APInt.h revision 263508
1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief This file implements a class to represent arbitrary precision
12/// integral constant values and operations on them.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_APINT_H
17#define LLVM_ADT_APINT_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/Support/Compiler.h"
21#include "llvm/Support/MathExtras.h"
22#include <cassert>
23#include <climits>
24#include <cstring>
25#include <string>
26
27namespace llvm {
28class Deserializer;
29class FoldingSetNodeID;
30class Serializer;
31class StringRef;
32class hash_code;
33class raw_ostream;
34
35template <typename T> class SmallVectorImpl;
36
37// An unsigned host type used as a single part of a multi-part
38// bignum.
39typedef uint64_t integerPart;
40
41const unsigned int host_char_bit = 8;
42const unsigned int integerPartWidth =
43    host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
44
45//===----------------------------------------------------------------------===//
46//                              APInt Class
47//===----------------------------------------------------------------------===//
48
49/// \brief Class for arbitrary precision integers.
50///
51/// APInt is a functional replacement for common case unsigned integer type like
52/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
53/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
54/// than 64-bits of precision. APInt provides a variety of arithmetic operators
55/// and methods to manipulate integer values of any bit-width. It supports both
56/// the typical integer arithmetic and comparison operations as well as bitwise
57/// manipulation.
58///
59/// The class has several invariants worth noting:
60///   * All bit, byte, and word positions are zero-based.
61///   * Once the bit width is set, it doesn't change except by the Truncate,
62///     SignExtend, or ZeroExtend operations.
63///   * All binary operators must be on APInt instances of the same bit width.
64///     Attempting to use these operators on instances with different bit
65///     widths will yield an assertion.
66///   * The value is stored canonically as an unsigned value. For operations
67///     where it makes a difference, there are both signed and unsigned variants
68///     of the operation. For example, sdiv and udiv. However, because the bit
69///     widths must be the same, operations such as Mul and Add produce the same
70///     results regardless of whether the values are interpreted as signed or
71///     not.
72///   * In general, the class tries to follow the style of computation that LLVM
73///     uses in its IR. This simplifies its use for LLVM.
74///
75class APInt {
76  unsigned BitWidth; ///< The number of bits in this APInt.
77
78  /// This union is used to store the integer value. When the
79  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
80  union {
81    uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
82    uint64_t *pVal; ///< Used to store the >64 bits integer value.
83  };
84
85  /// This enum is used to hold the constants we needed for APInt.
86  enum {
87    /// Bits in a word
88    APINT_BITS_PER_WORD =
89        static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
90    /// Byte size of a word
91    APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
92  };
93
94  /// \brief Fast internal constructor
95  ///
96  /// This constructor is used only internally for speed of construction of
97  /// temporaries. It is unsafe for general use so it is not public.
98  APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
99
100  /// \brief Determine if this APInt just has one word to store value.
101  ///
102  /// \returns true if the number of bits <= 64, false otherwise.
103  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
104
105  /// \brief Determine which word a bit is in.
106  ///
107  /// \returns the word position for the specified bit position.
108  static unsigned whichWord(unsigned bitPosition) {
109    return bitPosition / APINT_BITS_PER_WORD;
110  }
111
112  /// \brief Determine which bit in a word a bit is in.
113  ///
114  /// \returns the bit position in a word for the specified bit position
115  /// in the APInt.
116  static unsigned whichBit(unsigned bitPosition) {
117    return bitPosition % APINT_BITS_PER_WORD;
118  }
119
120  /// \brief Get a single bit mask.
121  ///
122  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
123  /// This method generates and returns a uint64_t (word) mask for a single
124  /// bit at a specific bit position. This is used to mask the bit in the
125  /// corresponding word.
126  static uint64_t maskBit(unsigned bitPosition) {
127    return 1ULL << whichBit(bitPosition);
128  }
129
130  /// \brief Clear unused high order bits
131  ///
132  /// This method is used internally to clear the to "N" bits in the high order
133  /// word that are not used by the APInt. This is needed after the most
134  /// significant word is assigned a value to ensure that those bits are
135  /// zero'd out.
136  APInt &clearUnusedBits() {
137    // Compute how many bits are used in the final word
138    unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
139    if (wordBits == 0)
140      // If all bits are used, we want to leave the value alone. This also
141      // avoids the undefined behavior of >> when the shift is the same size as
142      // the word size (64).
143      return *this;
144
145    // Mask out the high bits.
146    uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
147    if (isSingleWord())
148      VAL &= mask;
149    else
150      pVal[getNumWords() - 1] &= mask;
151    return *this;
152  }
153
154  /// \brief Get the word corresponding to a bit position
155  /// \returns the corresponding word for the specified bit position.
156  uint64_t getWord(unsigned bitPosition) const {
157    return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
158  }
159
160  /// \brief Convert a char array into an APInt
161  ///
162  /// \param radix 2, 8, 10, 16, or 36
163  /// Converts a string into a number.  The string must be non-empty
164  /// and well-formed as a number of the given base. The bit-width
165  /// must be sufficient to hold the result.
166  ///
167  /// This is used by the constructors that take string arguments.
168  ///
169  /// StringRef::getAsInteger is superficially similar but (1) does
170  /// not assume that the string is well-formed and (2) grows the
171  /// result to hold the input.
172  void fromString(unsigned numBits, StringRef str, uint8_t radix);
173
174  /// \brief An internal division function for dividing APInts.
175  ///
176  /// This is used by the toString method to divide by the radix. It simply
177  /// provides a more convenient form of divide for internal use since KnuthDiv
178  /// has specific constraints on its inputs. If those constraints are not met
179  /// then it provides a simpler form of divide.
180  static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
181                     unsigned rhsWords, APInt *Quotient, APInt *Remainder);
182
183  /// out-of-line slow case for inline constructor
184  void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
185
186  /// shared code between two array constructors
187  void initFromArray(ArrayRef<uint64_t> array);
188
189  /// out-of-line slow case for inline copy constructor
190  void initSlowCase(const APInt &that);
191
192  /// out-of-line slow case for shl
193  APInt shlSlowCase(unsigned shiftAmt) const;
194
195  /// out-of-line slow case for operator&
196  APInt AndSlowCase(const APInt &RHS) const;
197
198  /// out-of-line slow case for operator|
199  APInt OrSlowCase(const APInt &RHS) const;
200
201  /// out-of-line slow case for operator^
202  APInt XorSlowCase(const APInt &RHS) const;
203
204  /// out-of-line slow case for operator=
205  APInt &AssignSlowCase(const APInt &RHS);
206
207  /// out-of-line slow case for operator==
208  bool EqualSlowCase(const APInt &RHS) const;
209
210  /// out-of-line slow case for operator==
211  bool EqualSlowCase(uint64_t Val) const;
212
213  /// out-of-line slow case for countLeadingZeros
214  unsigned countLeadingZerosSlowCase() const;
215
216  /// out-of-line slow case for countTrailingOnes
217  unsigned countTrailingOnesSlowCase() const;
218
219  /// out-of-line slow case for countPopulation
220  unsigned countPopulationSlowCase() const;
221
222public:
223  /// \name Constructors
224  /// @{
225
226  /// \brief Create a new APInt of numBits width, initialized as val.
227  ///
228  /// If isSigned is true then val is treated as if it were a signed value
229  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
230  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
231  /// the range of val are zero filled).
232  ///
233  /// \param numBits the bit width of the constructed APInt
234  /// \param val the initial value of the APInt
235  /// \param isSigned how to treat signedness of val
236  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
237      : BitWidth(numBits), VAL(0) {
238    assert(BitWidth && "bitwidth too small");
239    if (isSingleWord())
240      VAL = val;
241    else
242      initSlowCase(numBits, val, isSigned);
243    clearUnusedBits();
244  }
245
246  /// \brief Construct an APInt of numBits width, initialized as bigVal[].
247  ///
248  /// Note that bigVal.size() can be smaller or larger than the corresponding
249  /// bit width but any extraneous bits will be dropped.
250  ///
251  /// \param numBits the bit width of the constructed APInt
252  /// \param bigVal a sequence of words to form the initial value of the APInt
253  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
254
255  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
256  /// deprecated because this constructor is prone to ambiguity with the
257  /// APInt(unsigned, uint64_t, bool) constructor.
258  ///
259  /// If this overload is ever deleted, care should be taken to prevent calls
260  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
261  /// constructor.
262  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
263
264  /// \brief Construct an APInt from a string representation.
265  ///
266  /// This constructor interprets the string \p str in the given radix. The
267  /// interpretation stops when the first character that is not suitable for the
268  /// radix is encountered, or the end of the string. Acceptable radix values
269  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
270  /// string to require more bits than numBits.
271  ///
272  /// \param numBits the bit width of the constructed APInt
273  /// \param str the string to be interpreted
274  /// \param radix the radix to use for the conversion
275  APInt(unsigned numBits, StringRef str, uint8_t radix);
276
277  /// Simply makes *this a copy of that.
278  /// @brief Copy Constructor.
279  APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
280    assert(BitWidth && "bitwidth too small");
281    if (isSingleWord())
282      VAL = that.VAL;
283    else
284      initSlowCase(that);
285  }
286
287#if LLVM_HAS_RVALUE_REFERENCES
288  /// \brief Move Constructor.
289  APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
290    that.BitWidth = 0;
291  }
292#endif
293
294  /// \brief Destructor.
295  ~APInt() {
296    if (needsCleanup())
297      delete[] pVal;
298  }
299
300  /// \brief Default constructor that creates an uninitialized APInt.
301  ///
302  /// This is useful for object deserialization (pair this with the static
303  ///  method Read).
304  explicit APInt() : BitWidth(1) {}
305
306  /// \brief Returns whether this instance allocated memory.
307  bool needsCleanup() const { return !isSingleWord(); }
308
309  /// Used to insert APInt objects, or objects that contain APInt objects, into
310  ///  FoldingSets.
311  void Profile(FoldingSetNodeID &id) const;
312
313  /// @}
314  /// \name Value Tests
315  /// @{
316
317  /// \brief Determine sign of this APInt.
318  ///
319  /// This tests the high bit of this APInt to determine if it is set.
320  ///
321  /// \returns true if this APInt is negative, false otherwise
322  bool isNegative() const { return (*this)[BitWidth - 1]; }
323
324  /// \brief Determine if this APInt Value is non-negative (>= 0)
325  ///
326  /// This tests the high bit of the APInt to determine if it is unset.
327  bool isNonNegative() const { return !isNegative(); }
328
329  /// \brief Determine if this APInt Value is positive.
330  ///
331  /// This tests if the value of this APInt is positive (> 0). Note
332  /// that 0 is not a positive value.
333  ///
334  /// \returns true if this APInt is positive.
335  bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
336
337  /// \brief Determine if all bits are set
338  ///
339  /// This checks to see if the value has all bits of the APInt are set or not.
340  bool isAllOnesValue() const {
341    if (isSingleWord())
342      return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
343    return countPopulationSlowCase() == BitWidth;
344  }
345
346  /// \brief Determine if this is the largest unsigned value.
347  ///
348  /// This checks to see if the value of this APInt is the maximum unsigned
349  /// value for the APInt's bit width.
350  bool isMaxValue() const { return isAllOnesValue(); }
351
352  /// \brief Determine if this is the largest signed value.
353  ///
354  /// This checks to see if the value of this APInt is the maximum signed
355  /// value for the APInt's bit width.
356  bool isMaxSignedValue() const {
357    return BitWidth == 1 ? VAL == 0
358                         : !isNegative() && countPopulation() == BitWidth - 1;
359  }
360
361  /// \brief Determine if this is the smallest unsigned value.
362  ///
363  /// This checks to see if the value of this APInt is the minimum unsigned
364  /// value for the APInt's bit width.
365  bool isMinValue() const { return !*this; }
366
367  /// \brief Determine if this is the smallest signed value.
368  ///
369  /// This checks to see if the value of this APInt is the minimum signed
370  /// value for the APInt's bit width.
371  bool isMinSignedValue() const {
372    return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
373  }
374
375  /// \brief Check if this APInt has an N-bits unsigned integer value.
376  bool isIntN(unsigned N) const {
377    assert(N && "N == 0 ???");
378    return getActiveBits() <= N;
379  }
380
381  /// \brief Check if this APInt has an N-bits signed integer value.
382  bool isSignedIntN(unsigned N) const {
383    assert(N && "N == 0 ???");
384    return getMinSignedBits() <= N;
385  }
386
387  /// \brief Check if this APInt's value is a power of two greater than zero.
388  ///
389  /// \returns true if the argument APInt value is a power of two > 0.
390  bool isPowerOf2() const {
391    if (isSingleWord())
392      return isPowerOf2_64(VAL);
393    return countPopulationSlowCase() == 1;
394  }
395
396  /// \brief Check if the APInt's value is returned by getSignBit.
397  ///
398  /// \returns true if this is the value returned by getSignBit.
399  bool isSignBit() const { return isMinSignedValue(); }
400
401  /// \brief Convert APInt to a boolean value.
402  ///
403  /// This converts the APInt to a boolean value as a test against zero.
404  bool getBoolValue() const { return !!*this; }
405
406  /// If this value is smaller than the specified limit, return it, otherwise
407  /// return the limit value.  This causes the value to saturate to the limit.
408  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
409    return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
410                                                            : getZExtValue();
411  }
412
413  /// @}
414  /// \name Value Generators
415  /// @{
416
417  /// \brief Gets maximum unsigned value of APInt for specific bit width.
418  static APInt getMaxValue(unsigned numBits) {
419    return getAllOnesValue(numBits);
420  }
421
422  /// \brief Gets maximum signed value of APInt for a specific bit width.
423  static APInt getSignedMaxValue(unsigned numBits) {
424    APInt API = getAllOnesValue(numBits);
425    API.clearBit(numBits - 1);
426    return API;
427  }
428
429  /// \brief Gets minimum unsigned value of APInt for a specific bit width.
430  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
431
432  /// \brief Gets minimum signed value of APInt for a specific bit width.
433  static APInt getSignedMinValue(unsigned numBits) {
434    APInt API(numBits, 0);
435    API.setBit(numBits - 1);
436    return API;
437  }
438
439  /// \brief Get the SignBit for a specific bit width.
440  ///
441  /// This is just a wrapper function of getSignedMinValue(), and it helps code
442  /// readability when we want to get a SignBit.
443  static APInt getSignBit(unsigned BitWidth) {
444    return getSignedMinValue(BitWidth);
445  }
446
447  /// \brief Get the all-ones value.
448  ///
449  /// \returns the all-ones value for an APInt of the specified bit-width.
450  static APInt getAllOnesValue(unsigned numBits) {
451    return APInt(numBits, UINT64_MAX, true);
452  }
453
454  /// \brief Get the '0' value.
455  ///
456  /// \returns the '0' value for an APInt of the specified bit-width.
457  static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
458
459  /// \brief Compute an APInt containing numBits highbits from this APInt.
460  ///
461  /// Get an APInt with the same BitWidth as this APInt, just zero mask
462  /// the low bits and right shift to the least significant bit.
463  ///
464  /// \returns the high "numBits" bits of this APInt.
465  APInt getHiBits(unsigned numBits) const;
466
467  /// \brief Compute an APInt containing numBits lowbits from this APInt.
468  ///
469  /// Get an APInt with the same BitWidth as this APInt, just zero mask
470  /// the high bits.
471  ///
472  /// \returns the low "numBits" bits of this APInt.
473  APInt getLoBits(unsigned numBits) const;
474
475  /// \brief Return an APInt with exactly one bit set in the result.
476  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
477    APInt Res(numBits, 0);
478    Res.setBit(BitNo);
479    return Res;
480  }
481
482  /// \brief Get a value with a block of bits set.
483  ///
484  /// Constructs an APInt value that has a contiguous range of bits set. The
485  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
486  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
487  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
488  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
489  ///
490  /// \param numBits the intended bit width of the result
491  /// \param loBit the index of the lowest bit set.
492  /// \param hiBit the index of the highest bit set.
493  ///
494  /// \returns An APInt value with the requested bits set.
495  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
496    assert(hiBit <= numBits && "hiBit out of range");
497    assert(loBit < numBits && "loBit out of range");
498    if (hiBit < loBit)
499      return getLowBitsSet(numBits, hiBit) |
500             getHighBitsSet(numBits, numBits - loBit);
501    return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
502  }
503
504  /// \brief Get a value with high bits set
505  ///
506  /// Constructs an APInt value that has the top hiBitsSet bits set.
507  ///
508  /// \param numBits the bitwidth of the result
509  /// \param hiBitsSet the number of high-order bits set in the result.
510  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
511    assert(hiBitsSet <= numBits && "Too many bits to set!");
512    // Handle a degenerate case, to avoid shifting by word size
513    if (hiBitsSet == 0)
514      return APInt(numBits, 0);
515    unsigned shiftAmt = numBits - hiBitsSet;
516    // For small values, return quickly
517    if (numBits <= APINT_BITS_PER_WORD)
518      return APInt(numBits, ~0ULL << shiftAmt);
519    return getAllOnesValue(numBits).shl(shiftAmt);
520  }
521
522  /// \brief Get a value with low bits set
523  ///
524  /// Constructs an APInt value that has the bottom loBitsSet bits set.
525  ///
526  /// \param numBits the bitwidth of the result
527  /// \param loBitsSet the number of low-order bits set in the result.
528  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
529    assert(loBitsSet <= numBits && "Too many bits to set!");
530    // Handle a degenerate case, to avoid shifting by word size
531    if (loBitsSet == 0)
532      return APInt(numBits, 0);
533    if (loBitsSet == APINT_BITS_PER_WORD)
534      return APInt(numBits, UINT64_MAX);
535    // For small values, return quickly.
536    if (loBitsSet <= APINT_BITS_PER_WORD)
537      return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
538    return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
539  }
540
541  /// \brief Return a value containing V broadcasted over NewLen bits.
542  static APInt getSplat(unsigned NewLen, const APInt &V) {
543    assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
544
545    APInt Val = V.zextOrSelf(NewLen);
546    for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
547      Val |= Val << I;
548
549    return Val;
550  }
551
552  /// \brief Determine if two APInts have the same value, after zero-extending
553  /// one of them (if needed!) to ensure that the bit-widths match.
554  static bool isSameValue(const APInt &I1, const APInt &I2) {
555    if (I1.getBitWidth() == I2.getBitWidth())
556      return I1 == I2;
557
558    if (I1.getBitWidth() > I2.getBitWidth())
559      return I1 == I2.zext(I1.getBitWidth());
560
561    return I1.zext(I2.getBitWidth()) == I2;
562  }
563
564  /// \brief Overload to compute a hash_code for an APInt value.
565  friend hash_code hash_value(const APInt &Arg);
566
567  /// This function returns a pointer to the internal storage of the APInt.
568  /// This is useful for writing out the APInt in binary form without any
569  /// conversions.
570  const uint64_t *getRawData() const {
571    if (isSingleWord())
572      return &VAL;
573    return &pVal[0];
574  }
575
576  /// @}
577  /// \name Unary Operators
578  /// @{
579
580  /// \brief Postfix increment operator.
581  ///
582  /// \returns a new APInt value representing *this incremented by one
583  const APInt operator++(int) {
584    APInt API(*this);
585    ++(*this);
586    return API;
587  }
588
589  /// \brief Prefix increment operator.
590  ///
591  /// \returns *this incremented by one
592  APInt &operator++();
593
594  /// \brief Postfix decrement operator.
595  ///
596  /// \returns a new APInt representing *this decremented by one.
597  const APInt operator--(int) {
598    APInt API(*this);
599    --(*this);
600    return API;
601  }
602
603  /// \brief Prefix decrement operator.
604  ///
605  /// \returns *this decremented by one.
606  APInt &operator--();
607
608  /// \brief Unary bitwise complement operator.
609  ///
610  /// Performs a bitwise complement operation on this APInt.
611  ///
612  /// \returns an APInt that is the bitwise complement of *this
613  APInt operator~() const {
614    APInt Result(*this);
615    Result.flipAllBits();
616    return Result;
617  }
618
619  /// \brief Unary negation operator
620  ///
621  /// Negates *this using two's complement logic.
622  ///
623  /// \returns An APInt value representing the negation of *this.
624  APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
625
626  /// \brief Logical negation operator.
627  ///
628  /// Performs logical negation operation on this APInt.
629  ///
630  /// \returns true if *this is zero, false otherwise.
631  bool operator!() const {
632    if (isSingleWord())
633      return !VAL;
634
635    for (unsigned i = 0; i != getNumWords(); ++i)
636      if (pVal[i])
637        return false;
638    return true;
639  }
640
641  /// @}
642  /// \name Assignment Operators
643  /// @{
644
645  /// \brief Copy assignment operator.
646  ///
647  /// \returns *this after assignment of RHS.
648  APInt &operator=(const APInt &RHS) {
649    // If the bitwidths are the same, we can avoid mucking with memory
650    if (isSingleWord() && RHS.isSingleWord()) {
651      VAL = RHS.VAL;
652      BitWidth = RHS.BitWidth;
653      return clearUnusedBits();
654    }
655
656    return AssignSlowCase(RHS);
657  }
658
659#if LLVM_HAS_RVALUE_REFERENCES
660  /// @brief Move assignment operator.
661  APInt &operator=(APInt &&that) {
662    if (!isSingleWord())
663      delete[] pVal;
664
665    BitWidth = that.BitWidth;
666    VAL = that.VAL;
667
668    that.BitWidth = 0;
669
670    return *this;
671  }
672#endif
673
674  /// \brief Assignment operator.
675  ///
676  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
677  /// the bit width, the excess bits are truncated. If the bit width is larger
678  /// than 64, the value is zero filled in the unspecified high order bits.
679  ///
680  /// \returns *this after assignment of RHS value.
681  APInt &operator=(uint64_t RHS);
682
683  /// \brief Bitwise AND assignment operator.
684  ///
685  /// Performs a bitwise AND operation on this APInt and RHS. The result is
686  /// assigned to *this.
687  ///
688  /// \returns *this after ANDing with RHS.
689  APInt &operator&=(const APInt &RHS);
690
691  /// \brief Bitwise OR assignment operator.
692  ///
693  /// Performs a bitwise OR operation on this APInt and RHS. The result is
694  /// assigned *this;
695  ///
696  /// \returns *this after ORing with RHS.
697  APInt &operator|=(const APInt &RHS);
698
699  /// \brief Bitwise OR assignment operator.
700  ///
701  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
702  /// logically zero-extended or truncated to match the bit-width of
703  /// the LHS.
704  APInt &operator|=(uint64_t RHS) {
705    if (isSingleWord()) {
706      VAL |= RHS;
707      clearUnusedBits();
708    } else {
709      pVal[0] |= RHS;
710    }
711    return *this;
712  }
713
714  /// \brief Bitwise XOR assignment operator.
715  ///
716  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
717  /// assigned to *this.
718  ///
719  /// \returns *this after XORing with RHS.
720  APInt &operator^=(const APInt &RHS);
721
722  /// \brief Multiplication assignment operator.
723  ///
724  /// Multiplies this APInt by RHS and assigns the result to *this.
725  ///
726  /// \returns *this
727  APInt &operator*=(const APInt &RHS);
728
729  /// \brief Addition assignment operator.
730  ///
731  /// Adds RHS to *this and assigns the result to *this.
732  ///
733  /// \returns *this
734  APInt &operator+=(const APInt &RHS);
735
736  /// \brief Subtraction assignment operator.
737  ///
738  /// Subtracts RHS from *this and assigns the result to *this.
739  ///
740  /// \returns *this
741  APInt &operator-=(const APInt &RHS);
742
743  /// \brief Left-shift assignment function.
744  ///
745  /// Shifts *this left by shiftAmt and assigns the result to *this.
746  ///
747  /// \returns *this after shifting left by shiftAmt
748  APInt &operator<<=(unsigned shiftAmt) {
749    *this = shl(shiftAmt);
750    return *this;
751  }
752
753  /// @}
754  /// \name Binary Operators
755  /// @{
756
757  /// \brief Bitwise AND operator.
758  ///
759  /// Performs a bitwise AND operation on *this and RHS.
760  ///
761  /// \returns An APInt value representing the bitwise AND of *this and RHS.
762  APInt operator&(const APInt &RHS) const {
763    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
764    if (isSingleWord())
765      return APInt(getBitWidth(), VAL & RHS.VAL);
766    return AndSlowCase(RHS);
767  }
768  APInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APInt &RHS) const {
769    return this->operator&(RHS);
770  }
771
772  /// \brief Bitwise OR operator.
773  ///
774  /// Performs a bitwise OR operation on *this and RHS.
775  ///
776  /// \returns An APInt value representing the bitwise OR of *this and RHS.
777  APInt operator|(const APInt &RHS) const {
778    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
779    if (isSingleWord())
780      return APInt(getBitWidth(), VAL | RHS.VAL);
781    return OrSlowCase(RHS);
782  }
783
784  /// \brief Bitwise OR function.
785  ///
786  /// Performs a bitwise or on *this and RHS. This is implemented bny simply
787  /// calling operator|.
788  ///
789  /// \returns An APInt value representing the bitwise OR of *this and RHS.
790  APInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APInt &RHS) const {
791    return this->operator|(RHS);
792  }
793
794  /// \brief Bitwise XOR operator.
795  ///
796  /// Performs a bitwise XOR operation on *this and RHS.
797  ///
798  /// \returns An APInt value representing the bitwise XOR of *this and RHS.
799  APInt operator^(const APInt &RHS) const {
800    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
801    if (isSingleWord())
802      return APInt(BitWidth, VAL ^ RHS.VAL);
803    return XorSlowCase(RHS);
804  }
805
806  /// \brief Bitwise XOR function.
807  ///
808  /// Performs a bitwise XOR operation on *this and RHS. This is implemented
809  /// through the usage of operator^.
810  ///
811  /// \returns An APInt value representing the bitwise XOR of *this and RHS.
812  APInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APInt &RHS) const {
813    return this->operator^(RHS);
814  }
815
816  /// \brief Multiplication operator.
817  ///
818  /// Multiplies this APInt by RHS and returns the result.
819  APInt operator*(const APInt &RHS) const;
820
821  /// \brief Addition operator.
822  ///
823  /// Adds RHS to this APInt and returns the result.
824  APInt operator+(const APInt &RHS) const;
825  APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
826
827  /// \brief Subtraction operator.
828  ///
829  /// Subtracts RHS from this APInt and returns the result.
830  APInt operator-(const APInt &RHS) const;
831  APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
832
833  /// \brief Left logical shift operator.
834  ///
835  /// Shifts this APInt left by \p Bits and returns the result.
836  APInt operator<<(unsigned Bits) const { return shl(Bits); }
837
838  /// \brief Left logical shift operator.
839  ///
840  /// Shifts this APInt left by \p Bits and returns the result.
841  APInt operator<<(const APInt &Bits) const { return shl(Bits); }
842
843  /// \brief Arithmetic right-shift function.
844  ///
845  /// Arithmetic right-shift this APInt by shiftAmt.
846  APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const;
847
848  /// \brief Logical right-shift function.
849  ///
850  /// Logical right-shift this APInt by shiftAmt.
851  APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const;
852
853  /// \brief Left-shift function.
854  ///
855  /// Left-shift this APInt by shiftAmt.
856  APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const {
857    assert(shiftAmt <= BitWidth && "Invalid shift amount");
858    if (isSingleWord()) {
859      if (shiftAmt >= BitWidth)
860        return APInt(BitWidth, 0); // avoid undefined shift results
861      return APInt(BitWidth, VAL << shiftAmt);
862    }
863    return shlSlowCase(shiftAmt);
864  }
865
866  /// \brief Rotate left by rotateAmt.
867  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(unsigned rotateAmt) const;
868
869  /// \brief Rotate right by rotateAmt.
870  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(unsigned rotateAmt) const;
871
872  /// \brief Arithmetic right-shift function.
873  ///
874  /// Arithmetic right-shift this APInt by shiftAmt.
875  APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(const APInt &shiftAmt) const;
876
877  /// \brief Logical right-shift function.
878  ///
879  /// Logical right-shift this APInt by shiftAmt.
880  APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(const APInt &shiftAmt) const;
881
882  /// \brief Left-shift function.
883  ///
884  /// Left-shift this APInt by shiftAmt.
885  APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(const APInt &shiftAmt) const;
886
887  /// \brief Rotate left by rotateAmt.
888  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(const APInt &rotateAmt) const;
889
890  /// \brief Rotate right by rotateAmt.
891  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(const APInt &rotateAmt) const;
892
893  /// \brief Unsigned division operation.
894  ///
895  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
896  /// RHS are treated as unsigned quantities for purposes of this division.
897  ///
898  /// \returns a new APInt value containing the division result
899  APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const;
900
901  /// \brief Signed division function for APInt.
902  ///
903  /// Signed divide this APInt by APInt RHS.
904  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const;
905
906  /// \brief Unsigned remainder operation.
907  ///
908  /// Perform an unsigned remainder operation on this APInt with RHS being the
909  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
910  /// of this operation. Note that this is a true remainder operation and not a
911  /// modulo operation because the sign follows the sign of the dividend which
912  /// is *this.
913  ///
914  /// \returns a new APInt value containing the remainder result
915  APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const;
916
917  /// \brief Function for signed remainder operation.
918  ///
919  /// Signed remainder operation on APInt.
920  APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const;
921
922  /// \brief Dual division/remainder interface.
923  ///
924  /// Sometimes it is convenient to divide two APInt values and obtain both the
925  /// quotient and remainder. This function does both operations in the same
926  /// computation making it a little more efficient. The pair of input arguments
927  /// may overlap with the pair of output arguments. It is safe to call
928  /// udivrem(X, Y, X, Y), for example.
929  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
930                      APInt &Remainder);
931
932  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
933                      APInt &Remainder);
934
935  // Operations that return overflow indicators.
936  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
937  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
938  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
939  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
940  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
941  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
942  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
943  APInt sshl_ov(unsigned Amt, bool &Overflow) const;
944
945  /// \brief Array-indexing support.
946  ///
947  /// \returns the bit value at bitPosition
948  bool operator[](unsigned bitPosition) const {
949    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
950    return (maskBit(bitPosition) &
951            (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
952           0;
953  }
954
955  /// @}
956  /// \name Comparison Operators
957  /// @{
958
959  /// \brief Equality operator.
960  ///
961  /// Compares this APInt with RHS for the validity of the equality
962  /// relationship.
963  bool operator==(const APInt &RHS) const {
964    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
965    if (isSingleWord())
966      return VAL == RHS.VAL;
967    return EqualSlowCase(RHS);
968  }
969
970  /// \brief Equality operator.
971  ///
972  /// Compares this APInt with a uint64_t for the validity of the equality
973  /// relationship.
974  ///
975  /// \returns true if *this == Val
976  bool operator==(uint64_t Val) const {
977    if (isSingleWord())
978      return VAL == Val;
979    return EqualSlowCase(Val);
980  }
981
982  /// \brief Equality comparison.
983  ///
984  /// Compares this APInt with RHS for the validity of the equality
985  /// relationship.
986  ///
987  /// \returns true if *this == Val
988  bool eq(const APInt &RHS) const { return (*this) == RHS; }
989
990  /// \brief Inequality operator.
991  ///
992  /// Compares this APInt with RHS for the validity of the inequality
993  /// relationship.
994  ///
995  /// \returns true if *this != Val
996  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
997
998  /// \brief Inequality operator.
999  ///
1000  /// Compares this APInt with a uint64_t for the validity of the inequality
1001  /// relationship.
1002  ///
1003  /// \returns true if *this != Val
1004  bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1005
1006  /// \brief Inequality comparison
1007  ///
1008  /// Compares this APInt with RHS for the validity of the inequality
1009  /// relationship.
1010  ///
1011  /// \returns true if *this != Val
1012  bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1013
1014  /// \brief Unsigned less than comparison
1015  ///
1016  /// Regards both *this and RHS as unsigned quantities and compares them for
1017  /// the validity of the less-than relationship.
1018  ///
1019  /// \returns true if *this < RHS when both are considered unsigned.
1020  bool ult(const APInt &RHS) const;
1021
1022  /// \brief Unsigned less than comparison
1023  ///
1024  /// Regards both *this as an unsigned quantity and compares it with RHS for
1025  /// the validity of the less-than relationship.
1026  ///
1027  /// \returns true if *this < RHS when considered unsigned.
1028  bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); }
1029
1030  /// \brief Signed less than comparison
1031  ///
1032  /// Regards both *this and RHS as signed quantities and compares them for
1033  /// validity of the less-than relationship.
1034  ///
1035  /// \returns true if *this < RHS when both are considered signed.
1036  bool slt(const APInt &RHS) const;
1037
1038  /// \brief Signed less than comparison
1039  ///
1040  /// Regards both *this as a signed quantity and compares it with RHS for
1041  /// the validity of the less-than relationship.
1042  ///
1043  /// \returns true if *this < RHS when considered signed.
1044  bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); }
1045
1046  /// \brief Unsigned less or equal comparison
1047  ///
1048  /// Regards both *this and RHS as unsigned quantities and compares them for
1049  /// validity of the less-or-equal relationship.
1050  ///
1051  /// \returns true if *this <= RHS when both are considered unsigned.
1052  bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
1053
1054  /// \brief Unsigned less or equal comparison
1055  ///
1056  /// Regards both *this as an unsigned quantity and compares it with RHS for
1057  /// the validity of the less-or-equal relationship.
1058  ///
1059  /// \returns true if *this <= RHS when considered unsigned.
1060  bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); }
1061
1062  /// \brief Signed less or equal comparison
1063  ///
1064  /// Regards both *this and RHS as signed quantities and compares them for
1065  /// validity of the less-or-equal relationship.
1066  ///
1067  /// \returns true if *this <= RHS when both are considered signed.
1068  bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
1069
1070  /// \brief Signed less or equal comparison
1071  ///
1072  /// Regards both *this as a signed quantity and compares it with RHS for the
1073  /// validity of the less-or-equal relationship.
1074  ///
1075  /// \returns true if *this <= RHS when considered signed.
1076  bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); }
1077
1078  /// \brief Unsigned greather than comparison
1079  ///
1080  /// Regards both *this and RHS as unsigned quantities and compares them for
1081  /// the validity of the greater-than relationship.
1082  ///
1083  /// \returns true if *this > RHS when both are considered unsigned.
1084  bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
1085
1086  /// \brief Unsigned greater than comparison
1087  ///
1088  /// Regards both *this as an unsigned quantity and compares it with RHS for
1089  /// the validity of the greater-than relationship.
1090  ///
1091  /// \returns true if *this > RHS when considered unsigned.
1092  bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); }
1093
1094  /// \brief Signed greather than comparison
1095  ///
1096  /// Regards both *this and RHS as signed quantities and compares them for the
1097  /// validity of the greater-than relationship.
1098  ///
1099  /// \returns true if *this > RHS when both are considered signed.
1100  bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
1101
1102  /// \brief Signed greater than comparison
1103  ///
1104  /// Regards both *this as a signed quantity and compares it with RHS for
1105  /// the validity of the greater-than relationship.
1106  ///
1107  /// \returns true if *this > RHS when considered signed.
1108  bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); }
1109
1110  /// \brief Unsigned greater or equal comparison
1111  ///
1112  /// Regards both *this and RHS as unsigned quantities and compares them for
1113  /// validity of the greater-or-equal relationship.
1114  ///
1115  /// \returns true if *this >= RHS when both are considered unsigned.
1116  bool uge(const APInt &RHS) const { return !ult(RHS); }
1117
1118  /// \brief Unsigned greater or equal comparison
1119  ///
1120  /// Regards both *this as an unsigned quantity and compares it with RHS for
1121  /// the validity of the greater-or-equal relationship.
1122  ///
1123  /// \returns true if *this >= RHS when considered unsigned.
1124  bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); }
1125
1126  /// \brief Signed greather or equal comparison
1127  ///
1128  /// Regards both *this and RHS as signed quantities and compares them for
1129  /// validity of the greater-or-equal relationship.
1130  ///
1131  /// \returns true if *this >= RHS when both are considered signed.
1132  bool sge(const APInt &RHS) const { return !slt(RHS); }
1133
1134  /// \brief Signed greater or equal comparison
1135  ///
1136  /// Regards both *this as a signed quantity and compares it with RHS for
1137  /// the validity of the greater-or-equal relationship.
1138  ///
1139  /// \returns true if *this >= RHS when considered signed.
1140  bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); }
1141
1142  /// This operation tests if there are any pairs of corresponding bits
1143  /// between this APInt and RHS that are both set.
1144  bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
1145
1146  /// @}
1147  /// \name Resizing Operators
1148  /// @{
1149
1150  /// \brief Truncate to new width.
1151  ///
1152  /// Truncate the APInt to a specified width. It is an error to specify a width
1153  /// that is greater than or equal to the current width.
1154  APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const;
1155
1156  /// \brief Sign extend to a new width.
1157  ///
1158  /// This operation sign extends the APInt to a new width. If the high order
1159  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1160  /// It is an error to specify a width that is less than or equal to the
1161  /// current width.
1162  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const;
1163
1164  /// \brief Zero extend to a new width.
1165  ///
1166  /// This operation zero extends the APInt to a new width. The high order bits
1167  /// are filled with 0 bits.  It is an error to specify a width that is less
1168  /// than or equal to the current width.
1169  APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const;
1170
1171  /// \brief Sign extend or truncate to width
1172  ///
1173  /// Make this APInt have the bit width given by \p width. The value is sign
1174  /// extended, truncated, or left alone to make it that width.
1175  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrTrunc(unsigned width) const;
1176
1177  /// \brief Zero extend or truncate to width
1178  ///
1179  /// Make this APInt have the bit width given by \p width. The value is zero
1180  /// extended, truncated, or left alone to make it that width.
1181  APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const;
1182
1183  /// \brief Sign extend or truncate to width
1184  ///
1185  /// Make this APInt have the bit width given by \p width. The value is sign
1186  /// extended, or left alone to make it that width.
1187  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrSelf(unsigned width) const;
1188
1189  /// \brief Zero extend or truncate to width
1190  ///
1191  /// Make this APInt have the bit width given by \p width. The value is zero
1192  /// extended, or left alone to make it that width.
1193  APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrSelf(unsigned width) const;
1194
1195  /// @}
1196  /// \name Bit Manipulation Operators
1197  /// @{
1198
1199  /// \brief Set every bit to 1.
1200  void setAllBits() {
1201    if (isSingleWord())
1202      VAL = UINT64_MAX;
1203    else {
1204      // Set all the bits in all the words.
1205      for (unsigned i = 0; i < getNumWords(); ++i)
1206        pVal[i] = UINT64_MAX;
1207    }
1208    // Clear the unused ones
1209    clearUnusedBits();
1210  }
1211
1212  /// \brief Set a given bit to 1.
1213  ///
1214  /// Set the given bit to 1 whose position is given as "bitPosition".
1215  void setBit(unsigned bitPosition);
1216
1217  /// \brief Set every bit to 0.
1218  void clearAllBits() {
1219    if (isSingleWord())
1220      VAL = 0;
1221    else
1222      memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1223  }
1224
1225  /// \brief Set a given bit to 0.
1226  ///
1227  /// Set the given bit to 0 whose position is given as "bitPosition".
1228  void clearBit(unsigned bitPosition);
1229
1230  /// \brief Toggle every bit to its opposite value.
1231  void flipAllBits() {
1232    if (isSingleWord())
1233      VAL ^= UINT64_MAX;
1234    else {
1235      for (unsigned i = 0; i < getNumWords(); ++i)
1236        pVal[i] ^= UINT64_MAX;
1237    }
1238    clearUnusedBits();
1239  }
1240
1241  /// \brief Toggles a given bit to its opposite value.
1242  ///
1243  /// Toggle a given bit to its opposite value whose position is given
1244  /// as "bitPosition".
1245  void flipBit(unsigned bitPosition);
1246
1247  /// @}
1248  /// \name Value Characterization Functions
1249  /// @{
1250
1251  /// \brief Return the number of bits in the APInt.
1252  unsigned getBitWidth() const { return BitWidth; }
1253
1254  /// \brief Get the number of words.
1255  ///
1256  /// Here one word's bitwidth equals to that of uint64_t.
1257  ///
1258  /// \returns the number of words to hold the integer value of this APInt.
1259  unsigned getNumWords() const { return getNumWords(BitWidth); }
1260
1261  /// \brief Get the number of words.
1262  ///
1263  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1264  ///
1265  /// \returns the number of words to hold the integer value with a given bit
1266  /// width.
1267  static unsigned getNumWords(unsigned BitWidth) {
1268    return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1269  }
1270
1271  /// \brief Compute the number of active bits in the value
1272  ///
1273  /// This function returns the number of active bits which is defined as the
1274  /// bit width minus the number of leading zeros. This is used in several
1275  /// computations to see how "wide" the value is.
1276  unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1277
1278  /// \brief Compute the number of active words in the value of this APInt.
1279  ///
1280  /// This is used in conjunction with getActiveData to extract the raw value of
1281  /// the APInt.
1282  unsigned getActiveWords() const {
1283    unsigned numActiveBits = getActiveBits();
1284    return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1285  }
1286
1287  /// \brief Get the minimum bit size for this signed APInt
1288  ///
1289  /// Computes the minimum bit width for this APInt while considering it to be a
1290  /// signed (and probably negative) value. If the value is not negative, this
1291  /// function returns the same value as getActiveBits()+1. Otherwise, it
1292  /// returns the smallest bit width that will retain the negative value. For
1293  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1294  /// for -1, this function will always return 1.
1295  unsigned getMinSignedBits() const {
1296    if (isNegative())
1297      return BitWidth - countLeadingOnes() + 1;
1298    return getActiveBits() + 1;
1299  }
1300
1301  /// \brief Get zero extended value
1302  ///
1303  /// This method attempts to return the value of this APInt as a zero extended
1304  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1305  /// uint64_t. Otherwise an assertion will result.
1306  uint64_t getZExtValue() const {
1307    if (isSingleWord())
1308      return VAL;
1309    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1310    return pVal[0];
1311  }
1312
1313  /// \brief Get sign extended value
1314  ///
1315  /// This method attempts to return the value of this APInt as a sign extended
1316  /// int64_t. The bit width must be <= 64 or the value must fit within an
1317  /// int64_t. Otherwise an assertion will result.
1318  int64_t getSExtValue() const {
1319    if (isSingleWord())
1320      return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1321             (APINT_BITS_PER_WORD - BitWidth);
1322    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1323    return int64_t(pVal[0]);
1324  }
1325
1326  /// \brief Get bits required for string value.
1327  ///
1328  /// This method determines how many bits are required to hold the APInt
1329  /// equivalent of the string given by \p str.
1330  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1331
1332  /// \brief The APInt version of the countLeadingZeros functions in
1333  ///   MathExtras.h.
1334  ///
1335  /// It counts the number of zeros from the most significant bit to the first
1336  /// one bit.
1337  ///
1338  /// \returns BitWidth if the value is zero, otherwise returns the number of
1339  ///   zeros from the most significant bit to the first one bits.
1340  unsigned countLeadingZeros() const {
1341    if (isSingleWord()) {
1342      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1343      return llvm::countLeadingZeros(VAL) - unusedBits;
1344    }
1345    return countLeadingZerosSlowCase();
1346  }
1347
1348  /// \brief Count the number of leading one bits.
1349  ///
1350  /// This function is an APInt version of the countLeadingOnes_{32,64}
1351  /// functions in MathExtras.h. It counts the number of ones from the most
1352  /// significant bit to the first zero bit.
1353  ///
1354  /// \returns 0 if the high order bit is not set, otherwise returns the number
1355  /// of 1 bits from the most significant to the least
1356  unsigned countLeadingOnes() const;
1357
1358  /// Computes the number of leading bits of this APInt that are equal to its
1359  /// sign bit.
1360  unsigned getNumSignBits() const {
1361    return isNegative() ? countLeadingOnes() : countLeadingZeros();
1362  }
1363
1364  /// \brief Count the number of trailing zero bits.
1365  ///
1366  /// This function is an APInt version of the countTrailingZeros_{32,64}
1367  /// functions in MathExtras.h. It counts the number of zeros from the least
1368  /// significant bit to the first set bit.
1369  ///
1370  /// \returns BitWidth if the value is zero, otherwise returns the number of
1371  /// zeros from the least significant bit to the first one bit.
1372  unsigned countTrailingZeros() const;
1373
1374  /// \brief Count the number of trailing one bits.
1375  ///
1376  /// This function is an APInt version of the countTrailingOnes_{32,64}
1377  /// functions in MathExtras.h. It counts the number of ones from the least
1378  /// significant bit to the first zero bit.
1379  ///
1380  /// \returns BitWidth if the value is all ones, otherwise returns the number
1381  /// of ones from the least significant bit to the first zero bit.
1382  unsigned countTrailingOnes() const {
1383    if (isSingleWord())
1384      return CountTrailingOnes_64(VAL);
1385    return countTrailingOnesSlowCase();
1386  }
1387
1388  /// \brief Count the number of bits set.
1389  ///
1390  /// This function is an APInt version of the countPopulation_{32,64} functions
1391  /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1392  ///
1393  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1394  unsigned countPopulation() const {
1395    if (isSingleWord())
1396      return CountPopulation_64(VAL);
1397    return countPopulationSlowCase();
1398  }
1399
1400  /// @}
1401  /// \name Conversion Functions
1402  /// @{
1403  void print(raw_ostream &OS, bool isSigned) const;
1404
1405  /// Converts an APInt to a string and append it to Str.  Str is commonly a
1406  /// SmallString.
1407  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1408                bool formatAsCLiteral = false) const;
1409
1410  /// Considers the APInt to be unsigned and converts it into a string in the
1411  /// radix given. The radix can be 2, 8, 10 16, or 36.
1412  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1413    toString(Str, Radix, false, false);
1414  }
1415
1416  /// Considers the APInt to be signed and converts it into a string in the
1417  /// radix given. The radix can be 2, 8, 10, 16, or 36.
1418  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1419    toString(Str, Radix, true, false);
1420  }
1421
1422  /// \brief Return the APInt as a std::string.
1423  ///
1424  /// Note that this is an inefficient method.  It is better to pass in a
1425  /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1426  /// for the string.
1427  std::string toString(unsigned Radix, bool Signed) const;
1428
1429  /// \returns a byte-swapped representation of this APInt Value.
1430  APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const;
1431
1432  /// \brief Converts this APInt to a double value.
1433  double roundToDouble(bool isSigned) const;
1434
1435  /// \brief Converts this unsigned APInt to a double value.
1436  double roundToDouble() const { return roundToDouble(false); }
1437
1438  /// \brief Converts this signed APInt to a double value.
1439  double signedRoundToDouble() const { return roundToDouble(true); }
1440
1441  /// \brief Converts APInt bits to a double
1442  ///
1443  /// The conversion does not do a translation from integer to double, it just
1444  /// re-interprets the bits as a double. Note that it is valid to do this on
1445  /// any bit width. Exactly 64 bits will be translated.
1446  double bitsToDouble() const {
1447    union {
1448      uint64_t I;
1449      double D;
1450    } T;
1451    T.I = (isSingleWord() ? VAL : pVal[0]);
1452    return T.D;
1453  }
1454
1455  /// \brief Converts APInt bits to a double
1456  ///
1457  /// The conversion does not do a translation from integer to float, it just
1458  /// re-interprets the bits as a float. Note that it is valid to do this on
1459  /// any bit width. Exactly 32 bits will be translated.
1460  float bitsToFloat() const {
1461    union {
1462      unsigned I;
1463      float F;
1464    } T;
1465    T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1466    return T.F;
1467  }
1468
1469  /// \brief Converts a double to APInt bits.
1470  ///
1471  /// The conversion does not do a translation from double to integer, it just
1472  /// re-interprets the bits of the double.
1473  static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V) {
1474    union {
1475      uint64_t I;
1476      double D;
1477    } T;
1478    T.D = V;
1479    return APInt(sizeof T * CHAR_BIT, T.I);
1480  }
1481
1482  /// \brief Converts a float to APInt bits.
1483  ///
1484  /// The conversion does not do a translation from float to integer, it just
1485  /// re-interprets the bits of the float.
1486  static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V) {
1487    union {
1488      unsigned I;
1489      float F;
1490    } T;
1491    T.F = V;
1492    return APInt(sizeof T * CHAR_BIT, T.I);
1493  }
1494
1495  /// @}
1496  /// \name Mathematics Operations
1497  /// @{
1498
1499  /// \returns the floor log base 2 of this APInt.
1500  unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
1501
1502  /// \returns the ceil log base 2 of this APInt.
1503  unsigned ceilLogBase2() const {
1504    return BitWidth - (*this - 1).countLeadingZeros();
1505  }
1506
1507  /// \returns the log base 2 of this APInt if its an exact power of two, -1
1508  /// otherwise
1509  int32_t exactLogBase2() const {
1510    if (!isPowerOf2())
1511      return -1;
1512    return logBase2();
1513  }
1514
1515  /// \brief Compute the square root
1516  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sqrt() const;
1517
1518  /// \brief Get the absolute value;
1519  ///
1520  /// If *this is < 0 then return -(*this), otherwise *this;
1521  APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const {
1522    if (isNegative())
1523      return -(*this);
1524    return *this;
1525  }
1526
1527  /// \returns the multiplicative inverse for a given modulo.
1528  APInt multiplicativeInverse(const APInt &modulo) const;
1529
1530  /// @}
1531  /// \name Support for division by constant
1532  /// @{
1533
1534  /// Calculate the magic number for signed division by a constant.
1535  struct ms;
1536  ms magic() const;
1537
1538  /// Calculate the magic number for unsigned division by a constant.
1539  struct mu;
1540  mu magicu(unsigned LeadingZeros = 0) const;
1541
1542  /// @}
1543  /// \name Building-block Operations for APInt and APFloat
1544  /// @{
1545
1546  // These building block operations operate on a representation of arbitrary
1547  // precision, two's-complement, bignum integer values. They should be
1548  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1549  // generally a pointer to the base of an array of integer parts, representing
1550  // an unsigned bignum, and a count of how many parts there are.
1551
1552  /// Sets the least significant part of a bignum to the input value, and zeroes
1553  /// out higher parts.
1554  static void tcSet(integerPart *, integerPart, unsigned int);
1555
1556  /// Assign one bignum to another.
1557  static void tcAssign(integerPart *, const integerPart *, unsigned int);
1558
1559  /// Returns true if a bignum is zero, false otherwise.
1560  static bool tcIsZero(const integerPart *, unsigned int);
1561
1562  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1563  static int tcExtractBit(const integerPart *, unsigned int bit);
1564
1565  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1566  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1567  /// significant bit of DST.  All high bits above srcBITS in DST are
1568  /// zero-filled.
1569  static void tcExtract(integerPart *, unsigned int dstCount,
1570                        const integerPart *, unsigned int srcBits,
1571                        unsigned int srcLSB);
1572
1573  /// Set the given bit of a bignum.  Zero-based.
1574  static void tcSetBit(integerPart *, unsigned int bit);
1575
1576  /// Clear the given bit of a bignum.  Zero-based.
1577  static void tcClearBit(integerPart *, unsigned int bit);
1578
1579  /// Returns the bit number of the least or most significant set bit of a
1580  /// number.  If the input number has no bits set -1U is returned.
1581  static unsigned int tcLSB(const integerPart *, unsigned int);
1582  static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1583
1584  /// Negate a bignum in-place.
1585  static void tcNegate(integerPart *, unsigned int);
1586
1587  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1588  static integerPart tcAdd(integerPart *, const integerPart *,
1589                           integerPart carry, unsigned);
1590
1591  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1592  static integerPart tcSubtract(integerPart *, const integerPart *,
1593                                integerPart carry, unsigned);
1594
1595  /// DST += SRC * MULTIPLIER + PART   if add is true
1596  /// DST  = SRC * MULTIPLIER + PART   if add is false
1597  ///
1598  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1599  /// start at the same point, i.e. DST == SRC.
1600  ///
1601  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1602  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1603  /// result, and if all of the omitted higher parts were zero return zero,
1604  /// otherwise overflow occurred and return one.
1605  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1606                            integerPart multiplier, integerPart carry,
1607                            unsigned int srcParts, unsigned int dstParts,
1608                            bool add);
1609
1610  /// DST = LHS * RHS, where DST has the same width as the operands and is
1611  /// filled with the least significant parts of the result.  Returns one if
1612  /// overflow occurred, otherwise zero.  DST must be disjoint from both
1613  /// operands.
1614  static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
1615                        unsigned);
1616
1617  /// DST = LHS * RHS, where DST has width the sum of the widths of the
1618  /// operands.  No overflow occurs.  DST must be disjoint from both
1619  /// operands. Returns the number of parts required to hold the result.
1620  static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1621                                     const integerPart *, unsigned, unsigned);
1622
1623  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1624  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1625  /// REMAINDER to the remainder, return zero.  i.e.
1626  ///
1627  ///  OLD_LHS = RHS * LHS + REMAINDER
1628  ///
1629  /// SCRATCH is a bignum of the same size as the operands and result for use by
1630  /// the routine; its contents need not be initialized and are destroyed.  LHS,
1631  /// REMAINDER and SCRATCH must be distinct.
1632  static int tcDivide(integerPart *lhs, const integerPart *rhs,
1633                      integerPart *remainder, integerPart *scratch,
1634                      unsigned int parts);
1635
1636  /// Shift a bignum left COUNT bits.  Shifted in bits are zero.  There are no
1637  /// restrictions on COUNT.
1638  static void tcShiftLeft(integerPart *, unsigned int parts,
1639                          unsigned int count);
1640
1641  /// Shift a bignum right COUNT bits.  Shifted in bits are zero.  There are no
1642  /// restrictions on COUNT.
1643  static void tcShiftRight(integerPart *, unsigned int parts,
1644                           unsigned int count);
1645
1646  /// The obvious AND, OR and XOR and complement operations.
1647  static void tcAnd(integerPart *, const integerPart *, unsigned int);
1648  static void tcOr(integerPart *, const integerPart *, unsigned int);
1649  static void tcXor(integerPart *, const integerPart *, unsigned int);
1650  static void tcComplement(integerPart *, unsigned int);
1651
1652  /// Comparison (unsigned) of two bignums.
1653  static int tcCompare(const integerPart *, const integerPart *, unsigned int);
1654
1655  /// Increment a bignum in-place.  Return the carry flag.
1656  static integerPart tcIncrement(integerPart *, unsigned int);
1657
1658  /// Decrement a bignum in-place.  Return the borrow flag.
1659  static integerPart tcDecrement(integerPart *, unsigned int);
1660
1661  /// Set the least significant BITS and clear the rest.
1662  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1663                                        unsigned int bits);
1664
1665  /// \brief debug method
1666  void dump() const;
1667
1668  /// @}
1669};
1670
1671/// Magic data for optimising signed division by a constant.
1672struct APInt::ms {
1673  APInt m;    ///< magic number
1674  unsigned s; ///< shift amount
1675};
1676
1677/// Magic data for optimising unsigned division by a constant.
1678struct APInt::mu {
1679  APInt m;    ///< magic number
1680  bool a;     ///< add indicator
1681  unsigned s; ///< shift amount
1682};
1683
1684inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1685
1686inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1687
1688inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1689  I.print(OS, true);
1690  return OS;
1691}
1692
1693namespace APIntOps {
1694
1695/// \brief Determine the smaller of two APInts considered to be signed.
1696inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
1697
1698/// \brief Determine the larger of two APInts considered to be signed.
1699inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
1700
1701/// \brief Determine the smaller of two APInts considered to be signed.
1702inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
1703
1704/// \brief Determine the larger of two APInts considered to be unsigned.
1705inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
1706
1707/// \brief Check if the specified APInt has a N-bits unsigned integer value.
1708inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
1709
1710/// \brief Check if the specified APInt has a N-bits signed integer value.
1711inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
1712  return APIVal.isSignedIntN(N);
1713}
1714
1715/// \returns true if the argument APInt value is a sequence of ones starting at
1716/// the least significant bit with the remainder zero.
1717inline bool isMask(unsigned numBits, const APInt &APIVal) {
1718  return numBits <= APIVal.getBitWidth() &&
1719         APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1720}
1721
1722/// \brief Return true if the argument APInt value contains a sequence of ones
1723/// with the remainder zero.
1724inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
1725  return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
1726}
1727
1728/// \brief Returns a byte-swapped representation of the specified APInt Value.
1729inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
1730
1731/// \brief Returns the floor log base 2 of the specified APInt value.
1732inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
1733
1734/// \brief Compute GCD of two APInt values.
1735///
1736/// This function returns the greatest common divisor of the two APInt values
1737/// using Euclid's algorithm.
1738///
1739/// \returns the greatest common divisor of Val1 and Val2
1740APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
1741
1742/// \brief Converts the given APInt to a double value.
1743///
1744/// Treats the APInt as an unsigned value for conversion purposes.
1745inline double RoundAPIntToDouble(const APInt &APIVal) {
1746  return APIVal.roundToDouble();
1747}
1748
1749/// \brief Converts the given APInt to a double value.
1750///
1751/// Treats the APInt as a signed value for conversion purposes.
1752inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
1753  return APIVal.signedRoundToDouble();
1754}
1755
1756/// \brief Converts the given APInt to a float vlalue.
1757inline float RoundAPIntToFloat(const APInt &APIVal) {
1758  return float(RoundAPIntToDouble(APIVal));
1759}
1760
1761/// \brief Converts the given APInt to a float value.
1762///
1763/// Treast the APInt as a signed value for conversion purposes.
1764inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
1765  return float(APIVal.signedRoundToDouble());
1766}
1767
1768/// \brief Converts the given double value into a APInt.
1769///
1770/// This function convert a double value to an APInt value.
1771APInt RoundDoubleToAPInt(double Double, unsigned width);
1772
1773/// \brief Converts a float value into a APInt.
1774///
1775/// Converts a float value into an APInt value.
1776inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1777  return RoundDoubleToAPInt(double(Float), width);
1778}
1779
1780/// \brief Arithmetic right-shift function.
1781///
1782/// Arithmetic right-shift the APInt by shiftAmt.
1783inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
1784  return LHS.ashr(shiftAmt);
1785}
1786
1787/// \brief Logical right-shift function.
1788///
1789/// Logical right-shift the APInt by shiftAmt.
1790inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
1791  return LHS.lshr(shiftAmt);
1792}
1793
1794/// \brief Left-shift function.
1795///
1796/// Left-shift the APInt by shiftAmt.
1797inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
1798  return LHS.shl(shiftAmt);
1799}
1800
1801/// \brief Signed division function for APInt.
1802///
1803/// Signed divide APInt LHS by APInt RHS.
1804inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
1805
1806/// \brief Unsigned division function for APInt.
1807///
1808/// Unsigned divide APInt LHS by APInt RHS.
1809inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
1810
1811/// \brief Function for signed remainder operation.
1812///
1813/// Signed remainder operation on APInt.
1814inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
1815
1816/// \brief Function for unsigned remainder operation.
1817///
1818/// Unsigned remainder operation on APInt.
1819inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
1820
1821/// \brief Function for multiplication operation.
1822///
1823/// Performs multiplication on APInt values.
1824inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
1825
1826/// \brief Function for addition operation.
1827///
1828/// Performs addition on APInt values.
1829inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
1830
1831/// \brief Function for subtraction operation.
1832///
1833/// Performs subtraction on APInt values.
1834inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
1835
1836/// \brief Bitwise AND function for APInt.
1837///
1838/// Performs bitwise AND operation on APInt LHS and
1839/// APInt RHS.
1840inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
1841
1842/// \brief Bitwise OR function for APInt.
1843///
1844/// Performs bitwise OR operation on APInt LHS and APInt RHS.
1845inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
1846
1847/// \brief Bitwise XOR function for APInt.
1848///
1849/// Performs bitwise XOR operation on APInt.
1850inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
1851
1852/// \brief Bitwise complement function.
1853///
1854/// Performs a bitwise complement operation on APInt.
1855inline APInt Not(const APInt &APIVal) { return ~APIVal; }
1856
1857} // End of APIntOps namespace
1858
1859// See friend declaration above. This additional declaration is required in
1860// order to compile LLVM with IBM xlC compiler.
1861hash_code hash_value(const APInt &Arg);
1862} // End of llvm namespace
1863
1864#endif
1865