DIEHash.cpp revision 263508
1//===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for DWARF4 hashing of DIEs.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "dwarfdebug"
15
16#include "DIEHash.h"
17
18#include "DIE.h"
19#include "DwarfCompileUnit.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/Dwarf.h"
24#include "llvm/Support/Endian.h"
25#include "llvm/Support/MD5.h"
26#include "llvm/Support/raw_ostream.h"
27
28using namespace llvm;
29
30/// \brief Grabs the string in whichever attribute is passed in and returns
31/// a reference to it.
32static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
33  const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
34  const DIEAbbrev &Abbrevs = Die.getAbbrev();
35
36  // Iterate through all the attributes until we find the one we're
37  // looking for, if we can't find it return an empty string.
38  for (size_t i = 0; i < Values.size(); ++i) {
39    if (Abbrevs.getData()[i].getAttribute() == Attr) {
40      DIEValue *V = Values[i];
41      assert(isa<DIEString>(V) && "String requested. Not a string.");
42      DIEString *S = cast<DIEString>(V);
43      return S->getString();
44    }
45  }
46  return StringRef("");
47}
48
49/// \brief Adds the string in \p Str to the hash. This also hashes
50/// a trailing NULL with the string.
51void DIEHash::addString(StringRef Str) {
52  DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
53  Hash.update(Str);
54  Hash.update(makeArrayRef((uint8_t)'\0'));
55}
56
57// FIXME: The LEB128 routines are copied and only slightly modified out of
58// LEB128.h.
59
60/// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128.
61void DIEHash::addULEB128(uint64_t Value) {
62  DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
63  do {
64    uint8_t Byte = Value & 0x7f;
65    Value >>= 7;
66    if (Value != 0)
67      Byte |= 0x80; // Mark this byte to show that more bytes will follow.
68    Hash.update(Byte);
69  } while (Value != 0);
70}
71
72void DIEHash::addSLEB128(int64_t Value) {
73  DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
74  bool More;
75  do {
76    uint8_t Byte = Value & 0x7f;
77    Value >>= 7;
78    More = !((((Value == 0 ) && ((Byte & 0x40) == 0)) ||
79              ((Value == -1) && ((Byte & 0x40) != 0))));
80    if (More)
81      Byte |= 0x80; // Mark this byte to show that more bytes will follow.
82    Hash.update(Byte);
83  } while (More);
84}
85
86/// \brief Including \p Parent adds the context of Parent to the hash..
87void DIEHash::addParentContext(const DIE &Parent) {
88
89  DEBUG(dbgs() << "Adding parent context to hash...\n");
90
91  // [7.27.2] For each surrounding type or namespace beginning with the
92  // outermost such construct...
93  SmallVector<const DIE *, 1> Parents;
94  const DIE *Cur = &Parent;
95  while (Cur->getTag() != dwarf::DW_TAG_compile_unit) {
96    Parents.push_back(Cur);
97    Cur = Cur->getParent();
98  }
99
100  // Reverse iterate over our list to go from the outermost construct to the
101  // innermost.
102  for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(),
103                                                      E = Parents.rend();
104       I != E; ++I) {
105    const DIE &Die = **I;
106
107    // ... Append the letter "C" to the sequence...
108    addULEB128('C');
109
110    // ... Followed by the DWARF tag of the construct...
111    addULEB128(Die.getTag());
112
113    // ... Then the name, taken from the DW_AT_name attribute.
114    StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name);
115    DEBUG(dbgs() << "... adding context: " << Name << "\n");
116    if (!Name.empty())
117      addString(Name);
118  }
119}
120
121// Collect all of the attributes for a particular DIE in single structure.
122void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
123  const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
124  const DIEAbbrev &Abbrevs = Die.getAbbrev();
125
126#define COLLECT_ATTR(NAME)                                                     \
127  case dwarf::NAME:                                                            \
128    Attrs.NAME.Val = Values[i];                                                \
129    Attrs.NAME.Desc = &Abbrevs.getData()[i];                                   \
130    break
131
132  for (size_t i = 0, e = Values.size(); i != e; ++i) {
133    DEBUG(dbgs() << "Attribute: "
134                 << dwarf::AttributeString(Abbrevs.getData()[i].getAttribute())
135                 << " added.\n");
136    switch (Abbrevs.getData()[i].getAttribute()) {
137    COLLECT_ATTR(DW_AT_name);
138    COLLECT_ATTR(DW_AT_accessibility);
139    COLLECT_ATTR(DW_AT_address_class);
140    COLLECT_ATTR(DW_AT_allocated);
141    COLLECT_ATTR(DW_AT_artificial);
142    COLLECT_ATTR(DW_AT_associated);
143    COLLECT_ATTR(DW_AT_binary_scale);
144    COLLECT_ATTR(DW_AT_bit_offset);
145    COLLECT_ATTR(DW_AT_bit_size);
146    COLLECT_ATTR(DW_AT_bit_stride);
147    COLLECT_ATTR(DW_AT_byte_size);
148    COLLECT_ATTR(DW_AT_byte_stride);
149    COLLECT_ATTR(DW_AT_const_expr);
150    COLLECT_ATTR(DW_AT_const_value);
151    COLLECT_ATTR(DW_AT_containing_type);
152    COLLECT_ATTR(DW_AT_count);
153    COLLECT_ATTR(DW_AT_data_bit_offset);
154    COLLECT_ATTR(DW_AT_data_location);
155    COLLECT_ATTR(DW_AT_data_member_location);
156    COLLECT_ATTR(DW_AT_decimal_scale);
157    COLLECT_ATTR(DW_AT_decimal_sign);
158    COLLECT_ATTR(DW_AT_default_value);
159    COLLECT_ATTR(DW_AT_digit_count);
160    COLLECT_ATTR(DW_AT_discr);
161    COLLECT_ATTR(DW_AT_discr_list);
162    COLLECT_ATTR(DW_AT_discr_value);
163    COLLECT_ATTR(DW_AT_encoding);
164    COLLECT_ATTR(DW_AT_enum_class);
165    COLLECT_ATTR(DW_AT_endianity);
166    COLLECT_ATTR(DW_AT_explicit);
167    COLLECT_ATTR(DW_AT_is_optional);
168    COLLECT_ATTR(DW_AT_location);
169    COLLECT_ATTR(DW_AT_lower_bound);
170    COLLECT_ATTR(DW_AT_mutable);
171    COLLECT_ATTR(DW_AT_ordering);
172    COLLECT_ATTR(DW_AT_picture_string);
173    COLLECT_ATTR(DW_AT_prototyped);
174    COLLECT_ATTR(DW_AT_small);
175    COLLECT_ATTR(DW_AT_segment);
176    COLLECT_ATTR(DW_AT_string_length);
177    COLLECT_ATTR(DW_AT_threads_scaled);
178    COLLECT_ATTR(DW_AT_upper_bound);
179    COLLECT_ATTR(DW_AT_use_location);
180    COLLECT_ATTR(DW_AT_use_UTF8);
181    COLLECT_ATTR(DW_AT_variable_parameter);
182    COLLECT_ATTR(DW_AT_virtuality);
183    COLLECT_ATTR(DW_AT_visibility);
184    COLLECT_ATTR(DW_AT_vtable_elem_location);
185    COLLECT_ATTR(DW_AT_type);
186    default:
187      break;
188    }
189  }
190}
191
192void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
193                                       const DIE &Entry, StringRef Name) {
194  // append the letter 'N'
195  addULEB128('N');
196
197  // the DWARF attribute code (DW_AT_type or DW_AT_friend),
198  addULEB128(Attribute);
199
200  // the context of the tag,
201  if (const DIE *Parent = Entry.getParent())
202    addParentContext(*Parent);
203
204  // the letter 'E',
205  addULEB128('E');
206
207  // and the name of the type.
208  addString(Name);
209
210  // Currently DW_TAG_friends are not used by Clang, but if they do become so,
211  // here's the relevant spec text to implement:
212  //
213  // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
214  // the context is omitted and the name to be used is the ABI-specific name
215  // of the subprogram (e.g., the mangled linker name).
216}
217
218void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
219                                        unsigned DieNumber) {
220  // a) If T is in the list of [previously hashed types], use the letter
221  // 'R' as the marker
222  addULEB128('R');
223
224  addULEB128(Attribute);
225
226  // and use the unsigned LEB128 encoding of [the index of T in the
227  // list] as the attribute value;
228  addULEB128(DieNumber);
229}
230
231void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
232                           const DIE &Entry) {
233  assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
234                                        "tags. Add support here when there's "
235                                        "a use case");
236  // Step 5
237  // If the tag in Step 3 is one of [the below tags]
238  if ((Tag == dwarf::DW_TAG_pointer_type ||
239       Tag == dwarf::DW_TAG_reference_type ||
240       Tag == dwarf::DW_TAG_rvalue_reference_type ||
241       Tag == dwarf::DW_TAG_ptr_to_member_type) &&
242      // and the referenced type (via the [below attributes])
243      // FIXME: This seems overly restrictive, and causes hash mismatches
244      // there's a decl/def difference in the containing type of a
245      // ptr_to_member_type, but it's what DWARF says, for some reason.
246      Attribute == dwarf::DW_AT_type) {
247    // ... has a DW_AT_name attribute,
248    StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
249    if (!Name.empty()) {
250      hashShallowTypeReference(Attribute, Entry, Name);
251      return;
252    }
253  }
254
255  unsigned &DieNumber = Numbering[&Entry];
256  if (DieNumber) {
257    hashRepeatedTypeReference(Attribute, DieNumber);
258    return;
259  }
260
261  // otherwise, b) use the letter 'T' as a the marker, ...
262  addULEB128('T');
263
264  addULEB128(Attribute);
265
266  // ... process the type T recursively by performing Steps 2 through 7, and
267  // use the result as the attribute value.
268  DieNumber = Numbering.size();
269  computeHash(Entry);
270}
271
272// Hash an individual attribute \param Attr based on the type of attribute and
273// the form.
274void DIEHash::hashAttribute(AttrEntry Attr, dwarf::Tag Tag) {
275  const DIEValue *Value = Attr.Val;
276  const DIEAbbrevData *Desc = Attr.Desc;
277  dwarf::Attribute Attribute = Desc->getAttribute();
278
279  // 7.27 Step 3
280  // ... An attribute that refers to another type entry T is processed as
281  // follows:
282  if (const DIEEntry *EntryAttr = dyn_cast<DIEEntry>(Value)) {
283    hashDIEEntry(Attribute, Tag, *EntryAttr->getEntry());
284    return;
285  }
286
287  // Other attribute values use the letter 'A' as the marker, ...
288  addULEB128('A');
289
290  addULEB128(Attribute);
291
292  // ... and the value consists of the form code (encoded as an unsigned LEB128
293  // value) followed by the encoding of the value according to the form code. To
294  // ensure reproducibility of the signature, the set of forms used in the
295  // signature computation is limited to the following: DW_FORM_sdata,
296  // DW_FORM_flag, DW_FORM_string, and DW_FORM_block.
297  switch (Desc->getForm()) {
298  case dwarf::DW_FORM_string:
299    llvm_unreachable(
300        "Add support for DW_FORM_string if we ever start emitting them again");
301  case dwarf::DW_FORM_GNU_str_index:
302  case dwarf::DW_FORM_strp:
303    addULEB128(dwarf::DW_FORM_string);
304    addString(cast<DIEString>(Value)->getString());
305    break;
306  case dwarf::DW_FORM_data1:
307  case dwarf::DW_FORM_data2:
308  case dwarf::DW_FORM_data4:
309  case dwarf::DW_FORM_data8:
310  case dwarf::DW_FORM_udata:
311    addULEB128(dwarf::DW_FORM_sdata);
312    addSLEB128((int64_t)cast<DIEInteger>(Value)->getValue());
313    break;
314  default:
315    llvm_unreachable("Add support for additional forms");
316  }
317}
318
319// Go through the attributes from \param Attrs in the order specified in 7.27.4
320// and hash them.
321void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
322#define ADD_ATTR(ATTR)                                                         \
323  {                                                                            \
324    if (ATTR.Val != 0)                                                         \
325      hashAttribute(ATTR, Tag);                                                \
326  }
327
328  ADD_ATTR(Attrs.DW_AT_name);
329  ADD_ATTR(Attrs.DW_AT_accessibility);
330  ADD_ATTR(Attrs.DW_AT_address_class);
331  ADD_ATTR(Attrs.DW_AT_allocated);
332  ADD_ATTR(Attrs.DW_AT_artificial);
333  ADD_ATTR(Attrs.DW_AT_associated);
334  ADD_ATTR(Attrs.DW_AT_binary_scale);
335  ADD_ATTR(Attrs.DW_AT_bit_offset);
336  ADD_ATTR(Attrs.DW_AT_bit_size);
337  ADD_ATTR(Attrs.DW_AT_bit_stride);
338  ADD_ATTR(Attrs.DW_AT_byte_size);
339  ADD_ATTR(Attrs.DW_AT_byte_stride);
340  ADD_ATTR(Attrs.DW_AT_const_expr);
341  ADD_ATTR(Attrs.DW_AT_const_value);
342  ADD_ATTR(Attrs.DW_AT_containing_type);
343  ADD_ATTR(Attrs.DW_AT_count);
344  ADD_ATTR(Attrs.DW_AT_data_bit_offset);
345  ADD_ATTR(Attrs.DW_AT_data_location);
346  ADD_ATTR(Attrs.DW_AT_data_member_location);
347  ADD_ATTR(Attrs.DW_AT_decimal_scale);
348  ADD_ATTR(Attrs.DW_AT_decimal_sign);
349  ADD_ATTR(Attrs.DW_AT_default_value);
350  ADD_ATTR(Attrs.DW_AT_digit_count);
351  ADD_ATTR(Attrs.DW_AT_discr);
352  ADD_ATTR(Attrs.DW_AT_discr_list);
353  ADD_ATTR(Attrs.DW_AT_discr_value);
354  ADD_ATTR(Attrs.DW_AT_encoding);
355  ADD_ATTR(Attrs.DW_AT_enum_class);
356  ADD_ATTR(Attrs.DW_AT_endianity);
357  ADD_ATTR(Attrs.DW_AT_explicit);
358  ADD_ATTR(Attrs.DW_AT_is_optional);
359  ADD_ATTR(Attrs.DW_AT_location);
360  ADD_ATTR(Attrs.DW_AT_lower_bound);
361  ADD_ATTR(Attrs.DW_AT_mutable);
362  ADD_ATTR(Attrs.DW_AT_ordering);
363  ADD_ATTR(Attrs.DW_AT_picture_string);
364  ADD_ATTR(Attrs.DW_AT_prototyped);
365  ADD_ATTR(Attrs.DW_AT_small);
366  ADD_ATTR(Attrs.DW_AT_segment);
367  ADD_ATTR(Attrs.DW_AT_string_length);
368  ADD_ATTR(Attrs.DW_AT_threads_scaled);
369  ADD_ATTR(Attrs.DW_AT_upper_bound);
370  ADD_ATTR(Attrs.DW_AT_use_location);
371  ADD_ATTR(Attrs.DW_AT_use_UTF8);
372  ADD_ATTR(Attrs.DW_AT_variable_parameter);
373  ADD_ATTR(Attrs.DW_AT_virtuality);
374  ADD_ATTR(Attrs.DW_AT_visibility);
375  ADD_ATTR(Attrs.DW_AT_vtable_elem_location);
376  ADD_ATTR(Attrs.DW_AT_type);
377
378  // FIXME: Add the extended attributes.
379}
380
381// Add all of the attributes for \param Die to the hash.
382void DIEHash::addAttributes(const DIE &Die) {
383  DIEAttrs Attrs = {};
384  collectAttributes(Die, Attrs);
385  hashAttributes(Attrs, Die.getTag());
386}
387
388void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
389  // 7.27 Step 7
390  // ... append the letter 'S',
391  addULEB128('S');
392
393  // the tag of C,
394  addULEB128(Die.getTag());
395
396  // and the name.
397  addString(Name);
398}
399
400// Compute the hash of a DIE. This is based on the type signature computation
401// given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
402// flattened description of the DIE.
403void DIEHash::computeHash(const DIE &Die) {
404  // Append the letter 'D', followed by the DWARF tag of the DIE.
405  addULEB128('D');
406  addULEB128(Die.getTag());
407
408  // Add each of the attributes of the DIE.
409  addAttributes(Die);
410
411  // Then hash each of the children of the DIE.
412  for (std::vector<DIE *>::const_iterator I = Die.getChildren().begin(),
413                                          E = Die.getChildren().end();
414       I != E; ++I) {
415    // 7.27 Step 7
416    // If C is a nested type entry or a member function entry, ...
417    if (isType((*I)->getTag()) || (*I)->getTag() == dwarf::DW_TAG_subprogram) {
418      StringRef Name = getDIEStringAttr(**I, dwarf::DW_AT_name);
419      // ... and has a DW_AT_name attribute
420      if (!Name.empty()) {
421        hashNestedType(**I, Name);
422        continue;
423      }
424    }
425    computeHash(**I);
426  }
427
428  // Following the last (or if there are no children), append a zero byte.
429  Hash.update(makeArrayRef((uint8_t)'\0'));
430}
431
432/// This is based on the type signature computation given in section 7.27 of the
433/// DWARF4 standard. It is the md5 hash of a flattened description of the DIE
434/// with the exception that we are hashing only the context and the name of the
435/// type.
436uint64_t DIEHash::computeDIEODRSignature(const DIE &Die) {
437
438  // Add the contexts to the hash. We won't be computing the ODR hash for
439  // function local types so it's safe to use the generic context hashing
440  // algorithm here.
441  // FIXME: If we figure out how to account for linkage in some way we could
442  // actually do this with a slight modification to the parent hash algorithm.
443  if (const DIE *Parent = Die.getParent())
444    addParentContext(*Parent);
445
446  // Add the current DIE information.
447
448  // Add the DWARF tag of the DIE.
449  addULEB128(Die.getTag());
450
451  // Add the name of the type to the hash.
452  addString(getDIEStringAttr(Die, dwarf::DW_AT_name));
453
454  // Now get the result.
455  MD5::MD5Result Result;
456  Hash.final(Result);
457
458  // ... take the least significant 8 bytes and return those. Our MD5
459  // implementation always returns its results in little endian, swap bytes
460  // appropriately.
461  return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
462}
463
464/// This is based on the type signature computation given in section 7.27 of the
465/// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
466/// with the inclusion of the full CU and all top level CU entities.
467// TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
468uint64_t DIEHash::computeCUSignature(const DIE &Die) {
469  Numbering.clear();
470  Numbering[&Die] = 1;
471
472  // Hash the DIE.
473  computeHash(Die);
474
475  // Now return the result.
476  MD5::MD5Result Result;
477  Hash.final(Result);
478
479  // ... take the least significant 8 bytes and return those. Our MD5
480  // implementation always returns its results in little endian, swap bytes
481  // appropriately.
482  return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
483}
484
485/// This is based on the type signature computation given in section 7.27 of the
486/// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
487/// with the inclusion of additional forms not specifically called out in the
488/// standard.
489uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
490  Numbering.clear();
491  Numbering[&Die] = 1;
492
493  if (const DIE *Parent = Die.getParent())
494    addParentContext(*Parent);
495
496  // Hash the DIE.
497  computeHash(Die);
498
499  // Now return the result.
500  MD5::MD5Result Result;
501  Hash.final(Result);
502
503  // ... take the least significant 8 bytes and return those. Our MD5
504  // implementation always returns its results in little endian, swap bytes
505  // appropriately.
506  return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
507}
508