MathExtras.h revision 263508
1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some functions that are useful for math stuff.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_MATHEXTRAS_H
15#define LLVM_SUPPORT_MATHEXTRAS_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/SwapByteOrder.h"
19#include "llvm/Support/type_traits.h"
20
21#include <cstring>
22
23#ifdef _MSC_VER
24#include <intrin.h>
25#include <limits>
26#endif
27
28namespace llvm {
29/// \brief The behavior an operation has on an input of 0.
30enum ZeroBehavior {
31  /// \brief The returned value is undefined.
32  ZB_Undefined,
33  /// \brief The returned value is numeric_limits<T>::max()
34  ZB_Max,
35  /// \brief The returned value is numeric_limits<T>::digits
36  ZB_Width
37};
38
39/// \brief Count number of 0's from the least significant bit to the most
40///   stopping at the first 1.
41///
42/// Only unsigned integral types are allowed.
43///
44/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
45///   valid arguments.
46template <typename T>
47typename enable_if_c<std::numeric_limits<T>::is_integer &&
48                     !std::numeric_limits<T>::is_signed, std::size_t>::type
49countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
50  (void)ZB;
51
52  if (!Val)
53    return std::numeric_limits<T>::digits;
54  if (Val & 0x1)
55    return 0;
56
57  // Bisection method.
58  std::size_t ZeroBits = 0;
59  T Shift = std::numeric_limits<T>::digits >> 1;
60  T Mask = std::numeric_limits<T>::max() >> Shift;
61  while (Shift) {
62    if ((Val & Mask) == 0) {
63      Val >>= Shift;
64      ZeroBits |= Shift;
65    }
66    Shift >>= 1;
67    Mask >>= Shift;
68  }
69  return ZeroBits;
70}
71
72// Disable signed.
73template <typename T>
74typename enable_if_c<std::numeric_limits<T>::is_integer &&
75                     std::numeric_limits<T>::is_signed, std::size_t>::type
76countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) LLVM_DELETED_FUNCTION;
77
78#if __GNUC__ >= 4 || _MSC_VER
79template <>
80inline std::size_t countTrailingZeros<uint32_t>(uint32_t Val, ZeroBehavior ZB) {
81  if (ZB != ZB_Undefined && Val == 0)
82    return 32;
83
84#if __has_builtin(__builtin_ctz) || __GNUC_PREREQ(4, 0)
85  return __builtin_ctz(Val);
86#elif _MSC_VER
87  unsigned long Index;
88  _BitScanForward(&Index, Val);
89  return Index;
90#endif
91}
92
93#if !defined(_MSC_VER) || defined(_M_X64)
94template <>
95inline std::size_t countTrailingZeros<uint64_t>(uint64_t Val, ZeroBehavior ZB) {
96  if (ZB != ZB_Undefined && Val == 0)
97    return 64;
98
99#if __has_builtin(__builtin_ctzll) || __GNUC_PREREQ(4, 0)
100  return __builtin_ctzll(Val);
101#elif _MSC_VER
102  unsigned long Index;
103  _BitScanForward64(&Index, Val);
104  return Index;
105#endif
106}
107#endif
108#endif
109
110/// \brief Count number of 0's from the most significant bit to the least
111///   stopping at the first 1.
112///
113/// Only unsigned integral types are allowed.
114///
115/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
116///   valid arguments.
117template <typename T>
118typename enable_if_c<std::numeric_limits<T>::is_integer &&
119                     !std::numeric_limits<T>::is_signed, std::size_t>::type
120countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
121  (void)ZB;
122
123  if (!Val)
124    return std::numeric_limits<T>::digits;
125
126  // Bisection method.
127  std::size_t ZeroBits = 0;
128  for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
129    T Tmp = Val >> Shift;
130    if (Tmp)
131      Val = Tmp;
132    else
133      ZeroBits |= Shift;
134  }
135  return ZeroBits;
136}
137
138// Disable signed.
139template <typename T>
140typename enable_if_c<std::numeric_limits<T>::is_integer &&
141                     std::numeric_limits<T>::is_signed, std::size_t>::type
142countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) LLVM_DELETED_FUNCTION;
143
144#if __GNUC__ >= 4 || _MSC_VER
145template <>
146inline std::size_t countLeadingZeros<uint32_t>(uint32_t Val, ZeroBehavior ZB) {
147  if (ZB != ZB_Undefined && Val == 0)
148    return 32;
149
150#if __has_builtin(__builtin_clz) || __GNUC_PREREQ(4, 0)
151  return __builtin_clz(Val);
152#elif _MSC_VER
153  unsigned long Index;
154  _BitScanReverse(&Index, Val);
155  return Index ^ 31;
156#endif
157}
158
159#if !defined(_MSC_VER) || defined(_M_X64)
160template <>
161inline std::size_t countLeadingZeros<uint64_t>(uint64_t Val, ZeroBehavior ZB) {
162  if (ZB != ZB_Undefined && Val == 0)
163    return 64;
164
165#if __has_builtin(__builtin_clzll) || __GNUC_PREREQ(4, 0)
166  return __builtin_clzll(Val);
167#elif _MSC_VER
168  unsigned long Index;
169  _BitScanReverse64(&Index, Val);
170  return Index ^ 63;
171#endif
172}
173#endif
174#endif
175
176/// \brief Get the index of the first set bit starting from the least
177///   significant bit.
178///
179/// Only unsigned integral types are allowed.
180///
181/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
182///   valid arguments.
183template <typename T>
184typename enable_if_c<std::numeric_limits<T>::is_integer &&
185                     !std::numeric_limits<T>::is_signed, T>::type
186findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
187  if (ZB == ZB_Max && Val == 0)
188    return std::numeric_limits<T>::max();
189
190  return countTrailingZeros(Val, ZB_Undefined);
191}
192
193// Disable signed.
194template <typename T>
195typename enable_if_c<std::numeric_limits<T>::is_integer &&
196                     std::numeric_limits<T>::is_signed, T>::type
197findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) LLVM_DELETED_FUNCTION;
198
199/// \brief Get the index of the last set bit starting from the least
200///   significant bit.
201///
202/// Only unsigned integral types are allowed.
203///
204/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
205///   valid arguments.
206template <typename T>
207typename enable_if_c<std::numeric_limits<T>::is_integer &&
208                     !std::numeric_limits<T>::is_signed, T>::type
209findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
210  if (ZB == ZB_Max && Val == 0)
211    return std::numeric_limits<T>::max();
212
213  // Use ^ instead of - because both gcc and llvm can remove the associated ^
214  // in the __builtin_clz intrinsic on x86.
215  return countLeadingZeros(Val, ZB_Undefined) ^
216         (std::numeric_limits<T>::digits - 1);
217}
218
219// Disable signed.
220template <typename T>
221typename enable_if_c<std::numeric_limits<T>::is_integer &&
222                     std::numeric_limits<T>::is_signed, T>::type
223findLastSet(T Val, ZeroBehavior ZB = ZB_Max) LLVM_DELETED_FUNCTION;
224
225/// \brief Macro compressed bit reversal table for 256 bits.
226///
227/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
228static const unsigned char BitReverseTable256[256] = {
229#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
230#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
231#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
232  R6(0), R6(2), R6(1), R6(3)
233};
234
235/// \brief Reverse the bits in \p Val.
236template <typename T>
237T reverseBits(T Val) {
238  unsigned char in[sizeof(Val)];
239  unsigned char out[sizeof(Val)];
240  std::memcpy(in, &Val, sizeof(Val));
241  for (unsigned i = 0; i < sizeof(Val); ++i)
242    out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
243  std::memcpy(&Val, out, sizeof(Val));
244  return Val;
245}
246
247// NOTE: The following support functions use the _32/_64 extensions instead of
248// type overloading so that signed and unsigned integers can be used without
249// ambiguity.
250
251/// Hi_32 - This function returns the high 32 bits of a 64 bit value.
252inline uint32_t Hi_32(uint64_t Value) {
253  return static_cast<uint32_t>(Value >> 32);
254}
255
256/// Lo_32 - This function returns the low 32 bits of a 64 bit value.
257inline uint32_t Lo_32(uint64_t Value) {
258  return static_cast<uint32_t>(Value);
259}
260
261/// isInt - Checks if an integer fits into the given bit width.
262template<unsigned N>
263inline bool isInt(int64_t x) {
264  return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
265}
266// Template specializations to get better code for common cases.
267template<>
268inline bool isInt<8>(int64_t x) {
269  return static_cast<int8_t>(x) == x;
270}
271template<>
272inline bool isInt<16>(int64_t x) {
273  return static_cast<int16_t>(x) == x;
274}
275template<>
276inline bool isInt<32>(int64_t x) {
277  return static_cast<int32_t>(x) == x;
278}
279
280/// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
281///                     left by S.
282template<unsigned N, unsigned S>
283inline bool isShiftedInt(int64_t x) {
284  return isInt<N+S>(x) && (x % (1<<S) == 0);
285}
286
287/// isUInt - Checks if an unsigned integer fits into the given bit width.
288template<unsigned N>
289inline bool isUInt(uint64_t x) {
290  return N >= 64 || x < (UINT64_C(1)<<(N));
291}
292// Template specializations to get better code for common cases.
293template<>
294inline bool isUInt<8>(uint64_t x) {
295  return static_cast<uint8_t>(x) == x;
296}
297template<>
298inline bool isUInt<16>(uint64_t x) {
299  return static_cast<uint16_t>(x) == x;
300}
301template<>
302inline bool isUInt<32>(uint64_t x) {
303  return static_cast<uint32_t>(x) == x;
304}
305
306/// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
307///                     left by S.
308template<unsigned N, unsigned S>
309inline bool isShiftedUInt(uint64_t x) {
310  return isUInt<N+S>(x) && (x % (1<<S) == 0);
311}
312
313/// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
314/// bit width.
315inline bool isUIntN(unsigned N, uint64_t x) {
316  return x == (x & (~0ULL >> (64 - N)));
317}
318
319/// isIntN - Checks if an signed integer fits into the given (dynamic)
320/// bit width.
321inline bool isIntN(unsigned N, int64_t x) {
322  return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
323}
324
325/// isMask_32 - This function returns true if the argument is a sequence of ones
326/// starting at the least significant bit with the remainder zero (32 bit
327/// version).   Ex. isMask_32(0x0000FFFFU) == true.
328inline bool isMask_32(uint32_t Value) {
329  return Value && ((Value + 1) & Value) == 0;
330}
331
332/// isMask_64 - This function returns true if the argument is a sequence of ones
333/// starting at the least significant bit with the remainder zero (64 bit
334/// version).
335inline bool isMask_64(uint64_t Value) {
336  return Value && ((Value + 1) & Value) == 0;
337}
338
339/// isShiftedMask_32 - This function returns true if the argument contains a
340/// sequence of ones with the remainder zero (32 bit version.)
341/// Ex. isShiftedMask_32(0x0000FF00U) == true.
342inline bool isShiftedMask_32(uint32_t Value) {
343  return isMask_32((Value - 1) | Value);
344}
345
346/// isShiftedMask_64 - This function returns true if the argument contains a
347/// sequence of ones with the remainder zero (64 bit version.)
348inline bool isShiftedMask_64(uint64_t Value) {
349  return isMask_64((Value - 1) | Value);
350}
351
352/// isPowerOf2_32 - This function returns true if the argument is a power of
353/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
354inline bool isPowerOf2_32(uint32_t Value) {
355  return Value && !(Value & (Value - 1));
356}
357
358/// isPowerOf2_64 - This function returns true if the argument is a power of two
359/// > 0 (64 bit edition.)
360inline bool isPowerOf2_64(uint64_t Value) {
361  return Value && !(Value & (Value - int64_t(1L)));
362}
363
364/// ByteSwap_16 - This function returns a byte-swapped representation of the
365/// 16-bit argument, Value.
366inline uint16_t ByteSwap_16(uint16_t Value) {
367  return sys::SwapByteOrder_16(Value);
368}
369
370/// ByteSwap_32 - This function returns a byte-swapped representation of the
371/// 32-bit argument, Value.
372inline uint32_t ByteSwap_32(uint32_t Value) {
373  return sys::SwapByteOrder_32(Value);
374}
375
376/// ByteSwap_64 - This function returns a byte-swapped representation of the
377/// 64-bit argument, Value.
378inline uint64_t ByteSwap_64(uint64_t Value) {
379  return sys::SwapByteOrder_64(Value);
380}
381
382/// CountLeadingOnes_32 - this function performs the operation of
383/// counting the number of ones from the most significant bit to the first zero
384/// bit.  Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
385/// Returns 32 if the word is all ones.
386inline unsigned CountLeadingOnes_32(uint32_t Value) {
387  return countLeadingZeros(~Value);
388}
389
390/// CountLeadingOnes_64 - This function performs the operation
391/// of counting the number of ones from the most significant bit to the first
392/// zero bit (64 bit edition.)
393/// Returns 64 if the word is all ones.
394inline unsigned CountLeadingOnes_64(uint64_t Value) {
395  return countLeadingZeros(~Value);
396}
397
398/// CountTrailingOnes_32 - this function performs the operation of
399/// counting the number of ones from the least significant bit to the first zero
400/// bit.  Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
401/// Returns 32 if the word is all ones.
402inline unsigned CountTrailingOnes_32(uint32_t Value) {
403  return countTrailingZeros(~Value);
404}
405
406/// CountTrailingOnes_64 - This function performs the operation
407/// of counting the number of ones from the least significant bit to the first
408/// zero bit (64 bit edition.)
409/// Returns 64 if the word is all ones.
410inline unsigned CountTrailingOnes_64(uint64_t Value) {
411  return countTrailingZeros(~Value);
412}
413
414/// CountPopulation_32 - this function counts the number of set bits in a value.
415/// Ex. CountPopulation(0xF000F000) = 8
416/// Returns 0 if the word is zero.
417inline unsigned CountPopulation_32(uint32_t Value) {
418#if __GNUC__ >= 4
419  return __builtin_popcount(Value);
420#else
421  uint32_t v = Value - ((Value >> 1) & 0x55555555);
422  v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
423  return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
424#endif
425}
426
427/// CountPopulation_64 - this function counts the number of set bits in a value,
428/// (64 bit edition.)
429inline unsigned CountPopulation_64(uint64_t Value) {
430#if __GNUC__ >= 4
431  return __builtin_popcountll(Value);
432#else
433  uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
434  v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
435  v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
436  return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
437#endif
438}
439
440/// Log2_32 - This function returns the floor log base 2 of the specified value,
441/// -1 if the value is zero. (32 bit edition.)
442/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
443inline unsigned Log2_32(uint32_t Value) {
444  return 31 - countLeadingZeros(Value);
445}
446
447/// Log2_64 - This function returns the floor log base 2 of the specified value,
448/// -1 if the value is zero. (64 bit edition.)
449inline unsigned Log2_64(uint64_t Value) {
450  return 63 - countLeadingZeros(Value);
451}
452
453/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
454/// value, 32 if the value is zero. (32 bit edition).
455/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
456inline unsigned Log2_32_Ceil(uint32_t Value) {
457  return 32 - countLeadingZeros(Value - 1);
458}
459
460/// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
461/// value, 64 if the value is zero. (64 bit edition.)
462inline unsigned Log2_64_Ceil(uint64_t Value) {
463  return 64 - countLeadingZeros(Value - 1);
464}
465
466/// GreatestCommonDivisor64 - Return the greatest common divisor of the two
467/// values using Euclid's algorithm.
468inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
469  while (B) {
470    uint64_t T = B;
471    B = A % B;
472    A = T;
473  }
474  return A;
475}
476
477/// BitsToDouble - This function takes a 64-bit integer and returns the bit
478/// equivalent double.
479inline double BitsToDouble(uint64_t Bits) {
480  union {
481    uint64_t L;
482    double D;
483  } T;
484  T.L = Bits;
485  return T.D;
486}
487
488/// BitsToFloat - This function takes a 32-bit integer and returns the bit
489/// equivalent float.
490inline float BitsToFloat(uint32_t Bits) {
491  union {
492    uint32_t I;
493    float F;
494  } T;
495  T.I = Bits;
496  return T.F;
497}
498
499/// DoubleToBits - This function takes a double and returns the bit
500/// equivalent 64-bit integer.  Note that copying doubles around
501/// changes the bits of NaNs on some hosts, notably x86, so this
502/// routine cannot be used if these bits are needed.
503inline uint64_t DoubleToBits(double Double) {
504  union {
505    uint64_t L;
506    double D;
507  } T;
508  T.D = Double;
509  return T.L;
510}
511
512/// FloatToBits - This function takes a float and returns the bit
513/// equivalent 32-bit integer.  Note that copying floats around
514/// changes the bits of NaNs on some hosts, notably x86, so this
515/// routine cannot be used if these bits are needed.
516inline uint32_t FloatToBits(float Float) {
517  union {
518    uint32_t I;
519    float F;
520  } T;
521  T.F = Float;
522  return T.I;
523}
524
525/// Platform-independent wrappers for the C99 isnan() function.
526int IsNAN(float f);
527int IsNAN(double d);
528
529/// Platform-independent wrappers for the C99 isinf() function.
530int IsInf(float f);
531int IsInf(double d);
532
533/// MinAlign - A and B are either alignments or offsets.  Return the minimum
534/// alignment that may be assumed after adding the two together.
535inline uint64_t MinAlign(uint64_t A, uint64_t B) {
536  // The largest power of 2 that divides both A and B.
537  //
538  // Replace "-Value" by "1+~Value" in the following commented code to avoid
539  // MSVC warning C4146
540  //    return (A | B) & -(A | B);
541  return (A | B) & (1 + ~(A | B));
542}
543
544/// NextPowerOf2 - Returns the next power of two (in 64-bits)
545/// that is strictly greater than A.  Returns zero on overflow.
546inline uint64_t NextPowerOf2(uint64_t A) {
547  A |= (A >> 1);
548  A |= (A >> 2);
549  A |= (A >> 4);
550  A |= (A >> 8);
551  A |= (A >> 16);
552  A |= (A >> 32);
553  return A + 1;
554}
555
556/// Returns the next integer (mod 2**64) that is greater than or equal to
557/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
558///
559/// Examples:
560/// \code
561///   RoundUpToAlignment(5, 8) = 8
562///   RoundUpToAlignment(17, 8) = 24
563///   RoundUpToAlignment(~0LL, 8) = 0
564/// \endcode
565inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
566  return ((Value + Align - 1) / Align) * Align;
567}
568
569/// Returns the offset to the next integer (mod 2**64) that is greater than
570/// or equal to \p Value and is a multiple of \p Align. \p Align must be
571/// non-zero.
572inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
573  return RoundUpToAlignment(Value, Align) - Value;
574}
575
576/// abs64 - absolute value of a 64-bit int.  Not all environments support
577/// "abs" on whatever their name for the 64-bit int type is.  The absolute
578/// value of the largest negative number is undefined, as with "abs".
579inline int64_t abs64(int64_t x) {
580  return (x < 0) ? -x : x;
581}
582
583/// SignExtend32 - Sign extend B-bit number x to 32-bit int.
584/// Usage int32_t r = SignExtend32<5>(x);
585template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
586  return int32_t(x << (32 - B)) >> (32 - B);
587}
588
589/// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
590/// Requires 0 < B <= 32.
591inline int32_t SignExtend32(uint32_t X, unsigned B) {
592  return int32_t(X << (32 - B)) >> (32 - B);
593}
594
595/// SignExtend64 - Sign extend B-bit number x to 64-bit int.
596/// Usage int64_t r = SignExtend64<5>(x);
597template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
598  return int64_t(x << (64 - B)) >> (64 - B);
599}
600
601/// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
602/// Requires 0 < B <= 64.
603inline int64_t SignExtend64(uint64_t X, unsigned B) {
604  return int64_t(X << (64 - B)) >> (64 - B);
605}
606
607#if defined(_MSC_VER)
608  // Visual Studio defines the HUGE_VAL class of macros using purposeful
609  // constant arithmetic overflow, which it then warns on when encountered.
610  const float huge_valf = std::numeric_limits<float>::infinity();
611#else
612  const float huge_valf = HUGE_VALF;
613#endif
614} // End llvm namespace
615
616#endif
617