SlotIndexes.h revision 263508
1//===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements SlotIndex and related classes. The purpose of SlotIndex
11// is to describe a position at which a register can become live, or cease to
12// be live.
13//
14// SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
15// is held is LiveIntervals and provides the real numbering. This allows
16// LiveIntervals to perform largely transparent renumbering.
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SLOTINDEXES_H
20#define LLVM_CODEGEN_SLOTINDEXES_H
21
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/IntervalMap.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/ilist.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineInstrBundle.h"
30#include "llvm/Support/Allocator.h"
31
32namespace llvm {
33
34  /// This class represents an entry in the slot index list held in the
35  /// SlotIndexes pass. It should not be used directly. See the
36  /// SlotIndex & SlotIndexes classes for the public interface to this
37  /// information.
38  class IndexListEntry : public ilist_node<IndexListEntry> {
39    MachineInstr *mi;
40    unsigned index;
41
42  public:
43
44    IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {}
45
46    MachineInstr* getInstr() const { return mi; }
47    void setInstr(MachineInstr *mi) {
48      this->mi = mi;
49    }
50
51    unsigned getIndex() const { return index; }
52    void setIndex(unsigned index) {
53      this->index = index;
54    }
55
56#ifdef EXPENSIVE_CHECKS
57    // When EXPENSIVE_CHECKS is defined, "erased" index list entries will
58    // actually be moved to a "graveyard" list, and have their pointers
59    // poisoned, so that dangling SlotIndex access can be reliably detected.
60    void setPoison() {
61      intptr_t tmp = reinterpret_cast<intptr_t>(mi);
62      assert(((tmp & 0x1) == 0x0) && "Pointer already poisoned?");
63      tmp |= 0x1;
64      mi = reinterpret_cast<MachineInstr*>(tmp);
65    }
66
67    bool isPoisoned() const { return (reinterpret_cast<intptr_t>(mi) & 0x1) == 0x1; }
68#endif // EXPENSIVE_CHECKS
69
70  };
71
72  template <>
73  struct ilist_traits<IndexListEntry> : public ilist_default_traits<IndexListEntry> {
74  private:
75    mutable ilist_half_node<IndexListEntry> Sentinel;
76  public:
77    IndexListEntry *createSentinel() const {
78      return static_cast<IndexListEntry*>(&Sentinel);
79    }
80    void destroySentinel(IndexListEntry *) const {}
81
82    IndexListEntry *provideInitialHead() const { return createSentinel(); }
83    IndexListEntry *ensureHead(IndexListEntry*) const { return createSentinel(); }
84    static void noteHead(IndexListEntry*, IndexListEntry*) {}
85    void deleteNode(IndexListEntry *N) {}
86
87  private:
88    void createNode(const IndexListEntry &);
89  };
90
91  /// SlotIndex - An opaque wrapper around machine indexes.
92  class SlotIndex {
93    friend class SlotIndexes;
94
95    enum Slot {
96      /// Basic block boundary.  Used for live ranges entering and leaving a
97      /// block without being live in the layout neighbor.  Also used as the
98      /// def slot of PHI-defs.
99      Slot_Block,
100
101      /// Early-clobber register use/def slot.  A live range defined at
102      /// Slot_EarlyCLobber interferes with normal live ranges killed at
103      /// Slot_Register.  Also used as the kill slot for live ranges tied to an
104      /// early-clobber def.
105      Slot_EarlyClobber,
106
107      /// Normal register use/def slot.  Normal instructions kill and define
108      /// register live ranges at this slot.
109      Slot_Register,
110
111      /// Dead def kill point.  Kill slot for a live range that is defined by
112      /// the same instruction (Slot_Register or Slot_EarlyClobber), but isn't
113      /// used anywhere.
114      Slot_Dead,
115
116      Slot_Count
117    };
118
119    PointerIntPair<IndexListEntry*, 2, unsigned> lie;
120
121    SlotIndex(IndexListEntry *entry, unsigned slot)
122      : lie(entry, slot) {}
123
124    IndexListEntry* listEntry() const {
125      assert(isValid() && "Attempt to compare reserved index.");
126#ifdef EXPENSIVE_CHECKS
127      assert(!lie.getPointer()->isPoisoned() &&
128             "Attempt to access deleted list-entry.");
129#endif // EXPENSIVE_CHECKS
130      return lie.getPointer();
131    }
132
133    unsigned getIndex() const {
134      return listEntry()->getIndex() | getSlot();
135    }
136
137    /// Returns the slot for this SlotIndex.
138    Slot getSlot() const {
139      return static_cast<Slot>(lie.getInt());
140    }
141
142  public:
143    enum {
144      /// The default distance between instructions as returned by distance().
145      /// This may vary as instructions are inserted and removed.
146      InstrDist = 4 * Slot_Count
147    };
148
149    /// Construct an invalid index.
150    SlotIndex() : lie(0, 0) {}
151
152    // Construct a new slot index from the given one, and set the slot.
153    SlotIndex(const SlotIndex &li, Slot s) : lie(li.listEntry(), unsigned(s)) {
154      assert(lie.getPointer() != 0 &&
155             "Attempt to construct index with 0 pointer.");
156    }
157
158    /// Returns true if this is a valid index. Invalid indicies do
159    /// not point into an index table, and cannot be compared.
160    bool isValid() const {
161      return lie.getPointer();
162    }
163
164    /// Return true for a valid index.
165    LLVM_EXPLICIT operator bool() const { return isValid(); }
166
167    /// Print this index to the given raw_ostream.
168    void print(raw_ostream &os) const;
169
170    /// Dump this index to stderr.
171    void dump() const;
172
173    /// Compare two SlotIndex objects for equality.
174    bool operator==(SlotIndex other) const {
175      return lie == other.lie;
176    }
177    /// Compare two SlotIndex objects for inequality.
178    bool operator!=(SlotIndex other) const {
179      return lie != other.lie;
180    }
181
182    /// Compare two SlotIndex objects. Return true if the first index
183    /// is strictly lower than the second.
184    bool operator<(SlotIndex other) const {
185      return getIndex() < other.getIndex();
186    }
187    /// Compare two SlotIndex objects. Return true if the first index
188    /// is lower than, or equal to, the second.
189    bool operator<=(SlotIndex other) const {
190      return getIndex() <= other.getIndex();
191    }
192
193    /// Compare two SlotIndex objects. Return true if the first index
194    /// is greater than the second.
195    bool operator>(SlotIndex other) const {
196      return getIndex() > other.getIndex();
197    }
198
199    /// Compare two SlotIndex objects. Return true if the first index
200    /// is greater than, or equal to, the second.
201    bool operator>=(SlotIndex other) const {
202      return getIndex() >= other.getIndex();
203    }
204
205    /// isSameInstr - Return true if A and B refer to the same instruction.
206    static bool isSameInstr(SlotIndex A, SlotIndex B) {
207      return A.lie.getPointer() == B.lie.getPointer();
208    }
209
210    /// isEarlierInstr - Return true if A refers to an instruction earlier than
211    /// B. This is equivalent to A < B && !isSameInstr(A, B).
212    static bool isEarlierInstr(SlotIndex A, SlotIndex B) {
213      return A.listEntry()->getIndex() < B.listEntry()->getIndex();
214    }
215
216    /// Return the distance from this index to the given one.
217    int distance(SlotIndex other) const {
218      return other.getIndex() - getIndex();
219    }
220
221    /// Return the scaled distance from this index to the given one, where all
222    /// slots on the same instruction have zero distance.
223    int getInstrDistance(SlotIndex other) const {
224      return (other.listEntry()->getIndex() - listEntry()->getIndex())
225        / Slot_Count;
226    }
227
228    /// isBlock - Returns true if this is a block boundary slot.
229    bool isBlock() const { return getSlot() == Slot_Block; }
230
231    /// isEarlyClobber - Returns true if this is an early-clobber slot.
232    bool isEarlyClobber() const { return getSlot() == Slot_EarlyClobber; }
233
234    /// isRegister - Returns true if this is a normal register use/def slot.
235    /// Note that early-clobber slots may also be used for uses and defs.
236    bool isRegister() const { return getSlot() == Slot_Register; }
237
238    /// isDead - Returns true if this is a dead def kill slot.
239    bool isDead() const { return getSlot() == Slot_Dead; }
240
241    /// Returns the base index for associated with this index. The base index
242    /// is the one associated with the Slot_Block slot for the instruction
243    /// pointed to by this index.
244    SlotIndex getBaseIndex() const {
245      return SlotIndex(listEntry(), Slot_Block);
246    }
247
248    /// Returns the boundary index for associated with this index. The boundary
249    /// index is the one associated with the Slot_Block slot for the instruction
250    /// pointed to by this index.
251    SlotIndex getBoundaryIndex() const {
252      return SlotIndex(listEntry(), Slot_Dead);
253    }
254
255    /// Returns the register use/def slot in the current instruction for a
256    /// normal or early-clobber def.
257    SlotIndex getRegSlot(bool EC = false) const {
258      return SlotIndex(listEntry(), EC ? Slot_EarlyClobber : Slot_Register);
259    }
260
261    /// Returns the dead def kill slot for the current instruction.
262    SlotIndex getDeadSlot() const {
263      return SlotIndex(listEntry(), Slot_Dead);
264    }
265
266    /// Returns the next slot in the index list. This could be either the
267    /// next slot for the instruction pointed to by this index or, if this
268    /// index is a STORE, the first slot for the next instruction.
269    /// WARNING: This method is considerably more expensive than the methods
270    /// that return specific slots (getUseIndex(), etc). If you can - please
271    /// use one of those methods.
272    SlotIndex getNextSlot() const {
273      Slot s = getSlot();
274      if (s == Slot_Dead) {
275        return SlotIndex(listEntry()->getNextNode(), Slot_Block);
276      }
277      return SlotIndex(listEntry(), s + 1);
278    }
279
280    /// Returns the next index. This is the index corresponding to the this
281    /// index's slot, but for the next instruction.
282    SlotIndex getNextIndex() const {
283      return SlotIndex(listEntry()->getNextNode(), getSlot());
284    }
285
286    /// Returns the previous slot in the index list. This could be either the
287    /// previous slot for the instruction pointed to by this index or, if this
288    /// index is a Slot_Block, the last slot for the previous instruction.
289    /// WARNING: This method is considerably more expensive than the methods
290    /// that return specific slots (getUseIndex(), etc). If you can - please
291    /// use one of those methods.
292    SlotIndex getPrevSlot() const {
293      Slot s = getSlot();
294      if (s == Slot_Block) {
295        return SlotIndex(listEntry()->getPrevNode(), Slot_Dead);
296      }
297      return SlotIndex(listEntry(), s - 1);
298    }
299
300    /// Returns the previous index. This is the index corresponding to this
301    /// index's slot, but for the previous instruction.
302    SlotIndex getPrevIndex() const {
303      return SlotIndex(listEntry()->getPrevNode(), getSlot());
304    }
305
306  };
307
308  template <> struct isPodLike<SlotIndex> { static const bool value = true; };
309
310  inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) {
311    li.print(os);
312    return os;
313  }
314
315  typedef std::pair<SlotIndex, MachineBasicBlock*> IdxMBBPair;
316
317  inline bool operator<(SlotIndex V, const IdxMBBPair &IM) {
318    return V < IM.first;
319  }
320
321  inline bool operator<(const IdxMBBPair &IM, SlotIndex V) {
322    return IM.first < V;
323  }
324
325  struct Idx2MBBCompare {
326    bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const {
327      return LHS.first < RHS.first;
328    }
329  };
330
331  /// SlotIndexes pass.
332  ///
333  /// This pass assigns indexes to each instruction.
334  class SlotIndexes : public MachineFunctionPass {
335  private:
336
337    typedef ilist<IndexListEntry> IndexList;
338    IndexList indexList;
339
340#ifdef EXPENSIVE_CHECKS
341    IndexList graveyardList;
342#endif // EXPENSIVE_CHECKS
343
344    MachineFunction *mf;
345
346    typedef DenseMap<const MachineInstr*, SlotIndex> Mi2IndexMap;
347    Mi2IndexMap mi2iMap;
348
349    /// MBBRanges - Map MBB number to (start, stop) indexes.
350    SmallVector<std::pair<SlotIndex, SlotIndex>, 8> MBBRanges;
351
352    /// Idx2MBBMap - Sorted list of pairs of index of first instruction
353    /// and MBB id.
354    SmallVector<IdxMBBPair, 8> idx2MBBMap;
355
356    // IndexListEntry allocator.
357    BumpPtrAllocator ileAllocator;
358
359    IndexListEntry* createEntry(MachineInstr *mi, unsigned index) {
360      IndexListEntry *entry =
361        static_cast<IndexListEntry*>(
362          ileAllocator.Allocate(sizeof(IndexListEntry),
363          alignOf<IndexListEntry>()));
364
365      new (entry) IndexListEntry(mi, index);
366
367      return entry;
368    }
369
370    /// Renumber locally after inserting curItr.
371    void renumberIndexes(IndexList::iterator curItr);
372
373  public:
374    static char ID;
375
376    SlotIndexes() : MachineFunctionPass(ID) {
377      initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
378    }
379
380    virtual void getAnalysisUsage(AnalysisUsage &au) const;
381    virtual void releaseMemory();
382
383    virtual bool runOnMachineFunction(MachineFunction &fn);
384
385    /// Dump the indexes.
386    void dump() const;
387
388    /// Renumber the index list, providing space for new instructions.
389    void renumberIndexes();
390
391    /// Repair indexes after adding and removing instructions.
392    void repairIndexesInRange(MachineBasicBlock *MBB,
393                              MachineBasicBlock::iterator Begin,
394                              MachineBasicBlock::iterator End);
395
396    /// Returns the zero index for this analysis.
397    SlotIndex getZeroIndex() {
398      assert(indexList.front().getIndex() == 0 && "First index is not 0?");
399      return SlotIndex(&indexList.front(), 0);
400    }
401
402    /// Returns the base index of the last slot in this analysis.
403    SlotIndex getLastIndex() {
404      return SlotIndex(&indexList.back(), 0);
405    }
406
407    /// Returns true if the given machine instr is mapped to an index,
408    /// otherwise returns false.
409    bool hasIndex(const MachineInstr *instr) const {
410      return mi2iMap.count(instr);
411    }
412
413    /// Returns the base index for the given instruction.
414    SlotIndex getInstructionIndex(const MachineInstr *MI) const {
415      // Instructions inside a bundle have the same number as the bundle itself.
416      Mi2IndexMap::const_iterator itr = mi2iMap.find(getBundleStart(MI));
417      assert(itr != mi2iMap.end() && "Instruction not found in maps.");
418      return itr->second;
419    }
420
421    /// Returns the instruction for the given index, or null if the given
422    /// index has no instruction associated with it.
423    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
424      return index.isValid() ? index.listEntry()->getInstr() : 0;
425    }
426
427    /// Returns the next non-null index, if one exists.
428    /// Otherwise returns getLastIndex().
429    SlotIndex getNextNonNullIndex(SlotIndex Index) {
430      IndexList::iterator I = Index.listEntry();
431      IndexList::iterator E = indexList.end();
432      while (++I != E)
433        if (I->getInstr())
434          return SlotIndex(I, Index.getSlot());
435      // We reached the end of the function.
436      return getLastIndex();
437    }
438
439    /// getIndexBefore - Returns the index of the last indexed instruction
440    /// before MI, or the start index of its basic block.
441    /// MI is not required to have an index.
442    SlotIndex getIndexBefore(const MachineInstr *MI) const {
443      const MachineBasicBlock *MBB = MI->getParent();
444      assert(MBB && "MI must be inserted inna basic block");
445      MachineBasicBlock::const_iterator I = MI, B = MBB->begin();
446      for (;;) {
447        if (I == B)
448          return getMBBStartIdx(MBB);
449        --I;
450        Mi2IndexMap::const_iterator MapItr = mi2iMap.find(I);
451        if (MapItr != mi2iMap.end())
452          return MapItr->second;
453      }
454    }
455
456    /// getIndexAfter - Returns the index of the first indexed instruction
457    /// after MI, or the end index of its basic block.
458    /// MI is not required to have an index.
459    SlotIndex getIndexAfter(const MachineInstr *MI) const {
460      const MachineBasicBlock *MBB = MI->getParent();
461      assert(MBB && "MI must be inserted inna basic block");
462      MachineBasicBlock::const_iterator I = MI, E = MBB->end();
463      for (;;) {
464        ++I;
465        if (I == E)
466          return getMBBEndIdx(MBB);
467        Mi2IndexMap::const_iterator MapItr = mi2iMap.find(I);
468        if (MapItr != mi2iMap.end())
469          return MapItr->second;
470      }
471    }
472
473    /// Return the (start,end) range of the given basic block number.
474    const std::pair<SlotIndex, SlotIndex> &
475    getMBBRange(unsigned Num) const {
476      return MBBRanges[Num];
477    }
478
479    /// Return the (start,end) range of the given basic block.
480    const std::pair<SlotIndex, SlotIndex> &
481    getMBBRange(const MachineBasicBlock *MBB) const {
482      return getMBBRange(MBB->getNumber());
483    }
484
485    /// Returns the first index in the given basic block number.
486    SlotIndex getMBBStartIdx(unsigned Num) const {
487      return getMBBRange(Num).first;
488    }
489
490    /// Returns the first index in the given basic block.
491    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
492      return getMBBRange(mbb).first;
493    }
494
495    /// Returns the last index in the given basic block number.
496    SlotIndex getMBBEndIdx(unsigned Num) const {
497      return getMBBRange(Num).second;
498    }
499
500    /// Returns the last index in the given basic block.
501    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
502      return getMBBRange(mbb).second;
503    }
504
505    /// Returns the basic block which the given index falls in.
506    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
507      if (MachineInstr *MI = getInstructionFromIndex(index))
508        return MI->getParent();
509      SmallVectorImpl<IdxMBBPair>::const_iterator I =
510        std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), index);
511      // Take the pair containing the index
512      SmallVectorImpl<IdxMBBPair>::const_iterator J =
513        ((I != idx2MBBMap.end() && I->first > index) ||
514         (I == idx2MBBMap.end() && idx2MBBMap.size()>0)) ? (I-1): I;
515
516      assert(J != idx2MBBMap.end() && J->first <= index &&
517             index < getMBBEndIdx(J->second) &&
518             "index does not correspond to an MBB");
519      return J->second;
520    }
521
522    bool findLiveInMBBs(SlotIndex start, SlotIndex end,
523                        SmallVectorImpl<MachineBasicBlock*> &mbbs) const {
524      SmallVectorImpl<IdxMBBPair>::const_iterator itr =
525        std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);
526      bool resVal = false;
527
528      while (itr != idx2MBBMap.end()) {
529        if (itr->first >= end)
530          break;
531        mbbs.push_back(itr->second);
532        resVal = true;
533        ++itr;
534      }
535      return resVal;
536    }
537
538    /// Returns the MBB covering the given range, or null if the range covers
539    /// more than one basic block.
540    MachineBasicBlock* getMBBCoveringRange(SlotIndex start, SlotIndex end) const {
541
542      assert(start < end && "Backwards ranges not allowed.");
543
544      SmallVectorImpl<IdxMBBPair>::const_iterator itr =
545        std::lower_bound(idx2MBBMap.begin(), idx2MBBMap.end(), start);
546
547      if (itr == idx2MBBMap.end()) {
548        itr = prior(itr);
549        return itr->second;
550      }
551
552      // Check that we don't cross the boundary into this block.
553      if (itr->first < end)
554        return 0;
555
556      itr = prior(itr);
557
558      if (itr->first <= start)
559        return itr->second;
560
561      return 0;
562    }
563
564    /// Insert the given machine instruction into the mapping. Returns the
565    /// assigned index.
566    /// If Late is set and there are null indexes between mi's neighboring
567    /// instructions, create the new index after the null indexes instead of
568    /// before them.
569    SlotIndex insertMachineInstrInMaps(MachineInstr *mi, bool Late = false) {
570      assert(!mi->isInsideBundle() &&
571             "Instructions inside bundles should use bundle start's slot.");
572      assert(mi2iMap.find(mi) == mi2iMap.end() && "Instr already indexed.");
573      // Numbering DBG_VALUE instructions could cause code generation to be
574      // affected by debug information.
575      assert(!mi->isDebugValue() && "Cannot number DBG_VALUE instructions.");
576
577      assert(mi->getParent() != 0 && "Instr must be added to function.");
578
579      // Get the entries where mi should be inserted.
580      IndexList::iterator prevItr, nextItr;
581      if (Late) {
582        // Insert mi's index immediately before the following instruction.
583        nextItr = getIndexAfter(mi).listEntry();
584        prevItr = prior(nextItr);
585      } else {
586        // Insert mi's index immediately after the preceding instruction.
587        prevItr = getIndexBefore(mi).listEntry();
588        nextItr = llvm::next(prevItr);
589      }
590
591      // Get a number for the new instr, or 0 if there's no room currently.
592      // In the latter case we'll force a renumber later.
593      unsigned dist = ((nextItr->getIndex() - prevItr->getIndex())/2) & ~3u;
594      unsigned newNumber = prevItr->getIndex() + dist;
595
596      // Insert a new list entry for mi.
597      IndexList::iterator newItr =
598        indexList.insert(nextItr, createEntry(mi, newNumber));
599
600      // Renumber locally if we need to.
601      if (dist == 0)
602        renumberIndexes(newItr);
603
604      SlotIndex newIndex(&*newItr, SlotIndex::Slot_Block);
605      mi2iMap.insert(std::make_pair(mi, newIndex));
606      return newIndex;
607    }
608
609    /// Remove the given machine instruction from the mapping.
610    void removeMachineInstrFromMaps(MachineInstr *mi) {
611      // remove index -> MachineInstr and
612      // MachineInstr -> index mappings
613      Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi);
614      if (mi2iItr != mi2iMap.end()) {
615        IndexListEntry *miEntry(mi2iItr->second.listEntry());
616        assert(miEntry->getInstr() == mi && "Instruction indexes broken.");
617        // FIXME: Eventually we want to actually delete these indexes.
618        miEntry->setInstr(0);
619        mi2iMap.erase(mi2iItr);
620      }
621    }
622
623    /// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
624    /// maps used by register allocator.
625    void replaceMachineInstrInMaps(MachineInstr *mi, MachineInstr *newMI) {
626      Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi);
627      if (mi2iItr == mi2iMap.end())
628        return;
629      SlotIndex replaceBaseIndex = mi2iItr->second;
630      IndexListEntry *miEntry(replaceBaseIndex.listEntry());
631      assert(miEntry->getInstr() == mi &&
632             "Mismatched instruction in index tables.");
633      miEntry->setInstr(newMI);
634      mi2iMap.erase(mi2iItr);
635      mi2iMap.insert(std::make_pair(newMI, replaceBaseIndex));
636    }
637
638    /// Add the given MachineBasicBlock into the maps.
639    void insertMBBInMaps(MachineBasicBlock *mbb) {
640      MachineFunction::iterator nextMBB =
641        llvm::next(MachineFunction::iterator(mbb));
642
643      IndexListEntry *startEntry = 0;
644      IndexListEntry *endEntry = 0;
645      IndexList::iterator newItr;
646      if (nextMBB == mbb->getParent()->end()) {
647        startEntry = &indexList.back();
648        endEntry = createEntry(0, 0);
649        newItr = indexList.insertAfter(startEntry, endEntry);
650      } else {
651        startEntry = createEntry(0, 0);
652        endEntry = getMBBStartIdx(nextMBB).listEntry();
653        newItr = indexList.insert(endEntry, startEntry);
654      }
655
656      SlotIndex startIdx(startEntry, SlotIndex::Slot_Block);
657      SlotIndex endIdx(endEntry, SlotIndex::Slot_Block);
658
659      MachineFunction::iterator prevMBB(mbb);
660      assert(prevMBB != mbb->getParent()->end() &&
661             "Can't insert a new block at the beginning of a function.");
662      --prevMBB;
663      MBBRanges[prevMBB->getNumber()].second = startIdx;
664
665      assert(unsigned(mbb->getNumber()) == MBBRanges.size() &&
666             "Blocks must be added in order");
667      MBBRanges.push_back(std::make_pair(startIdx, endIdx));
668      idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));
669
670      renumberIndexes(newItr);
671      std::sort(idx2MBBMap.begin(), idx2MBBMap.end(), Idx2MBBCompare());
672    }
673
674    /// \brief Free the resources that were required to maintain a SlotIndex.
675    ///
676    /// Once an index is no longer needed (for instance because the instruction
677    /// at that index has been moved), the resources required to maintain the
678    /// index can be relinquished to reduce memory use and improve renumbering
679    /// performance. Any remaining SlotIndex objects that point to the same
680    /// index are left 'dangling' (much the same as a dangling pointer to a
681    /// freed object) and should not be accessed, except to destruct them.
682    ///
683    /// Like dangling pointers, access to dangling SlotIndexes can cause
684    /// painful-to-track-down bugs, especially if the memory for the index
685    /// previously pointed to has been re-used. To detect dangling SlotIndex
686    /// bugs, build with EXPENSIVE_CHECKS=1. This will cause "erased" indexes to
687    /// be retained in a graveyard instead of being freed. Operations on indexes
688    /// in the graveyard will trigger an assertion.
689    void eraseIndex(SlotIndex index) {
690      IndexListEntry *entry = index.listEntry();
691#ifdef EXPENSIVE_CHECKS
692      indexList.remove(entry);
693      graveyardList.push_back(entry);
694      entry->setPoison();
695#else
696      indexList.erase(entry);
697#endif
698    }
699
700  };
701
702
703  // Specialize IntervalMapInfo for half-open slot index intervals.
704  template <>
705  struct IntervalMapInfo<SlotIndex> : IntervalMapHalfOpenInfo<SlotIndex> {
706  };
707
708}
709
710#endif // LLVM_CODEGEN_SLOTINDEXES_H
711