AsmPrinter.cpp revision 263763
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CodeGen/GCMetadataPrinter.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBundle.h"
27#include "llvm/CodeGen/MachineJumpTableInfo.h"
28#include "llvm/CodeGen/MachineLoopInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/DebugInfo.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Module.h"
33#include "llvm/IR/Operator.h"
34#include "llvm/MC/MCAsmInfo.h"
35#include "llvm/MC/MCContext.h"
36#include "llvm/MC/MCExpr.h"
37#include "llvm/MC/MCInst.h"
38#include "llvm/MC/MCSection.h"
39#include "llvm/MC/MCStreamer.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/Format.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/Timer.h"
45#include "llvm/Target/Mangler.h"
46#include "llvm/Target/TargetFrameLowering.h"
47#include "llvm/Target/TargetInstrInfo.h"
48#include "llvm/Target/TargetLowering.h"
49#include "llvm/Target/TargetLoweringObjectFile.h"
50#include "llvm/Target/TargetOptions.h"
51#include "llvm/Target/TargetRegisterInfo.h"
52#include "llvm/Transforms/Utils/GlobalStatus.h"
53using namespace llvm;
54
55static const char *const DWARFGroupName = "DWARF Emission";
56static const char *const DbgTimerName = "DWARF Debug Writer";
57static const char *const EHTimerName = "DWARF Exception Writer";
58
59STATISTIC(EmittedInsts, "Number of machine instrs printed");
60
61char AsmPrinter::ID = 0;
62
63typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
64static gcp_map_type &getGCMap(void *&P) {
65  if (P == 0)
66    P = new gcp_map_type();
67  return *(gcp_map_type*)P;
68}
69
70
71/// getGVAlignmentLog2 - Return the alignment to use for the specified global
72/// value in log2 form.  This rounds up to the preferred alignment if possible
73/// and legal.
74static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
75                                   unsigned InBits = 0) {
76  unsigned NumBits = 0;
77  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
78    NumBits = TD.getPreferredAlignmentLog(GVar);
79
80  // If InBits is specified, round it to it.
81  if (InBits > NumBits)
82    NumBits = InBits;
83
84  // If the GV has a specified alignment, take it into account.
85  if (GV->getAlignment() == 0)
86    return NumBits;
87
88  unsigned GVAlign = Log2_32(GV->getAlignment());
89
90  // If the GVAlign is larger than NumBits, or if we are required to obey
91  // NumBits because the GV has an assigned section, obey it.
92  if (GVAlign > NumBits || GV->hasSection())
93    NumBits = GVAlign;
94  return NumBits;
95}
96
97AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
98  : MachineFunctionPass(ID),
99    TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()),
100    OutContext(Streamer.getContext()),
101    OutStreamer(Streamer),
102    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
103  DD = 0; DE = 0; MMI = 0; LI = 0; MF = 0;
104  CurrentFnSym = CurrentFnSymForSize = 0;
105  GCMetadataPrinters = 0;
106  VerboseAsm = Streamer.isVerboseAsm();
107}
108
109AsmPrinter::~AsmPrinter() {
110  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
111
112  if (GCMetadataPrinters != 0) {
113    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
114
115    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
116      delete I->second;
117    delete &GCMap;
118    GCMetadataPrinters = 0;
119  }
120
121  delete &OutStreamer;
122}
123
124/// getFunctionNumber - Return a unique ID for the current function.
125///
126unsigned AsmPrinter::getFunctionNumber() const {
127  return MF->getFunctionNumber();
128}
129
130const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
131  return TM.getTargetLowering()->getObjFileLowering();
132}
133
134/// getDataLayout - Return information about data layout.
135const DataLayout &AsmPrinter::getDataLayout() const {
136  return *TM.getDataLayout();
137}
138
139StringRef AsmPrinter::getTargetTriple() const {
140  return TM.getTargetTriple();
141}
142
143/// getCurrentSection() - Return the current section we are emitting to.
144const MCSection *AsmPrinter::getCurrentSection() const {
145  return OutStreamer.getCurrentSection().first;
146}
147
148
149
150void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
151  AU.setPreservesAll();
152  MachineFunctionPass::getAnalysisUsage(AU);
153  AU.addRequired<MachineModuleInfo>();
154  AU.addRequired<GCModuleInfo>();
155  if (isVerbose())
156    AU.addRequired<MachineLoopInfo>();
157}
158
159bool AsmPrinter::doInitialization(Module &M) {
160  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
161  MMI->AnalyzeModule(M);
162
163  // Initialize TargetLoweringObjectFile.
164  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
165    .Initialize(OutContext, TM);
166
167  OutStreamer.InitStreamer();
168
169  Mang = new Mangler(&TM);
170
171  // Allow the target to emit any magic that it wants at the start of the file.
172  EmitStartOfAsmFile(M);
173
174  // Very minimal debug info. It is ignored if we emit actual debug info. If we
175  // don't, this at least helps the user find where a global came from.
176  if (MAI->hasSingleParameterDotFile()) {
177    // .file "foo.c"
178    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
179  }
180
181  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
182  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
183  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
184    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
185      MP->beginAssembly(*this);
186
187  // Emit module-level inline asm if it exists.
188  if (!M.getModuleInlineAsm().empty()) {
189    OutStreamer.AddComment("Start of file scope inline assembly");
190    OutStreamer.AddBlankLine();
191    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
192    OutStreamer.AddComment("End of file scope inline assembly");
193    OutStreamer.AddBlankLine();
194  }
195
196  if (MAI->doesSupportDebugInformation())
197    DD = new DwarfDebug(this, &M);
198
199  switch (MAI->getExceptionHandlingType()) {
200  case ExceptionHandling::None:
201    return false;
202  case ExceptionHandling::SjLj:
203  case ExceptionHandling::DwarfCFI:
204    DE = new DwarfCFIException(this);
205    return false;
206  case ExceptionHandling::ARM:
207    DE = new ARMException(this);
208    return false;
209  case ExceptionHandling::Win64:
210    DE = new Win64Exception(this);
211    return false;
212  }
213
214  llvm_unreachable("Unknown exception type.");
215}
216
217void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
218  GlobalValue::LinkageTypes Linkage = GV->getLinkage();
219  switch (Linkage) {
220  case GlobalValue::CommonLinkage:
221  case GlobalValue::LinkOnceAnyLinkage:
222  case GlobalValue::LinkOnceODRLinkage:
223  case GlobalValue::WeakAnyLinkage:
224  case GlobalValue::WeakODRLinkage:
225  case GlobalValue::LinkerPrivateWeakLinkage:
226    if (MAI->getWeakDefDirective() != 0) {
227      // .globl _foo
228      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
229
230      bool CanBeHidden = false;
231
232      if (Linkage == GlobalValue::LinkOnceODRLinkage) {
233        if (GV->hasUnnamedAddr()) {
234          CanBeHidden = true;
235        } else {
236          GlobalStatus GS;
237          if (!GlobalStatus::analyzeGlobal(GV, GS) && !GS.IsCompared)
238            CanBeHidden = true;
239        }
240      }
241
242      if (!CanBeHidden)
243        // .weak_definition _foo
244        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
245      else
246        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
247    } else if (MAI->getLinkOnceDirective() != 0) {
248      // .globl _foo
249      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
250      //NOTE: linkonce is handled by the section the symbol was assigned to.
251    } else {
252      // .weak _foo
253      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
254    }
255    return;
256  case GlobalValue::DLLExportLinkage:
257  case GlobalValue::AppendingLinkage:
258    // FIXME: appending linkage variables should go into a section of
259    // their name or something.  For now, just emit them as external.
260  case GlobalValue::ExternalLinkage:
261    // If external or appending, declare as a global symbol.
262    // .globl _foo
263    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
264    return;
265  case GlobalValue::PrivateLinkage:
266  case GlobalValue::InternalLinkage:
267  case GlobalValue::LinkerPrivateLinkage:
268    return;
269  case GlobalValue::AvailableExternallyLinkage:
270    llvm_unreachable("Should never emit this");
271  case GlobalValue::DLLImportLinkage:
272  case GlobalValue::ExternalWeakLinkage:
273    llvm_unreachable("Don't know how to emit these");
274  }
275  llvm_unreachable("Unknown linkage type!");
276}
277
278MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
279  return getObjFileLowering().getSymbol(*Mang, GV);
280}
281
282/// EmitGlobalVariable - Emit the specified global variable to the .s file.
283void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
284  if (GV->hasInitializer()) {
285    // Check to see if this is a special global used by LLVM, if so, emit it.
286    if (EmitSpecialLLVMGlobal(GV))
287      return;
288
289    if (isVerbose()) {
290      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
291                     /*PrintType=*/false, GV->getParent());
292      OutStreamer.GetCommentOS() << '\n';
293    }
294  }
295
296  MCSymbol *GVSym = getSymbol(GV);
297  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
298
299  if (!GV->hasInitializer())   // External globals require no extra code.
300    return;
301
302  if (MAI->hasDotTypeDotSizeDirective())
303    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
304
305  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
306
307  const DataLayout *DL = TM.getDataLayout();
308  uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType());
309
310  // If the alignment is specified, we *must* obey it.  Overaligning a global
311  // with a specified alignment is a prompt way to break globals emitted to
312  // sections and expected to be contiguous (e.g. ObjC metadata).
313  unsigned AlignLog = getGVAlignmentLog2(GV, *DL);
314
315  if (DD)
316    DD->setSymbolSize(GVSym, Size);
317
318  // Handle common and BSS local symbols (.lcomm).
319  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
320    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
321    unsigned Align = 1 << AlignLog;
322
323    // Handle common symbols.
324    if (GVKind.isCommon()) {
325      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
326        Align = 0;
327
328      // .comm _foo, 42, 4
329      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
330      return;
331    }
332
333    // Handle local BSS symbols.
334    if (MAI->hasMachoZeroFillDirective()) {
335      const MCSection *TheSection =
336        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
337      // .zerofill __DATA, __bss, _foo, 400, 5
338      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
339      return;
340    }
341
342    // Use .lcomm only if it supports user-specified alignment.
343    // Otherwise, while it would still be correct to use .lcomm in some
344    // cases (e.g. when Align == 1), the external assembler might enfore
345    // some -unknown- default alignment behavior, which could cause
346    // spurious differences between external and integrated assembler.
347    // Prefer to simply fall back to .local / .comm in this case.
348    if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
349      // .lcomm _foo, 42
350      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
351      return;
352    }
353
354    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
355      Align = 0;
356
357    // .local _foo
358    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
359    // .comm _foo, 42, 4
360    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
361    return;
362  }
363
364  const MCSection *TheSection =
365    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
366
367  // Handle the zerofill directive on darwin, which is a special form of BSS
368  // emission.
369  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
370    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
371
372    // .globl _foo
373    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
374    // .zerofill __DATA, __common, _foo, 400, 5
375    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
376    return;
377  }
378
379  // Handle thread local data for mach-o which requires us to output an
380  // additional structure of data and mangle the original symbol so that we
381  // can reference it later.
382  //
383  // TODO: This should become an "emit thread local global" method on TLOF.
384  // All of this macho specific stuff should be sunk down into TLOFMachO and
385  // stuff like "TLSExtraDataSection" should no longer be part of the parent
386  // TLOF class.  This will also make it more obvious that stuff like
387  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
388  // specific code.
389  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
390    // Emit the .tbss symbol
391    MCSymbol *MangSym =
392      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
393
394    if (GVKind.isThreadBSS()) {
395      TheSection = getObjFileLowering().getTLSBSSSection();
396      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
397    } else if (GVKind.isThreadData()) {
398      OutStreamer.SwitchSection(TheSection);
399
400      EmitAlignment(AlignLog, GV);
401      OutStreamer.EmitLabel(MangSym);
402
403      EmitGlobalConstant(GV->getInitializer());
404    }
405
406    OutStreamer.AddBlankLine();
407
408    // Emit the variable struct for the runtime.
409    const MCSection *TLVSect
410      = getObjFileLowering().getTLSExtraDataSection();
411
412    OutStreamer.SwitchSection(TLVSect);
413    // Emit the linkage here.
414    EmitLinkage(GV, GVSym);
415    OutStreamer.EmitLabel(GVSym);
416
417    // Three pointers in size:
418    //   - __tlv_bootstrap - used to make sure support exists
419    //   - spare pointer, used when mapped by the runtime
420    //   - pointer to mangled symbol above with initializer
421    unsigned PtrSize = DL->getPointerTypeSize(GV->getType());
422    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
423                                PtrSize);
424    OutStreamer.EmitIntValue(0, PtrSize);
425    OutStreamer.EmitSymbolValue(MangSym, PtrSize);
426
427    OutStreamer.AddBlankLine();
428    return;
429  }
430
431  OutStreamer.SwitchSection(TheSection);
432
433  EmitLinkage(GV, GVSym);
434  EmitAlignment(AlignLog, GV);
435
436  OutStreamer.EmitLabel(GVSym);
437
438  EmitGlobalConstant(GV->getInitializer());
439
440  if (MAI->hasDotTypeDotSizeDirective())
441    // .size foo, 42
442    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
443
444  OutStreamer.AddBlankLine();
445}
446
447/// EmitFunctionHeader - This method emits the header for the current
448/// function.
449void AsmPrinter::EmitFunctionHeader() {
450  // Print out constants referenced by the function
451  EmitConstantPool();
452
453  // Print the 'header' of function.
454  const Function *F = MF->getFunction();
455
456  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
457  EmitVisibility(CurrentFnSym, F->getVisibility());
458
459  EmitLinkage(F, CurrentFnSym);
460  EmitAlignment(MF->getAlignment(), F);
461
462  if (MAI->hasDotTypeDotSizeDirective())
463    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
464
465  if (isVerbose()) {
466    WriteAsOperand(OutStreamer.GetCommentOS(), F,
467                   /*PrintType=*/false, F->getParent());
468    OutStreamer.GetCommentOS() << '\n';
469  }
470
471  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
472  // do their wild and crazy things as required.
473  EmitFunctionEntryLabel();
474
475  // If the function had address-taken blocks that got deleted, then we have
476  // references to the dangling symbols.  Emit them at the start of the function
477  // so that we don't get references to undefined symbols.
478  std::vector<MCSymbol*> DeadBlockSyms;
479  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
480  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
481    OutStreamer.AddComment("Address taken block that was later removed");
482    OutStreamer.EmitLabel(DeadBlockSyms[i]);
483  }
484
485  // Emit pre-function debug and/or EH information.
486  if (DE) {
487    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
488    DE->BeginFunction(MF);
489  }
490  if (DD) {
491    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
492    DD->beginFunction(MF);
493  }
494
495  // Emit the prefix data.
496  if (F->hasPrefixData())
497    EmitGlobalConstant(F->getPrefixData());
498}
499
500/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
501/// function.  This can be overridden by targets as required to do custom stuff.
502void AsmPrinter::EmitFunctionEntryLabel() {
503  // The function label could have already been emitted if two symbols end up
504  // conflicting due to asm renaming.  Detect this and emit an error.
505  if (CurrentFnSym->isUndefined())
506    return OutStreamer.EmitLabel(CurrentFnSym);
507
508  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
509                     "' label emitted multiple times to assembly file");
510}
511
512/// emitComments - Pretty-print comments for instructions.
513static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
514  const MachineFunction *MF = MI.getParent()->getParent();
515  const TargetMachine &TM = MF->getTarget();
516
517  // Check for spills and reloads
518  int FI;
519
520  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
521
522  // We assume a single instruction only has a spill or reload, not
523  // both.
524  const MachineMemOperand *MMO;
525  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
526    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
527      MMO = *MI.memoperands_begin();
528      CommentOS << MMO->getSize() << "-byte Reload\n";
529    }
530  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
531    if (FrameInfo->isSpillSlotObjectIndex(FI))
532      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
533  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
534    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
535      MMO = *MI.memoperands_begin();
536      CommentOS << MMO->getSize() << "-byte Spill\n";
537    }
538  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
539    if (FrameInfo->isSpillSlotObjectIndex(FI))
540      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
541  }
542
543  // Check for spill-induced copies
544  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
545    CommentOS << " Reload Reuse\n";
546}
547
548/// emitImplicitDef - This method emits the specified machine instruction
549/// that is an implicit def.
550void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
551  unsigned RegNo = MI->getOperand(0).getReg();
552  OutStreamer.AddComment(Twine("implicit-def: ") +
553                         TM.getRegisterInfo()->getName(RegNo));
554  OutStreamer.AddBlankLine();
555}
556
557static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
558  std::string Str = "kill:";
559  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
560    const MachineOperand &Op = MI->getOperand(i);
561    assert(Op.isReg() && "KILL instruction must have only register operands");
562    Str += ' ';
563    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
564    Str += (Op.isDef() ? "<def>" : "<kill>");
565  }
566  AP.OutStreamer.AddComment(Str);
567  AP.OutStreamer.AddBlankLine();
568}
569
570/// emitDebugValueComment - This method handles the target-independent form
571/// of DBG_VALUE, returning true if it was able to do so.  A false return
572/// means the target will need to handle MI in EmitInstruction.
573static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
574  // This code handles only the 3-operand target-independent form.
575  if (MI->getNumOperands() != 3)
576    return false;
577
578  SmallString<128> Str;
579  raw_svector_ostream OS(Str);
580  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
581
582  // cast away const; DIetc do not take const operands for some reason.
583  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
584  if (V.getContext().isSubprogram()) {
585    StringRef Name = DISubprogram(V.getContext()).getDisplayName();
586    if (!Name.empty())
587      OS << Name << ":";
588  }
589  OS << V.getName() << " <- ";
590
591  // The second operand is only an offset if it's an immediate.
592  bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
593  int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
594
595  // Register or immediate value. Register 0 means undef.
596  if (MI->getOperand(0).isFPImm()) {
597    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
598    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
599      OS << (double)APF.convertToFloat();
600    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
601      OS << APF.convertToDouble();
602    } else {
603      // There is no good way to print long double.  Convert a copy to
604      // double.  Ah well, it's only a comment.
605      bool ignored;
606      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
607                  &ignored);
608      OS << "(long double) " << APF.convertToDouble();
609    }
610  } else if (MI->getOperand(0).isImm()) {
611    OS << MI->getOperand(0).getImm();
612  } else if (MI->getOperand(0).isCImm()) {
613    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
614  } else {
615    unsigned Reg;
616    if (MI->getOperand(0).isReg()) {
617      Reg = MI->getOperand(0).getReg();
618    } else {
619      assert(MI->getOperand(0).isFI() && "Unknown operand type");
620      const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
621      Offset += TFI->getFrameIndexReference(*AP.MF,
622                                            MI->getOperand(0).getIndex(), Reg);
623      Deref = true;
624    }
625    if (Reg == 0) {
626      // Suppress offset, it is not meaningful here.
627      OS << "undef";
628      // NOTE: Want this comment at start of line, don't emit with AddComment.
629      AP.OutStreamer.EmitRawText(OS.str());
630      return true;
631    }
632    if (Deref)
633      OS << '[';
634    OS << AP.TM.getRegisterInfo()->getName(Reg);
635  }
636
637  if (Deref)
638    OS << '+' << Offset << ']';
639
640  // NOTE: Want this comment at start of line, don't emit with AddComment.
641  AP.OutStreamer.EmitRawText(OS.str());
642  return true;
643}
644
645AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
646  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
647      MF->getFunction()->needsUnwindTableEntry())
648    return CFI_M_EH;
649
650  if (MMI->hasDebugInfo())
651    return CFI_M_Debug;
652
653  return CFI_M_None;
654}
655
656bool AsmPrinter::needsSEHMoves() {
657  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
658    MF->getFunction()->needsUnwindTableEntry();
659}
660
661bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
662  return MAI->doesDwarfUseRelocationsAcrossSections();
663}
664
665void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
666  const MCSymbol *Label = MI.getOperand(0).getMCSymbol();
667
668  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
669    return;
670
671  if (needsCFIMoves() == CFI_M_None)
672    return;
673
674  if (MMI->getCompactUnwindEncoding() != 0)
675    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
676
677  const MachineModuleInfo &MMI = MF->getMMI();
678  const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
679  bool FoundOne = false;
680  (void)FoundOne;
681  for (std::vector<MCCFIInstruction>::const_iterator I = Instrs.begin(),
682         E = Instrs.end(); I != E; ++I) {
683    if (I->getLabel() == Label) {
684      emitCFIInstruction(*I);
685      FoundOne = true;
686    }
687  }
688  assert(FoundOne);
689}
690
691/// EmitFunctionBody - This method emits the body and trailer for a
692/// function.
693void AsmPrinter::EmitFunctionBody() {
694  // Emit target-specific gunk before the function body.
695  EmitFunctionBodyStart();
696
697  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
698
699  // Print out code for the function.
700  bool HasAnyRealCode = false;
701  const MachineInstr *LastMI = 0;
702  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
703       I != E; ++I) {
704    // Print a label for the basic block.
705    EmitBasicBlockStart(I);
706    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
707         II != IE; ++II) {
708      LastMI = II;
709
710      // Print the assembly for the instruction.
711      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
712          !II->isDebugValue()) {
713        HasAnyRealCode = true;
714        ++EmittedInsts;
715      }
716
717      if (ShouldPrintDebugScopes) {
718        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
719        DD->beginInstruction(II);
720      }
721
722      if (isVerbose())
723        emitComments(*II, OutStreamer.GetCommentOS());
724
725      switch (II->getOpcode()) {
726      case TargetOpcode::PROLOG_LABEL:
727        emitPrologLabel(*II);
728        break;
729
730      case TargetOpcode::EH_LABEL:
731      case TargetOpcode::GC_LABEL:
732        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
733        break;
734      case TargetOpcode::INLINEASM:
735        EmitInlineAsm(II);
736        break;
737      case TargetOpcode::DBG_VALUE:
738        if (isVerbose()) {
739          if (!emitDebugValueComment(II, *this))
740            EmitInstruction(II);
741        }
742        break;
743      case TargetOpcode::IMPLICIT_DEF:
744        if (isVerbose()) emitImplicitDef(II);
745        break;
746      case TargetOpcode::KILL:
747        if (isVerbose()) emitKill(II, *this);
748        break;
749      default:
750        if (!TM.hasMCUseLoc())
751          MCLineEntry::Make(&OutStreamer, getCurrentSection());
752
753        EmitInstruction(II);
754        break;
755      }
756
757      if (ShouldPrintDebugScopes) {
758        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
759        DD->endInstruction(II);
760      }
761    }
762  }
763
764  // If the last instruction was a prolog label, then we have a situation where
765  // we emitted a prolog but no function body. This results in the ending prolog
766  // label equaling the end of function label and an invalid "row" in the
767  // FDE. We need to emit a noop in this situation so that the FDE's rows are
768  // valid.
769  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
770
771  // If the function is empty and the object file uses .subsections_via_symbols,
772  // then we need to emit *something* to the function body to prevent the
773  // labels from collapsing together.  Just emit a noop.
774  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
775    MCInst Noop;
776    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
777    if (Noop.getOpcode()) {
778      OutStreamer.AddComment("avoids zero-length function");
779      OutStreamer.EmitInstruction(Noop);
780    } else  // Target not mc-ized yet.
781      OutStreamer.EmitRawText(StringRef("\tnop\n"));
782  }
783
784  const Function *F = MF->getFunction();
785  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
786    const BasicBlock *BB = i;
787    if (!BB->hasAddressTaken())
788      continue;
789    MCSymbol *Sym = GetBlockAddressSymbol(BB);
790    if (Sym->isDefined())
791      continue;
792    OutStreamer.AddComment("Address of block that was removed by CodeGen");
793    OutStreamer.EmitLabel(Sym);
794  }
795
796  // Emit target-specific gunk after the function body.
797  EmitFunctionBodyEnd();
798
799  // If the target wants a .size directive for the size of the function, emit
800  // it.
801  if (MAI->hasDotTypeDotSizeDirective()) {
802    // Create a symbol for the end of function, so we can get the size as
803    // difference between the function label and the temp label.
804    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
805    OutStreamer.EmitLabel(FnEndLabel);
806
807    const MCExpr *SizeExp =
808      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
809                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
810                                                      OutContext),
811                              OutContext);
812    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
813  }
814
815  // Emit post-function debug information.
816  if (DD) {
817    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
818    DD->endFunction(MF);
819  }
820  if (DE) {
821    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
822    DE->EndFunction();
823  }
824  MMI->EndFunction();
825
826  // Print out jump tables referenced by the function.
827  EmitJumpTableInfo();
828
829  OutStreamer.AddBlankLine();
830}
831
832/// EmitDwarfRegOp - Emit dwarf register operation.
833void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc,
834                                bool Indirect) const {
835  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
836  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
837
838  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
839       ++SR) {
840    Reg = TRI->getDwarfRegNum(*SR, false);
841    // FIXME: Get the bit range this register uses of the superregister
842    // so that we can produce a DW_OP_bit_piece
843  }
844
845  // FIXME: Handle cases like a super register being encoded as
846  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
847
848  // FIXME: We have no reasonable way of handling errors in here. The
849  // caller might be in the middle of an dwarf expression. We should
850  // probably assert that Reg >= 0 once debug info generation is more mature.
851
852  if (MLoc.isIndirect() || Indirect) {
853    if (Reg < 32) {
854      OutStreamer.AddComment(
855        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
856      EmitInt8(dwarf::DW_OP_breg0 + Reg);
857    } else {
858      OutStreamer.AddComment("DW_OP_bregx");
859      EmitInt8(dwarf::DW_OP_bregx);
860      OutStreamer.AddComment(Twine(Reg));
861      EmitULEB128(Reg);
862    }
863    EmitSLEB128(!MLoc.isIndirect() ? 0 : MLoc.getOffset());
864    if (MLoc.isIndirect() && Indirect)
865      EmitInt8(dwarf::DW_OP_deref);
866  } else {
867    if (Reg < 32) {
868      OutStreamer.AddComment(
869        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
870      EmitInt8(dwarf::DW_OP_reg0 + Reg);
871    } else {
872      OutStreamer.AddComment("DW_OP_regx");
873      EmitInt8(dwarf::DW_OP_regx);
874      OutStreamer.AddComment(Twine(Reg));
875      EmitULEB128(Reg);
876    }
877  }
878
879  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
880}
881
882bool AsmPrinter::doFinalization(Module &M) {
883  // Emit global variables.
884  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
885       I != E; ++I)
886    EmitGlobalVariable(I);
887
888  // Emit visibility info for declarations
889  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
890    const Function &F = *I;
891    if (!F.isDeclaration())
892      continue;
893    GlobalValue::VisibilityTypes V = F.getVisibility();
894    if (V == GlobalValue::DefaultVisibility)
895      continue;
896
897    MCSymbol *Name = getSymbol(&F);
898    EmitVisibility(Name, V, false);
899  }
900
901  // Emit module flags.
902  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
903  M.getModuleFlagsMetadata(ModuleFlags);
904  if (!ModuleFlags.empty())
905    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
906
907  // Make sure we wrote out everything we need.
908  OutStreamer.Flush();
909
910  // Finalize debug and EH information.
911  if (DE) {
912    {
913      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
914      DE->EndModule();
915    }
916    delete DE; DE = 0;
917  }
918  if (DD) {
919    {
920      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
921      DD->endModule();
922    }
923    delete DD; DD = 0;
924  }
925
926  // If the target wants to know about weak references, print them all.
927  if (MAI->getWeakRefDirective()) {
928    // FIXME: This is not lazy, it would be nice to only print weak references
929    // to stuff that is actually used.  Note that doing so would require targets
930    // to notice uses in operands (due to constant exprs etc).  This should
931    // happen with the MC stuff eventually.
932
933    // Print out module-level global variables here.
934    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
935         I != E; ++I) {
936      if (!I->hasExternalWeakLinkage()) continue;
937      OutStreamer.EmitSymbolAttribute(getSymbol(I), MCSA_WeakReference);
938    }
939
940    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
941      if (!I->hasExternalWeakLinkage()) continue;
942      OutStreamer.EmitSymbolAttribute(getSymbol(I), MCSA_WeakReference);
943    }
944  }
945
946  if (MAI->hasSetDirective()) {
947    OutStreamer.AddBlankLine();
948    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
949         I != E; ++I) {
950      MCSymbol *Name = getSymbol(I);
951
952      const GlobalValue *GV = I->getAliasedGlobal();
953      if (GV->isDeclaration()) {
954        report_fatal_error(Name->getName() +
955                           ": Target doesn't support aliases to declarations");
956      }
957
958      MCSymbol *Target = getSymbol(GV);
959
960      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
961        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
962      else if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
963        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
964      else
965        assert(I->hasLocalLinkage() && "Invalid alias linkage");
966
967      EmitVisibility(Name, I->getVisibility());
968
969      // Emit the directives as assignments aka .set:
970      OutStreamer.EmitAssignment(Name,
971                                 MCSymbolRefExpr::Create(Target, OutContext));
972    }
973  }
974
975  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
976  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
977  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
978    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
979      MP->finishAssembly(*this);
980
981  // Emit llvm.ident metadata in an '.ident' directive.
982  EmitModuleIdents(M);
983
984  // If we don't have any trampolines, then we don't require stack memory
985  // to be executable. Some targets have a directive to declare this.
986  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
987  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
988    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
989      OutStreamer.SwitchSection(S);
990
991  // Allow the target to emit any magic that it wants at the end of the file,
992  // after everything else has gone out.
993  EmitEndOfAsmFile(M);
994
995  delete Mang; Mang = 0;
996  MMI = 0;
997
998  OutStreamer.Finish();
999  OutStreamer.reset();
1000
1001  return false;
1002}
1003
1004void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1005  this->MF = &MF;
1006  // Get the function symbol.
1007  CurrentFnSym = getSymbol(MF.getFunction());
1008  CurrentFnSymForSize = CurrentFnSym;
1009
1010  if (isVerbose())
1011    LI = &getAnalysis<MachineLoopInfo>();
1012}
1013
1014namespace {
1015  // SectionCPs - Keep track the alignment, constpool entries per Section.
1016  struct SectionCPs {
1017    const MCSection *S;
1018    unsigned Alignment;
1019    SmallVector<unsigned, 4> CPEs;
1020    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
1021  };
1022}
1023
1024/// EmitConstantPool - Print to the current output stream assembly
1025/// representations of the constants in the constant pool MCP. This is
1026/// used to print out constants which have been "spilled to memory" by
1027/// the code generator.
1028///
1029void AsmPrinter::EmitConstantPool() {
1030  const MachineConstantPool *MCP = MF->getConstantPool();
1031  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1032  if (CP.empty()) return;
1033
1034  // Calculate sections for constant pool entries. We collect entries to go into
1035  // the same section together to reduce amount of section switch statements.
1036  SmallVector<SectionCPs, 4> CPSections;
1037  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1038    const MachineConstantPoolEntry &CPE = CP[i];
1039    unsigned Align = CPE.getAlignment();
1040
1041    SectionKind Kind;
1042    switch (CPE.getRelocationInfo()) {
1043    default: llvm_unreachable("Unknown section kind");
1044    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1045    case 1:
1046      Kind = SectionKind::getReadOnlyWithRelLocal();
1047      break;
1048    case 0:
1049    switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
1050    case 4:  Kind = SectionKind::getMergeableConst4(); break;
1051    case 8:  Kind = SectionKind::getMergeableConst8(); break;
1052    case 16: Kind = SectionKind::getMergeableConst16();break;
1053    default: Kind = SectionKind::getMergeableConst(); break;
1054    }
1055    }
1056
1057    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1058
1059    // The number of sections are small, just do a linear search from the
1060    // last section to the first.
1061    bool Found = false;
1062    unsigned SecIdx = CPSections.size();
1063    while (SecIdx != 0) {
1064      if (CPSections[--SecIdx].S == S) {
1065        Found = true;
1066        break;
1067      }
1068    }
1069    if (!Found) {
1070      SecIdx = CPSections.size();
1071      CPSections.push_back(SectionCPs(S, Align));
1072    }
1073
1074    if (Align > CPSections[SecIdx].Alignment)
1075      CPSections[SecIdx].Alignment = Align;
1076    CPSections[SecIdx].CPEs.push_back(i);
1077  }
1078
1079  // Now print stuff into the calculated sections.
1080  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1081    OutStreamer.SwitchSection(CPSections[i].S);
1082    EmitAlignment(Log2_32(CPSections[i].Alignment));
1083
1084    unsigned Offset = 0;
1085    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1086      unsigned CPI = CPSections[i].CPEs[j];
1087      MachineConstantPoolEntry CPE = CP[CPI];
1088
1089      // Emit inter-object padding for alignment.
1090      unsigned AlignMask = CPE.getAlignment() - 1;
1091      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1092      OutStreamer.EmitZeros(NewOffset - Offset);
1093
1094      Type *Ty = CPE.getType();
1095      Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1096      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1097
1098      if (CPE.isMachineConstantPoolEntry())
1099        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1100      else
1101        EmitGlobalConstant(CPE.Val.ConstVal);
1102    }
1103  }
1104}
1105
1106/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1107/// by the current function to the current output stream.
1108///
1109void AsmPrinter::EmitJumpTableInfo() {
1110  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1111  if (MJTI == 0) return;
1112  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1113  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1114  if (JT.empty()) return;
1115
1116  // Pick the directive to use to print the jump table entries, and switch to
1117  // the appropriate section.
1118  const Function *F = MF->getFunction();
1119  bool JTInDiffSection = false;
1120  if (// In PIC mode, we need to emit the jump table to the same section as the
1121      // function body itself, otherwise the label differences won't make sense.
1122      // FIXME: Need a better predicate for this: what about custom entries?
1123      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1124      // We should also do if the section name is NULL or function is declared
1125      // in discardable section
1126      // FIXME: this isn't the right predicate, should be based on the MCSection
1127      // for the function.
1128      F->isWeakForLinker()) {
1129    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1130  } else {
1131    // Otherwise, drop it in the readonly section.
1132    const MCSection *ReadOnlySection =
1133      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1134    OutStreamer.SwitchSection(ReadOnlySection);
1135    JTInDiffSection = true;
1136  }
1137
1138  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1139
1140  // Jump tables in code sections are marked with a data_region directive
1141  // where that's supported.
1142  if (!JTInDiffSection)
1143    OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1144
1145  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1146    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1147
1148    // If this jump table was deleted, ignore it.
1149    if (JTBBs.empty()) continue;
1150
1151    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1152    // .set directive for each unique entry.  This reduces the number of
1153    // relocations the assembler will generate for the jump table.
1154    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1155        MAI->hasSetDirective()) {
1156      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1157      const TargetLowering *TLI = TM.getTargetLowering();
1158      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1159      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1160        const MachineBasicBlock *MBB = JTBBs[ii];
1161        if (!EmittedSets.insert(MBB)) continue;
1162
1163        // .set LJTSet, LBB32-base
1164        const MCExpr *LHS =
1165          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1166        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1167                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1168      }
1169    }
1170
1171    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1172    // before each jump table.  The first label is never referenced, but tells
1173    // the assembler and linker the extents of the jump table object.  The
1174    // second label is actually referenced by the code.
1175    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1176      // FIXME: This doesn't have to have any specific name, just any randomly
1177      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1178      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1179
1180    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1181
1182    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1183      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1184  }
1185  if (!JTInDiffSection)
1186    OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1187}
1188
1189/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1190/// current stream.
1191void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1192                                    const MachineBasicBlock *MBB,
1193                                    unsigned UID) const {
1194  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1195  const MCExpr *Value = 0;
1196  switch (MJTI->getEntryKind()) {
1197  case MachineJumpTableInfo::EK_Inline:
1198    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1199  case MachineJumpTableInfo::EK_Custom32:
1200    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1201                                                              OutContext);
1202    break;
1203  case MachineJumpTableInfo::EK_BlockAddress:
1204    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1205    //     .word LBB123
1206    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1207    break;
1208  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1209    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1210    // with a relocation as gp-relative, e.g.:
1211    //     .gprel32 LBB123
1212    MCSymbol *MBBSym = MBB->getSymbol();
1213    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1214    return;
1215  }
1216
1217  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1218    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1219    // with a relocation as gp-relative, e.g.:
1220    //     .gpdword LBB123
1221    MCSymbol *MBBSym = MBB->getSymbol();
1222    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1223    return;
1224  }
1225
1226  case MachineJumpTableInfo::EK_LabelDifference32: {
1227    // EK_LabelDifference32 - Each entry is the address of the block minus
1228    // the address of the jump table.  This is used for PIC jump tables where
1229    // gprel32 is not supported.  e.g.:
1230    //      .word LBB123 - LJTI1_2
1231    // If the .set directive is supported, this is emitted as:
1232    //      .set L4_5_set_123, LBB123 - LJTI1_2
1233    //      .word L4_5_set_123
1234
1235    // If we have emitted set directives for the jump table entries, print
1236    // them rather than the entries themselves.  If we're emitting PIC, then
1237    // emit the table entries as differences between two text section labels.
1238    if (MAI->hasSetDirective()) {
1239      // If we used .set, reference the .set's symbol.
1240      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1241                                      OutContext);
1242      break;
1243    }
1244    // Otherwise, use the difference as the jump table entry.
1245    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1246    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1247    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1248    break;
1249  }
1250  }
1251
1252  assert(Value && "Unknown entry kind!");
1253
1254  unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1255  OutStreamer.EmitValue(Value, EntrySize);
1256}
1257
1258
1259/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1260/// special global used by LLVM.  If so, emit it and return true, otherwise
1261/// do nothing and return false.
1262bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1263  if (GV->getName() == "llvm.used") {
1264    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1265      EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1266    return true;
1267  }
1268
1269  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1270  if (GV->getSection() == "llvm.metadata" ||
1271      GV->hasAvailableExternallyLinkage())
1272    return true;
1273
1274  if (!GV->hasAppendingLinkage()) return false;
1275
1276  assert(GV->hasInitializer() && "Not a special LLVM global!");
1277
1278  if (GV->getName() == "llvm.global_ctors") {
1279    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1280
1281    if (TM.getRelocationModel() == Reloc::Static &&
1282        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1283      StringRef Sym(".constructors_used");
1284      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1285                                      MCSA_Reference);
1286    }
1287    return true;
1288  }
1289
1290  if (GV->getName() == "llvm.global_dtors") {
1291    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1292
1293    if (TM.getRelocationModel() == Reloc::Static &&
1294        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1295      StringRef Sym(".destructors_used");
1296      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1297                                      MCSA_Reference);
1298    }
1299    return true;
1300  }
1301
1302  return false;
1303}
1304
1305/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1306/// global in the specified llvm.used list for which emitUsedDirectiveFor
1307/// is true, as being used with this directive.
1308void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1309  // Should be an array of 'i8*'.
1310  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1311    const GlobalValue *GV =
1312      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1313    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1314      OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1315  }
1316}
1317
1318/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1319/// priority.
1320void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1321  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1322  // init priority.
1323  if (!isa<ConstantArray>(List)) return;
1324
1325  // Sanity check the structors list.
1326  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1327  if (!InitList) return; // Not an array!
1328  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1329  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1330  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1331      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1332
1333  // Gather the structors in a form that's convenient for sorting by priority.
1334  typedef std::pair<unsigned, Constant *> Structor;
1335  SmallVector<Structor, 8> Structors;
1336  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1337    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1338    if (!CS) continue; // Malformed.
1339    if (CS->getOperand(1)->isNullValue())
1340      break;  // Found a null terminator, skip the rest.
1341    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1342    if (!Priority) continue; // Malformed.
1343    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1344                                       CS->getOperand(1)));
1345  }
1346
1347  // Emit the function pointers in the target-specific order
1348  const DataLayout *DL = TM.getDataLayout();
1349  unsigned Align = Log2_32(DL->getPointerPrefAlignment());
1350  std::stable_sort(Structors.begin(), Structors.end(), less_first());
1351  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1352    const MCSection *OutputSection =
1353      (isCtor ?
1354       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1355       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1356    OutStreamer.SwitchSection(OutputSection);
1357    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1358      EmitAlignment(Align);
1359    EmitXXStructor(Structors[i].second);
1360  }
1361}
1362
1363void AsmPrinter::EmitModuleIdents(Module &M) {
1364  if (!MAI->hasIdentDirective())
1365    return;
1366
1367  if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1368    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1369      const MDNode *N = NMD->getOperand(i);
1370      assert(N->getNumOperands() == 1 &&
1371             "llvm.ident metadata entry can have only one operand");
1372      const MDString *S = cast<MDString>(N->getOperand(0));
1373      OutStreamer.EmitIdent(S->getString());
1374    }
1375  }
1376}
1377
1378//===--------------------------------------------------------------------===//
1379// Emission and print routines
1380//
1381
1382/// EmitInt8 - Emit a byte directive and value.
1383///
1384void AsmPrinter::EmitInt8(int Value) const {
1385  OutStreamer.EmitIntValue(Value, 1);
1386}
1387
1388/// EmitInt16 - Emit a short directive and value.
1389///
1390void AsmPrinter::EmitInt16(int Value) const {
1391  OutStreamer.EmitIntValue(Value, 2);
1392}
1393
1394/// EmitInt32 - Emit a long directive and value.
1395///
1396void AsmPrinter::EmitInt32(int Value) const {
1397  OutStreamer.EmitIntValue(Value, 4);
1398}
1399
1400/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1401/// in bytes of the directive is specified by Size and Hi/Lo specify the
1402/// labels.  This implicitly uses .set if it is available.
1403void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1404                                     unsigned Size) const {
1405  // Get the Hi-Lo expression.
1406  const MCExpr *Diff =
1407    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1408                            MCSymbolRefExpr::Create(Lo, OutContext),
1409                            OutContext);
1410
1411  if (!MAI->hasSetDirective()) {
1412    OutStreamer.EmitValue(Diff, Size);
1413    return;
1414  }
1415
1416  // Otherwise, emit with .set (aka assignment).
1417  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1418  OutStreamer.EmitAssignment(SetLabel, Diff);
1419  OutStreamer.EmitSymbolValue(SetLabel, Size);
1420}
1421
1422/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1423/// where the size in bytes of the directive is specified by Size and Hi/Lo
1424/// specify the labels.  This implicitly uses .set if it is available.
1425void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1426                                           const MCSymbol *Lo, unsigned Size)
1427  const {
1428
1429  // Emit Hi+Offset - Lo
1430  // Get the Hi+Offset expression.
1431  const MCExpr *Plus =
1432    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1433                            MCConstantExpr::Create(Offset, OutContext),
1434                            OutContext);
1435
1436  // Get the Hi+Offset-Lo expression.
1437  const MCExpr *Diff =
1438    MCBinaryExpr::CreateSub(Plus,
1439                            MCSymbolRefExpr::Create(Lo, OutContext),
1440                            OutContext);
1441
1442  if (!MAI->hasSetDirective())
1443    OutStreamer.EmitValue(Diff, Size);
1444  else {
1445    // Otherwise, emit with .set (aka assignment).
1446    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1447    OutStreamer.EmitAssignment(SetLabel, Diff);
1448    OutStreamer.EmitSymbolValue(SetLabel, Size);
1449  }
1450}
1451
1452/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1453/// where the size in bytes of the directive is specified by Size and Label
1454/// specifies the label.  This implicitly uses .set if it is available.
1455void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1456                                      unsigned Size, bool IsSectionRelative)
1457  const {
1458  if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1459    OutStreamer.EmitCOFFSecRel32(Label);
1460    return;
1461  }
1462
1463  // Emit Label+Offset (or just Label if Offset is zero)
1464  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1465  if (Offset)
1466    Expr = MCBinaryExpr::CreateAdd(Expr,
1467                                   MCConstantExpr::Create(Offset, OutContext),
1468                                   OutContext);
1469
1470  OutStreamer.EmitValue(Expr, Size);
1471}
1472
1473
1474//===----------------------------------------------------------------------===//
1475
1476// EmitAlignment - Emit an alignment directive to the specified power of
1477// two boundary.  For example, if you pass in 3 here, you will get an 8
1478// byte alignment.  If a global value is specified, and if that global has
1479// an explicit alignment requested, it will override the alignment request
1480// if required for correctness.
1481//
1482void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1483  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1484
1485  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1486
1487  if (getCurrentSection()->getKind().isText())
1488    OutStreamer.EmitCodeAlignment(1 << NumBits);
1489  else
1490    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1491}
1492
1493//===----------------------------------------------------------------------===//
1494// Constant emission.
1495//===----------------------------------------------------------------------===//
1496
1497/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1498///
1499static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1500  MCContext &Ctx = AP.OutContext;
1501
1502  if (CV->isNullValue() || isa<UndefValue>(CV))
1503    return MCConstantExpr::Create(0, Ctx);
1504
1505  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1506    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1507
1508  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1509    return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx);
1510
1511  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1512    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1513
1514  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1515  if (CE == 0) {
1516    llvm_unreachable("Unknown constant value to lower!");
1517  }
1518
1519  switch (CE->getOpcode()) {
1520  default:
1521    // If the code isn't optimized, there may be outstanding folding
1522    // opportunities. Attempt to fold the expression using DataLayout as a
1523    // last resort before giving up.
1524    if (Constant *C =
1525          ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1526      if (C != CE)
1527        return lowerConstant(C, AP);
1528
1529    // Otherwise report the problem to the user.
1530    {
1531      std::string S;
1532      raw_string_ostream OS(S);
1533      OS << "Unsupported expression in static initializer: ";
1534      WriteAsOperand(OS, CE, /*PrintType=*/false,
1535                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1536      report_fatal_error(OS.str());
1537    }
1538  case Instruction::GetElementPtr: {
1539    const DataLayout &DL = *AP.TM.getDataLayout();
1540    // Generate a symbolic expression for the byte address
1541    APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
1542    cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
1543
1544    const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1545    if (!OffsetAI)
1546      return Base;
1547
1548    int64_t Offset = OffsetAI.getSExtValue();
1549    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1550                                   Ctx);
1551  }
1552
1553  case Instruction::Trunc:
1554    // We emit the value and depend on the assembler to truncate the generated
1555    // expression properly.  This is important for differences between
1556    // blockaddress labels.  Since the two labels are in the same function, it
1557    // is reasonable to treat their delta as a 32-bit value.
1558    // FALL THROUGH.
1559  case Instruction::BitCast:
1560    return lowerConstant(CE->getOperand(0), AP);
1561
1562  case Instruction::IntToPtr: {
1563    const DataLayout &DL = *AP.TM.getDataLayout();
1564    // Handle casts to pointers by changing them into casts to the appropriate
1565    // integer type.  This promotes constant folding and simplifies this code.
1566    Constant *Op = CE->getOperand(0);
1567    Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1568                                      false/*ZExt*/);
1569    return lowerConstant(Op, AP);
1570  }
1571
1572  case Instruction::PtrToInt: {
1573    const DataLayout &DL = *AP.TM.getDataLayout();
1574    // Support only foldable casts to/from pointers that can be eliminated by
1575    // changing the pointer to the appropriately sized integer type.
1576    Constant *Op = CE->getOperand(0);
1577    Type *Ty = CE->getType();
1578
1579    const MCExpr *OpExpr = lowerConstant(Op, AP);
1580
1581    // We can emit the pointer value into this slot if the slot is an
1582    // integer slot equal to the size of the pointer.
1583    if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1584      return OpExpr;
1585
1586    // Otherwise the pointer is smaller than the resultant integer, mask off
1587    // the high bits so we are sure to get a proper truncation if the input is
1588    // a constant expr.
1589    unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1590    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1591    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1592  }
1593
1594  // The MC library also has a right-shift operator, but it isn't consistently
1595  // signed or unsigned between different targets.
1596  case Instruction::Add:
1597  case Instruction::Sub:
1598  case Instruction::Mul:
1599  case Instruction::SDiv:
1600  case Instruction::SRem:
1601  case Instruction::Shl:
1602  case Instruction::And:
1603  case Instruction::Or:
1604  case Instruction::Xor: {
1605    const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1606    const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1607    switch (CE->getOpcode()) {
1608    default: llvm_unreachable("Unknown binary operator constant cast expr");
1609    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1610    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1611    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1612    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1613    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1614    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1615    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1616    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1617    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1618    }
1619  }
1620  }
1621}
1622
1623static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP);
1624
1625/// isRepeatedByteSequence - Determine whether the given value is
1626/// composed of a repeated sequence of identical bytes and return the
1627/// byte value.  If it is not a repeated sequence, return -1.
1628static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1629  StringRef Data = V->getRawDataValues();
1630  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1631  char C = Data[0];
1632  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1633    if (Data[i] != C) return -1;
1634  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1635}
1636
1637
1638/// isRepeatedByteSequence - Determine whether the given value is
1639/// composed of a repeated sequence of identical bytes and return the
1640/// byte value.  If it is not a repeated sequence, return -1.
1641static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1642
1643  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1644    if (CI->getBitWidth() > 64) return -1;
1645
1646    uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1647    uint64_t Value = CI->getZExtValue();
1648
1649    // Make sure the constant is at least 8 bits long and has a power
1650    // of 2 bit width.  This guarantees the constant bit width is
1651    // always a multiple of 8 bits, avoiding issues with padding out
1652    // to Size and other such corner cases.
1653    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1654
1655    uint8_t Byte = static_cast<uint8_t>(Value);
1656
1657    for (unsigned i = 1; i < Size; ++i) {
1658      Value >>= 8;
1659      if (static_cast<uint8_t>(Value) != Byte) return -1;
1660    }
1661    return Byte;
1662  }
1663  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1664    // Make sure all array elements are sequences of the same repeated
1665    // byte.
1666    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1667    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1668    if (Byte == -1) return -1;
1669
1670    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1671      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1672      if (ThisByte == -1) return -1;
1673      if (Byte != ThisByte) return -1;
1674    }
1675    return Byte;
1676  }
1677
1678  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1679    return isRepeatedByteSequence(CDS);
1680
1681  return -1;
1682}
1683
1684static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1685                                             AsmPrinter &AP){
1686
1687  // See if we can aggregate this into a .fill, if so, emit it as such.
1688  int Value = isRepeatedByteSequence(CDS, AP.TM);
1689  if (Value != -1) {
1690    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1691    // Don't emit a 1-byte object as a .fill.
1692    if (Bytes > 1)
1693      return AP.OutStreamer.EmitFill(Bytes, Value);
1694  }
1695
1696  // If this can be emitted with .ascii/.asciz, emit it as such.
1697  if (CDS->isString())
1698    return AP.OutStreamer.EmitBytes(CDS->getAsString());
1699
1700  // Otherwise, emit the values in successive locations.
1701  unsigned ElementByteSize = CDS->getElementByteSize();
1702  if (isa<IntegerType>(CDS->getElementType())) {
1703    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1704      if (AP.isVerbose())
1705        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1706                                                CDS->getElementAsInteger(i));
1707      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1708                                  ElementByteSize);
1709    }
1710  } else if (ElementByteSize == 4) {
1711    // FP Constants are printed as integer constants to avoid losing
1712    // precision.
1713    assert(CDS->getElementType()->isFloatTy());
1714    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1715      union {
1716        float F;
1717        uint32_t I;
1718      };
1719
1720      F = CDS->getElementAsFloat(i);
1721      if (AP.isVerbose())
1722        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1723      AP.OutStreamer.EmitIntValue(I, 4);
1724    }
1725  } else {
1726    assert(CDS->getElementType()->isDoubleTy());
1727    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1728      union {
1729        double F;
1730        uint64_t I;
1731      };
1732
1733      F = CDS->getElementAsDouble(i);
1734      if (AP.isVerbose())
1735        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1736      AP.OutStreamer.EmitIntValue(I, 8);
1737    }
1738  }
1739
1740  const DataLayout &DL = *AP.TM.getDataLayout();
1741  unsigned Size = DL.getTypeAllocSize(CDS->getType());
1742  unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
1743                        CDS->getNumElements();
1744  if (unsigned Padding = Size - EmittedSize)
1745    AP.OutStreamer.EmitZeros(Padding);
1746
1747}
1748
1749static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
1750  // See if we can aggregate some values.  Make sure it can be
1751  // represented as a series of bytes of the constant value.
1752  int Value = isRepeatedByteSequence(CA, AP.TM);
1753
1754  if (Value != -1) {
1755    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1756    AP.OutStreamer.EmitFill(Bytes, Value);
1757  }
1758  else {
1759    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1760      emitGlobalConstantImpl(CA->getOperand(i), AP);
1761  }
1762}
1763
1764static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
1765  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1766    emitGlobalConstantImpl(CV->getOperand(i), AP);
1767
1768  const DataLayout &DL = *AP.TM.getDataLayout();
1769  unsigned Size = DL.getTypeAllocSize(CV->getType());
1770  unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
1771                         CV->getType()->getNumElements();
1772  if (unsigned Padding = Size - EmittedSize)
1773    AP.OutStreamer.EmitZeros(Padding);
1774}
1775
1776static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
1777  // Print the fields in successive locations. Pad to align if needed!
1778  const DataLayout *DL = AP.TM.getDataLayout();
1779  unsigned Size = DL->getTypeAllocSize(CS->getType());
1780  const StructLayout *Layout = DL->getStructLayout(CS->getType());
1781  uint64_t SizeSoFar = 0;
1782  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1783    const Constant *Field = CS->getOperand(i);
1784
1785    // Check if padding is needed and insert one or more 0s.
1786    uint64_t FieldSize = DL->getTypeAllocSize(Field->getType());
1787    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1788                        - Layout->getElementOffset(i)) - FieldSize;
1789    SizeSoFar += FieldSize + PadSize;
1790
1791    // Now print the actual field value.
1792    emitGlobalConstantImpl(Field, AP);
1793
1794    // Insert padding - this may include padding to increase the size of the
1795    // current field up to the ABI size (if the struct is not packed) as well
1796    // as padding to ensure that the next field starts at the right offset.
1797    AP.OutStreamer.EmitZeros(PadSize);
1798  }
1799  assert(SizeSoFar == Layout->getSizeInBytes() &&
1800         "Layout of constant struct may be incorrect!");
1801}
1802
1803static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
1804  APInt API = CFP->getValueAPF().bitcastToAPInt();
1805
1806  // First print a comment with what we think the original floating-point value
1807  // should have been.
1808  if (AP.isVerbose()) {
1809    SmallString<8> StrVal;
1810    CFP->getValueAPF().toString(StrVal);
1811
1812    CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1813    AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1814  }
1815
1816  // Now iterate through the APInt chunks, emitting them in endian-correct
1817  // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1818  // floats).
1819  unsigned NumBytes = API.getBitWidth() / 8;
1820  unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1821  const uint64_t *p = API.getRawData();
1822
1823  // PPC's long double has odd notions of endianness compared to how LLVM
1824  // handles it: p[0] goes first for *big* endian on PPC.
1825  if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
1826    int Chunk = API.getNumWords() - 1;
1827
1828    if (TrailingBytes)
1829      AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
1830
1831    for (; Chunk >= 0; --Chunk)
1832      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1833  } else {
1834    unsigned Chunk;
1835    for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
1836      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1837
1838    if (TrailingBytes)
1839      AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
1840  }
1841
1842  // Emit the tail padding for the long double.
1843  const DataLayout &DL = *AP.TM.getDataLayout();
1844  AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
1845                           DL.getTypeStoreSize(CFP->getType()));
1846}
1847
1848static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
1849  const DataLayout *DL = AP.TM.getDataLayout();
1850  unsigned BitWidth = CI->getBitWidth();
1851
1852  // Copy the value as we may massage the layout for constants whose bit width
1853  // is not a multiple of 64-bits.
1854  APInt Realigned(CI->getValue());
1855  uint64_t ExtraBits = 0;
1856  unsigned ExtraBitsSize = BitWidth & 63;
1857
1858  if (ExtraBitsSize) {
1859    // The bit width of the data is not a multiple of 64-bits.
1860    // The extra bits are expected to be at the end of the chunk of the memory.
1861    // Little endian:
1862    // * Nothing to be done, just record the extra bits to emit.
1863    // Big endian:
1864    // * Record the extra bits to emit.
1865    // * Realign the raw data to emit the chunks of 64-bits.
1866    if (DL->isBigEndian()) {
1867      // Basically the structure of the raw data is a chunk of 64-bits cells:
1868      //    0        1         BitWidth / 64
1869      // [chunk1][chunk2] ... [chunkN].
1870      // The most significant chunk is chunkN and it should be emitted first.
1871      // However, due to the alignment issue chunkN contains useless bits.
1872      // Realign the chunks so that they contain only useless information:
1873      // ExtraBits     0       1       (BitWidth / 64) - 1
1874      //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
1875      ExtraBits = Realigned.getRawData()[0] &
1876        (((uint64_t)-1) >> (64 - ExtraBitsSize));
1877      Realigned = Realigned.lshr(ExtraBitsSize);
1878    } else
1879      ExtraBits = Realigned.getRawData()[BitWidth / 64];
1880  }
1881
1882  // We don't expect assemblers to support integer data directives
1883  // for more than 64 bits, so we emit the data in at most 64-bit
1884  // quantities at a time.
1885  const uint64_t *RawData = Realigned.getRawData();
1886  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1887    uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1888    AP.OutStreamer.EmitIntValue(Val, 8);
1889  }
1890
1891  if (ExtraBitsSize) {
1892    // Emit the extra bits after the 64-bits chunks.
1893
1894    // Emit a directive that fills the expected size.
1895    uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
1896    Size -= (BitWidth / 64) * 8;
1897    assert(Size && Size * 8 >= ExtraBitsSize &&
1898           (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
1899           == ExtraBits && "Directive too small for extra bits.");
1900    AP.OutStreamer.EmitIntValue(ExtraBits, Size);
1901  }
1902}
1903
1904static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
1905  const DataLayout *DL = AP.TM.getDataLayout();
1906  uint64_t Size = DL->getTypeAllocSize(CV->getType());
1907  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1908    return AP.OutStreamer.EmitZeros(Size);
1909
1910  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1911    switch (Size) {
1912    case 1:
1913    case 2:
1914    case 4:
1915    case 8:
1916      if (AP.isVerbose())
1917        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1918                                                CI->getZExtValue());
1919      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
1920      return;
1921    default:
1922      emitGlobalConstantLargeInt(CI, AP);
1923      return;
1924    }
1925  }
1926
1927  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1928    return emitGlobalConstantFP(CFP, AP);
1929
1930  if (isa<ConstantPointerNull>(CV)) {
1931    AP.OutStreamer.EmitIntValue(0, Size);
1932    return;
1933  }
1934
1935  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1936    return emitGlobalConstantDataSequential(CDS, AP);
1937
1938  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1939    return emitGlobalConstantArray(CVA, AP);
1940
1941  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1942    return emitGlobalConstantStruct(CVS, AP);
1943
1944  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1945    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1946    // vectors).
1947    if (CE->getOpcode() == Instruction::BitCast)
1948      return emitGlobalConstantImpl(CE->getOperand(0), AP);
1949
1950    if (Size > 8) {
1951      // If the constant expression's size is greater than 64-bits, then we have
1952      // to emit the value in chunks. Try to constant fold the value and emit it
1953      // that way.
1954      Constant *New = ConstantFoldConstantExpression(CE, DL);
1955      if (New && New != CE)
1956        return emitGlobalConstantImpl(New, AP);
1957    }
1958  }
1959
1960  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1961    return emitGlobalConstantVector(V, AP);
1962
1963  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1964  // thread the streamer with EmitValue.
1965  AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size);
1966}
1967
1968/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1969void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
1970  uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
1971  if (Size)
1972    emitGlobalConstantImpl(CV, *this);
1973  else if (MAI->hasSubsectionsViaSymbols()) {
1974    // If the global has zero size, emit a single byte so that two labels don't
1975    // look like they are at the same location.
1976    OutStreamer.EmitIntValue(0, 1);
1977  }
1978}
1979
1980void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1981  // Target doesn't support this yet!
1982  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1983}
1984
1985void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1986  if (Offset > 0)
1987    OS << '+' << Offset;
1988  else if (Offset < 0)
1989    OS << Offset;
1990}
1991
1992//===----------------------------------------------------------------------===//
1993// Symbol Lowering Routines.
1994//===----------------------------------------------------------------------===//
1995
1996/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1997/// temporary label with the specified stem and unique ID.
1998MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1999  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
2000                                      Name + Twine(ID));
2001}
2002
2003/// GetTempSymbol - Return an assembler temporary label with the specified
2004/// stem.
2005MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
2006  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
2007                                      Name);
2008}
2009
2010
2011MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2012  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2013}
2014
2015MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2016  return MMI->getAddrLabelSymbol(BB);
2017}
2018
2019/// GetCPISymbol - Return the symbol for the specified constant pool entry.
2020MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2021  return OutContext.GetOrCreateSymbol
2022    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
2023     + "_" + Twine(CPID));
2024}
2025
2026/// GetJTISymbol - Return the symbol for the specified jump table entry.
2027MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2028  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2029}
2030
2031/// GetJTSetSymbol - Return the symbol for the specified jump table .set
2032/// FIXME: privatize to AsmPrinter.
2033MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2034  return OutContext.GetOrCreateSymbol
2035  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
2036   Twine(UID) + "_set_" + Twine(MBBID));
2037}
2038
2039/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
2040/// global value name as its base, with the specified suffix, and where the
2041/// symbol is forced to have private linkage if ForcePrivate is true.
2042MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
2043                                                   StringRef Suffix,
2044                                                   bool ForcePrivate) const {
2045  SmallString<60> NameStr;
2046  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
2047  NameStr.append(Suffix.begin(), Suffix.end());
2048  return OutContext.GetOrCreateSymbol(NameStr.str());
2049}
2050
2051/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2052/// ExternalSymbol.
2053MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2054  SmallString<60> NameStr;
2055  Mang->getNameWithPrefix(NameStr, Sym);
2056  return OutContext.GetOrCreateSymbol(NameStr.str());
2057}
2058
2059
2060
2061/// PrintParentLoopComment - Print comments about parent loops of this one.
2062static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2063                                   unsigned FunctionNumber) {
2064  if (Loop == 0) return;
2065  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2066  OS.indent(Loop->getLoopDepth()*2)
2067    << "Parent Loop BB" << FunctionNumber << "_"
2068    << Loop->getHeader()->getNumber()
2069    << " Depth=" << Loop->getLoopDepth() << '\n';
2070}
2071
2072
2073/// PrintChildLoopComment - Print comments about child loops within
2074/// the loop for this basic block, with nesting.
2075static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2076                                  unsigned FunctionNumber) {
2077  // Add child loop information
2078  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2079    OS.indent((*CL)->getLoopDepth()*2)
2080      << "Child Loop BB" << FunctionNumber << "_"
2081      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2082      << '\n';
2083    PrintChildLoopComment(OS, *CL, FunctionNumber);
2084  }
2085}
2086
2087/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2088static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2089                                       const MachineLoopInfo *LI,
2090                                       const AsmPrinter &AP) {
2091  // Add loop depth information
2092  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2093  if (Loop == 0) return;
2094
2095  MachineBasicBlock *Header = Loop->getHeader();
2096  assert(Header && "No header for loop");
2097
2098  // If this block is not a loop header, just print out what is the loop header
2099  // and return.
2100  if (Header != &MBB) {
2101    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2102                              Twine(AP.getFunctionNumber())+"_" +
2103                              Twine(Loop->getHeader()->getNumber())+
2104                              " Depth="+Twine(Loop->getLoopDepth()));
2105    return;
2106  }
2107
2108  // Otherwise, it is a loop header.  Print out information about child and
2109  // parent loops.
2110  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2111
2112  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2113
2114  OS << "=>";
2115  OS.indent(Loop->getLoopDepth()*2-2);
2116
2117  OS << "This ";
2118  if (Loop->empty())
2119    OS << "Inner ";
2120  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2121
2122  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2123}
2124
2125
2126/// EmitBasicBlockStart - This method prints the label for the specified
2127/// MachineBasicBlock, an alignment (if present) and a comment describing
2128/// it if appropriate.
2129void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2130  // Emit an alignment directive for this block, if needed.
2131  if (unsigned Align = MBB->getAlignment())
2132    EmitAlignment(Align);
2133
2134  // If the block has its address taken, emit any labels that were used to
2135  // reference the block.  It is possible that there is more than one label
2136  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2137  // the references were generated.
2138  if (MBB->hasAddressTaken()) {
2139    const BasicBlock *BB = MBB->getBasicBlock();
2140    if (isVerbose())
2141      OutStreamer.AddComment("Block address taken");
2142
2143    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2144
2145    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2146      OutStreamer.EmitLabel(Syms[i]);
2147  }
2148
2149  // Print some verbose block comments.
2150  if (isVerbose()) {
2151    if (const BasicBlock *BB = MBB->getBasicBlock())
2152      if (BB->hasName())
2153        OutStreamer.AddComment("%" + BB->getName());
2154    emitBasicBlockLoopComments(*MBB, LI, *this);
2155  }
2156
2157  // Print the main label for the block.
2158  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2159    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2160      // NOTE: Want this comment at start of line, don't emit with AddComment.
2161      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2162                              Twine(MBB->getNumber()) + ":");
2163    }
2164  } else {
2165    OutStreamer.EmitLabel(MBB->getSymbol());
2166  }
2167}
2168
2169void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2170                                bool IsDefinition) const {
2171  MCSymbolAttr Attr = MCSA_Invalid;
2172
2173  switch (Visibility) {
2174  default: break;
2175  case GlobalValue::HiddenVisibility:
2176    if (IsDefinition)
2177      Attr = MAI->getHiddenVisibilityAttr();
2178    else
2179      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2180    break;
2181  case GlobalValue::ProtectedVisibility:
2182    Attr = MAI->getProtectedVisibilityAttr();
2183    break;
2184  }
2185
2186  if (Attr != MCSA_Invalid)
2187    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2188}
2189
2190/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2191/// exactly one predecessor and the control transfer mechanism between
2192/// the predecessor and this block is a fall-through.
2193bool AsmPrinter::
2194isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2195  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2196  // then nothing falls through to it.
2197  if (MBB->isLandingPad() || MBB->pred_empty())
2198    return false;
2199
2200  // If there isn't exactly one predecessor, it can't be a fall through.
2201  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2202  ++PI2;
2203  if (PI2 != MBB->pred_end())
2204    return false;
2205
2206  // The predecessor has to be immediately before this block.
2207  MachineBasicBlock *Pred = *PI;
2208
2209  if (!Pred->isLayoutSuccessor(MBB))
2210    return false;
2211
2212  // If the block is completely empty, then it definitely does fall through.
2213  if (Pred->empty())
2214    return true;
2215
2216  // Check the terminators in the previous blocks
2217  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2218         IE = Pred->end(); II != IE; ++II) {
2219    MachineInstr &MI = *II;
2220
2221    // If it is not a simple branch, we are in a table somewhere.
2222    if (!MI.isBranch() || MI.isIndirectBranch())
2223      return false;
2224
2225    // If we are the operands of one of the branches, this is not a fall
2226    // through. Note that targets with delay slots will usually bundle
2227    // terminators with the delay slot instruction.
2228    for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) {
2229      if (OP->isJTI())
2230        return false;
2231      if (OP->isMBB() && OP->getMBB() == MBB)
2232        return false;
2233    }
2234  }
2235
2236  return true;
2237}
2238
2239
2240
2241GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2242  if (!S->usesMetadata())
2243    return 0;
2244
2245  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2246  gcp_map_type::iterator GCPI = GCMap.find(S);
2247  if (GCPI != GCMap.end())
2248    return GCPI->second;
2249
2250  const char *Name = S->getName().c_str();
2251
2252  for (GCMetadataPrinterRegistry::iterator
2253         I = GCMetadataPrinterRegistry::begin(),
2254         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2255    if (strcmp(Name, I->getName()) == 0) {
2256      GCMetadataPrinter *GMP = I->instantiate();
2257      GMP->S = S;
2258      GCMap.insert(std::make_pair(S, GMP));
2259      return GMP;
2260    }
2261
2262  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2263}
2264