ArrayRef.h revision 263508
1//===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_ADT_ARRAYREF_H
11#define LLVM_ADT_ARRAYREF_H
12
13#include "llvm/ADT/None.h"
14#include "llvm/ADT/SmallVector.h"
15#include <vector>
16
17namespace llvm {
18
19  /// ArrayRef - Represent a constant reference to an array (0 or more elements
20  /// consecutively in memory), i.e. a start pointer and a length.  It allows
21  /// various APIs to take consecutive elements easily and conveniently.
22  ///
23  /// This class does not own the underlying data, it is expected to be used in
24  /// situations where the data resides in some other buffer, whose lifetime
25  /// extends past that of the ArrayRef. For this reason, it is not in general
26  /// safe to store an ArrayRef.
27  ///
28  /// This is intended to be trivially copyable, so it should be passed by
29  /// value.
30  template<typename T>
31  class ArrayRef {
32  public:
33    typedef const T *iterator;
34    typedef const T *const_iterator;
35    typedef size_t size_type;
36
37    typedef std::reverse_iterator<iterator> reverse_iterator;
38
39  private:
40    /// The start of the array, in an external buffer.
41    const T *Data;
42
43    /// The number of elements.
44    size_type Length;
45
46  public:
47    /// @name Constructors
48    /// @{
49
50    /// Construct an empty ArrayRef.
51    /*implicit*/ ArrayRef() : Data(0), Length(0) {}
52
53    /// Construct an empty ArrayRef from None.
54    /*implicit*/ ArrayRef(NoneType) : Data(0), Length(0) {}
55
56    /// Construct an ArrayRef from a single element.
57    /*implicit*/ ArrayRef(const T &OneElt)
58      : Data(&OneElt), Length(1) {}
59
60    /// Construct an ArrayRef from a pointer and length.
61    /*implicit*/ ArrayRef(const T *data, size_t length)
62      : Data(data), Length(length) {}
63
64    /// Construct an ArrayRef from a range.
65    ArrayRef(const T *begin, const T *end)
66      : Data(begin), Length(end - begin) {}
67
68    /// Construct an ArrayRef from a SmallVector. This is templated in order to
69    /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
70    /// copy-construct an ArrayRef.
71    template<typename U>
72    /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
73      : Data(Vec.data()), Length(Vec.size()) {
74    }
75
76    /// Construct an ArrayRef from a std::vector.
77    template<typename A>
78    /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
79      : Data(Vec.empty() ? (T*)0 : &Vec[0]), Length(Vec.size()) {}
80
81    /// Construct an ArrayRef from a C array.
82    template <size_t N>
83    /*implicit*/ LLVM_CONSTEXPR ArrayRef(const T (&Arr)[N])
84      : Data(Arr), Length(N) {}
85
86#if LLVM_HAS_INITIALIZER_LISTS
87    /// Construct an ArrayRef from a std::initializer_list.
88    /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
89    : Data(Vec.begin() == Vec.end() ? (T*)0 : Vec.begin()),
90      Length(Vec.size()) {}
91#endif
92
93    /// @}
94    /// @name Simple Operations
95    /// @{
96
97    iterator begin() const { return Data; }
98    iterator end() const { return Data + Length; }
99
100    reverse_iterator rbegin() const { return reverse_iterator(end()); }
101    reverse_iterator rend() const { return reverse_iterator(begin()); }
102
103    /// empty - Check if the array is empty.
104    bool empty() const { return Length == 0; }
105
106    const T *data() const { return Data; }
107
108    /// size - Get the array size.
109    size_t size() const { return Length; }
110
111    /// front - Get the first element.
112    const T &front() const {
113      assert(!empty());
114      return Data[0];
115    }
116
117    /// back - Get the last element.
118    const T &back() const {
119      assert(!empty());
120      return Data[Length-1];
121    }
122
123    /// equals - Check for element-wise equality.
124    bool equals(ArrayRef RHS) const {
125      if (Length != RHS.Length)
126        return false;
127      for (size_type i = 0; i != Length; i++)
128        if (Data[i] != RHS.Data[i])
129          return false;
130      return true;
131    }
132
133    /// slice(n) - Chop off the first N elements of the array.
134    ArrayRef<T> slice(unsigned N) const {
135      assert(N <= size() && "Invalid specifier");
136      return ArrayRef<T>(data()+N, size()-N);
137    }
138
139    /// slice(n, m) - Chop off the first N elements of the array, and keep M
140    /// elements in the array.
141    ArrayRef<T> slice(unsigned N, unsigned M) const {
142      assert(N+M <= size() && "Invalid specifier");
143      return ArrayRef<T>(data()+N, M);
144    }
145
146    /// @}
147    /// @name Operator Overloads
148    /// @{
149    const T &operator[](size_t Index) const {
150      assert(Index < Length && "Invalid index!");
151      return Data[Index];
152    }
153
154    /// @}
155    /// @name Expensive Operations
156    /// @{
157    std::vector<T> vec() const {
158      return std::vector<T>(Data, Data+Length);
159    }
160
161    /// @}
162    /// @name Conversion operators
163    /// @{
164    operator std::vector<T>() const {
165      return std::vector<T>(Data, Data+Length);
166    }
167
168    /// @}
169  };
170
171  /// MutableArrayRef - Represent a mutable reference to an array (0 or more
172  /// elements consecutively in memory), i.e. a start pointer and a length.  It
173  /// allows various APIs to take and modify consecutive elements easily and
174  /// conveniently.
175  ///
176  /// This class does not own the underlying data, it is expected to be used in
177  /// situations where the data resides in some other buffer, whose lifetime
178  /// extends past that of the MutableArrayRef. For this reason, it is not in
179  /// general safe to store a MutableArrayRef.
180  ///
181  /// This is intended to be trivially copyable, so it should be passed by
182  /// value.
183  template<typename T>
184  class MutableArrayRef : public ArrayRef<T> {
185  public:
186    typedef T *iterator;
187
188    typedef std::reverse_iterator<iterator> reverse_iterator;
189
190    /// Construct an empty MutableArrayRef.
191    /*implicit*/ MutableArrayRef() : ArrayRef<T>() {}
192
193    /// Construct an empty MutableArrayRef from None.
194    /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {}
195
196    /// Construct an MutableArrayRef from a single element.
197    /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
198
199    /// Construct an MutableArrayRef from a pointer and length.
200    /*implicit*/ MutableArrayRef(T *data, size_t length)
201      : ArrayRef<T>(data, length) {}
202
203    /// Construct an MutableArrayRef from a range.
204    MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
205
206    /// Construct an MutableArrayRef from a SmallVector.
207    /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
208    : ArrayRef<T>(Vec) {}
209
210    /// Construct a MutableArrayRef from a std::vector.
211    /*implicit*/ MutableArrayRef(std::vector<T> &Vec)
212    : ArrayRef<T>(Vec) {}
213
214    /// Construct an MutableArrayRef from a C array.
215    template <size_t N>
216    /*implicit*/ MutableArrayRef(T (&Arr)[N])
217      : ArrayRef<T>(Arr) {}
218
219    T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
220
221    iterator begin() const { return data(); }
222    iterator end() const { return data() + this->size(); }
223
224    reverse_iterator rbegin() const { return reverse_iterator(end()); }
225    reverse_iterator rend() const { return reverse_iterator(begin()); }
226
227    /// front - Get the first element.
228    T &front() const {
229      assert(!this->empty());
230      return data()[0];
231    }
232
233    /// back - Get the last element.
234    T &back() const {
235      assert(!this->empty());
236      return data()[this->size()-1];
237    }
238
239    /// slice(n) - Chop off the first N elements of the array.
240    MutableArrayRef<T> slice(unsigned N) const {
241      assert(N <= this->size() && "Invalid specifier");
242      return MutableArrayRef<T>(data()+N, this->size()-N);
243    }
244
245    /// slice(n, m) - Chop off the first N elements of the array, and keep M
246    /// elements in the array.
247    MutableArrayRef<T> slice(unsigned N, unsigned M) const {
248      assert(N+M <= this->size() && "Invalid specifier");
249      return MutableArrayRef<T>(data()+N, M);
250    }
251
252    /// @}
253    /// @name Operator Overloads
254    /// @{
255    T &operator[](size_t Index) const {
256      assert(Index < this->size() && "Invalid index!");
257      return data()[Index];
258    }
259  };
260
261  /// @name ArrayRef Convenience constructors
262  /// @{
263
264  /// Construct an ArrayRef from a single element.
265  template<typename T>
266  ArrayRef<T> makeArrayRef(const T &OneElt) {
267    return OneElt;
268  }
269
270  /// Construct an ArrayRef from a pointer and length.
271  template<typename T>
272  ArrayRef<T> makeArrayRef(const T *data, size_t length) {
273    return ArrayRef<T>(data, length);
274  }
275
276  /// Construct an ArrayRef from a range.
277  template<typename T>
278  ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
279    return ArrayRef<T>(begin, end);
280  }
281
282  /// Construct an ArrayRef from a SmallVector.
283  template <typename T>
284  ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
285    return Vec;
286  }
287
288  /// Construct an ArrayRef from a SmallVector.
289  template <typename T, unsigned N>
290  ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
291    return Vec;
292  }
293
294  /// Construct an ArrayRef from a std::vector.
295  template<typename T>
296  ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
297    return Vec;
298  }
299
300  /// Construct an ArrayRef from a C array.
301  template<typename T, size_t N>
302  ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
303    return ArrayRef<T>(Arr);
304  }
305
306  /// @}
307  /// @name ArrayRef Comparison Operators
308  /// @{
309
310  template<typename T>
311  inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
312    return LHS.equals(RHS);
313  }
314
315  template<typename T>
316  inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
317    return !(LHS == RHS);
318  }
319
320  /// @}
321
322  // ArrayRefs can be treated like a POD type.
323  template <typename T> struct isPodLike;
324  template <typename T> struct isPodLike<ArrayRef<T> > {
325    static const bool value = true;
326  };
327}
328
329#endif
330