); ++i)           \
694      R.AggregateVal[i].IntVal =                                   \
695      Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
696
697    // Additional macros to execute binary operations udiv/sdiv/urem/srem since
698    // they have different notation.
699#define INTEGER_VECTOR_FUNCTION(OP)                                \
700    for (unsigned i = 0; i < R.AggregateVal.size(); ++i)           \
701      R.AggregateVal[i].IntVal =                                   \
702      Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
703
704    // Macros to execute binary operation 'OP' over floating point type TY
705    // (float or double) vectors
706#define FLOAT_VECTOR_FUNCTION(OP, TY)                               \
707      for (unsigned i = 0; i < R.AggregateVal.size(); ++i)          \
708        R.AggregateVal[i].TY =                                      \
709        Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
710
711    // Macros to choose appropriate TY: float or double and run operation
712    // execution
713#define FLOAT_VECTOR_OP(OP) {                                         \
714  if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy())        \
715    FLOAT_VECTOR_FUNCTION(OP, FloatVal)                               \
716  else {                                                              \
717    if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy())     \
718      FLOAT_VECTOR_FUNCTION(OP, DoubleVal)                            \
719    else {                                                            \
720      dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
721      llvm_unreachable(0);                                            \
722    }                                                                 \
723  }                                                                   \
724}
725
726    switch(I.getOpcode()){
727    default:
728      dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
729      llvm_unreachable(0);
730      break;
731    case Instruction::Add:   INTEGER_VECTOR_OPERATION(+) break;
732    case Instruction::Sub:   INTEGER_VECTOR_OPERATION(-) break;
733    case Instruction::Mul:   INTEGER_VECTOR_OPERATION(*) break;
734    case Instruction::UDiv:  INTEGER_VECTOR_FUNCTION(udiv) break;
735    case Instruction::SDiv:  INTEGER_VECTOR_FUNCTION(sdiv) break;
736    case Instruction::URem:  INTEGER_VECTOR_FUNCTION(urem) break;
737    case Instruction::SRem:  INTEGER_VECTOR_FUNCTION(srem) break;
738    case Instruction::And:   INTEGER_VECTOR_OPERATION(&) break;
739    case Instruction::Or:    INTEGER_VECTOR_OPERATION(|) break;
740    case Instruction::Xor:   INTEGER_VECTOR_OPERATION(^) break;
741    case Instruction::FAdd:  FLOAT_VECTOR_OP(+) break;
742    case Instruction::FSub:  FLOAT_VECTOR_OP(-) break;
743    case Instruction::FMul:  FLOAT_VECTOR_OP(*) break;
744    case Instruction::FDiv:  FLOAT_VECTOR_OP(/) break;
745    case Instruction::FRem:
746      if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy())
747        for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
748          R.AggregateVal[i].FloatVal =
749          fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
750      else {
751        if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy())
752          for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
753            R.AggregateVal[i].DoubleVal =
754            fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
755        else {
756          dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
757          llvm_unreachable(0);
758        }
759      }
760      break;
761    }
762  } else {
763    switch (I.getOpcode()) {
764    default:
765      dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
766      llvm_unreachable(0);
767      break;
768    case Instruction::Add:   R.IntVal = Src1.IntVal + Src2.IntVal; break;
769    case Instruction::Sub:   R.IntVal = Src1.IntVal - Src2.IntVal; break;
770    case Instruction::Mul:   R.IntVal = Src1.IntVal * Src2.IntVal; break;
771    case Instruction::FAdd:  executeFAddInst(R, Src1, Src2, Ty); break;
772    case Instruction::FSub:  executeFSubInst(R, Src1, Src2, Ty); break;
773    case Instruction::FMul:  executeFMulInst(R, Src1, Src2, Ty); break;
774    case Instruction::FDiv:  executeFDivInst(R, Src1, Src2, Ty); break;
775    case Instruction::FRem:  executeFRemInst(R, Src1, Src2, Ty); break;
776    case Instruction::UDiv:  R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
777    case Instruction::SDiv:  R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
778    case Instruction::URem:  R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
779    case Instruction::SRem:  R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
780    case Instruction::And:   R.IntVal = Src1.IntVal & Src2.IntVal; break;
781    case Instruction::Or:    R.IntVal = Src1.IntVal | Src2.IntVal; break;
782    case Instruction::Xor:   R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
783    }
784  }
785  SetValue(&I, R, SF);
786}
787
788static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
789                                      GenericValue Src3, const Type *Ty) {
790    GenericValue Dest;
791    if(Ty->isVectorTy()) {
792      assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
793      assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
794      Dest.AggregateVal.resize( Src1.AggregateVal.size() );
795      for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
796        Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
797          Src3.AggregateVal[i] : Src2.AggregateVal[i];
798    } else {
799      Dest = (Src1.IntVal == 0) ? Src3 : Src2;
800    }
801    return Dest;
802}
803
804void Interpreter::visitSelectInst(SelectInst &I) {
805  ExecutionContext &SF = ECStack.back();
806  const Type * Ty = I.getOperand(0)->getType();
807  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
808  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
809  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
810  GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
811  SetValue(&I, R, SF);
812}
813
814//===----------------------------------------------------------------------===//
815//                     Terminator Instruction Implementations
816//===----------------------------------------------------------------------===//
817
818void Interpreter::exitCalled(GenericValue GV) {
819  // runAtExitHandlers() assumes there are no stack frames, but
820  // if exit() was called, then it had a stack frame. Blow away
821  // the stack before interpreting atexit handlers.
822  ECStack.clear();
823  runAtExitHandlers();
824  exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
825}
826
827/// Pop the last stack frame off of ECStack and then copy the result
828/// back into the result variable if we are not returning void. The
829/// result variable may be the ExitValue, or the Value of the calling
830/// CallInst if there was a previous stack frame. This method may
831/// invalidate any ECStack iterators you have. This method also takes
832/// care of switching to the normal destination BB, if we are returning
833/// from an invoke.
834///
835void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
836                                                 GenericValue Result) {
837  // Pop the current stack frame.
838  ECStack.pop_back();
839
840  if (ECStack.empty()) {  // Finished main.  Put result into exit code...
841    if (RetTy && !RetTy->isVoidTy()) {          // Nonvoid return type?
842      ExitValue = Result;   // Capture the exit value of the program
843    } else {
844      memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
845    }
846  } else {
847    // If we have a previous stack frame, and we have a previous call,
848    // fill in the return value...
849    ExecutionContext &CallingSF = ECStack.back();
850    if (Instruction *I = CallingSF.Caller.getInstruction()) {
851      // Save result...
852      if (!CallingSF.Caller.getType()->isVoidTy())
853        SetValue(I, Result, CallingSF);
854      if (InvokeInst *II = dyn_cast<InvokeInst> (I))
855        SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
856      CallingSF.Caller = CallSite();          // We returned from the call...
857    }
858  }
859}
860
861void Interpreter::visitReturnInst(ReturnInst &I) {
862  ExecutionContext &SF = ECStack.back();
863  Type *RetTy = Type::getVoidTy(I.getContext());
864  GenericValue Result;
865
866  // Save away the return value... (if we are not 'ret void')
867  if (I.getNumOperands()) {
868    RetTy  = I.getReturnValue()->getType();
869    Result = getOperandValue(I.getReturnValue(), SF);
870  }
871
872  popStackAndReturnValueToCaller(RetTy, Result);
873}
874
875void Interpreter::visitUnreachableInst(UnreachableInst &I) {
876  report_fatal_error("Program executed an 'unreachable' instruction!");
877}
878
879void Interpreter::visitBranchInst(BranchInst &I) {
880  ExecutionContext &SF = ECStack.back();
881  BasicBlock *Dest;
882
883  Dest = I.getSuccessor(0);          // Uncond branches have a fixed dest...
884  if (!I.isUnconditional()) {
885    Value *Cond = I.getCondition();
886    if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
887      Dest = I.getSuccessor(1);
888  }
889  SwitchToNewBasicBlock(Dest, SF);
890}
891
892void Interpreter::visitSwitchInst(SwitchInst &I) {
893  ExecutionContext &SF = ECStack.back();
894  Value* Cond = I.getCondition();
895  Type *ElTy = Cond->getType();
896  GenericValue CondVal = getOperandValue(Cond, SF);
897
898  // Check to see if any of the cases match...
899  BasicBlock *Dest = 0;
900  for (SwitchInst::CaseIt i = I.case_begin(), e = I.case_end(); i != e; ++i) {
901    GenericValue CaseVal = getOperandValue(i.getCaseValue(), SF);
902    if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
903      Dest = cast<BasicBlock>(i.getCaseSuccessor());
904      break;
905    }
906  }
907  if (!Dest) Dest = I.getDefaultDest();   // No cases matched: use default
908  SwitchToNewBasicBlock(Dest, SF);
909}
910
911void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
912  ExecutionContext &SF = ECStack.back();
913  void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
914  SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
915}
916
917
918// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
919// This function handles the actual updating of block and instruction iterators
920// as well as execution of all of the PHI nodes in the destination block.
921//
922// This method does this because all of the PHI nodes must be executed
923// atomically, reading their inputs before any of the results are updated.  Not
924// doing this can cause problems if the PHI nodes depend on other PHI nodes for
925// their inputs.  If the input PHI node is updated before it is read, incorrect
926// results can happen.  Thus we use a two phase approach.
927//
928void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
929  BasicBlock *PrevBB = SF.CurBB;      // Remember where we came from...
930  SF.CurBB   = Dest;                  // Update CurBB to branch destination
931  SF.CurInst = SF.CurBB->begin();     // Update new instruction ptr...
932
933  if (!isa<PHINode>(SF.CurInst)) return;  // Nothing fancy to do
934
935  // Loop over all of the PHI nodes in the current block, reading their inputs.
936  std::vector<GenericValue> ResultValues;
937
938  for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
939    // Search for the value corresponding to this previous bb...
940    int i = PN->getBasicBlockIndex(PrevBB);
941    assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
942    Value *IncomingValue = PN->getIncomingValue(i);
943
944    // Save the incoming value for this PHI node...
945    ResultValues.push_back(getOperandValue(IncomingValue, SF));
946  }
947
948  // Now loop over all of the PHI nodes setting their values...
949  SF.CurInst = SF.CurBB->begin();
950  for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
951    PHINode *PN = cast<PHINode>(SF.CurInst);
952    SetValue(PN, ResultValues[i], SF);
953  }
954}
955
956//===----------------------------------------------------------------------===//
957//                     Memory Instruction Implementations
958//===----------------------------------------------------------------------===//
959
960void Interpreter::visitAllocaInst(AllocaInst &I) {
961  ExecutionContext &SF = ECStack.back();
962
963  Type *Ty = I.getType()->getElementType();  // Type to be allocated
964
965  // Get the number of elements being allocated by the array...
966  unsigned NumElements =
967    getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
968
969  unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
970
971  // Avoid malloc-ing zero bytes, use max()...
972  unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
973
974  // Allocate enough memory to hold the type...
975  void *Memory = malloc(MemToAlloc);
976
977  DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
978               << NumElements << " (Total: " << MemToAlloc << ") at "
979               << uintptr_t(Memory) << '\n');
980
981  GenericValue Result = PTOGV(Memory);
982  assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
983  SetValue(&I, Result, SF);
984
985  if (I.getOpcode() == Instruction::Alloca)
986    ECStack.back().Allocas.add(Memory);
987}
988
989// getElementOffset - The workhorse for getelementptr.
990//
991GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
992                                              gep_type_iterator E,
993                                              ExecutionContext &SF) {
994  assert(Ptr->getType()->isPointerTy() &&
995         "Cannot getElementOffset of a nonpointer type!");
996
997  uint64_t Total = 0;
998
999  for (; I != E; ++I) {
1000    if (StructType *STy = dyn_cast<StructType>(*I)) {
1001      const StructLayout *SLO = TD.getStructLayout(STy);
1002
1003      const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
1004      unsigned Index = unsigned(CPU->getZExtValue());
1005
1006      Total += SLO->getElementOffset(Index);
1007    } else {
1008      SequentialType *ST = cast<SequentialType>(*I);
1009      // Get the index number for the array... which must be long type...
1010      GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
1011
1012      int64_t Idx;
1013      unsigned BitWidth =
1014        cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
1015      if (BitWidth == 32)
1016        Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
1017      else {
1018        assert(BitWidth == 64 && "Invalid index type for getelementptr");
1019        Idx = (int64_t)IdxGV.IntVal.getZExtValue();
1020      }
1021      Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
1022    }
1023  }
1024
1025  GenericValue Result;
1026  Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
1027  DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
1028  return Result;
1029}
1030
1031void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
1032  ExecutionContext &SF = ECStack.back();
1033  SetValue(&I, executeGEPOperation(I.getPointerOperand(),
1034                                   gep_type_begin(I), gep_type_end(I), SF), SF);
1035}
1036
1037void Interpreter::visitLoadInst(LoadInst &I) {
1038  ExecutionContext &SF = ECStack.back();
1039  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1040  GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
1041  GenericValue Result;
1042  LoadValueFromMemory(Result, Ptr, I.getType());
1043  SetValue(&I, Result, SF);
1044  if (I.isVolatile() && PrintVolatile)
1045    dbgs() << "Volatile load " << I;
1046}
1047
1048void Interpreter::visitStoreInst(StoreInst &I) {
1049  ExecutionContext &SF = ECStack.back();
1050  GenericValue Val = getOperandValue(I.getOperand(0), SF);
1051  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1052  StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
1053                     I.getOperand(0)->getType());
1054  if (I.isVolatile() && PrintVolatile)
1055    dbgs() << "Volatile store: " << I;
1056}
1057
1058//===----------------------------------------------------------------------===//
1059//                 Miscellaneous Instruction Implementations
1060//===----------------------------------------------------------------------===//
1061
1062void Interpreter::visitCallSite(CallSite CS) {
1063  ExecutionContext &SF = ECStack.back();
1064
1065  // Check to see if this is an intrinsic function call...
1066  Function *F = CS.getCalledFunction();
1067  if (F && F->isDeclaration())
1068    switch (F->getIntrinsicID()) {
1069    case Intrinsic::not_intrinsic:
1070      break;
1071    case Intrinsic::vastart: { // va_start
1072      GenericValue ArgIndex;
1073      ArgIndex.UIntPairVal.first = ECStack.size() - 1;
1074      ArgIndex.UIntPairVal.second = 0;
1075      SetValue(CS.getInstruction(), ArgIndex, SF);
1076      return;
1077    }
1078    case Intrinsic::vaend:    // va_end is a noop for the interpreter
1079      return;
1080    case Intrinsic::vacopy:   // va_copy: dest = src
1081      SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
1082      return;
1083    default:
1084      // If it is an unknown intrinsic function, use the intrinsic lowering
1085      // class to transform it into hopefully tasty LLVM code.
1086      //
1087      BasicBlock::iterator me(CS.getInstruction());
1088      BasicBlock *Parent = CS.getInstruction()->getParent();
1089      bool atBegin(Parent->begin() == me);
1090      if (!atBegin)
1091        --me;
1092      IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
1093
1094      // Restore the CurInst pointer to the first instruction newly inserted, if
1095      // any.
1096      if (atBegin) {
1097        SF.CurInst = Parent->begin();
1098      } else {
1099        SF.CurInst = me;
1100        ++SF.CurInst;
1101      }
1102      return;
1103    }
1104
1105
1106  SF.Caller = CS;
1107  std::vector<GenericValue> ArgVals;
1108  const unsigned NumArgs = SF.Caller.arg_size();
1109  ArgVals.reserve(NumArgs);
1110  uint16_t pNum = 1;
1111  for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
1112         e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
1113    Value *V = *i;
1114    ArgVals.push_back(getOperandValue(V, SF));
1115  }
1116
1117  // To handle indirect calls, we must get the pointer value from the argument
1118  // and treat it as a function pointer.
1119  GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
1120  callFunction((Function*)GVTOP(SRC), ArgVals);
1121}
1122
1123// auxilary function for shift operations
1124static unsigned getShiftAmount(uint64_t orgShiftAmount,
1125                               llvm::APInt valueToShift) {
1126  unsigned valueWidth = valueToShift.getBitWidth();
1127  if (orgShiftAmount < (uint64_t)valueWidth)
1128    return orgShiftAmount;
1129  // according to the llvm documentation, if orgShiftAmount > valueWidth,
1130  // the result is undfeined. but we do shift by this rule:
1131  return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
1132}
1133
1134
1135void Interpreter::visitShl(BinaryOperator &I) {
1136  ExecutionContext &SF = ECStack.back();
1137  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1138  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1139  GenericValue Dest;
1140  const Type *Ty = I.getType();
1141
1142  if (Ty->isVectorTy()) {
1143    uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1144    assert(src1Size == Src2.AggregateVal.size());
1145    for (unsigned i = 0; i < src1Size; i++) {
1146      GenericValue Result;
1147      uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1148      llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1149      Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1150      Dest.AggregateVal.push_back(Result);
1151    }
1152  } else {
1153    // scalar
1154    uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1155    llvm::APInt valueToShift = Src1.IntVal;
1156    Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1157  }
1158
1159  SetValue(&I, Dest, SF);
1160}
1161
1162void Interpreter::visitLShr(BinaryOperator &I) {
1163  ExecutionContext &SF = ECStack.back();
1164  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1165  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1166  GenericValue Dest;
1167  const Type *Ty = I.getType();
1168
1169  if (Ty->isVectorTy()) {
1170    uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1171    assert(src1Size == Src2.AggregateVal.size());
1172    for (unsigned i = 0; i < src1Size; i++) {
1173      GenericValue Result;
1174      uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1175      llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1176      Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1177      Dest.AggregateVal.push_back(Result);
1178    }
1179  } else {
1180    // scalar
1181    uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1182    llvm::APInt valueToShift = Src1.IntVal;
1183    Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1184  }
1185
1186  SetValue(&I, Dest, SF);
1187}
1188
1189void Interpreter::visitAShr(BinaryOperator &I) {
1190  ExecutionContext &SF = ECStack.back();
1191  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1192  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1193  GenericValue Dest;
1194  const Type *Ty = I.getType();
1195
1196  if (Ty->isVectorTy()) {
1197    size_t src1Size = Src1.AggregateVal.size();
1198    assert(src1Size == Src2.AggregateVal.size());
1199    for (unsigned i = 0; i < src1Size; i++) {
1200      GenericValue Result;
1201      uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1202      llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1203      Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1204      Dest.AggregateVal.push_back(Result);
1205    }
1206  } else {
1207    // scalar
1208    uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1209    llvm::APInt valueToShift = Src1.IntVal;
1210    Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1211  }
1212
1213  SetValue(&I, Dest, SF);
1214}
1215
1216GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
1217                                           ExecutionContext &SF) {
1218  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1219  Type *SrcTy = SrcVal->getType();
1220  if (SrcTy->isVectorTy()) {
1221    Type *DstVecTy = DstTy->getScalarType();
1222    unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1223    unsigned NumElts = Src.AggregateVal.size();
1224    // the sizes of src and dst vectors must be equal
1225    Dest.AggregateVal.resize(NumElts);
1226    for (unsigned i = 0; i < NumElts; i++)
1227      Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
1228  } else {
1229    IntegerType *DITy = cast<IntegerType>(DstTy);
1230    unsigned DBitWidth = DITy->getBitWidth();
1231    Dest.IntVal = Src.IntVal.trunc(DBitWidth);
1232  }
1233  return Dest;
1234}
1235
1236GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
1237                                          ExecutionContext &SF) {
1238  const Type *SrcTy = SrcVal->getType();
1239  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1240  if (SrcTy->isVectorTy()) {
1241    const Type *DstVecTy = DstTy->getScalarType();
1242    unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1243    unsigned size = Src.AggregateVal.size();
1244    // the sizes of src and dst vectors must be equal.
1245    Dest.AggregateVal.resize(size);
1246    for (unsigned i = 0; i < size; i++)
1247      Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
1248  } else {
1249    const IntegerType *DITy = cast<IntegerType>(DstTy);
1250    unsigned DBitWidth = DITy->getBitWidth();
1251    Dest.IntVal = Src.IntVal.sext(DBitWidth);
1252  }
1253  return Dest;
1254}
1255
1256GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
1257                                          ExecutionContext &SF) {
1258  const Type *SrcTy = SrcVal->getType();
1259  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1260  if (SrcTy->isVectorTy()) {
1261    const Type *DstVecTy = DstTy->getScalarType();
1262    unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1263
1264    unsigned size = Src.AggregateVal.size();
1265    // the sizes of src and dst vectors must be equal.
1266    Dest.AggregateVal.resize(size);
1267    for (unsigned i = 0; i < size; i++)
1268      Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
1269  } else {
1270    const IntegerType *DITy = cast<IntegerType>(DstTy);
1271    unsigned DBitWidth = DITy->getBitWidth();
1272    Dest.IntVal = Src.IntVal.zext(DBitWidth);
1273  }
1274  return Dest;
1275}
1276
1277GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
1278                                             ExecutionContext &SF) {
1279  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1280
1281  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1282    assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
1283           DstTy->getScalarType()->isFloatTy() &&
1284           "Invalid FPTrunc instruction");
1285
1286    unsigned size = Src.AggregateVal.size();
1287    // the sizes of src and dst vectors must be equal.
1288    Dest.AggregateVal.resize(size);
1289    for (unsigned i = 0; i < size; i++)
1290      Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
1291  } else {
1292    assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
1293           "Invalid FPTrunc instruction");
1294    Dest.FloatVal = (float)Src.DoubleVal;
1295  }
1296
1297  return Dest;
1298}
1299
1300GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
1301                                           ExecutionContext &SF) {
1302  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1303
1304  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1305    assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
1306           DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
1307
1308    unsigned size = Src.AggregateVal.size();
1309    // the sizes of src and dst vectors must be equal.
1310    Dest.AggregateVal.resize(size);
1311    for (unsigned i = 0; i < size; i++)
1312      Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
1313  } else {
1314    assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
1315           "Invalid FPExt instruction");
1316    Dest.DoubleVal = (double)Src.FloatVal;
1317  }
1318
1319  return Dest;
1320}
1321
1322GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
1323                                            ExecutionContext &SF) {
1324  Type *SrcTy = SrcVal->getType();
1325  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1326
1327  if (SrcTy->getTypeID() == Type::VectorTyID) {
1328    const Type *DstVecTy = DstTy->getScalarType();
1329    const Type *SrcVecTy = SrcTy->getScalarType();
1330    uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1331    unsigned size = Src.AggregateVal.size();
1332    // the sizes of src and dst vectors must be equal.
1333    Dest.AggregateVal.resize(size);
1334
1335    if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1336      assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1337      for (unsigned i = 0; i < size; i++)
1338        Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1339            Src.AggregateVal[i].FloatVal, DBitWidth);
1340    } else {
1341      for (unsigned i = 0; i < size; i++)
1342        Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1343            Src.AggregateVal[i].DoubleVal, DBitWidth);
1344    }
1345  } else {
1346    // scalar
1347    uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1348    assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1349
1350    if (SrcTy->getTypeID() == Type::FloatTyID)
1351      Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1352    else {
1353      Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1354    }
1355  }
1356
1357  return Dest;
1358}
1359
1360GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
1361                                            ExecutionContext &SF) {
1362  Type *SrcTy = SrcVal->getType();
1363  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1364
1365  if (SrcTy->getTypeID() == Type::VectorTyID) {
1366    const Type *DstVecTy = DstTy->getScalarType();
1367    const Type *SrcVecTy = SrcTy->getScalarType();
1368    uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1369    unsigned size = Src.AggregateVal.size();
1370    // the sizes of src and dst vectors must be equal
1371    Dest.AggregateVal.resize(size);
1372
1373    if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1374      assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1375      for (unsigned i = 0; i < size; i++)
1376        Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1377            Src.AggregateVal[i].FloatVal, DBitWidth);
1378    } else {
1379      for (unsigned i = 0; i < size; i++)
1380        Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1381            Src.AggregateVal[i].DoubleVal, DBitWidth);
1382    }
1383  } else {
1384    // scalar
1385    unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1386    assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1387
1388    if (SrcTy->getTypeID() == Type::FloatTyID)
1389      Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1390    else {
1391      Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1392    }
1393  }
1394  return Dest;
1395}
1396
1397GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
1398                                            ExecutionContext &SF) {
1399  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1400
1401  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1402    const Type *DstVecTy = DstTy->getScalarType();
1403    unsigned size = Src.AggregateVal.size();
1404    // the sizes of src and dst vectors must be equal
1405    Dest.AggregateVal.resize(size);
1406
1407    if (DstVecTy->getTypeID() == Type::FloatTyID) {
1408      assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1409      for (unsigned i = 0; i < size; i++)
1410        Dest.AggregateVal[i].FloatVal =
1411            APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
1412    } else {
1413      for (unsigned i = 0; i < size; i++)
1414        Dest.AggregateVal[i].DoubleVal =
1415            APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
1416    }
1417  } else {
1418    // scalar
1419    assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1420    if (DstTy->getTypeID() == Type::FloatTyID)
1421      Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
1422    else {
1423      Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
1424    }
1425  }
1426  return Dest;
1427}
1428
1429GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
1430                                            ExecutionContext &SF) {
1431  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1432
1433  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1434    const Type *DstVecTy = DstTy->getScalarType();
1435    unsigned size = Src.AggregateVal.size();
1436    // the sizes of src and dst vectors must be equal
1437    Dest.AggregateVal.resize(size);
1438
1439    if (DstVecTy->getTypeID() == Type::FloatTyID) {
1440      assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1441      for (unsigned i = 0; i < size; i++)
1442        Dest.AggregateVal[i].FloatVal =
1443            APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
1444    } else {
1445      for (unsigned i = 0; i < size; i++)
1446        Dest.AggregateVal[i].DoubleVal =
1447            APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
1448    }
1449  } else {
1450    // scalar
1451    assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1452
1453    if (DstTy->getTypeID() == Type::FloatTyID)
1454      Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
1455    else {
1456      Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
1457    }
1458  }
1459
1460  return Dest;
1461}
1462
1463GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
1464                                              ExecutionContext &SF) {
1465  uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1466  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1467  assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1468
1469  Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1470  return Dest;
1471}
1472
1473GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
1474                                              ExecutionContext &SF) {
1475  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1476  assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1477
1478  uint32_t PtrSize = TD.getPointerSizeInBits();
1479  if (PtrSize != Src.IntVal.getBitWidth())
1480    Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1481
1482  Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
1483  return Dest;
1484}
1485
1486GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
1487                                             ExecutionContext &SF) {
1488
1489  // This instruction supports bitwise conversion of vectors to integers and
1490  // to vectors of other types (as long as they have the same size)
1491  Type *SrcTy = SrcVal->getType();
1492  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1493
1494  if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1495      (DstTy->getTypeID() == Type::VectorTyID)) {
1496    // vector src bitcast to vector dst or vector src bitcast to scalar dst or
1497    // scalar src bitcast to vector dst
1498    bool isLittleEndian = TD.isLittleEndian();
1499    GenericValue TempDst, TempSrc, SrcVec;
1500    const Type *SrcElemTy;
1501    const Type *DstElemTy;
1502    unsigned SrcBitSize;
1503    unsigned DstBitSize;
1504    unsigned SrcNum;
1505    unsigned DstNum;
1506
1507    if (SrcTy->getTypeID() == Type::VectorTyID) {
1508      SrcElemTy = SrcTy->getScalarType();
1509      SrcBitSize = SrcTy->getScalarSizeInBits();
1510      SrcNum = Src.AggregateVal.size();
1511      SrcVec = Src;
1512    } else {
1513      // if src is scalar value, make it vector <1 x type>
1514      SrcElemTy = SrcTy;
1515      SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1516      SrcNum = 1;
1517      SrcVec.AggregateVal.push_back(Src);
1518    }
1519
1520    if (DstTy->getTypeID() == Type::VectorTyID) {
1521      DstElemTy = DstTy->getScalarType();
1522      DstBitSize = DstTy->getScalarSizeInBits();
1523      DstNum = (SrcNum * SrcBitSize) / DstBitSize;
1524    } else {
1525      DstElemTy = DstTy;
1526      DstBitSize = DstTy->getPrimitiveSizeInBits();
1527      DstNum = 1;
1528    }
1529
1530    if (SrcNum * SrcBitSize != DstNum * DstBitSize)
1531      llvm_unreachable("Invalid BitCast");
1532
1533    // If src is floating point, cast to integer first.
1534    TempSrc.AggregateVal.resize(SrcNum);
1535    if (SrcElemTy->isFloatTy()) {
1536      for (unsigned i = 0; i < SrcNum; i++)
1537        TempSrc.AggregateVal[i].IntVal =
1538            APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
1539
1540    } else if (SrcElemTy->isDoubleTy()) {
1541      for (unsigned i = 0; i < SrcNum; i++)
1542        TempSrc.AggregateVal[i].IntVal =
1543            APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
1544    } else if (SrcElemTy->isIntegerTy()) {
1545      for (unsigned i = 0; i < SrcNum; i++)
1546        TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
1547    } else {
1548      // Pointers are not allowed as the element type of vector.
1549      llvm_unreachable("Invalid Bitcast");
1550    }
1551
1552    // now TempSrc is integer type vector
1553    if (DstNum < SrcNum) {
1554      // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
1555      unsigned Ratio = SrcNum / DstNum;
1556      unsigned SrcElt = 0;
1557      for (unsigned i = 0; i < DstNum; i++) {
1558        GenericValue Elt;
1559        Elt.IntVal = 0;
1560        Elt.IntVal = Elt.IntVal.zext(DstBitSize);
1561        unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
1562        for (unsigned j = 0; j < Ratio; j++) {
1563          APInt Tmp;
1564          Tmp = Tmp.zext(SrcBitSize);
1565          Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
1566          Tmp = Tmp.zext(DstBitSize);
1567          Tmp = Tmp.shl(ShiftAmt);
1568          ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
1569          Elt.IntVal |= Tmp;
1570        }
1571        TempDst.AggregateVal.push_back(Elt);
1572      }
1573    } else {
1574      // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
1575      unsigned Ratio = DstNum / SrcNum;
1576      for (unsigned i = 0; i < SrcNum; i++) {
1577        unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
1578        for (unsigned j = 0; j < Ratio; j++) {
1579          GenericValue Elt;
1580          Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
1581          Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
1582          Elt.IntVal = Elt.IntVal.lshr(ShiftAmt);
1583          // it could be DstBitSize == SrcBitSize, so check it
1584          if (DstBitSize < SrcBitSize)
1585            Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
1586          ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
1587          TempDst.AggregateVal.push_back(Elt);
1588        }
1589      }
1590    }
1591
1592    // convert result from integer to specified type
1593    if (DstTy->getTypeID() == Type::VectorTyID) {
1594      if (DstElemTy->isDoubleTy()) {
1595        Dest.AggregateVal.resize(DstNum);
1596        for (unsigned i = 0; i < DstNum; i++)
1597          Dest.AggregateVal[i].DoubleVal =
1598              TempDst.AggregateVal[i].IntVal.bitsToDouble();
1599      } else if (DstElemTy->isFloatTy()) {
1600        Dest.AggregateVal.resize(DstNum);
1601        for (unsigned i = 0; i < DstNum; i++)
1602          Dest.AggregateVal[i].FloatVal =
1603              TempDst.AggregateVal[i].IntVal.bitsToFloat();
1604      } else {
1605        Dest = TempDst;
1606      }
1607    } else {
1608      if (DstElemTy->isDoubleTy())
1609        Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
1610      else if (DstElemTy->isFloatTy()) {
1611        Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
1612      } else {
1613        Dest.IntVal = TempDst.AggregateVal[0].IntVal;
1614      }
1615    }
1616  } else { //  if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1617           //     (DstTy->getTypeID() == Type::VectorTyID))
1618
1619    // scalar src bitcast to scalar dst
1620    if (DstTy->isPointerTy()) {
1621      assert(SrcTy->isPointerTy() && "Invalid BitCast");
1622      Dest.PointerVal = Src.PointerVal;
1623    } else if (DstTy->isIntegerTy()) {
1624      if (SrcTy->isFloatTy())
1625        Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1626      else if (SrcTy->isDoubleTy()) {
1627        Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1628      } else if (SrcTy->isIntegerTy()) {
1629        Dest.IntVal = Src.IntVal;
1630      } else {
1631        llvm_unreachable("Invalid BitCast");
1632      }
1633    } else if (DstTy->isFloatTy()) {
1634      if (SrcTy->isIntegerTy())
1635        Dest.FloatVal = Src.IntVal.bitsToFloat();
1636      else {
1637        Dest.FloatVal = Src.FloatVal;
1638      }
1639    } else if (DstTy->isDoubleTy()) {
1640      if (SrcTy->isIntegerTy())
1641        Dest.DoubleVal = Src.IntVal.bitsToDouble();
1642      else {
1643        Dest.DoubleVal = Src.DoubleVal;
1644      }
1645    } else {
1646      llvm_unreachable("Invalid Bitcast");
1647    }
1648  }
1649
1650  return Dest;
1651}
1652
1653void Interpreter::visitTruncInst(TruncInst &I) {
1654  ExecutionContext &SF = ECStack.back();
1655  SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1656}
1657
1658void Interpreter::visitSExtInst(SExtInst &I) {
1659  ExecutionContext &SF = ECStack.back();
1660  SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1661}
1662
1663void Interpreter::visitZExtInst(ZExtInst &I) {
1664  ExecutionContext &SF = ECStack.back();
1665  SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1666}
1667
1668void Interpreter::visitFPTruncInst(FPTruncInst &I) {
1669  ExecutionContext &SF = ECStack.back();
1670  SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1671}
1672
1673void Interpreter::visitFPExtInst(FPExtInst &I) {
1674  ExecutionContext &SF = ECStack.back();
1675  SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1676}
1677
1678void Interpreter::visitUIToFPInst(UIToFPInst &I) {
1679  ExecutionContext &SF = ECStack.back();
1680  SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1681}
1682
1683void Interpreter::visitSIToFPInst(SIToFPInst &I) {
1684  ExecutionContext &SF = ECStack.back();
1685  SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1686}
1687
1688void Interpreter::visitFPToUIInst(FPToUIInst &I) {
1689  ExecutionContext &SF = ECStack.back();
1690  SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1691}
1692
1693void Interpreter::visitFPToSIInst(FPToSIInst &I) {
1694  ExecutionContext &SF = ECStack.back();
1695  SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1696}
1697
1698void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
1699  ExecutionContext &SF = ECStack.back();
1700  SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1701}
1702
1703void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
1704  ExecutionContext &SF = ECStack.back();
1705  SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1706}
1707
1708void Interpreter::visitBitCastInst(BitCastInst &I) {
1709  ExecutionContext &SF = ECStack.back();
1710  SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1711}
1712
1713#define IMPLEMENT_VAARG(TY) \
1714   case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1715
1716void Interpreter::visitVAArgInst(VAArgInst &I) {
1717  ExecutionContext &SF = ECStack.back();
1718
1719  // Get the incoming valist parameter.  LLI treats the valist as a
1720  // (ec-stack-depth var-arg-index) pair.
1721  GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1722  GenericValue Dest;
1723  GenericValue Src = ECStack[VAList.UIntPairVal.first]
1724                      .VarArgs[VAList.UIntPairVal.second];
1725  Type *Ty = I.getType();
1726  switch (Ty->getTypeID()) {
1727  case Type::IntegerTyID:
1728    Dest.IntVal = Src.IntVal;
1729    break;
1730  IMPLEMENT_VAARG(Pointer);
1731  IMPLEMENT_VAARG(Float);
1732  IMPLEMENT_VAARG(Double);
1733  default:
1734    dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1735    llvm_unreachable(0);
1736  }
1737
1738  // Set the Value of this Instruction.
1739  SetValue(&I, Dest, SF);
1740
1741  // Move the pointer to the next vararg.
1742  ++VAList.UIntPairVal.second;
1743}
1744
1745void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
1746  ExecutionContext &SF = ECStack.back();
1747  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1748  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1749  GenericValue Dest;
1750
1751  Type *Ty = I.getType();
1752  const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
1753
1754  if(Src1.AggregateVal.size() > indx) {
1755    switch (Ty->getTypeID()) {
1756    default:
1757      dbgs() << "Unhandled destination type for extractelement instruction: "
1758      << *Ty << "\n";
1759      llvm_unreachable(0);
1760      break;
1761    case Type::IntegerTyID:
1762      Dest.IntVal = Src1.AggregateVal[indx].IntVal;
1763      break;
1764    case Type::FloatTyID:
1765      Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
1766      break;
1767    case Type::DoubleTyID:
1768      Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
1769      break;
1770    }
1771  } else {
1772    dbgs() << "Invalid index in extractelement instruction\n";
1773  }
1774
1775  SetValue(&I, Dest, SF);
1776}
1777
1778void Interpreter::visitInsertElementInst(InsertElementInst &I) {
1779  ExecutionContext &SF = ECStack.back();
1780  Type *Ty = I.getType();
1781
1782  if(!(Ty->isVectorTy()) )
1783    llvm_unreachable("Unhandled dest type for insertelement instruction");
1784
1785  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1786  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1787  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1788  GenericValue Dest;
1789
1790  Type *TyContained = Ty->getContainedType(0);
1791
1792  const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
1793  Dest.AggregateVal = Src1.AggregateVal;
1794
1795  if(Src1.AggregateVal.size() <= indx)
1796      llvm_unreachable("Invalid index in insertelement instruction");
1797  switch (TyContained->getTypeID()) {
1798    default:
1799      llvm_unreachable("Unhandled dest type for insertelement instruction");
1800    case Type::IntegerTyID:
1801      Dest.AggregateVal[indx].IntVal = Src2.IntVal;
1802      break;
1803    case Type::FloatTyID:
1804      Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
1805      break;
1806    case Type::DoubleTyID:
1807      Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
1808      break;
1809  }
1810  SetValue(&I, Dest, SF);
1811}
1812
1813void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
1814  ExecutionContext &SF = ECStack.back();
1815
1816  Type *Ty = I.getType();
1817  if(!(Ty->isVectorTy()))
1818    llvm_unreachable("Unhandled dest type for shufflevector instruction");
1819
1820  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1821  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1822  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1823  GenericValue Dest;
1824
1825  // There is no need to check types of src1 and src2, because the compiled
1826  // bytecode can't contain different types for src1 and src2 for a
1827  // shufflevector instruction.
1828
1829  Type *TyContained = Ty->getContainedType(0);
1830  unsigned src1Size = (unsigned)Src1.AggregateVal.size();
1831  unsigned src2Size = (unsigned)Src2.AggregateVal.size();
1832  unsigned src3Size = (unsigned)Src3.AggregateVal.size();
1833
1834  Dest.AggregateVal.resize(src3Size);
1835
1836  switch (TyContained->getTypeID()) {
1837    default:
1838      llvm_unreachable("Unhandled dest type for insertelement instruction");
1839      break;
1840    case Type::IntegerTyID:
1841      for( unsigned i=0; i<src3Size; i++) {
1842        unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1843        if(j < src1Size)
1844          Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
1845        else if(j < src1Size + src2Size)
1846          Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
1847        else
1848          // The selector may not be greater than sum of lengths of first and
1849          // second operands and llasm should not allow situation like
1850          // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
1851          //                      <2 x i32> < i32 0, i32 5 >,
1852          // where i32 5 is invalid, but let it be additional check here:
1853          llvm_unreachable("Invalid mask in shufflevector instruction");
1854      }
1855      break;
1856    case Type::FloatTyID:
1857      for( unsigned i=0; i<src3Size; i++) {
1858        unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1859        if(j < src1Size)
1860          Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
1861        else if(j < src1Size + src2Size)
1862          Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
1863        else
1864          llvm_unreachable("Invalid mask in shufflevector instruction");
1865        }
1866      break;
1867    case Type::DoubleTyID:
1868      for( unsigned i=0; i<src3Size; i++) {
1869        unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1870        if(j < src1Size)
1871          Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
1872        else if(j < src1Size + src2Size)
1873          Dest.AggregateVal[i].DoubleVal =
1874            Src2.AggregateVal[j-src1Size].DoubleVal;
1875        else
1876          llvm_unreachable("Invalid mask in shufflevector instruction");
1877      }
1878      break;
1879  }
1880  SetValue(&I, Dest, SF);
1881}
1882
1883void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
1884  ExecutionContext &SF = ECStack.back();
1885  Value *Agg = I.getAggregateOperand();
1886  GenericValue Dest;
1887  GenericValue Src = getOperandValue(Agg, SF);
1888
1889  ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1890  unsigned Num = I.getNumIndices();
1891  GenericValue *pSrc = &Src;
1892
1893  for (unsigned i = 0 ; i < Num; ++i) {
1894    pSrc = &pSrc->AggregateVal[*IdxBegin];
1895    ++IdxBegin;
1896  }
1897
1898  Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1899  switch (IndexedType->getTypeID()) {
1900    default:
1901      llvm_unreachable("Unhandled dest type for extractelement instruction");
1902    break;
1903    case Type::IntegerTyID:
1904      Dest.IntVal = pSrc->IntVal;
1905    break;
1906    case Type::FloatTyID:
1907      Dest.FloatVal = pSrc->FloatVal;
1908    break;
1909    case Type::DoubleTyID:
1910      Dest.DoubleVal = pSrc->DoubleVal;
1911    break;
1912    case Type::ArrayTyID:
1913    case Type::StructTyID:
1914    case Type::VectorTyID:
1915      Dest.AggregateVal = pSrc->AggregateVal;
1916    break;
1917    case Type::PointerTyID:
1918      Dest.PointerVal = pSrc->PointerVal;
1919    break;
1920  }
1921
1922  SetValue(&I, Dest, SF);
1923}
1924
1925void Interpreter::visitInsertValueInst(InsertValueInst &I) {
1926
1927  ExecutionContext &SF = ECStack.back();
1928  Value *Agg = I.getAggregateOperand();
1929
1930  GenericValue Src1 = getOperandValue(Agg, SF);
1931  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1932  GenericValue Dest = Src1; // Dest is a slightly changed Src1
1933
1934  ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1935  unsigned Num = I.getNumIndices();
1936
1937  GenericValue *pDest = &Dest;
1938  for (unsigned i = 0 ; i < Num; ++i) {
1939    pDest = &pDest->AggregateVal[*IdxBegin];
1940    ++IdxBegin;
1941  }
1942  // pDest points to the target value in the Dest now
1943
1944  Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1945
1946  switch (IndexedType->getTypeID()) {
1947    default:
1948      llvm_unreachable("Unhandled dest type for insertelement instruction");
1949    break;
1950    case Type::IntegerTyID:
1951      pDest->IntVal = Src2.IntVal;
1952    break;
1953    case Type::FloatTyID:
1954      pDest->FloatVal = Src2.FloatVal;
1955    break;
1956    case Type::DoubleTyID:
1957      pDest->DoubleVal = Src2.DoubleVal;
1958    break;
1959    case Type::ArrayTyID:
1960    case Type::StructTyID:
1961    case Type::VectorTyID:
1962      pDest->AggregateVal = Src2.AggregateVal;
1963    break;
1964    case Type::PointerTyID:
1965      pDest->PointerVal = Src2.PointerVal;
1966    break;
1967  }
1968
1969  SetValue(&I, Dest, SF);
1970}
1971
1972GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
1973                                                ExecutionContext &SF) {
1974  switch (CE->getOpcode()) {
1975  case Instruction::Trunc:
1976      return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
1977  case Instruction::ZExt:
1978      return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
1979  case Instruction::SExt:
1980      return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
1981  case Instruction::FPTrunc:
1982      return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
1983  case Instruction::FPExt:
1984      return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
1985  case Instruction::UIToFP:
1986      return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
1987  case Instruction::SIToFP:
1988      return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
1989  case Instruction::FPToUI:
1990      return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
1991  case Instruction::FPToSI:
1992      return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
1993  case Instruction::PtrToInt:
1994      return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
1995  case Instruction::IntToPtr:
1996      return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
1997  case Instruction::BitCast:
1998      return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
1999  case Instruction::GetElementPtr:
2000    return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
2001                               gep_type_end(CE), SF);
2002  case Instruction::FCmp:
2003  case Instruction::ICmp:
2004    return executeCmpInst(CE->getPredicate(),
2005                          getOperandValue(CE->getOperand(0), SF),
2006                          getOperandValue(CE->getOperand(1), SF),
2007                          CE->getOperand(0)->getType());
2008  case Instruction::Select:
2009    return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
2010                             getOperandValue(CE->getOperand(1), SF),
2011                             getOperandValue(CE->getOperand(2), SF),
2012                             CE->getOperand(0)->getType());
2013  default :
2014    break;
2015  }
2016
2017  // The cases below here require a GenericValue parameter for the result
2018  // so we initialize one, compute it and then return it.
2019  GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
2020  GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
2021  GenericValue Dest;
2022  Type * Ty = CE->getOperand(0)->getType();
2023  switch (CE->getOpcode()) {
2024  case Instruction::Add:  Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
2025  case Instruction::Sub:  Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
2026  case Instruction::Mul:  Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
2027  case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
2028  case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
2029  case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
2030  case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
2031  case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
2032  case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
2033  case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
2034  case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
2035  case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
2036  case Instruction::And:  Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
2037  case Instruction::Or:   Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
2038  case Instruction::Xor:  Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
2039  case Instruction::Shl:
2040    Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
2041    break;
2042  case Instruction::LShr:
2043    Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
2044    break;
2045  case Instruction::AShr:
2046    Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
2047    break;
2048  default:
2049    dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
2050    llvm_unreachable("Unhandled ConstantExpr");
2051  }
2052  return Dest;
2053}
2054
2055GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
2056  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
2057    return getConstantExprValue(CE, SF);
2058  } else if (Constant *CPV = dyn_cast<Constant>(V)) {
2059    return getConstantValue(CPV);
2060  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2061    return PTOGV(getPointerToGlobal(GV));
2062  } else {
2063    return SF.Values[V];
2064  }
2065}
2066
2067//===----------------------------------------------------------------------===//
2068//                        Dispatch and Execution Code
2069//===----------------------------------------------------------------------===//
2070
2071//===----------------------------------------------------------------------===//
2072// callFunction - Execute the specified function...
2073//
2074void Interpreter::callFunction(Function *F,
2075                               const std::vector<GenericValue> &ArgVals) {
2076  assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
2077          ECStack.back().Caller.arg_size() == ArgVals.size()) &&
2078         "Incorrect number of arguments passed into function call!");
2079  // Make a new stack frame... and fill it in.
2080  ECStack.push_back(ExecutionContext());
2081  ExecutionContext &StackFrame = ECStack.back();
2082  StackFrame.CurFunction = F;
2083
2084  // Special handling for external functions.
2085  if (F->isDeclaration()) {
2086    GenericValue Result = callExternalFunction (F, ArgVals);
2087    // Simulate a 'ret' instruction of the appropriate type.
2088    popStackAndReturnValueToCaller (F->getReturnType (), Result);
2089    return;
2090  }
2091
2092  // Get pointers to first LLVM BB & Instruction in function.
2093  StackFrame.CurBB     = F->begin();
2094  StackFrame.CurInst   = StackFrame.CurBB->begin();
2095
2096  // Run through the function arguments and initialize their values...
2097  assert((ArgVals.size() == F->arg_size() ||
2098         (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
2099         "Invalid number of values passed to function invocation!");
2100
2101  // Handle non-varargs arguments...
2102  unsigned i = 0;
2103  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
2104       AI != E; ++AI, ++i)
2105    SetValue(AI, ArgVals[i], StackFrame);
2106
2107  // Handle varargs arguments...
2108  StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
2109}
2110
2111
2112void Interpreter::run() {
2113  while (!ECStack.empty()) {
2114    // Interpret a single instruction & increment the "PC".
2115    ExecutionContext &SF = ECStack.back();  // Current stack frame
2116    Instruction &I = *SF.CurInst++;         // Increment before execute
2117
2118    // Track the number of dynamic instructions executed.
2119    ++NumDynamicInsts;
2120
2121    DEBUG(dbgs() << "About to interpret: " << I);
2122    visit(I);   // Dispatch to one of the visit* methods...
2123#if 0
2124    // This is not safe, as visiting the instruction could lower it and free I.
2125DEBUG(
2126    if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
2127        I.getType() != Type::VoidTy) {
2128      dbgs() << "  --> ";
2129      const GenericValue &Val = SF.Values[&I];
2130      switch (I.getType()->getTypeID()) {
2131      default: llvm_unreachable("Invalid GenericValue Type");
2132      case Type::VoidTyID:    dbgs() << "void"; break;
2133      case Type::FloatTyID:   dbgs() << "float " << Val.FloatVal; break;
2134      case Type::DoubleTyID:  dbgs() << "double " << Val.DoubleVal; break;
2135      case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal);
2136        break;
2137      case Type::IntegerTyID:
2138        dbgs() << "i" << Val.IntVal.getBitWidth() << " "
2139               << Val.IntVal.toStringUnsigned(10)
2140               << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
2141        break;
2142      }
2143    });
2144#endif
2145  }
2146}
2147