LiveIntervalAnalysis.h revision 263508
1//===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass.  Given some numbering of
11// each the machine instructions (in this implemention depth-first order) an
12// interval [i, j) is said to be a live interval for register v if there is no
13// instruction with number j' > j such that v is live at j' and there is no
14// instruction with number i' < i such that v is live at i'. In this
15// implementation intervals can have holes, i.e. an interval might look like
16// [1,20), [50,65), [1000,1001).
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
21#define LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
22
23#include "llvm/ADT/IndexedMap.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/CodeGen/LiveInterval.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineFunctionPass.h"
28#include "llvm/CodeGen/SlotIndexes.h"
29#include "llvm/Support/Allocator.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include <cmath>
32#include <iterator>
33
34namespace llvm {
35
36  class AliasAnalysis;
37  class BitVector;
38  class BlockFrequency;
39  class LiveRangeCalc;
40  class LiveVariables;
41  class MachineDominatorTree;
42  class MachineLoopInfo;
43  class TargetRegisterInfo;
44  class MachineRegisterInfo;
45  class TargetInstrInfo;
46  class TargetRegisterClass;
47  class VirtRegMap;
48
49  class LiveIntervals : public MachineFunctionPass {
50    MachineFunction* MF;
51    MachineRegisterInfo* MRI;
52    const TargetMachine* TM;
53    const TargetRegisterInfo* TRI;
54    const TargetInstrInfo* TII;
55    AliasAnalysis *AA;
56    SlotIndexes* Indexes;
57    MachineDominatorTree *DomTree;
58    LiveRangeCalc *LRCalc;
59
60    /// Special pool allocator for VNInfo's (LiveInterval val#).
61    ///
62    VNInfo::Allocator VNInfoAllocator;
63
64    /// Live interval pointers for all the virtual registers.
65    IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
66
67    /// RegMaskSlots - Sorted list of instructions with register mask operands.
68    /// Always use the 'r' slot, RegMasks are normal clobbers, not early
69    /// clobbers.
70    SmallVector<SlotIndex, 8> RegMaskSlots;
71
72    /// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a
73    /// pointer to the corresponding register mask.  This pointer can be
74    /// recomputed as:
75    ///
76    ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
77    ///   unsigned OpNum = findRegMaskOperand(MI);
78    ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
79    ///
80    /// This is kept in a separate vector partly because some standard
81    /// libraries don't support lower_bound() with mixed objects, partly to
82    /// improve locality when searching in RegMaskSlots.
83    /// Also see the comment in LiveInterval::find().
84    SmallVector<const uint32_t*, 8> RegMaskBits;
85
86    /// For each basic block number, keep (begin, size) pairs indexing into the
87    /// RegMaskSlots and RegMaskBits arrays.
88    /// Note that basic block numbers may not be layout contiguous, that's why
89    /// we can't just keep track of the first register mask in each basic
90    /// block.
91    SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
92
93    /// Keeps a live range set for each register unit to track fixed physreg
94    /// interference.
95    SmallVector<LiveRange*, 0> RegUnitRanges;
96
97  public:
98    static char ID; // Pass identification, replacement for typeid
99    LiveIntervals();
100    virtual ~LiveIntervals();
101
102    // Calculate the spill weight to assign to a single instruction.
103    static float getSpillWeight(bool isDef, bool isUse, BlockFrequency freq);
104
105    LiveInterval &getInterval(unsigned Reg) {
106      if (hasInterval(Reg))
107        return *VirtRegIntervals[Reg];
108      else
109        return createAndComputeVirtRegInterval(Reg);
110    }
111
112    const LiveInterval &getInterval(unsigned Reg) const {
113      return const_cast<LiveIntervals*>(this)->getInterval(Reg);
114    }
115
116    bool hasInterval(unsigned Reg) const {
117      return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg];
118    }
119
120    // Interval creation.
121    LiveInterval &createEmptyInterval(unsigned Reg) {
122      assert(!hasInterval(Reg) && "Interval already exists!");
123      VirtRegIntervals.grow(Reg);
124      VirtRegIntervals[Reg] = createInterval(Reg);
125      return *VirtRegIntervals[Reg];
126    }
127
128    LiveInterval &createAndComputeVirtRegInterval(unsigned Reg) {
129      LiveInterval &LI = createEmptyInterval(Reg);
130      computeVirtRegInterval(LI);
131      return LI;
132    }
133
134    // Interval removal.
135    void removeInterval(unsigned Reg) {
136      delete VirtRegIntervals[Reg];
137      VirtRegIntervals[Reg] = 0;
138    }
139
140    /// Given a register and an instruction, adds a live segment from that
141    /// instruction to the end of its MBB.
142    LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg,
143                                                 MachineInstr* startInst);
144
145    /// shrinkToUses - After removing some uses of a register, shrink its live
146    /// range to just the remaining uses. This method does not compute reaching
147    /// defs for new uses, and it doesn't remove dead defs.
148    /// Dead PHIDef values are marked as unused.
149    /// New dead machine instructions are added to the dead vector.
150    /// Return true if the interval may have been separated into multiple
151    /// connected components.
152    bool shrinkToUses(LiveInterval *li,
153                      SmallVectorImpl<MachineInstr*> *dead = 0);
154
155    /// extendToIndices - Extend the live range of LI to reach all points in
156    /// Indices. The points in the Indices array must be jointly dominated by
157    /// existing defs in LI. PHI-defs are added as needed to maintain SSA form.
158    ///
159    /// If a SlotIndex in Indices is the end index of a basic block, LI will be
160    /// extended to be live out of the basic block.
161    ///
162    /// See also LiveRangeCalc::extend().
163    void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices);
164
165    /// pruneValue - If an LI value is live at Kill, prune its live range by
166    /// removing any liveness reachable from Kill. Add live range end points to
167    /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
168    /// value's live range.
169    ///
170    /// Calling pruneValue() and extendToIndices() can be used to reconstruct
171    /// SSA form after adding defs to a virtual register.
172    void pruneValue(LiveInterval *LI, SlotIndex Kill,
173                    SmallVectorImpl<SlotIndex> *EndPoints);
174
175    SlotIndexes *getSlotIndexes() const {
176      return Indexes;
177    }
178
179    AliasAnalysis *getAliasAnalysis() const {
180      return AA;
181    }
182
183    /// isNotInMIMap - returns true if the specified machine instr has been
184    /// removed or was never entered in the map.
185    bool isNotInMIMap(const MachineInstr* Instr) const {
186      return !Indexes->hasIndex(Instr);
187    }
188
189    /// Returns the base index of the given instruction.
190    SlotIndex getInstructionIndex(const MachineInstr *instr) const {
191      return Indexes->getInstructionIndex(instr);
192    }
193
194    /// Returns the instruction associated with the given index.
195    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
196      return Indexes->getInstructionFromIndex(index);
197    }
198
199    /// Return the first index in the given basic block.
200    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
201      return Indexes->getMBBStartIdx(mbb);
202    }
203
204    /// Return the last index in the given basic block.
205    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
206      return Indexes->getMBBEndIdx(mbb);
207    }
208
209    bool isLiveInToMBB(const LiveRange &LR,
210                       const MachineBasicBlock *mbb) const {
211      return LR.liveAt(getMBBStartIdx(mbb));
212    }
213
214    bool isLiveOutOfMBB(const LiveRange &LR,
215                        const MachineBasicBlock *mbb) const {
216      return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
217    }
218
219    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
220      return Indexes->getMBBFromIndex(index);
221    }
222
223    void insertMBBInMaps(MachineBasicBlock *MBB) {
224      Indexes->insertMBBInMaps(MBB);
225      assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
226             "Blocks must be added in order.");
227      RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
228    }
229
230    SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) {
231      return Indexes->insertMachineInstrInMaps(MI);
232    }
233
234    void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
235                                       MachineBasicBlock::iterator E) {
236      for (MachineBasicBlock::iterator I = B; I != E; ++I)
237        Indexes->insertMachineInstrInMaps(I);
238    }
239
240    void RemoveMachineInstrFromMaps(MachineInstr *MI) {
241      Indexes->removeMachineInstrFromMaps(MI);
242    }
243
244    void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) {
245      Indexes->replaceMachineInstrInMaps(MI, NewMI);
246    }
247
248    bool findLiveInMBBs(SlotIndex Start, SlotIndex End,
249                        SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
250      return Indexes->findLiveInMBBs(Start, End, MBBs);
251    }
252
253    VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
254
255    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
256    virtual void releaseMemory();
257
258    /// runOnMachineFunction - pass entry point
259    virtual bool runOnMachineFunction(MachineFunction&);
260
261    /// print - Implement the dump method.
262    virtual void print(raw_ostream &O, const Module* = 0) const;
263
264    /// intervalIsInOneMBB - If LI is confined to a single basic block, return
265    /// a pointer to that block.  If LI is live in to or out of any block,
266    /// return NULL.
267    MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
268
269    /// Returns true if VNI is killed by any PHI-def values in LI.
270    /// This may conservatively return true to avoid expensive computations.
271    bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
272
273    /// addKillFlags - Add kill flags to any instruction that kills a virtual
274    /// register.
275    void addKillFlags(const VirtRegMap*);
276
277    /// handleMove - call this method to notify LiveIntervals that
278    /// instruction 'mi' has been moved within a basic block. This will update
279    /// the live intervals for all operands of mi. Moves between basic blocks
280    /// are not supported.
281    ///
282    /// \param UpdateFlags Update live intervals for nonallocatable physregs.
283    void handleMove(MachineInstr* MI, bool UpdateFlags = false);
284
285    /// moveIntoBundle - Update intervals for operands of MI so that they
286    /// begin/end on the SlotIndex for BundleStart.
287    ///
288    /// \param UpdateFlags Update live intervals for nonallocatable physregs.
289    ///
290    /// Requires MI and BundleStart to have SlotIndexes, and assumes
291    /// existing liveness is accurate. BundleStart should be the first
292    /// instruction in the Bundle.
293    void handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart,
294                              bool UpdateFlags = false);
295
296    /// repairIntervalsInRange - Update live intervals for instructions in a
297    /// range of iterators. It is intended for use after target hooks that may
298    /// insert or remove instructions, and is only efficient for a small number
299    /// of instructions.
300    ///
301    /// OrigRegs is a vector of registers that were originally used by the
302    /// instructions in the range between the two iterators.
303    ///
304    /// Currently, the only only changes that are supported are simple removal
305    /// and addition of uses.
306    void repairIntervalsInRange(MachineBasicBlock *MBB,
307                                MachineBasicBlock::iterator Begin,
308                                MachineBasicBlock::iterator End,
309                                ArrayRef<unsigned> OrigRegs);
310
311    // Register mask functions.
312    //
313    // Machine instructions may use a register mask operand to indicate that a
314    // large number of registers are clobbered by the instruction.  This is
315    // typically used for calls.
316    //
317    // For compile time performance reasons, these clobbers are not recorded in
318    // the live intervals for individual physical registers.  Instead,
319    // LiveIntervalAnalysis maintains a sorted list of instructions with
320    // register mask operands.
321
322    /// getRegMaskSlots - Returns a sorted array of slot indices of all
323    /// instructions with register mask operands.
324    ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
325
326    /// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all
327    /// instructions with register mask operands in the basic block numbered
328    /// MBBNum.
329    ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
330      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
331      return getRegMaskSlots().slice(P.first, P.second);
332    }
333
334    /// getRegMaskBits() - Returns an array of register mask pointers
335    /// corresponding to getRegMaskSlots().
336    ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
337
338    /// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding
339    /// to getRegMaskSlotsInBlock(MBBNum).
340    ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
341      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
342      return getRegMaskBits().slice(P.first, P.second);
343    }
344
345    /// checkRegMaskInterference - Test if LI is live across any register mask
346    /// instructions, and compute a bit mask of physical registers that are not
347    /// clobbered by any of them.
348    ///
349    /// Returns false if LI doesn't cross any register mask instructions. In
350    /// that case, the bit vector is not filled in.
351    bool checkRegMaskInterference(LiveInterval &LI,
352                                  BitVector &UsableRegs);
353
354    // Register unit functions.
355    //
356    // Fixed interference occurs when MachineInstrs use physregs directly
357    // instead of virtual registers. This typically happens when passing
358    // arguments to a function call, or when instructions require operands in
359    // fixed registers.
360    //
361    // Each physreg has one or more register units, see MCRegisterInfo. We
362    // track liveness per register unit to handle aliasing registers more
363    // efficiently.
364
365    /// getRegUnit - Return the live range for Unit.
366    /// It will be computed if it doesn't exist.
367    LiveRange &getRegUnit(unsigned Unit) {
368      LiveRange *LR = RegUnitRanges[Unit];
369      if (!LR) {
370        // Compute missing ranges on demand.
371        RegUnitRanges[Unit] = LR = new LiveRange();
372        computeRegUnitRange(*LR, Unit);
373      }
374      return *LR;
375    }
376
377    /// getCachedRegUnit - Return the live range for Unit if it has already
378    /// been computed, or NULL if it hasn't been computed yet.
379    LiveRange *getCachedRegUnit(unsigned Unit) {
380      return RegUnitRanges[Unit];
381    }
382
383    const LiveRange *getCachedRegUnit(unsigned Unit) const {
384      return RegUnitRanges[Unit];
385    }
386
387  private:
388    /// Compute live intervals for all virtual registers.
389    void computeVirtRegs();
390
391    /// Compute RegMaskSlots and RegMaskBits.
392    void computeRegMasks();
393
394    static LiveInterval* createInterval(unsigned Reg);
395
396    void printInstrs(raw_ostream &O) const;
397    void dumpInstrs() const;
398
399    void computeLiveInRegUnits();
400    void computeRegUnitRange(LiveRange&, unsigned Unit);
401    void computeVirtRegInterval(LiveInterval&);
402
403    class HMEditor;
404  };
405} // End llvm namespace
406
407#endif
408