IVUsers.cpp revision 266715
1//===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements bookkeeping for "interesting" users of expressions
11// computed from induction variables.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "iv-users"
16#include "llvm/Analysis/IVUsers.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/Analysis/Dominators.h"
19#include "llvm/Analysis/LoopPass.h"
20#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/Assembly/Writer.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Type.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31using namespace llvm;
32
33char IVUsers::ID = 0;
34INITIALIZE_PASS_BEGIN(IVUsers, "iv-users",
35                      "Induction Variable Users", false, true)
36INITIALIZE_PASS_DEPENDENCY(LoopInfo)
37INITIALIZE_PASS_DEPENDENCY(DominatorTree)
38INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
39INITIALIZE_PASS_END(IVUsers, "iv-users",
40                      "Induction Variable Users", false, true)
41
42Pass *llvm::createIVUsersPass() {
43  return new IVUsers();
44}
45
46/// isInteresting - Test whether the given expression is "interesting" when
47/// used by the given expression, within the context of analyzing the
48/// given loop.
49static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
50                          ScalarEvolution *SE, LoopInfo *LI) {
51  // An addrec is interesting if it's affine or if it has an interesting start.
52  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
53    // Keep things simple. Don't touch loop-variant strides unless they're
54    // only used outside the loop and we can simplify them.
55    if (AR->getLoop() == L)
56      return AR->isAffine() ||
57             (!L->contains(I) &&
58              SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
59    // Otherwise recurse to see if the start value is interesting, and that
60    // the step value is not interesting, since we don't yet know how to
61    // do effective SCEV expansions for addrecs with interesting steps.
62    return isInteresting(AR->getStart(), I, L, SE, LI) &&
63          !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
64  }
65
66  // An add is interesting if exactly one of its operands is interesting.
67  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
68    bool AnyInterestingYet = false;
69    for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end();
70         OI != OE; ++OI)
71      if (isInteresting(*OI, I, L, SE, LI)) {
72        if (AnyInterestingYet)
73          return false;
74        AnyInterestingYet = true;
75      }
76    return AnyInterestingYet;
77  }
78
79  // Nothing else is interesting here.
80  return false;
81}
82
83/// Return true if all loop headers that dominate this block are in simplified
84/// form.
85static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
86                                 const LoopInfo *LI,
87                                 SmallPtrSet<Loop*,16> &SimpleLoopNests) {
88  Loop *NearestLoop = 0;
89  for (DomTreeNode *Rung = DT->getNode(BB);
90       Rung; Rung = Rung->getIDom()) {
91    BasicBlock *DomBB = Rung->getBlock();
92    Loop *DomLoop = LI->getLoopFor(DomBB);
93    if (DomLoop && DomLoop->getHeader() == DomBB) {
94      // If the domtree walk reaches a loop with no preheader, return false.
95      if (!DomLoop->isLoopSimplifyForm())
96        return false;
97      // If we have already checked this loop nest, stop checking.
98      if (SimpleLoopNests.count(DomLoop))
99        break;
100      // If we have not already checked this loop nest, remember the loop
101      // header nearest to BB. The nearest loop may not contain BB.
102      if (!NearestLoop)
103        NearestLoop = DomLoop;
104    }
105  }
106  if (NearestLoop)
107    SimpleLoopNests.insert(NearestLoop);
108  return true;
109}
110
111/// AddUsersImpl - Inspect the specified instruction.  If it is a
112/// reducible SCEV, recursively add its users to the IVUsesByStride set and
113/// return true.  Otherwise, return false.
114bool IVUsers::AddUsersImpl(Instruction *I,
115                           SmallPtrSet<Loop*,16> &SimpleLoopNests) {
116  // Add this IV user to the Processed set before returning false to ensure that
117  // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
118  if (!Processed.insert(I))
119    return true;    // Instruction already handled.
120
121  if (!SE->isSCEVable(I->getType()))
122    return false;   // Void and FP expressions cannot be reduced.
123
124  // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
125  // pass to SCEVExpander. Expressions are not safe to expand if they represent
126  // operations that are not safe to speculate, namely integer division.
127  if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I, TD))
128    return false;
129
130  // LSR is not APInt clean, do not touch integers bigger than 64-bits.
131  // Also avoid creating IVs of non-native types. For example, we don't want a
132  // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
133  uint64_t Width = SE->getTypeSizeInBits(I->getType());
134  if (Width > 64 || (TD && !TD->isLegalInteger(Width)))
135    return false;
136
137  // Get the symbolic expression for this instruction.
138  const SCEV *ISE = SE->getSCEV(I);
139
140  // If we've come to an uninteresting expression, stop the traversal and
141  // call this a user.
142  if (!isInteresting(ISE, I, L, SE, LI))
143    return false;
144
145  SmallPtrSet<Instruction *, 4> UniqueUsers;
146  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
147       UI != E; ++UI) {
148    Instruction *User = cast<Instruction>(*UI);
149    if (!UniqueUsers.insert(User))
150      continue;
151
152    // Do not infinitely recurse on PHI nodes.
153    if (isa<PHINode>(User) && Processed.count(User))
154      continue;
155
156    // Only consider IVUsers that are dominated by simplified loop
157    // headers. Otherwise, SCEVExpander will crash.
158    BasicBlock *UseBB = User->getParent();
159    // A phi's use is live out of its predecessor block.
160    if (PHINode *PHI = dyn_cast<PHINode>(User)) {
161      unsigned OperandNo = UI.getOperandNo();
162      unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
163      UseBB = PHI->getIncomingBlock(ValNo);
164    }
165    if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
166      return false;
167
168    // Descend recursively, but not into PHI nodes outside the current loop.
169    // It's important to see the entire expression outside the loop to get
170    // choices that depend on addressing mode use right, although we won't
171    // consider references outside the loop in all cases.
172    // If User is already in Processed, we don't want to recurse into it again,
173    // but do want to record a second reference in the same instruction.
174    bool AddUserToIVUsers = false;
175    if (LI->getLoopFor(User->getParent()) != L) {
176      if (isa<PHINode>(User) || Processed.count(User) ||
177          !AddUsersImpl(User, SimpleLoopNests)) {
178        DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
179                     << "   OF SCEV: " << *ISE << '\n');
180        AddUserToIVUsers = true;
181      }
182    } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
183      DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
184                   << "   OF SCEV: " << *ISE << '\n');
185      AddUserToIVUsers = true;
186    }
187
188    if (AddUserToIVUsers) {
189      // Okay, we found a user that we cannot reduce.
190      IVStrideUse &NewUse = AddUser(User, I);
191      // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
192      // The regular return value here is discarded; instead of recording
193      // it, we just recompute it when we need it.
194      const SCEV *OriginalISE = ISE;
195      ISE = TransformForPostIncUse(NormalizeAutodetect,
196                                   ISE, User, I,
197                                   NewUse.PostIncLoops,
198                                   *SE, *DT);
199
200      // PostIncNormalization effectively simplifies the expression under
201      // pre-increment assumptions. Those assumptions (no wrapping) might not
202      // hold for the post-inc value. Catch such cases by making sure the
203      // transformation is invertible.
204      if (OriginalISE != ISE) {
205        const SCEV *DenormalizedISE =
206          TransformForPostIncUse(Denormalize, ISE, User, I,
207              NewUse.PostIncLoops, *SE, *DT);
208
209        // If we normalized the expression, but denormalization doesn't give the
210        // original one, discard this user.
211        if (OriginalISE != DenormalizedISE) {
212          DEBUG(dbgs() << "   DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
213                       << *ISE << '\n');
214          IVUses.pop_back();
215          return false;
216        }
217      }
218      DEBUG(if (SE->getSCEV(I) != ISE)
219              dbgs() << "   NORMALIZED TO: " << *ISE << '\n');
220    }
221  }
222  return true;
223}
224
225bool IVUsers::AddUsersIfInteresting(Instruction *I) {
226  // SCEVExpander can only handle users that are dominated by simplified loop
227  // entries. Keep track of all loops that are only dominated by other simple
228  // loops so we don't traverse the domtree for each user.
229  SmallPtrSet<Loop*,16> SimpleLoopNests;
230
231  return AddUsersImpl(I, SimpleLoopNests);
232}
233
234IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
235  IVUses.push_back(new IVStrideUse(this, User, Operand));
236  return IVUses.back();
237}
238
239IVUsers::IVUsers()
240    : LoopPass(ID) {
241  initializeIVUsersPass(*PassRegistry::getPassRegistry());
242}
243
244void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const {
245  AU.addRequired<LoopInfo>();
246  AU.addRequired<DominatorTree>();
247  AU.addRequired<ScalarEvolution>();
248  AU.setPreservesAll();
249}
250
251bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
252
253  L = l;
254  LI = &getAnalysis<LoopInfo>();
255  DT = &getAnalysis<DominatorTree>();
256  SE = &getAnalysis<ScalarEvolution>();
257  TD = getAnalysisIfAvailable<DataLayout>();
258
259  // Find all uses of induction variables in this loop, and categorize
260  // them by stride.  Start by finding all of the PHI nodes in the header for
261  // this loop.  If they are induction variables, inspect their uses.
262  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
263    (void)AddUsersIfInteresting(I);
264
265  return false;
266}
267
268void IVUsers::print(raw_ostream &OS, const Module *M) const {
269  OS << "IV Users for loop ";
270  WriteAsOperand(OS, L->getHeader(), false);
271  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
272    OS << " with backedge-taken count "
273       << *SE->getBackedgeTakenCount(L);
274  }
275  OS << ":\n";
276
277  for (ilist<IVStrideUse>::const_iterator UI = IVUses.begin(),
278       E = IVUses.end(); UI != E; ++UI) {
279    OS << "  ";
280    WriteAsOperand(OS, UI->getOperandValToReplace(), false);
281    OS << " = " << *getReplacementExpr(*UI);
282    for (PostIncLoopSet::const_iterator
283         I = UI->PostIncLoops.begin(),
284         E = UI->PostIncLoops.end(); I != E; ++I) {
285      OS << " (post-inc with loop ";
286      WriteAsOperand(OS, (*I)->getHeader(), false);
287      OS << ")";
288    }
289    OS << " in  ";
290    UI->getUser()->print(OS);
291    OS << '\n';
292  }
293}
294
295#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
296void IVUsers::dump() const {
297  print(dbgs());
298}
299#endif
300
301void IVUsers::releaseMemory() {
302  Processed.clear();
303  IVUses.clear();
304}
305
306/// getReplacementExpr - Return a SCEV expression which computes the
307/// value of the OperandValToReplace.
308const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
309  return SE->getSCEV(IU.getOperandValToReplace());
310}
311
312/// getExpr - Return the expression for the use.
313const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
314  return
315    TransformForPostIncUse(Normalize, getReplacementExpr(IU),
316                           IU.getUser(), IU.getOperandValToReplace(),
317                           const_cast<PostIncLoopSet &>(IU.getPostIncLoops()),
318                           *SE, *DT);
319}
320
321static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
322  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
323    if (AR->getLoop() == L)
324      return AR;
325    return findAddRecForLoop(AR->getStart(), L);
326  }
327
328  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
329    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
330         I != E; ++I)
331      if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L))
332        return AR;
333    return 0;
334  }
335
336  return 0;
337}
338
339const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
340  if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
341    return AR->getStepRecurrence(*SE);
342  return 0;
343}
344
345void IVStrideUse::transformToPostInc(const Loop *L) {
346  PostIncLoops.insert(L);
347}
348
349void IVStrideUse::deleted() {
350  // Remove this user from the list.
351  Parent->Processed.erase(this->getUser());
352  Parent->IVUses.erase(this);
353  // this now dangles!
354}
355