SelectionDAGBuilder.h revision 263508
1//===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef SELECTIONDAGBUILDER_H
15#define SELECTIONDAGBUILDER_H
16
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/CodeGen/SelectionDAGNodes.h"
21#include "llvm/CodeGen/ValueTypes.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/Support/CallSite.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <vector>
26
27namespace llvm {
28
29class AddrSpaceCastInst;
30class AliasAnalysis;
31class AllocaInst;
32class BasicBlock;
33class BitCastInst;
34class BranchInst;
35class CallInst;
36class DbgValueInst;
37class ExtractElementInst;
38class ExtractValueInst;
39class FCmpInst;
40class FPExtInst;
41class FPToSIInst;
42class FPToUIInst;
43class FPTruncInst;
44class Function;
45class FunctionLoweringInfo;
46class GetElementPtrInst;
47class GCFunctionInfo;
48class ICmpInst;
49class IntToPtrInst;
50class IndirectBrInst;
51class InvokeInst;
52class InsertElementInst;
53class InsertValueInst;
54class Instruction;
55class LoadInst;
56class MachineBasicBlock;
57class MachineInstr;
58class MachineRegisterInfo;
59class MDNode;
60class PHINode;
61class PtrToIntInst;
62class ReturnInst;
63class SDDbgValue;
64class SExtInst;
65class SelectInst;
66class ShuffleVectorInst;
67class SIToFPInst;
68class StoreInst;
69class SwitchInst;
70class DataLayout;
71class TargetLibraryInfo;
72class TargetLowering;
73class TruncInst;
74class UIToFPInst;
75class UnreachableInst;
76class VAArgInst;
77class ZExtInst;
78
79//===----------------------------------------------------------------------===//
80/// SelectionDAGBuilder - This is the common target-independent lowering
81/// implementation that is parameterized by a TargetLowering object.
82///
83class SelectionDAGBuilder {
84  /// CurInst - The current instruction being visited
85  const Instruction *CurInst;
86
87  DenseMap<const Value*, SDValue> NodeMap;
88
89  /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
90  /// to preserve debug information for incoming arguments.
91  DenseMap<const Value*, SDValue> UnusedArgNodeMap;
92
93  /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
94  class DanglingDebugInfo {
95    const DbgValueInst* DI;
96    DebugLoc dl;
97    unsigned SDNodeOrder;
98  public:
99    DanglingDebugInfo() : DI(0), dl(DebugLoc()), SDNodeOrder(0) { }
100    DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
101      DI(di), dl(DL), SDNodeOrder(SDNO) { }
102    const DbgValueInst* getDI() { return DI; }
103    DebugLoc getdl() { return dl; }
104    unsigned getSDNodeOrder() { return SDNodeOrder; }
105  };
106
107  /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
108  /// yet seen the referent.  We defer handling these until we do see it.
109  DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
110
111public:
112  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
113  /// them up and then emit token factor nodes when possible.  This allows us to
114  /// get simple disambiguation between loads without worrying about alias
115  /// analysis.
116  SmallVector<SDValue, 8> PendingLoads;
117private:
118
119  /// PendingExports - CopyToReg nodes that copy values to virtual registers
120  /// for export to other blocks need to be emitted before any terminator
121  /// instruction, but they have no other ordering requirements. We bunch them
122  /// up and the emit a single tokenfactor for them just before terminator
123  /// instructions.
124  SmallVector<SDValue, 8> PendingExports;
125
126  /// SDNodeOrder - A unique monotonically increasing number used to order the
127  /// SDNodes we create.
128  unsigned SDNodeOrder;
129
130  /// Case - A struct to record the Value for a switch case, and the
131  /// case's target basic block.
132  struct Case {
133    const Constant *Low;
134    const Constant *High;
135    MachineBasicBlock* BB;
136    uint32_t ExtraWeight;
137
138    Case() : Low(0), High(0), BB(0), ExtraWeight(0) { }
139    Case(const Constant *low, const Constant *high, MachineBasicBlock *bb,
140         uint32_t extraweight) : Low(low), High(high), BB(bb),
141         ExtraWeight(extraweight) { }
142
143    APInt size() const {
144      const APInt &rHigh = cast<ConstantInt>(High)->getValue();
145      const APInt &rLow  = cast<ConstantInt>(Low)->getValue();
146      return (rHigh - rLow + 1ULL);
147    }
148  };
149
150  struct CaseBits {
151    uint64_t Mask;
152    MachineBasicBlock* BB;
153    unsigned Bits;
154    uint32_t ExtraWeight;
155
156    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
157             uint32_t Weight):
158      Mask(mask), BB(bb), Bits(bits), ExtraWeight(Weight) { }
159  };
160
161  typedef std::vector<Case>           CaseVector;
162  typedef std::vector<CaseBits>       CaseBitsVector;
163  typedef CaseVector::iterator        CaseItr;
164  typedef std::pair<CaseItr, CaseItr> CaseRange;
165
166  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
167  /// of conditional branches.
168  struct CaseRec {
169    CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge,
170            CaseRange r) :
171    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
172
173    /// CaseBB - The MBB in which to emit the compare and branch
174    MachineBasicBlock *CaseBB;
175    /// LT, GE - If nonzero, we know the current case value must be less-than or
176    /// greater-than-or-equal-to these Constants.
177    const Constant *LT;
178    const Constant *GE;
179    /// Range - A pair of iterators representing the range of case values to be
180    /// processed at this point in the binary search tree.
181    CaseRange Range;
182  };
183
184  typedef std::vector<CaseRec> CaseRecVector;
185
186  /// The comparison function for sorting the switch case values in the vector.
187  /// WARNING: Case ranges should be disjoint!
188  struct CaseCmp {
189    bool operator()(const Case &C1, const Case &C2) {
190      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
191      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
192      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
193      return CI1->getValue().slt(CI2->getValue());
194    }
195  };
196
197  struct CaseBitsCmp {
198    bool operator()(const CaseBits &C1, const CaseBits &C2) {
199      return C1.Bits > C2.Bits;
200    }
201  };
202
203  size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
204
205  /// CaseBlock - This structure is used to communicate between
206  /// SelectionDAGBuilder and SDISel for the code generation of additional basic
207  /// blocks needed by multi-case switch statements.
208  struct CaseBlock {
209    CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
210              const Value *cmpmiddle,
211              MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
212              MachineBasicBlock *me,
213              uint32_t trueweight = 0, uint32_t falseweight = 0)
214      : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
215        TrueBB(truebb), FalseBB(falsebb), ThisBB(me),
216        TrueWeight(trueweight), FalseWeight(falseweight) { }
217
218    // CC - the condition code to use for the case block's setcc node
219    ISD::CondCode CC;
220
221    // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
222    // Emit by default LHS op RHS. MHS is used for range comparisons:
223    // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
224    const Value *CmpLHS, *CmpMHS, *CmpRHS;
225
226    // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
227    MachineBasicBlock *TrueBB, *FalseBB;
228
229    // ThisBB - the block into which to emit the code for the setcc and branches
230    MachineBasicBlock *ThisBB;
231
232    // TrueWeight/FalseWeight - branch weights.
233    uint32_t TrueWeight, FalseWeight;
234  };
235
236  struct JumpTable {
237    JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
238              MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
239
240    /// Reg - the virtual register containing the index of the jump table entry
241    //. to jump to.
242    unsigned Reg;
243    /// JTI - the JumpTableIndex for this jump table in the function.
244    unsigned JTI;
245    /// MBB - the MBB into which to emit the code for the indirect jump.
246    MachineBasicBlock *MBB;
247    /// Default - the MBB of the default bb, which is a successor of the range
248    /// check MBB.  This is when updating PHI nodes in successors.
249    MachineBasicBlock *Default;
250  };
251  struct JumpTableHeader {
252    JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
253                    bool E = false):
254      First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
255    APInt First;
256    APInt Last;
257    const Value *SValue;
258    MachineBasicBlock *HeaderBB;
259    bool Emitted;
260  };
261  typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
262
263  struct BitTestCase {
264    BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
265                uint32_t Weight):
266      Mask(M), ThisBB(T), TargetBB(Tr), ExtraWeight(Weight) { }
267    uint64_t Mask;
268    MachineBasicBlock *ThisBB;
269    MachineBasicBlock *TargetBB;
270    uint32_t ExtraWeight;
271  };
272
273  typedef SmallVector<BitTestCase, 3> BitTestInfo;
274
275  struct BitTestBlock {
276    BitTestBlock(APInt F, APInt R, const Value* SV,
277                 unsigned Rg, MVT RgVT, bool E,
278                 MachineBasicBlock* P, MachineBasicBlock* D,
279                 const BitTestInfo& C):
280      First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
281      Parent(P), Default(D), Cases(C) { }
282    APInt First;
283    APInt Range;
284    const Value *SValue;
285    unsigned Reg;
286    MVT RegVT;
287    bool Emitted;
288    MachineBasicBlock *Parent;
289    MachineBasicBlock *Default;
290    BitTestInfo Cases;
291  };
292
293  /// A class which encapsulates all of the information needed to generate a
294  /// stack protector check and signals to isel via its state being initialized
295  /// that a stack protector needs to be generated.
296  ///
297  /// *NOTE* The following is a high level documentation of SelectionDAG Stack
298  /// Protector Generation. The reason that it is placed here is for a lack of
299  /// other good places to stick it.
300  ///
301  /// High Level Overview of SelectionDAG Stack Protector Generation:
302  ///
303  /// Previously, generation of stack protectors was done exclusively in the
304  /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
305  /// splitting basic blocks at the IR level to create the success/failure basic
306  /// blocks in the tail of the basic block in question. As a result of this,
307  /// calls that would have qualified for the sibling call optimization were no
308  /// longer eligible for optimization since said calls were no longer right in
309  /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
310  /// instruction).
311  ///
312  /// Then it was noticed that since the sibling call optimization causes the
313  /// callee to reuse the caller's stack, if we could delay the generation of
314  /// the stack protector check until later in CodeGen after the sibling call
315  /// decision was made, we get both the tail call optimization and the stack
316  /// protector check!
317  ///
318  /// A few goals in solving this problem were:
319  ///
320  ///   1. Preserve the architecture independence of stack protector generation.
321  ///
322  ///   2. Preserve the normal IR level stack protector check for platforms like
323  ///      OpenBSD for which we support platform specific stack protector
324  ///      generation.
325  ///
326  /// The main problem that guided the present solution is that one can not
327  /// solve this problem in an architecture independent manner at the IR level
328  /// only. This is because:
329  ///
330  ///   1. The decision on whether or not to perform a sibling call on certain
331  ///      platforms (for instance i386) requires lower level information
332  ///      related to available registers that can not be known at the IR level.
333  ///
334  ///   2. Even if the previous point were not true, the decision on whether to
335  ///      perform a tail call is done in LowerCallTo in SelectionDAG which
336  ///      occurs after the Stack Protector Pass. As a result, one would need to
337  ///      put the relevant callinst into the stack protector check success
338  ///      basic block (where the return inst is placed) and then move it back
339  ///      later at SelectionDAG/MI time before the stack protector check if the
340  ///      tail call optimization failed. The MI level option was nixed
341  ///      immediately since it would require platform specific pattern
342  ///      matching. The SelectionDAG level option was nixed because
343  ///      SelectionDAG only processes one IR level basic block at a time
344  ///      implying one could not create a DAG Combine to move the callinst.
345  ///
346  /// To get around this problem a few things were realized:
347  ///
348  ///   1. While one can not handle multiple IR level basic blocks at the
349  ///      SelectionDAG Level, one can generate multiple machine basic blocks
350  ///      for one IR level basic block. This is how we handle bit tests and
351  ///      switches.
352  ///
353  ///   2. At the MI level, tail calls are represented via a special return
354  ///      MIInst called "tcreturn". Thus if we know the basic block in which we
355  ///      wish to insert the stack protector check, we get the correct behavior
356  ///      by always inserting the stack protector check right before the return
357  ///      statement. This is a "magical transformation" since no matter where
358  ///      the stack protector check intrinsic is, we always insert the stack
359  ///      protector check code at the end of the BB.
360  ///
361  /// Given the aforementioned constraints, the following solution was devised:
362  ///
363  ///   1. On platforms that do not support SelectionDAG stack protector check
364  ///      generation, allow for the normal IR level stack protector check
365  ///      generation to continue.
366  ///
367  ///   2. On platforms that do support SelectionDAG stack protector check
368  ///      generation:
369  ///
370  ///     a. Use the IR level stack protector pass to decide if a stack
371  ///        protector is required/which BB we insert the stack protector check
372  ///        in by reusing the logic already therein. If we wish to generate a
373  ///        stack protector check in a basic block, we place a special IR
374  ///        intrinsic called llvm.stackprotectorcheck right before the BB's
375  ///        returninst or if there is a callinst that could potentially be
376  ///        sibling call optimized, before the call inst.
377  ///
378  ///     b. Then when a BB with said intrinsic is processed, we codegen the BB
379  ///        normally via SelectBasicBlock. In said process, when we visit the
380  ///        stack protector check, we do not actually emit anything into the
381  ///        BB. Instead, we just initialize the stack protector descriptor
382  ///        class (which involves stashing information/creating the success
383  ///        mbbb and the failure mbb if we have not created one for this
384  ///        function yet) and export the guard variable that we are going to
385  ///        compare.
386  ///
387  ///     c. After we finish selecting the basic block, in FinishBasicBlock if
388  ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is
389  ///        initialized, we first find a splice point in the parent basic block
390  ///        before the terminator and then splice the terminator of said basic
391  ///        block into the success basic block. Then we code-gen a new tail for
392  ///        the parent basic block consisting of the two loads, the comparison,
393  ///        and finally two branches to the success/failure basic blocks. We
394  ///        conclude by code-gening the failure basic block if we have not
395  ///        code-gened it already (all stack protector checks we generate in
396  ///        the same function, use the same failure basic block).
397  class StackProtectorDescriptor {
398  public:
399    StackProtectorDescriptor() : ParentMBB(0), SuccessMBB(0), FailureMBB(0),
400                                 Guard(0) { }
401    ~StackProtectorDescriptor() { }
402
403    /// Returns true if all fields of the stack protector descriptor are
404    /// initialized implying that we should/are ready to emit a stack protector.
405    bool shouldEmitStackProtector() const {
406      return ParentMBB && SuccessMBB && FailureMBB && Guard;
407    }
408
409    /// Initialize the stack protector descriptor structure for a new basic
410    /// block.
411    void initialize(const BasicBlock *BB,
412                    MachineBasicBlock *MBB,
413                    const CallInst &StackProtCheckCall) {
414      // Make sure we are not initialized yet.
415      assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
416             "already initialized!");
417      ParentMBB = MBB;
418      SuccessMBB = AddSuccessorMBB(BB, MBB);
419      FailureMBB = AddSuccessorMBB(BB, MBB, FailureMBB);
420      if (!Guard)
421        Guard = StackProtCheckCall.getArgOperand(0);
422    }
423
424    /// Reset state that changes when we handle different basic blocks.
425    ///
426    /// This currently includes:
427    ///
428    /// 1. The specific basic block we are generating a
429    /// stack protector for (ParentMBB).
430    ///
431    /// 2. The successor machine basic block that will contain the tail of
432    /// parent mbb after we create the stack protector check (SuccessMBB). This
433    /// BB is visited only on stack protector check success.
434    void resetPerBBState() {
435      ParentMBB = 0;
436      SuccessMBB = 0;
437    }
438
439    /// Reset state that only changes when we switch functions.
440    ///
441    /// This currently includes:
442    ///
443    /// 1. FailureMBB since we reuse the failure code path for all stack
444    /// protector checks created in an individual function.
445    ///
446    /// 2.The guard variable since the guard variable we are checking against is
447    /// always the same.
448    void resetPerFunctionState() {
449      FailureMBB = 0;
450      Guard = 0;
451    }
452
453    MachineBasicBlock *getParentMBB() { return ParentMBB; }
454    MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
455    MachineBasicBlock *getFailureMBB() { return FailureMBB; }
456    const Value *getGuard() { return Guard; }
457
458  private:
459    /// The basic block for which we are generating the stack protector.
460    ///
461    /// As a result of stack protector generation, we will splice the
462    /// terminators of this basic block into the successor mbb SuccessMBB and
463    /// replace it with a compare/branch to the successor mbbs
464    /// SuccessMBB/FailureMBB depending on whether or not the stack protector
465    /// was violated.
466    MachineBasicBlock *ParentMBB;
467
468    /// A basic block visited on stack protector check success that contains the
469    /// terminators of ParentMBB.
470    MachineBasicBlock *SuccessMBB;
471
472    /// This basic block visited on stack protector check failure that will
473    /// contain a call to __stack_chk_fail().
474    MachineBasicBlock *FailureMBB;
475
476    /// The guard variable which we will compare against the stored value in the
477    /// stack protector stack slot.
478    const Value *Guard;
479
480    /// Add a successor machine basic block to ParentMBB. If the successor mbb
481    /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
482    /// block will be created.
483    MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
484                                       MachineBasicBlock *ParentMBB,
485                                       MachineBasicBlock *SuccMBB = 0);
486  };
487
488private:
489  const TargetMachine &TM;
490public:
491  SelectionDAG &DAG;
492  const DataLayout *TD;
493  AliasAnalysis *AA;
494  const TargetLibraryInfo *LibInfo;
495
496  /// SwitchCases - Vector of CaseBlock structures used to communicate
497  /// SwitchInst code generation information.
498  std::vector<CaseBlock> SwitchCases;
499  /// JTCases - Vector of JumpTable structures used to communicate
500  /// SwitchInst code generation information.
501  std::vector<JumpTableBlock> JTCases;
502  /// BitTestCases - Vector of BitTestBlock structures used to communicate
503  /// SwitchInst code generation information.
504  std::vector<BitTestBlock> BitTestCases;
505  /// A StackProtectorDescriptor structure used to communicate stack protector
506  /// information in between SelectBasicBlock and FinishBasicBlock.
507  StackProtectorDescriptor SPDescriptor;
508
509  // Emit PHI-node-operand constants only once even if used by multiple
510  // PHI nodes.
511  DenseMap<const Constant *, unsigned> ConstantsOut;
512
513  /// FuncInfo - Information about the function as a whole.
514  ///
515  FunctionLoweringInfo &FuncInfo;
516
517  /// OptLevel - What optimization level we're generating code for.
518  ///
519  CodeGenOpt::Level OptLevel;
520
521  /// GFI - Garbage collection metadata for the function.
522  GCFunctionInfo *GFI;
523
524  /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
525  DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap;
526
527  /// HasTailCall - This is set to true if a call in the current
528  /// block has been translated as a tail call. In this case,
529  /// no subsequent DAG nodes should be created.
530  ///
531  bool HasTailCall;
532
533  LLVMContext *Context;
534
535  SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
536                      CodeGenOpt::Level ol)
537    : CurInst(NULL), SDNodeOrder(0), TM(dag.getTarget()),
538      DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
539      HasTailCall(false) {
540  }
541
542  void init(GCFunctionInfo *gfi, AliasAnalysis &aa,
543            const TargetLibraryInfo *li);
544
545  /// clear - Clear out the current SelectionDAG and the associated
546  /// state and prepare this SelectionDAGBuilder object to be used
547  /// for a new block. This doesn't clear out information about
548  /// additional blocks that are needed to complete switch lowering
549  /// or PHI node updating; that information is cleared out as it is
550  /// consumed.
551  void clear();
552
553  /// clearDanglingDebugInfo - Clear the dangling debug information
554  /// map. This function is separated from the clear so that debug
555  /// information that is dangling in a basic block can be properly
556  /// resolved in a different basic block. This allows the
557  /// SelectionDAG to resolve dangling debug information attached
558  /// to PHI nodes.
559  void clearDanglingDebugInfo();
560
561  /// getRoot - Return the current virtual root of the Selection DAG,
562  /// flushing any PendingLoad items. This must be done before emitting
563  /// a store or any other node that may need to be ordered after any
564  /// prior load instructions.
565  ///
566  SDValue getRoot();
567
568  /// getControlRoot - Similar to getRoot, but instead of flushing all the
569  /// PendingLoad items, flush all the PendingExports items. It is necessary
570  /// to do this before emitting a terminator instruction.
571  ///
572  SDValue getControlRoot();
573
574  SDLoc getCurSDLoc() const {
575    return SDLoc(CurInst, SDNodeOrder);
576  }
577
578  DebugLoc getCurDebugLoc() const {
579    return CurInst ? CurInst->getDebugLoc() : DebugLoc();
580  }
581
582  unsigned getSDNodeOrder() const { return SDNodeOrder; }
583
584  void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
585
586  void visit(const Instruction &I);
587
588  void visit(unsigned Opcode, const User &I);
589
590  // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
591  // generate the debug data structures now that we've seen its definition.
592  void resolveDanglingDebugInfo(const Value *V, SDValue Val);
593  SDValue getValue(const Value *V);
594  SDValue getNonRegisterValue(const Value *V);
595  SDValue getValueImpl(const Value *V);
596
597  void setValue(const Value *V, SDValue NewN) {
598    SDValue &N = NodeMap[V];
599    assert(N.getNode() == 0 && "Already set a value for this node!");
600    N = NewN;
601  }
602
603  void setUnusedArgValue(const Value *V, SDValue NewN) {
604    SDValue &N = UnusedArgNodeMap[V];
605    assert(N.getNode() == 0 && "Already set a value for this node!");
606    N = NewN;
607  }
608
609  void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
610                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
611                            MachineBasicBlock *SwitchBB, unsigned Opc);
612  void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
613                                    MachineBasicBlock *FBB,
614                                    MachineBasicBlock *CurBB,
615                                    MachineBasicBlock *SwitchBB);
616  bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
617  bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
618  void CopyToExportRegsIfNeeded(const Value *V);
619  void ExportFromCurrentBlock(const Value *V);
620  void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
621                   MachineBasicBlock *LandingPad = NULL);
622
623  std::pair<SDValue, SDValue> LowerCallOperands(const CallInst &CI,
624                                                unsigned ArgIdx,
625                                                unsigned NumArgs,
626                                                SDValue Callee,
627                                                bool useVoidTy = false);
628
629  /// UpdateSplitBlock - When an MBB was split during scheduling, update the
630  /// references that ned to refer to the last resulting block.
631  void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
632
633private:
634  // Terminator instructions.
635  void visitRet(const ReturnInst &I);
636  void visitBr(const BranchInst &I);
637  void visitSwitch(const SwitchInst &I);
638  void visitIndirectBr(const IndirectBrInst &I);
639  void visitUnreachable(const UnreachableInst &I) { /* noop */ }
640
641  // Helpers for visitSwitch
642  bool handleSmallSwitchRange(CaseRec& CR,
643                              CaseRecVector& WorkList,
644                              const Value* SV,
645                              MachineBasicBlock* Default,
646                              MachineBasicBlock *SwitchBB);
647  bool handleJTSwitchCase(CaseRec& CR,
648                          CaseRecVector& WorkList,
649                          const Value* SV,
650                          MachineBasicBlock* Default,
651                          MachineBasicBlock *SwitchBB);
652  bool handleBTSplitSwitchCase(CaseRec& CR,
653                               CaseRecVector& WorkList,
654                               const Value* SV,
655                               MachineBasicBlock* Default,
656                               MachineBasicBlock *SwitchBB);
657  bool handleBitTestsSwitchCase(CaseRec& CR,
658                                CaseRecVector& WorkList,
659                                const Value* SV,
660                                MachineBasicBlock* Default,
661                                MachineBasicBlock *SwitchBB);
662
663  uint32_t getEdgeWeight(const MachineBasicBlock *Src,
664                         const MachineBasicBlock *Dst) const;
665  void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
666                              uint32_t Weight = 0);
667public:
668  void visitSwitchCase(CaseBlock &CB,
669                       MachineBasicBlock *SwitchBB);
670  void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
671                               MachineBasicBlock *ParentBB);
672  void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
673  void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
674  void visitBitTestCase(BitTestBlock &BB,
675                        MachineBasicBlock* NextMBB,
676                        uint32_t BranchWeightToNext,
677                        unsigned Reg,
678                        BitTestCase &B,
679                        MachineBasicBlock *SwitchBB);
680  void visitJumpTable(JumpTable &JT);
681  void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
682                            MachineBasicBlock *SwitchBB);
683
684private:
685  // These all get lowered before this pass.
686  void visitInvoke(const InvokeInst &I);
687  void visitResume(const ResumeInst &I);
688
689  void visitBinary(const User &I, unsigned OpCode);
690  void visitShift(const User &I, unsigned Opcode);
691  void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
692  void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
693  void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
694  void visitFSub(const User &I);
695  void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
696  void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
697  void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
698  void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
699  void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
700  void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
701  void visitSDiv(const User &I);
702  void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
703  void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
704  void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
705  void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
706  void visitShl (const User &I) { visitShift(I, ISD::SHL); }
707  void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
708  void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
709  void visitICmp(const User &I);
710  void visitFCmp(const User &I);
711  // Visit the conversion instructions
712  void visitTrunc(const User &I);
713  void visitZExt(const User &I);
714  void visitSExt(const User &I);
715  void visitFPTrunc(const User &I);
716  void visitFPExt(const User &I);
717  void visitFPToUI(const User &I);
718  void visitFPToSI(const User &I);
719  void visitUIToFP(const User &I);
720  void visitSIToFP(const User &I);
721  void visitPtrToInt(const User &I);
722  void visitIntToPtr(const User &I);
723  void visitBitCast(const User &I);
724  void visitAddrSpaceCast(const User &I);
725
726  void visitExtractElement(const User &I);
727  void visitInsertElement(const User &I);
728  void visitShuffleVector(const User &I);
729
730  void visitExtractValue(const ExtractValueInst &I);
731  void visitInsertValue(const InsertValueInst &I);
732  void visitLandingPad(const LandingPadInst &I);
733
734  void visitGetElementPtr(const User &I);
735  void visitSelect(const User &I);
736
737  void visitAlloca(const AllocaInst &I);
738  void visitLoad(const LoadInst &I);
739  void visitStore(const StoreInst &I);
740  void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
741  void visitAtomicRMW(const AtomicRMWInst &I);
742  void visitFence(const FenceInst &I);
743  void visitPHI(const PHINode &I);
744  void visitCall(const CallInst &I);
745  bool visitMemCmpCall(const CallInst &I);
746  bool visitMemChrCall(const CallInst &I);
747  bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
748  bool visitStrCmpCall(const CallInst &I);
749  bool visitStrLenCall(const CallInst &I);
750  bool visitStrNLenCall(const CallInst &I);
751  bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
752  void visitAtomicLoad(const LoadInst &I);
753  void visitAtomicStore(const StoreInst &I);
754
755  void visitInlineAsm(ImmutableCallSite CS);
756  const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
757  void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
758
759  void visitVAStart(const CallInst &I);
760  void visitVAArg(const VAArgInst &I);
761  void visitVAEnd(const CallInst &I);
762  void visitVACopy(const CallInst &I);
763  void visitStackmap(const CallInst &I);
764  void visitPatchpoint(const CallInst &I);
765
766  void visitUserOp1(const Instruction &I) {
767    llvm_unreachable("UserOp1 should not exist at instruction selection time!");
768  }
769  void visitUserOp2(const Instruction &I) {
770    llvm_unreachable("UserOp2 should not exist at instruction selection time!");
771  }
772
773  void processIntegerCallValue(const Instruction &I,
774                               SDValue Value, bool IsSigned);
775
776  void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
777
778  /// EmitFuncArgumentDbgValue - If V is an function argument then create
779  /// corresponding DBG_VALUE machine instruction for it now. At the end of
780  /// instruction selection, they will be inserted to the entry BB.
781  bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
782                                int64_t Offset, const SDValue &N);
783};
784
785} // end namespace llvm
786
787#endif
788