tree.c revision 259563
1/* Language-independent node constructors for parse phase of GNU compiler.
2   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23/* This file contains the low level primitives for operating on tree nodes,
24   including allocation, list operations, interning of identifiers,
25   construction of data type nodes and statement nodes,
26   and construction of type conversion nodes.  It also contains
27   tables index by tree code that describe how to take apart
28   nodes of that code.
29
30   It is intended to be language-independent, but occasionally
31   calls language-dependent routines defined (for C) in typecheck.c.  */
32
33#include "config.h"
34#include "system.h"
35#include "coretypes.h"
36#include "tm.h"
37#include "flags.h"
38#include "tree.h"
39#include "real.h"
40#include "tm_p.h"
41#include "function.h"
42#include "obstack.h"
43#include "toplev.h"
44#include "ggc.h"
45#include "hashtab.h"
46#include "output.h"
47#include "target.h"
48#include "langhooks.h"
49#include "tree-iterator.h"
50#include "basic-block.h"
51#include "tree-flow.h"
52#include "params.h"
53#include "pointer-set.h"
54
55/* Each tree code class has an associated string representation.
56   These must correspond to the tree_code_class entries.  */
57
58const char *const tree_code_class_strings[] =
59{
60  "exceptional",
61  "constant",
62  "type",
63  "declaration",
64  "reference",
65  "comparison",
66  "unary",
67  "binary",
68  "statement",
69  "expression",
70};
71
72/* obstack.[ch] explicitly declined to prototype this.  */
73extern int _obstack_allocated_p (struct obstack *h, void *obj);
74
75#ifdef GATHER_STATISTICS
76/* Statistics-gathering stuff.  */
77
78int tree_node_counts[(int) all_kinds];
79int tree_node_sizes[(int) all_kinds];
80
81/* Keep in sync with tree.h:enum tree_node_kind.  */
82static const char * const tree_node_kind_names[] = {
83  "decls",
84  "types",
85  "blocks",
86  "stmts",
87  "refs",
88  "exprs",
89  "constants",
90  "identifiers",
91  "perm_tree_lists",
92  "temp_tree_lists",
93  "vecs",
94  "binfos",
95  "phi_nodes",
96  "ssa names",
97  "constructors",
98  "random kinds",
99  "lang_decl kinds",
100  "lang_type kinds",
101  "omp clauses"
102};
103#endif /* GATHER_STATISTICS */
104
105/* Unique id for next decl created.  */
106static GTY(()) int next_decl_uid;
107/* Unique id for next type created.  */
108static GTY(()) int next_type_uid = 1;
109
110/* Since we cannot rehash a type after it is in the table, we have to
111   keep the hash code.  */
112
113struct type_hash GTY(())
114{
115  unsigned long hash;
116  tree type;
117};
118
119/* Initial size of the hash table (rounded to next prime).  */
120#define TYPE_HASH_INITIAL_SIZE 1000
121
122/* Now here is the hash table.  When recording a type, it is added to
123   the slot whose index is the hash code.  Note that the hash table is
124   used for several kinds of types (function types, array types and
125   array index range types, for now).  While all these live in the
126   same table, they are completely independent, and the hash code is
127   computed differently for each of these.  */
128
129static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
130     htab_t type_hash_table;
131
132/* Hash table and temporary node for larger integer const values.  */
133static GTY (()) tree int_cst_node;
134static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
135     htab_t int_cst_hash_table;
136
137/* General tree->tree mapping  structure for use in hash tables.  */
138
139
140static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
141     htab_t debug_expr_for_decl;
142
143static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
144     htab_t value_expr_for_decl;
145
146static GTY ((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
147  htab_t init_priority_for_decl;
148
149static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
150  htab_t restrict_base_for_decl;
151
152struct tree_int_map GTY(())
153{
154  tree from;
155  unsigned short to;
156};
157static unsigned int tree_int_map_hash (const void *);
158static int tree_int_map_eq (const void *, const void *);
159static int tree_int_map_marked_p (const void *);
160static void set_type_quals (tree, int);
161static int type_hash_eq (const void *, const void *);
162static hashval_t type_hash_hash (const void *);
163static hashval_t int_cst_hash_hash (const void *);
164static int int_cst_hash_eq (const void *, const void *);
165static void print_type_hash_statistics (void);
166static void print_debug_expr_statistics (void);
167static void print_value_expr_statistics (void);
168static int type_hash_marked_p (const void *);
169static unsigned int type_hash_list (tree, hashval_t);
170static unsigned int attribute_hash_list (tree, hashval_t);
171
172tree global_trees[TI_MAX];
173tree integer_types[itk_none];
174
175unsigned char tree_contains_struct[256][64];
176
177/* Number of operands for each OpenMP clause.  */
178unsigned const char omp_clause_num_ops[] =
179{
180  0, /* OMP_CLAUSE_ERROR  */
181  1, /* OMP_CLAUSE_PRIVATE  */
182  1, /* OMP_CLAUSE_SHARED  */
183  1, /* OMP_CLAUSE_FIRSTPRIVATE  */
184  1, /* OMP_CLAUSE_LASTPRIVATE  */
185  4, /* OMP_CLAUSE_REDUCTION  */
186  1, /* OMP_CLAUSE_COPYIN  */
187  1, /* OMP_CLAUSE_COPYPRIVATE  */
188  1, /* OMP_CLAUSE_IF  */
189  1, /* OMP_CLAUSE_NUM_THREADS  */
190  1, /* OMP_CLAUSE_SCHEDULE  */
191  0, /* OMP_CLAUSE_NOWAIT  */
192  0, /* OMP_CLAUSE_ORDERED  */
193  0  /* OMP_CLAUSE_DEFAULT  */
194};
195
196const char * const omp_clause_code_name[] =
197{
198  "error_clause",
199  "private",
200  "shared",
201  "firstprivate",
202  "lastprivate",
203  "reduction",
204  "copyin",
205  "copyprivate",
206  "if",
207  "num_threads",
208  "schedule",
209  "nowait",
210  "ordered",
211  "default"
212};
213
214/* Init tree.c.  */
215
216void
217init_ttree (void)
218{
219  /* Initialize the hash table of types.  */
220  type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
221				     type_hash_eq, 0);
222
223  debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
224					 tree_map_eq, 0);
225
226  value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
227					 tree_map_eq, 0);
228  init_priority_for_decl = htab_create_ggc (512, tree_int_map_hash,
229					    tree_int_map_eq, 0);
230  restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
231					    tree_map_eq, 0);
232
233  int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
234					int_cst_hash_eq, NULL);
235
236  int_cst_node = make_node (INTEGER_CST);
237
238  tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
239  tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
240  tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
241
242
243  tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
244  tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
245  tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
246  tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
247  tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
248  tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
249  tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
250  tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
251  tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
252
253
254  tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
255  tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
256  tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
257  tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
258  tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
259  tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
260
261  tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
262  tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
263  tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
264  tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
265  tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
266  tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
267  tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
268  tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
269  tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
270  tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
271  tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
272  tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
273
274  tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
275  tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
276  tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
277
278  tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
279
280  tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
281  tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
282  tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
283  tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
284
285  tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
286  tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
287  tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
288  tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
289  tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
290  tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
291  tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
292  tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
293
294  lang_hooks.init_ts ();
295}
296
297
298/* The name of the object as the assembler will see it (but before any
299   translations made by ASM_OUTPUT_LABELREF).  Often this is the same
300   as DECL_NAME.  It is an IDENTIFIER_NODE.  */
301tree
302decl_assembler_name (tree decl)
303{
304  if (!DECL_ASSEMBLER_NAME_SET_P (decl))
305    lang_hooks.set_decl_assembler_name (decl);
306  return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
307}
308
309/* Compute the number of bytes occupied by a tree with code CODE.
310   This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
311   codes, which are of variable length.  */
312size_t
313tree_code_size (enum tree_code code)
314{
315  switch (TREE_CODE_CLASS (code))
316    {
317    case tcc_declaration:  /* A decl node */
318      {
319	switch (code)
320	  {
321	  case FIELD_DECL:
322	    return sizeof (struct tree_field_decl);
323	  case PARM_DECL:
324	    return sizeof (struct tree_parm_decl);
325	  case VAR_DECL:
326	    return sizeof (struct tree_var_decl);
327	  case LABEL_DECL:
328	    return sizeof (struct tree_label_decl);
329	  case RESULT_DECL:
330	    return sizeof (struct tree_result_decl);
331	  case CONST_DECL:
332	    return sizeof (struct tree_const_decl);
333	  case TYPE_DECL:
334	    return sizeof (struct tree_type_decl);
335	  case FUNCTION_DECL:
336	    return sizeof (struct tree_function_decl);
337	  case NAME_MEMORY_TAG:
338	  case SYMBOL_MEMORY_TAG:
339	    return sizeof (struct tree_memory_tag);
340	  case STRUCT_FIELD_TAG:
341	    return sizeof (struct tree_struct_field_tag);
342	  default:
343	    return sizeof (struct tree_decl_non_common);
344	  }
345      }
346
347    case tcc_type:  /* a type node */
348      return sizeof (struct tree_type);
349
350    case tcc_reference:   /* a reference */
351    case tcc_expression:  /* an expression */
352    case tcc_statement:   /* an expression with side effects */
353    case tcc_comparison:  /* a comparison expression */
354    case tcc_unary:       /* a unary arithmetic expression */
355    case tcc_binary:      /* a binary arithmetic expression */
356      return (sizeof (struct tree_exp)
357	      + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
358
359    case tcc_constant:  /* a constant */
360      switch (code)
361	{
362	case INTEGER_CST:	return sizeof (struct tree_int_cst);
363	case REAL_CST:		return sizeof (struct tree_real_cst);
364	case COMPLEX_CST:	return sizeof (struct tree_complex);
365	case VECTOR_CST:	return sizeof (struct tree_vector);
366	case STRING_CST:	gcc_unreachable ();
367	default:
368	  return lang_hooks.tree_size (code);
369	}
370
371    case tcc_exceptional:  /* something random, like an identifier.  */
372      switch (code)
373	{
374	case IDENTIFIER_NODE:	return lang_hooks.identifier_size;
375	case TREE_LIST:		return sizeof (struct tree_list);
376
377	case ERROR_MARK:
378	case PLACEHOLDER_EXPR:	return sizeof (struct tree_common);
379
380	case TREE_VEC:
381	case OMP_CLAUSE:
382	case PHI_NODE:		gcc_unreachable ();
383
384	case SSA_NAME:		return sizeof (struct tree_ssa_name);
385
386	case STATEMENT_LIST:	return sizeof (struct tree_statement_list);
387	case BLOCK:		return sizeof (struct tree_block);
388	case VALUE_HANDLE:	return sizeof (struct tree_value_handle);
389	case CONSTRUCTOR:	return sizeof (struct tree_constructor);
390
391	default:
392	  return lang_hooks.tree_size (code);
393	}
394
395    default:
396      gcc_unreachable ();
397    }
398}
399
400/* Compute the number of bytes occupied by NODE.  This routine only
401   looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes.  */
402size_t
403tree_size (tree node)
404{
405  enum tree_code code = TREE_CODE (node);
406  switch (code)
407    {
408    case PHI_NODE:
409      return (sizeof (struct tree_phi_node)
410	      + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
411
412    case TREE_BINFO:
413      return (offsetof (struct tree_binfo, base_binfos)
414	      + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
415
416    case TREE_VEC:
417      return (sizeof (struct tree_vec)
418	      + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
419
420    case STRING_CST:
421      return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
422
423    case OMP_CLAUSE:
424      return (sizeof (struct tree_omp_clause)
425	      + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
426	        * sizeof (tree));
427
428    default:
429      return tree_code_size (code);
430    }
431}
432
433/* Return a newly allocated node of code CODE.  For decl and type
434   nodes, some other fields are initialized.  The rest of the node is
435   initialized to zero.  This function cannot be used for PHI_NODE,
436   TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
437   tree_code_size.
438
439   Achoo!  I got a code in the node.  */
440
441tree
442make_node_stat (enum tree_code code MEM_STAT_DECL)
443{
444  tree t;
445  enum tree_code_class type = TREE_CODE_CLASS (code);
446  size_t length = tree_code_size (code);
447#ifdef GATHER_STATISTICS
448  tree_node_kind kind;
449
450  switch (type)
451    {
452    case tcc_declaration:  /* A decl node */
453      kind = d_kind;
454      break;
455
456    case tcc_type:  /* a type node */
457      kind = t_kind;
458      break;
459
460    case tcc_statement:  /* an expression with side effects */
461      kind = s_kind;
462      break;
463
464    case tcc_reference:  /* a reference */
465      kind = r_kind;
466      break;
467
468    case tcc_expression:  /* an expression */
469    case tcc_comparison:  /* a comparison expression */
470    case tcc_unary:  /* a unary arithmetic expression */
471    case tcc_binary:  /* a binary arithmetic expression */
472      kind = e_kind;
473      break;
474
475    case tcc_constant:  /* a constant */
476      kind = c_kind;
477      break;
478
479    case tcc_exceptional:  /* something random, like an identifier.  */
480      switch (code)
481	{
482	case IDENTIFIER_NODE:
483	  kind = id_kind;
484	  break;
485
486	case TREE_VEC:
487	  kind = vec_kind;
488	  break;
489
490	case TREE_BINFO:
491	  kind = binfo_kind;
492	  break;
493
494	case PHI_NODE:
495	  kind = phi_kind;
496	  break;
497
498	case SSA_NAME:
499	  kind = ssa_name_kind;
500	  break;
501
502	case BLOCK:
503	  kind = b_kind;
504	  break;
505
506	case CONSTRUCTOR:
507	  kind = constr_kind;
508	  break;
509
510	default:
511	  kind = x_kind;
512	  break;
513	}
514      break;
515
516    default:
517      gcc_unreachable ();
518    }
519
520  tree_node_counts[(int) kind]++;
521  tree_node_sizes[(int) kind] += length;
522#endif
523
524  if (code == IDENTIFIER_NODE)
525    t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
526  else
527    t = ggc_alloc_zone_pass_stat (length, &tree_zone);
528
529  memset (t, 0, length);
530
531  TREE_SET_CODE (t, code);
532
533  switch (type)
534    {
535    case tcc_statement:
536      TREE_SIDE_EFFECTS (t) = 1;
537      break;
538
539    case tcc_declaration:
540      if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
541	DECL_IN_SYSTEM_HEADER (t) = in_system_header;
542      if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
543	{
544	  if (code != FUNCTION_DECL)
545	    DECL_ALIGN (t) = 1;
546	  DECL_USER_ALIGN (t) = 0;
547	  /* We have not yet computed the alias set for this declaration.  */
548	  DECL_POINTER_ALIAS_SET (t) = -1;
549	}
550      DECL_SOURCE_LOCATION (t) = input_location;
551      DECL_UID (t) = next_decl_uid++;
552
553      break;
554
555    case tcc_type:
556      TYPE_UID (t) = next_type_uid++;
557      TYPE_ALIGN (t) = BITS_PER_UNIT;
558      TYPE_USER_ALIGN (t) = 0;
559      TYPE_MAIN_VARIANT (t) = t;
560
561      /* Default to no attributes for type, but let target change that.  */
562      TYPE_ATTRIBUTES (t) = NULL_TREE;
563      targetm.set_default_type_attributes (t);
564
565      /* We have not yet computed the alias set for this type.  */
566      TYPE_ALIAS_SET (t) = -1;
567      break;
568
569    case tcc_constant:
570      TREE_CONSTANT (t) = 1;
571      TREE_INVARIANT (t) = 1;
572      break;
573
574    case tcc_expression:
575      switch (code)
576	{
577	case INIT_EXPR:
578	case MODIFY_EXPR:
579	case VA_ARG_EXPR:
580	case PREDECREMENT_EXPR:
581	case PREINCREMENT_EXPR:
582	case POSTDECREMENT_EXPR:
583	case POSTINCREMENT_EXPR:
584	  /* All of these have side-effects, no matter what their
585	     operands are.  */
586	  TREE_SIDE_EFFECTS (t) = 1;
587	  break;
588
589	default:
590	  break;
591	}
592      break;
593
594    default:
595      /* Other classes need no special treatment.  */
596      break;
597    }
598
599  return t;
600}
601
602/* Return a new node with the same contents as NODE except that its
603   TREE_CHAIN is zero and it has a fresh uid.  */
604
605tree
606copy_node_stat (tree node MEM_STAT_DECL)
607{
608  tree t;
609  enum tree_code code = TREE_CODE (node);
610  size_t length;
611
612  gcc_assert (code != STATEMENT_LIST);
613
614  length = tree_size (node);
615  t = ggc_alloc_zone_pass_stat (length, &tree_zone);
616  memcpy (t, node, length);
617
618  TREE_CHAIN (t) = 0;
619  TREE_ASM_WRITTEN (t) = 0;
620  TREE_VISITED (t) = 0;
621  t->common.ann = 0;
622
623  if (TREE_CODE_CLASS (code) == tcc_declaration)
624    {
625      DECL_UID (t) = next_decl_uid++;
626      if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
627	  && DECL_HAS_VALUE_EXPR_P (node))
628	{
629	  SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
630	  DECL_HAS_VALUE_EXPR_P (t) = 1;
631	}
632      if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
633	{
634	  SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
635	  DECL_HAS_INIT_PRIORITY_P (t) = 1;
636	}
637      if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
638	{
639	  SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
640	  DECL_BASED_ON_RESTRICT_P (t) = 1;
641	}
642    }
643  else if (TREE_CODE_CLASS (code) == tcc_type)
644    {
645      TYPE_UID (t) = next_type_uid++;
646      /* The following is so that the debug code for
647	 the copy is different from the original type.
648	 The two statements usually duplicate each other
649	 (because they clear fields of the same union),
650	 but the optimizer should catch that.  */
651      TYPE_SYMTAB_POINTER (t) = 0;
652      TYPE_SYMTAB_ADDRESS (t) = 0;
653
654      /* Do not copy the values cache.  */
655      if (TYPE_CACHED_VALUES_P(t))
656	{
657	  TYPE_CACHED_VALUES_P (t) = 0;
658	  TYPE_CACHED_VALUES (t) = NULL_TREE;
659	}
660    }
661
662  return t;
663}
664
665/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
666   For example, this can copy a list made of TREE_LIST nodes.  */
667
668tree
669copy_list (tree list)
670{
671  tree head;
672  tree prev, next;
673
674  if (list == 0)
675    return 0;
676
677  head = prev = copy_node (list);
678  next = TREE_CHAIN (list);
679  while (next)
680    {
681      TREE_CHAIN (prev) = copy_node (next);
682      prev = TREE_CHAIN (prev);
683      next = TREE_CHAIN (next);
684    }
685  return head;
686}
687
688
689/* Create an INT_CST node with a LOW value sign extended.  */
690
691tree
692build_int_cst (tree type, HOST_WIDE_INT low)
693{
694  return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
695}
696
697/* Create an INT_CST node with a LOW value zero extended.  */
698
699tree
700build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
701{
702  return build_int_cst_wide (type, low, 0);
703}
704
705/* Create an INT_CST node with a LOW value in TYPE.  The value is sign extended
706   if it is negative.  This function is similar to build_int_cst, but
707   the extra bits outside of the type precision are cleared.  Constants
708   with these extra bits may confuse the fold so that it detects overflows
709   even in cases when they do not occur, and in general should be avoided.
710   We cannot however make this a default behavior of build_int_cst without
711   more intrusive changes, since there are parts of gcc that rely on the extra
712   precision of the integer constants.  */
713
714tree
715build_int_cst_type (tree type, HOST_WIDE_INT low)
716{
717  unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
718  unsigned HOST_WIDE_INT hi, mask;
719  unsigned bits;
720  bool signed_p;
721  bool negative;
722
723  if (!type)
724    type = integer_type_node;
725
726  bits = TYPE_PRECISION (type);
727  signed_p = !TYPE_UNSIGNED (type);
728
729  if (bits >= HOST_BITS_PER_WIDE_INT)
730    negative = (low < 0);
731  else
732    {
733      /* If the sign bit is inside precision of LOW, use it to determine
734	 the sign of the constant.  */
735      negative = ((val >> (bits - 1)) & 1) != 0;
736
737      /* Mask out the bits outside of the precision of the constant.  */
738      mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
739
740      if (signed_p && negative)
741	val |= ~mask;
742      else
743	val &= mask;
744    }
745
746  /* Determine the high bits.  */
747  hi = (negative ? ~(unsigned HOST_WIDE_INT) 0 : 0);
748
749  /* For unsigned type we need to mask out the bits outside of the type
750     precision.  */
751  if (!signed_p)
752    {
753      if (bits <= HOST_BITS_PER_WIDE_INT)
754	hi = 0;
755      else
756	{
757	  bits -= HOST_BITS_PER_WIDE_INT;
758	  mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
759	  hi &= mask;
760	}
761    }
762
763  return build_int_cst_wide (type, val, hi);
764}
765
766/* These are the hash table functions for the hash table of INTEGER_CST
767   nodes of a sizetype.  */
768
769/* Return the hash code code X, an INTEGER_CST.  */
770
771static hashval_t
772int_cst_hash_hash (const void *x)
773{
774  tree t = (tree) x;
775
776  return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
777	  ^ htab_hash_pointer (TREE_TYPE (t)));
778}
779
780/* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
781   is the same as that given by *Y, which is the same.  */
782
783static int
784int_cst_hash_eq (const void *x, const void *y)
785{
786  tree xt = (tree) x;
787  tree yt = (tree) y;
788
789  return (TREE_TYPE (xt) == TREE_TYPE (yt)
790	  && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
791	  && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
792}
793
794/* Create an INT_CST node of TYPE and value HI:LOW.  If TYPE is NULL,
795   integer_type_node is used.  The returned node is always shared.
796   For small integers we use a per-type vector cache, for larger ones
797   we use a single hash table.  */
798
799tree
800build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
801{
802  tree t;
803  int ix = -1;
804  int limit = 0;
805
806  if (!type)
807    type = integer_type_node;
808
809  switch (TREE_CODE (type))
810    {
811    case POINTER_TYPE:
812    case REFERENCE_TYPE:
813      /* Cache NULL pointer.  */
814      if (!hi && !low)
815	{
816	  limit = 1;
817	  ix = 0;
818	}
819      break;
820
821    case BOOLEAN_TYPE:
822      /* Cache false or true.  */
823      limit = 2;
824      if (!hi && low < 2)
825	ix = low;
826      break;
827
828    case INTEGER_TYPE:
829    case OFFSET_TYPE:
830      if (TYPE_UNSIGNED (type))
831	{
832	  /* Cache 0..N */
833	  limit = INTEGER_SHARE_LIMIT;
834	  if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
835	    ix = low;
836	}
837      else
838	{
839	  /* Cache -1..N */
840	  limit = INTEGER_SHARE_LIMIT + 1;
841	  if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
842	    ix = low + 1;
843	  else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
844	    ix = 0;
845	}
846      break;
847    default:
848      break;
849    }
850
851  if (ix >= 0)
852    {
853      /* Look for it in the type's vector of small shared ints.  */
854      if (!TYPE_CACHED_VALUES_P (type))
855	{
856	  TYPE_CACHED_VALUES_P (type) = 1;
857	  TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
858	}
859
860      t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
861      if (t)
862	{
863	  /* Make sure no one is clobbering the shared constant.  */
864	  gcc_assert (TREE_TYPE (t) == type);
865	  gcc_assert (TREE_INT_CST_LOW (t) == low);
866	  gcc_assert (TREE_INT_CST_HIGH (t) == hi);
867	}
868      else
869	{
870	  /* Create a new shared int.  */
871	  t = make_node (INTEGER_CST);
872
873	  TREE_INT_CST_LOW (t) = low;
874	  TREE_INT_CST_HIGH (t) = hi;
875	  TREE_TYPE (t) = type;
876
877	  TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
878	}
879    }
880  else
881    {
882      /* Use the cache of larger shared ints.  */
883      void **slot;
884
885      TREE_INT_CST_LOW (int_cst_node) = low;
886      TREE_INT_CST_HIGH (int_cst_node) = hi;
887      TREE_TYPE (int_cst_node) = type;
888
889      slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
890      t = *slot;
891      if (!t)
892	{
893	  /* Insert this one into the hash table.  */
894	  t = int_cst_node;
895	  *slot = t;
896	  /* Make a new node for next time round.  */
897	  int_cst_node = make_node (INTEGER_CST);
898	}
899    }
900
901  return t;
902}
903
904/* Builds an integer constant in TYPE such that lowest BITS bits are ones
905   and the rest are zeros.  */
906
907tree
908build_low_bits_mask (tree type, unsigned bits)
909{
910  unsigned HOST_WIDE_INT low;
911  HOST_WIDE_INT high;
912  unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
913
914  gcc_assert (bits <= TYPE_PRECISION (type));
915
916  if (bits == TYPE_PRECISION (type)
917      && !TYPE_UNSIGNED (type))
918    {
919      /* Sign extended all-ones mask.  */
920      low = all_ones;
921      high = -1;
922    }
923  else if (bits <= HOST_BITS_PER_WIDE_INT)
924    {
925      low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
926      high = 0;
927    }
928  else
929    {
930      bits -= HOST_BITS_PER_WIDE_INT;
931      low = all_ones;
932      high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
933    }
934
935  return build_int_cst_wide (type, low, high);
936}
937
938/* Checks that X is integer constant that can be expressed in (unsigned)
939   HOST_WIDE_INT without loss of precision.  */
940
941bool
942cst_and_fits_in_hwi (tree x)
943{
944  if (TREE_CODE (x) != INTEGER_CST)
945    return false;
946
947  if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
948    return false;
949
950  return (TREE_INT_CST_HIGH (x) == 0
951	  || TREE_INT_CST_HIGH (x) == -1);
952}
953
954/* Return a new VECTOR_CST node whose type is TYPE and whose values
955   are in a list pointed to by VALS.  */
956
957tree
958build_vector (tree type, tree vals)
959{
960  tree v = make_node (VECTOR_CST);
961  int over1 = 0, over2 = 0;
962  tree link;
963
964  TREE_VECTOR_CST_ELTS (v) = vals;
965  TREE_TYPE (v) = type;
966
967  /* Iterate through elements and check for overflow.  */
968  for (link = vals; link; link = TREE_CHAIN (link))
969    {
970      tree value = TREE_VALUE (link);
971
972      /* Don't crash if we get an address constant.  */
973      if (!CONSTANT_CLASS_P (value))
974	continue;
975
976      over1 |= TREE_OVERFLOW (value);
977      over2 |= TREE_CONSTANT_OVERFLOW (value);
978    }
979
980  TREE_OVERFLOW (v) = over1;
981  TREE_CONSTANT_OVERFLOW (v) = over2;
982
983  return v;
984}
985
986/* Return a new VECTOR_CST node whose type is TYPE and whose values
987   are extracted from V, a vector of CONSTRUCTOR_ELT.  */
988
989tree
990build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
991{
992  tree list = NULL_TREE;
993  unsigned HOST_WIDE_INT idx;
994  tree value;
995
996  FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
997    list = tree_cons (NULL_TREE, value, list);
998  return build_vector (type, nreverse (list));
999}
1000
1001/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1002   are in the VEC pointed to by VALS.  */
1003tree
1004build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1005{
1006  tree c = make_node (CONSTRUCTOR);
1007  TREE_TYPE (c) = type;
1008  CONSTRUCTOR_ELTS (c) = vals;
1009  return c;
1010}
1011
1012/* Build a CONSTRUCTOR node made of a single initializer, with the specified
1013   INDEX and VALUE.  */
1014tree
1015build_constructor_single (tree type, tree index, tree value)
1016{
1017  VEC(constructor_elt,gc) *v;
1018  constructor_elt *elt;
1019  tree t;
1020
1021  v = VEC_alloc (constructor_elt, gc, 1);
1022  elt = VEC_quick_push (constructor_elt, v, NULL);
1023  elt->index = index;
1024  elt->value = value;
1025
1026  t = build_constructor (type, v);
1027  TREE_CONSTANT (t) = TREE_CONSTANT (value);
1028  return t;
1029}
1030
1031
1032/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1033   are in a list pointed to by VALS.  */
1034tree
1035build_constructor_from_list (tree type, tree vals)
1036{
1037  tree t, val;
1038  VEC(constructor_elt,gc) *v = NULL;
1039  bool constant_p = true;
1040
1041  if (vals)
1042    {
1043      v = VEC_alloc (constructor_elt, gc, list_length (vals));
1044      for (t = vals; t; t = TREE_CHAIN (t))
1045	{
1046	  constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1047	  val = TREE_VALUE (t);
1048	  elt->index = TREE_PURPOSE (t);
1049	  elt->value = val;
1050	  if (!TREE_CONSTANT (val))
1051	    constant_p = false;
1052	}
1053    }
1054
1055  t = build_constructor (type, v);
1056  TREE_CONSTANT (t) = constant_p;
1057  return t;
1058}
1059
1060
1061/* Return a new REAL_CST node whose type is TYPE and value is D.  */
1062
1063tree
1064build_real (tree type, REAL_VALUE_TYPE d)
1065{
1066  tree v;
1067  REAL_VALUE_TYPE *dp;
1068  int overflow = 0;
1069
1070  /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1071     Consider doing it via real_convert now.  */
1072
1073  v = make_node (REAL_CST);
1074  dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1075  memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1076
1077  TREE_TYPE (v) = type;
1078  TREE_REAL_CST_PTR (v) = dp;
1079  TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1080  return v;
1081}
1082
1083/* Return a new REAL_CST node whose type is TYPE
1084   and whose value is the integer value of the INTEGER_CST node I.  */
1085
1086REAL_VALUE_TYPE
1087real_value_from_int_cst (tree type, tree i)
1088{
1089  REAL_VALUE_TYPE d;
1090
1091  /* Clear all bits of the real value type so that we can later do
1092     bitwise comparisons to see if two values are the same.  */
1093  memset (&d, 0, sizeof d);
1094
1095  real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1096		     TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1097		     TYPE_UNSIGNED (TREE_TYPE (i)));
1098  return d;
1099}
1100
1101/* Given a tree representing an integer constant I, return a tree
1102   representing the same value as a floating-point constant of type TYPE.  */
1103
1104tree
1105build_real_from_int_cst (tree type, tree i)
1106{
1107  tree v;
1108  int overflow = TREE_OVERFLOW (i);
1109
1110  v = build_real (type, real_value_from_int_cst (type, i));
1111
1112  TREE_OVERFLOW (v) |= overflow;
1113  TREE_CONSTANT_OVERFLOW (v) |= overflow;
1114  return v;
1115}
1116
1117/* Return a newly constructed STRING_CST node whose value is
1118   the LEN characters at STR.
1119   The TREE_TYPE is not initialized.  */
1120
1121tree
1122build_string (int len, const char *str)
1123{
1124  tree s;
1125  size_t length;
1126
1127  /* Do not waste bytes provided by padding of struct tree_string.  */
1128  length = len + offsetof (struct tree_string, str) + 1;
1129
1130#ifdef GATHER_STATISTICS
1131  tree_node_counts[(int) c_kind]++;
1132  tree_node_sizes[(int) c_kind] += length;
1133#endif
1134
1135  s = ggc_alloc_tree (length);
1136
1137  memset (s, 0, sizeof (struct tree_common));
1138  TREE_SET_CODE (s, STRING_CST);
1139  TREE_CONSTANT (s) = 1;
1140  TREE_INVARIANT (s) = 1;
1141  TREE_STRING_LENGTH (s) = len;
1142  memcpy ((char *) TREE_STRING_POINTER (s), str, len);
1143  ((char *) TREE_STRING_POINTER (s))[len] = '\0';
1144
1145  return s;
1146}
1147
1148/* Return a newly constructed COMPLEX_CST node whose value is
1149   specified by the real and imaginary parts REAL and IMAG.
1150   Both REAL and IMAG should be constant nodes.  TYPE, if specified,
1151   will be the type of the COMPLEX_CST; otherwise a new type will be made.  */
1152
1153tree
1154build_complex (tree type, tree real, tree imag)
1155{
1156  tree t = make_node (COMPLEX_CST);
1157
1158  TREE_REALPART (t) = real;
1159  TREE_IMAGPART (t) = imag;
1160  TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1161  TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1162  TREE_CONSTANT_OVERFLOW (t)
1163    = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1164  return t;
1165}
1166
1167/* Return a constant of arithmetic type TYPE which is the
1168   multiplicative identity of the set TYPE.  */
1169
1170tree
1171build_one_cst (tree type)
1172{
1173  switch (TREE_CODE (type))
1174    {
1175    case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1176    case POINTER_TYPE: case REFERENCE_TYPE:
1177    case OFFSET_TYPE:
1178      return build_int_cst (type, 1);
1179
1180    case REAL_TYPE:
1181      return build_real (type, dconst1);
1182
1183    case VECTOR_TYPE:
1184      {
1185	tree scalar, cst;
1186	int i;
1187
1188	scalar = build_one_cst (TREE_TYPE (type));
1189
1190	/* Create 'vect_cst_ = {cst,cst,...,cst}'  */
1191	cst = NULL_TREE;
1192	for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1193	  cst = tree_cons (NULL_TREE, scalar, cst);
1194
1195	return build_vector (type, cst);
1196      }
1197
1198    case COMPLEX_TYPE:
1199      return build_complex (type,
1200			    build_one_cst (TREE_TYPE (type)),
1201			    fold_convert (TREE_TYPE (type), integer_zero_node));
1202
1203    default:
1204      gcc_unreachable ();
1205    }
1206}
1207
1208/* Build a BINFO with LEN language slots.  */
1209
1210tree
1211make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1212{
1213  tree t;
1214  size_t length = (offsetof (struct tree_binfo, base_binfos)
1215		   + VEC_embedded_size (tree, base_binfos));
1216
1217#ifdef GATHER_STATISTICS
1218  tree_node_counts[(int) binfo_kind]++;
1219  tree_node_sizes[(int) binfo_kind] += length;
1220#endif
1221
1222  t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1223
1224  memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1225
1226  TREE_SET_CODE (t, TREE_BINFO);
1227
1228  VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1229
1230  return t;
1231}
1232
1233
1234/* Build a newly constructed TREE_VEC node of length LEN.  */
1235
1236tree
1237make_tree_vec_stat (int len MEM_STAT_DECL)
1238{
1239  tree t;
1240  int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1241
1242#ifdef GATHER_STATISTICS
1243  tree_node_counts[(int) vec_kind]++;
1244  tree_node_sizes[(int) vec_kind] += length;
1245#endif
1246
1247  t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1248
1249  memset (t, 0, length);
1250
1251  TREE_SET_CODE (t, TREE_VEC);
1252  TREE_VEC_LENGTH (t) = len;
1253
1254  return t;
1255}
1256
1257/* Return 1 if EXPR is the integer constant zero or a complex constant
1258   of zero.  */
1259
1260int
1261integer_zerop (tree expr)
1262{
1263  STRIP_NOPS (expr);
1264
1265  return ((TREE_CODE (expr) == INTEGER_CST
1266	   && TREE_INT_CST_LOW (expr) == 0
1267	   && TREE_INT_CST_HIGH (expr) == 0)
1268	  || (TREE_CODE (expr) == COMPLEX_CST
1269	      && integer_zerop (TREE_REALPART (expr))
1270	      && integer_zerop (TREE_IMAGPART (expr))));
1271}
1272
1273/* Return 1 if EXPR is the integer constant one or the corresponding
1274   complex constant.  */
1275
1276int
1277integer_onep (tree expr)
1278{
1279  STRIP_NOPS (expr);
1280
1281  return ((TREE_CODE (expr) == INTEGER_CST
1282	   && TREE_INT_CST_LOW (expr) == 1
1283	   && TREE_INT_CST_HIGH (expr) == 0)
1284	  || (TREE_CODE (expr) == COMPLEX_CST
1285	      && integer_onep (TREE_REALPART (expr))
1286	      && integer_zerop (TREE_IMAGPART (expr))));
1287}
1288
1289/* Return 1 if EXPR is an integer containing all 1's in as much precision as
1290   it contains.  Likewise for the corresponding complex constant.  */
1291
1292int
1293integer_all_onesp (tree expr)
1294{
1295  int prec;
1296  int uns;
1297
1298  STRIP_NOPS (expr);
1299
1300  if (TREE_CODE (expr) == COMPLEX_CST
1301      && integer_all_onesp (TREE_REALPART (expr))
1302      && integer_zerop (TREE_IMAGPART (expr)))
1303    return 1;
1304
1305  else if (TREE_CODE (expr) != INTEGER_CST)
1306    return 0;
1307
1308  uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1309  if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1310      && TREE_INT_CST_HIGH (expr) == -1)
1311    return 1;
1312  if (!uns)
1313    return 0;
1314
1315  /* Note that using TYPE_PRECISION here is wrong.  We care about the
1316     actual bits, not the (arbitrary) range of the type.  */
1317  prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1318  if (prec >= HOST_BITS_PER_WIDE_INT)
1319    {
1320      HOST_WIDE_INT high_value;
1321      int shift_amount;
1322
1323      shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1324
1325      /* Can not handle precisions greater than twice the host int size.  */
1326      gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1327      if (shift_amount == HOST_BITS_PER_WIDE_INT)
1328	/* Shifting by the host word size is undefined according to the ANSI
1329	   standard, so we must handle this as a special case.  */
1330	high_value = -1;
1331      else
1332	high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1333
1334      return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1335	      && TREE_INT_CST_HIGH (expr) == high_value);
1336    }
1337  else
1338    return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1339}
1340
1341/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1342   one bit on).  */
1343
1344int
1345integer_pow2p (tree expr)
1346{
1347  int prec;
1348  HOST_WIDE_INT high, low;
1349
1350  STRIP_NOPS (expr);
1351
1352  if (TREE_CODE (expr) == COMPLEX_CST
1353      && integer_pow2p (TREE_REALPART (expr))
1354      && integer_zerop (TREE_IMAGPART (expr)))
1355    return 1;
1356
1357  if (TREE_CODE (expr) != INTEGER_CST)
1358    return 0;
1359
1360  prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1361	  ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1362  high = TREE_INT_CST_HIGH (expr);
1363  low = TREE_INT_CST_LOW (expr);
1364
1365  /* First clear all bits that are beyond the type's precision in case
1366     we've been sign extended.  */
1367
1368  if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1369    ;
1370  else if (prec > HOST_BITS_PER_WIDE_INT)
1371    high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1372  else
1373    {
1374      high = 0;
1375      if (prec < HOST_BITS_PER_WIDE_INT)
1376	low &= ~((HOST_WIDE_INT) (-1) << prec);
1377    }
1378
1379  if (high == 0 && low == 0)
1380    return 0;
1381
1382  return ((high == 0 && (low & (low - 1)) == 0)
1383	  || (low == 0 && (high & (high - 1)) == 0));
1384}
1385
1386/* Return 1 if EXPR is an integer constant other than zero or a
1387   complex constant other than zero.  */
1388
1389int
1390integer_nonzerop (tree expr)
1391{
1392  STRIP_NOPS (expr);
1393
1394  return ((TREE_CODE (expr) == INTEGER_CST
1395	   && (TREE_INT_CST_LOW (expr) != 0
1396	       || TREE_INT_CST_HIGH (expr) != 0))
1397	  || (TREE_CODE (expr) == COMPLEX_CST
1398	      && (integer_nonzerop (TREE_REALPART (expr))
1399		  || integer_nonzerop (TREE_IMAGPART (expr)))));
1400}
1401
1402/* Return the power of two represented by a tree node known to be a
1403   power of two.  */
1404
1405int
1406tree_log2 (tree expr)
1407{
1408  int prec;
1409  HOST_WIDE_INT high, low;
1410
1411  STRIP_NOPS (expr);
1412
1413  if (TREE_CODE (expr) == COMPLEX_CST)
1414    return tree_log2 (TREE_REALPART (expr));
1415
1416  prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1417	  ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1418
1419  high = TREE_INT_CST_HIGH (expr);
1420  low = TREE_INT_CST_LOW (expr);
1421
1422  /* First clear all bits that are beyond the type's precision in case
1423     we've been sign extended.  */
1424
1425  if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1426    ;
1427  else if (prec > HOST_BITS_PER_WIDE_INT)
1428    high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1429  else
1430    {
1431      high = 0;
1432      if (prec < HOST_BITS_PER_WIDE_INT)
1433	low &= ~((HOST_WIDE_INT) (-1) << prec);
1434    }
1435
1436  return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1437	  : exact_log2 (low));
1438}
1439
1440/* Similar, but return the largest integer Y such that 2 ** Y is less
1441   than or equal to EXPR.  */
1442
1443int
1444tree_floor_log2 (tree expr)
1445{
1446  int prec;
1447  HOST_WIDE_INT high, low;
1448
1449  STRIP_NOPS (expr);
1450
1451  if (TREE_CODE (expr) == COMPLEX_CST)
1452    return tree_log2 (TREE_REALPART (expr));
1453
1454  prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1455	  ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1456
1457  high = TREE_INT_CST_HIGH (expr);
1458  low = TREE_INT_CST_LOW (expr);
1459
1460  /* First clear all bits that are beyond the type's precision in case
1461     we've been sign extended.  Ignore if type's precision hasn't been set
1462     since what we are doing is setting it.  */
1463
1464  if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1465    ;
1466  else if (prec > HOST_BITS_PER_WIDE_INT)
1467    high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1468  else
1469    {
1470      high = 0;
1471      if (prec < HOST_BITS_PER_WIDE_INT)
1472	low &= ~((HOST_WIDE_INT) (-1) << prec);
1473    }
1474
1475  return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1476	  : floor_log2 (low));
1477}
1478
1479/* Return 1 if EXPR is the real constant zero.  */
1480
1481int
1482real_zerop (tree expr)
1483{
1484  STRIP_NOPS (expr);
1485
1486  return ((TREE_CODE (expr) == REAL_CST
1487	   && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1488	  || (TREE_CODE (expr) == COMPLEX_CST
1489	      && real_zerop (TREE_REALPART (expr))
1490	      && real_zerop (TREE_IMAGPART (expr))));
1491}
1492
1493/* Return 1 if EXPR is the real constant one in real or complex form.  */
1494
1495int
1496real_onep (tree expr)
1497{
1498  STRIP_NOPS (expr);
1499
1500  return ((TREE_CODE (expr) == REAL_CST
1501	   && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1502	  || (TREE_CODE (expr) == COMPLEX_CST
1503	      && real_onep (TREE_REALPART (expr))
1504	      && real_zerop (TREE_IMAGPART (expr))));
1505}
1506
1507/* Return 1 if EXPR is the real constant two.  */
1508
1509int
1510real_twop (tree expr)
1511{
1512  STRIP_NOPS (expr);
1513
1514  return ((TREE_CODE (expr) == REAL_CST
1515	   && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1516	  || (TREE_CODE (expr) == COMPLEX_CST
1517	      && real_twop (TREE_REALPART (expr))
1518	      && real_zerop (TREE_IMAGPART (expr))));
1519}
1520
1521/* Return 1 if EXPR is the real constant minus one.  */
1522
1523int
1524real_minus_onep (tree expr)
1525{
1526  STRIP_NOPS (expr);
1527
1528  return ((TREE_CODE (expr) == REAL_CST
1529	   && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1530	  || (TREE_CODE (expr) == COMPLEX_CST
1531	      && real_minus_onep (TREE_REALPART (expr))
1532	      && real_zerop (TREE_IMAGPART (expr))));
1533}
1534
1535/* Nonzero if EXP is a constant or a cast of a constant.  */
1536
1537int
1538really_constant_p (tree exp)
1539{
1540  /* This is not quite the same as STRIP_NOPS.  It does more.  */
1541  while (TREE_CODE (exp) == NOP_EXPR
1542	 || TREE_CODE (exp) == CONVERT_EXPR
1543	 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1544    exp = TREE_OPERAND (exp, 0);
1545  return TREE_CONSTANT (exp);
1546}
1547
1548/* Return first list element whose TREE_VALUE is ELEM.
1549   Return 0 if ELEM is not in LIST.  */
1550
1551tree
1552value_member (tree elem, tree list)
1553{
1554  while (list)
1555    {
1556      if (elem == TREE_VALUE (list))
1557	return list;
1558      list = TREE_CHAIN (list);
1559    }
1560  return NULL_TREE;
1561}
1562
1563/* Return first list element whose TREE_PURPOSE is ELEM.
1564   Return 0 if ELEM is not in LIST.  */
1565
1566tree
1567purpose_member (tree elem, tree list)
1568{
1569  while (list)
1570    {
1571      if (elem == TREE_PURPOSE (list))
1572	return list;
1573      list = TREE_CHAIN (list);
1574    }
1575  return NULL_TREE;
1576}
1577
1578/* Return nonzero if ELEM is part of the chain CHAIN.  */
1579
1580int
1581chain_member (tree elem, tree chain)
1582{
1583  while (chain)
1584    {
1585      if (elem == chain)
1586	return 1;
1587      chain = TREE_CHAIN (chain);
1588    }
1589
1590  return 0;
1591}
1592
1593/* Return the length of a chain of nodes chained through TREE_CHAIN.
1594   We expect a null pointer to mark the end of the chain.
1595   This is the Lisp primitive `length'.  */
1596
1597int
1598list_length (tree t)
1599{
1600  tree p = t;
1601#ifdef ENABLE_TREE_CHECKING
1602  tree q = t;
1603#endif
1604  int len = 0;
1605
1606  while (p)
1607    {
1608      p = TREE_CHAIN (p);
1609#ifdef ENABLE_TREE_CHECKING
1610      if (len % 2)
1611	q = TREE_CHAIN (q);
1612      gcc_assert (p != q);
1613#endif
1614      len++;
1615    }
1616
1617  return len;
1618}
1619
1620/* Returns the number of FIELD_DECLs in TYPE.  */
1621
1622int
1623fields_length (tree type)
1624{
1625  tree t = TYPE_FIELDS (type);
1626  int count = 0;
1627
1628  for (; t; t = TREE_CHAIN (t))
1629    if (TREE_CODE (t) == FIELD_DECL)
1630      ++count;
1631
1632  return count;
1633}
1634
1635/* Concatenate two chains of nodes (chained through TREE_CHAIN)
1636   by modifying the last node in chain 1 to point to chain 2.
1637   This is the Lisp primitive `nconc'.  */
1638
1639tree
1640chainon (tree op1, tree op2)
1641{
1642  tree t1;
1643
1644  if (!op1)
1645    return op2;
1646  if (!op2)
1647    return op1;
1648
1649  for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1650    continue;
1651  TREE_CHAIN (t1) = op2;
1652
1653#ifdef ENABLE_TREE_CHECKING
1654  {
1655    tree t2;
1656    for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1657      gcc_assert (t2 != t1);
1658  }
1659#endif
1660
1661  return op1;
1662}
1663
1664/* Return the last node in a chain of nodes (chained through TREE_CHAIN).  */
1665
1666tree
1667tree_last (tree chain)
1668{
1669  tree next;
1670  if (chain)
1671    while ((next = TREE_CHAIN (chain)))
1672      chain = next;
1673  return chain;
1674}
1675
1676/* Reverse the order of elements in the chain T,
1677   and return the new head of the chain (old last element).  */
1678
1679tree
1680nreverse (tree t)
1681{
1682  tree prev = 0, decl, next;
1683  for (decl = t; decl; decl = next)
1684    {
1685      next = TREE_CHAIN (decl);
1686      TREE_CHAIN (decl) = prev;
1687      prev = decl;
1688    }
1689  return prev;
1690}
1691
1692/* Return a newly created TREE_LIST node whose
1693   purpose and value fields are PARM and VALUE.  */
1694
1695tree
1696build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1697{
1698  tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1699  TREE_PURPOSE (t) = parm;
1700  TREE_VALUE (t) = value;
1701  return t;
1702}
1703
1704/* Return a newly created TREE_LIST node whose
1705   purpose and value fields are PURPOSE and VALUE
1706   and whose TREE_CHAIN is CHAIN.  */
1707
1708tree
1709tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1710{
1711  tree node;
1712
1713  node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1714
1715  memset (node, 0, sizeof (struct tree_common));
1716
1717#ifdef GATHER_STATISTICS
1718  tree_node_counts[(int) x_kind]++;
1719  tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1720#endif
1721
1722  TREE_SET_CODE (node, TREE_LIST);
1723  TREE_CHAIN (node) = chain;
1724  TREE_PURPOSE (node) = purpose;
1725  TREE_VALUE (node) = value;
1726  return node;
1727}
1728
1729
1730/* Return the size nominally occupied by an object of type TYPE
1731   when it resides in memory.  The value is measured in units of bytes,
1732   and its data type is that normally used for type sizes
1733   (which is the first type created by make_signed_type or
1734   make_unsigned_type).  */
1735
1736tree
1737size_in_bytes (tree type)
1738{
1739  tree t;
1740
1741  if (type == error_mark_node)
1742    return integer_zero_node;
1743
1744  type = TYPE_MAIN_VARIANT (type);
1745  t = TYPE_SIZE_UNIT (type);
1746
1747  if (t == 0)
1748    {
1749      lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1750      return size_zero_node;
1751    }
1752
1753  if (TREE_CODE (t) == INTEGER_CST)
1754    t = force_fit_type (t, 0, false, false);
1755
1756  return t;
1757}
1758
1759/* Return the size of TYPE (in bytes) as a wide integer
1760   or return -1 if the size can vary or is larger than an integer.  */
1761
1762HOST_WIDE_INT
1763int_size_in_bytes (tree type)
1764{
1765  tree t;
1766
1767  if (type == error_mark_node)
1768    return 0;
1769
1770  type = TYPE_MAIN_VARIANT (type);
1771  t = TYPE_SIZE_UNIT (type);
1772  if (t == 0
1773      || TREE_CODE (t) != INTEGER_CST
1774      || TREE_INT_CST_HIGH (t) != 0
1775      /* If the result would appear negative, it's too big to represent.  */
1776      || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1777    return -1;
1778
1779  return TREE_INT_CST_LOW (t);
1780}
1781
1782/* Return the maximum size of TYPE (in bytes) as a wide integer
1783   or return -1 if the size can vary or is larger than an integer.  */
1784
1785HOST_WIDE_INT
1786max_int_size_in_bytes (tree type)
1787{
1788  HOST_WIDE_INT size = -1;
1789  tree size_tree;
1790
1791  /* If this is an array type, check for a possible MAX_SIZE attached.  */
1792
1793  if (TREE_CODE (type) == ARRAY_TYPE)
1794    {
1795      size_tree = TYPE_ARRAY_MAX_SIZE (type);
1796
1797      if (size_tree && host_integerp (size_tree, 1))
1798	size = tree_low_cst (size_tree, 1);
1799    }
1800
1801  /* If we still haven't been able to get a size, see if the language
1802     can compute a maximum size.  */
1803
1804  if (size == -1)
1805    {
1806      size_tree = lang_hooks.types.max_size (type);
1807
1808      if (size_tree && host_integerp (size_tree, 1))
1809	size = tree_low_cst (size_tree, 1);
1810    }
1811
1812  return size;
1813}
1814
1815/* Return the bit position of FIELD, in bits from the start of the record.
1816   This is a tree of type bitsizetype.  */
1817
1818tree
1819bit_position (tree field)
1820{
1821  return bit_from_pos (DECL_FIELD_OFFSET (field),
1822		       DECL_FIELD_BIT_OFFSET (field));
1823}
1824
1825/* Likewise, but return as an integer.  It must be representable in
1826   that way (since it could be a signed value, we don't have the
1827   option of returning -1 like int_size_in_byte can.  */
1828
1829HOST_WIDE_INT
1830int_bit_position (tree field)
1831{
1832  return tree_low_cst (bit_position (field), 0);
1833}
1834
1835/* Return the byte position of FIELD, in bytes from the start of the record.
1836   This is a tree of type sizetype.  */
1837
1838tree
1839byte_position (tree field)
1840{
1841  return byte_from_pos (DECL_FIELD_OFFSET (field),
1842			DECL_FIELD_BIT_OFFSET (field));
1843}
1844
1845/* Likewise, but return as an integer.  It must be representable in
1846   that way (since it could be a signed value, we don't have the
1847   option of returning -1 like int_size_in_byte can.  */
1848
1849HOST_WIDE_INT
1850int_byte_position (tree field)
1851{
1852  return tree_low_cst (byte_position (field), 0);
1853}
1854
1855/* Return the strictest alignment, in bits, that T is known to have.  */
1856
1857unsigned int
1858expr_align (tree t)
1859{
1860  unsigned int align0, align1;
1861
1862  switch (TREE_CODE (t))
1863    {
1864    case NOP_EXPR:  case CONVERT_EXPR:  case NON_LVALUE_EXPR:
1865      /* If we have conversions, we know that the alignment of the
1866	 object must meet each of the alignments of the types.  */
1867      align0 = expr_align (TREE_OPERAND (t, 0));
1868      align1 = TYPE_ALIGN (TREE_TYPE (t));
1869      return MAX (align0, align1);
1870
1871    case SAVE_EXPR:         case COMPOUND_EXPR:       case MODIFY_EXPR:
1872    case INIT_EXPR:         case TARGET_EXPR:         case WITH_CLEANUP_EXPR:
1873    case CLEANUP_POINT_EXPR:
1874      /* These don't change the alignment of an object.  */
1875      return expr_align (TREE_OPERAND (t, 0));
1876
1877    case COND_EXPR:
1878      /* The best we can do is say that the alignment is the least aligned
1879	 of the two arms.  */
1880      align0 = expr_align (TREE_OPERAND (t, 1));
1881      align1 = expr_align (TREE_OPERAND (t, 2));
1882      return MIN (align0, align1);
1883
1884    case LABEL_DECL:     case CONST_DECL:
1885    case VAR_DECL:       case PARM_DECL:   case RESULT_DECL:
1886      if (DECL_ALIGN (t) != 0)
1887	return DECL_ALIGN (t);
1888      break;
1889
1890    case FUNCTION_DECL:
1891      return FUNCTION_BOUNDARY;
1892
1893    default:
1894      break;
1895    }
1896
1897  /* Otherwise take the alignment from that of the type.  */
1898  return TYPE_ALIGN (TREE_TYPE (t));
1899}
1900
1901/* Return, as a tree node, the number of elements for TYPE (which is an
1902   ARRAY_TYPE) minus one. This counts only elements of the top array.  */
1903
1904tree
1905array_type_nelts (tree type)
1906{
1907  tree index_type, min, max;
1908
1909  /* If they did it with unspecified bounds, then we should have already
1910     given an error about it before we got here.  */
1911  if (! TYPE_DOMAIN (type))
1912    return error_mark_node;
1913
1914  index_type = TYPE_DOMAIN (type);
1915  min = TYPE_MIN_VALUE (index_type);
1916  max = TYPE_MAX_VALUE (index_type);
1917
1918  return (integer_zerop (min)
1919	  ? max
1920	  : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1921}
1922
1923/* If arg is static -- a reference to an object in static storage -- then
1924   return the object.  This is not the same as the C meaning of `static'.
1925   If arg isn't static, return NULL.  */
1926
1927tree
1928staticp (tree arg)
1929{
1930  switch (TREE_CODE (arg))
1931    {
1932    case FUNCTION_DECL:
1933      /* Nested functions are static, even though taking their address will
1934	 involve a trampoline as we unnest the nested function and create
1935	 the trampoline on the tree level.  */
1936      return arg;
1937
1938    case VAR_DECL:
1939      return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1940	      && ! DECL_THREAD_LOCAL_P (arg)
1941	      && ! DECL_DLLIMPORT_P (arg)
1942	      ? arg : NULL);
1943
1944    case CONST_DECL:
1945      return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1946	      ? arg : NULL);
1947
1948    case CONSTRUCTOR:
1949      return TREE_STATIC (arg) ? arg : NULL;
1950
1951    case LABEL_DECL:
1952    case STRING_CST:
1953      return arg;
1954
1955    case COMPONENT_REF:
1956      /* If the thing being referenced is not a field, then it is
1957	 something language specific.  */
1958      if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1959	return (*lang_hooks.staticp) (arg);
1960
1961      /* If we are referencing a bitfield, we can't evaluate an
1962	 ADDR_EXPR at compile time and so it isn't a constant.  */
1963      if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1964	return NULL;
1965
1966      return staticp (TREE_OPERAND (arg, 0));
1967
1968    case BIT_FIELD_REF:
1969      return NULL;
1970
1971    case MISALIGNED_INDIRECT_REF:
1972    case ALIGN_INDIRECT_REF:
1973    case INDIRECT_REF:
1974      return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1975
1976    case ARRAY_REF:
1977    case ARRAY_RANGE_REF:
1978      if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1979	  && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1980	return staticp (TREE_OPERAND (arg, 0));
1981      else
1982	return false;
1983
1984    default:
1985      if ((unsigned int) TREE_CODE (arg)
1986	  >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1987	return lang_hooks.staticp (arg);
1988      else
1989	return NULL;
1990    }
1991}
1992
1993/* Wrap a SAVE_EXPR around EXPR, if appropriate.
1994   Do this to any expression which may be used in more than one place,
1995   but must be evaluated only once.
1996
1997   Normally, expand_expr would reevaluate the expression each time.
1998   Calling save_expr produces something that is evaluated and recorded
1999   the first time expand_expr is called on it.  Subsequent calls to
2000   expand_expr just reuse the recorded value.
2001
2002   The call to expand_expr that generates code that actually computes
2003   the value is the first call *at compile time*.  Subsequent calls
2004   *at compile time* generate code to use the saved value.
2005   This produces correct result provided that *at run time* control
2006   always flows through the insns made by the first expand_expr
2007   before reaching the other places where the save_expr was evaluated.
2008   You, the caller of save_expr, must make sure this is so.
2009
2010   Constants, and certain read-only nodes, are returned with no
2011   SAVE_EXPR because that is safe.  Expressions containing placeholders
2012   are not touched; see tree.def for an explanation of what these
2013   are used for.  */
2014
2015tree
2016save_expr (tree expr)
2017{
2018  tree t = fold (expr);
2019  tree inner;
2020
2021  /* If the tree evaluates to a constant, then we don't want to hide that
2022     fact (i.e. this allows further folding, and direct checks for constants).
2023     However, a read-only object that has side effects cannot be bypassed.
2024     Since it is no problem to reevaluate literals, we just return the
2025     literal node.  */
2026  inner = skip_simple_arithmetic (t);
2027
2028  if (TREE_INVARIANT (inner)
2029      || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2030      || TREE_CODE (inner) == SAVE_EXPR
2031      || TREE_CODE (inner) == ERROR_MARK)
2032    return t;
2033
2034  /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2035     it means that the size or offset of some field of an object depends on
2036     the value within another field.
2037
2038     Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2039     and some variable since it would then need to be both evaluated once and
2040     evaluated more than once.  Front-ends must assure this case cannot
2041     happen by surrounding any such subexpressions in their own SAVE_EXPR
2042     and forcing evaluation at the proper time.  */
2043  if (contains_placeholder_p (inner))
2044    return t;
2045
2046  t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2047
2048  /* This expression might be placed ahead of a jump to ensure that the
2049     value was computed on both sides of the jump.  So make sure it isn't
2050     eliminated as dead.  */
2051  TREE_SIDE_EFFECTS (t) = 1;
2052  TREE_INVARIANT (t) = 1;
2053  return t;
2054}
2055
2056/* Look inside EXPR and into any simple arithmetic operations.  Return
2057   the innermost non-arithmetic node.  */
2058
2059tree
2060skip_simple_arithmetic (tree expr)
2061{
2062  tree inner;
2063
2064  /* We don't care about whether this can be used as an lvalue in this
2065     context.  */
2066  while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2067    expr = TREE_OPERAND (expr, 0);
2068
2069  /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2070     a constant, it will be more efficient to not make another SAVE_EXPR since
2071     it will allow better simplification and GCSE will be able to merge the
2072     computations if they actually occur.  */
2073  inner = expr;
2074  while (1)
2075    {
2076      if (UNARY_CLASS_P (inner))
2077	inner = TREE_OPERAND (inner, 0);
2078      else if (BINARY_CLASS_P (inner))
2079	{
2080	  if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2081	    inner = TREE_OPERAND (inner, 0);
2082	  else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2083	    inner = TREE_OPERAND (inner, 1);
2084	  else
2085	    break;
2086	}
2087      else
2088	break;
2089    }
2090
2091  return inner;
2092}
2093
2094/* Return which tree structure is used by T.  */
2095
2096enum tree_node_structure_enum
2097tree_node_structure (tree t)
2098{
2099  enum tree_code code = TREE_CODE (t);
2100
2101  switch (TREE_CODE_CLASS (code))
2102    {
2103    case tcc_declaration:
2104      {
2105	switch (code)
2106	  {
2107	  case FIELD_DECL:
2108	    return TS_FIELD_DECL;
2109	  case PARM_DECL:
2110	    return TS_PARM_DECL;
2111	  case VAR_DECL:
2112	    return TS_VAR_DECL;
2113	  case LABEL_DECL:
2114	    return TS_LABEL_DECL;
2115	  case RESULT_DECL:
2116	    return TS_RESULT_DECL;
2117	  case CONST_DECL:
2118	    return TS_CONST_DECL;
2119	  case TYPE_DECL:
2120	    return TS_TYPE_DECL;
2121	  case FUNCTION_DECL:
2122	    return TS_FUNCTION_DECL;
2123	  case SYMBOL_MEMORY_TAG:
2124	  case NAME_MEMORY_TAG:
2125	  case STRUCT_FIELD_TAG:
2126	    return TS_MEMORY_TAG;
2127	  default:
2128	    return TS_DECL_NON_COMMON;
2129	  }
2130      }
2131    case tcc_type:
2132      return TS_TYPE;
2133    case tcc_reference:
2134    case tcc_comparison:
2135    case tcc_unary:
2136    case tcc_binary:
2137    case tcc_expression:
2138    case tcc_statement:
2139      return TS_EXP;
2140    default:  /* tcc_constant and tcc_exceptional */
2141      break;
2142    }
2143  switch (code)
2144    {
2145      /* tcc_constant cases.  */
2146    case INTEGER_CST:		return TS_INT_CST;
2147    case REAL_CST:		return TS_REAL_CST;
2148    case COMPLEX_CST:		return TS_COMPLEX;
2149    case VECTOR_CST:		return TS_VECTOR;
2150    case STRING_CST:		return TS_STRING;
2151      /* tcc_exceptional cases.  */
2152    case ERROR_MARK:		return TS_COMMON;
2153    case IDENTIFIER_NODE:	return TS_IDENTIFIER;
2154    case TREE_LIST:		return TS_LIST;
2155    case TREE_VEC:		return TS_VEC;
2156    case PHI_NODE:		return TS_PHI_NODE;
2157    case SSA_NAME:		return TS_SSA_NAME;
2158    case PLACEHOLDER_EXPR:	return TS_COMMON;
2159    case STATEMENT_LIST:	return TS_STATEMENT_LIST;
2160    case BLOCK:			return TS_BLOCK;
2161    case CONSTRUCTOR:		return TS_CONSTRUCTOR;
2162    case TREE_BINFO:		return TS_BINFO;
2163    case VALUE_HANDLE:		return TS_VALUE_HANDLE;
2164    case OMP_CLAUSE:		return TS_OMP_CLAUSE;
2165
2166    default:
2167      gcc_unreachable ();
2168    }
2169}
2170
2171/* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2172   or offset that depends on a field within a record.  */
2173
2174bool
2175contains_placeholder_p (tree exp)
2176{
2177  enum tree_code code;
2178
2179  if (!exp)
2180    return 0;
2181
2182  code = TREE_CODE (exp);
2183  if (code == PLACEHOLDER_EXPR)
2184    return 1;
2185
2186  switch (TREE_CODE_CLASS (code))
2187    {
2188    case tcc_reference:
2189      /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2190	 position computations since they will be converted into a
2191	 WITH_RECORD_EXPR involving the reference, which will assume
2192	 here will be valid.  */
2193      return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2194
2195    case tcc_exceptional:
2196      if (code == TREE_LIST)
2197	return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2198		|| CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2199      break;
2200
2201    case tcc_unary:
2202    case tcc_binary:
2203    case tcc_comparison:
2204    case tcc_expression:
2205      switch (code)
2206	{
2207	case COMPOUND_EXPR:
2208	  /* Ignoring the first operand isn't quite right, but works best.  */
2209	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2210
2211	case COND_EXPR:
2212	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2213		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2214		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2215
2216	case CALL_EXPR:
2217	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2218
2219	default:
2220	  break;
2221	}
2222
2223      switch (TREE_CODE_LENGTH (code))
2224	{
2225	case 1:
2226	  return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2227	case 2:
2228	  return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2229		  || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2230	default:
2231	  return 0;
2232	}
2233
2234    default:
2235      return 0;
2236    }
2237  return 0;
2238}
2239
2240/* Return true if any part of the computation of TYPE involves a
2241   PLACEHOLDER_EXPR.  This includes size, bounds, qualifiers
2242   (for QUAL_UNION_TYPE) and field positions.  */
2243
2244static bool
2245type_contains_placeholder_1 (tree type)
2246{
2247  /* If the size contains a placeholder or the parent type (component type in
2248     the case of arrays) type involves a placeholder, this type does.  */
2249  if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2250      || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2251      || (TREE_TYPE (type) != 0
2252	  && type_contains_placeholder_p (TREE_TYPE (type))))
2253    return true;
2254
2255  /* Now do type-specific checks.  Note that the last part of the check above
2256     greatly limits what we have to do below.  */
2257  switch (TREE_CODE (type))
2258    {
2259    case VOID_TYPE:
2260    case COMPLEX_TYPE:
2261    case ENUMERAL_TYPE:
2262    case BOOLEAN_TYPE:
2263    case POINTER_TYPE:
2264    case OFFSET_TYPE:
2265    case REFERENCE_TYPE:
2266    case METHOD_TYPE:
2267    case FUNCTION_TYPE:
2268    case VECTOR_TYPE:
2269      return false;
2270
2271    case INTEGER_TYPE:
2272    case REAL_TYPE:
2273      /* Here we just check the bounds.  */
2274      return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2275	      || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2276
2277    case ARRAY_TYPE:
2278      /* We're already checked the component type (TREE_TYPE), so just check
2279	 the index type.  */
2280      return type_contains_placeholder_p (TYPE_DOMAIN (type));
2281
2282    case RECORD_TYPE:
2283    case UNION_TYPE:
2284    case QUAL_UNION_TYPE:
2285      {
2286	tree field;
2287
2288	for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2289	  if (TREE_CODE (field) == FIELD_DECL
2290	      && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2291		  || (TREE_CODE (type) == QUAL_UNION_TYPE
2292		      && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2293		  || type_contains_placeholder_p (TREE_TYPE (field))))
2294	    return true;
2295
2296	return false;
2297      }
2298
2299    default:
2300      gcc_unreachable ();
2301    }
2302}
2303
2304bool
2305type_contains_placeholder_p (tree type)
2306{
2307  bool result;
2308
2309  /* If the contains_placeholder_bits field has been initialized,
2310     then we know the answer.  */
2311  if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2312    return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2313
2314  /* Indicate that we've seen this type node, and the answer is false.
2315     This is what we want to return if we run into recursion via fields.  */
2316  TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2317
2318  /* Compute the real value.  */
2319  result = type_contains_placeholder_1 (type);
2320
2321  /* Store the real value.  */
2322  TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2323
2324  return result;
2325}
2326
2327/* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2328   return a tree with all occurrences of references to F in a
2329   PLACEHOLDER_EXPR replaced by R.   Note that we assume here that EXP
2330   contains only arithmetic expressions or a CALL_EXPR with a
2331   PLACEHOLDER_EXPR occurring only in its arglist.  */
2332
2333tree
2334substitute_in_expr (tree exp, tree f, tree r)
2335{
2336  enum tree_code code = TREE_CODE (exp);
2337  tree op0, op1, op2, op3;
2338  tree new;
2339  tree inner;
2340
2341  /* We handle TREE_LIST and COMPONENT_REF separately.  */
2342  if (code == TREE_LIST)
2343    {
2344      op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2345      op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2346      if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2347	return exp;
2348
2349      return tree_cons (TREE_PURPOSE (exp), op1, op0);
2350    }
2351  else if (code == COMPONENT_REF)
2352   {
2353     /* If this expression is getting a value from a PLACEHOLDER_EXPR
2354	and it is the right field, replace it with R.  */
2355     for (inner = TREE_OPERAND (exp, 0);
2356	  REFERENCE_CLASS_P (inner);
2357	  inner = TREE_OPERAND (inner, 0))
2358       ;
2359     if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2360	 && TREE_OPERAND (exp, 1) == f)
2361       return r;
2362
2363     /* If this expression hasn't been completed let, leave it alone.  */
2364     if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2365       return exp;
2366
2367     op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2368     if (op0 == TREE_OPERAND (exp, 0))
2369       return exp;
2370
2371     new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2372			op0, TREE_OPERAND (exp, 1), NULL_TREE);
2373   }
2374  else
2375    switch (TREE_CODE_CLASS (code))
2376      {
2377      case tcc_constant:
2378      case tcc_declaration:
2379	return exp;
2380
2381      case tcc_exceptional:
2382      case tcc_unary:
2383      case tcc_binary:
2384      case tcc_comparison:
2385      case tcc_expression:
2386      case tcc_reference:
2387	switch (TREE_CODE_LENGTH (code))
2388	  {
2389	  case 0:
2390	    return exp;
2391
2392	  case 1:
2393	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2394	    if (op0 == TREE_OPERAND (exp, 0))
2395	      return exp;
2396
2397	    new = fold_build1 (code, TREE_TYPE (exp), op0);
2398	    break;
2399
2400	  case 2:
2401	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2402	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2403
2404	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2405	      return exp;
2406
2407	    new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2408	    break;
2409
2410	  case 3:
2411	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2412	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2413	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2414
2415	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2416		&& op2 == TREE_OPERAND (exp, 2))
2417	      return exp;
2418
2419	    new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2420	    break;
2421
2422	  case 4:
2423	    op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2424	    op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2425	    op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2426	    op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2427
2428	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2429		&& op2 == TREE_OPERAND (exp, 2)
2430		&& op3 == TREE_OPERAND (exp, 3))
2431	      return exp;
2432
2433	    new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2434	    break;
2435
2436	  default:
2437	    gcc_unreachable ();
2438	  }
2439	break;
2440
2441      default:
2442	gcc_unreachable ();
2443      }
2444
2445  TREE_READONLY (new) = TREE_READONLY (exp);
2446  return new;
2447}
2448
2449/* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2450   for it within OBJ, a tree that is an object or a chain of references.  */
2451
2452tree
2453substitute_placeholder_in_expr (tree exp, tree obj)
2454{
2455  enum tree_code code = TREE_CODE (exp);
2456  tree op0, op1, op2, op3;
2457
2458  /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2459     in the chain of OBJ.  */
2460  if (code == PLACEHOLDER_EXPR)
2461    {
2462      tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2463      tree elt;
2464
2465      for (elt = obj; elt != 0;
2466	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2467		   || TREE_CODE (elt) == COND_EXPR)
2468		  ? TREE_OPERAND (elt, 1)
2469		  : (REFERENCE_CLASS_P (elt)
2470		     || UNARY_CLASS_P (elt)
2471		     || BINARY_CLASS_P (elt)
2472		     || EXPRESSION_CLASS_P (elt))
2473		  ? TREE_OPERAND (elt, 0) : 0))
2474	if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2475	  return elt;
2476
2477      for (elt = obj; elt != 0;
2478	   elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2479		   || TREE_CODE (elt) == COND_EXPR)
2480		  ? TREE_OPERAND (elt, 1)
2481		  : (REFERENCE_CLASS_P (elt)
2482		     || UNARY_CLASS_P (elt)
2483		     || BINARY_CLASS_P (elt)
2484		     || EXPRESSION_CLASS_P (elt))
2485		  ? TREE_OPERAND (elt, 0) : 0))
2486	if (POINTER_TYPE_P (TREE_TYPE (elt))
2487	    && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2488		== need_type))
2489	  return fold_build1 (INDIRECT_REF, need_type, elt);
2490
2491      /* If we didn't find it, return the original PLACEHOLDER_EXPR.  If it
2492	 survives until RTL generation, there will be an error.  */
2493      return exp;
2494    }
2495
2496  /* TREE_LIST is special because we need to look at TREE_VALUE
2497     and TREE_CHAIN, not TREE_OPERANDS.  */
2498  else if (code == TREE_LIST)
2499    {
2500      op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2501      op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2502      if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2503	return exp;
2504
2505      return tree_cons (TREE_PURPOSE (exp), op1, op0);
2506    }
2507  else
2508    switch (TREE_CODE_CLASS (code))
2509      {
2510      case tcc_constant:
2511      case tcc_declaration:
2512	return exp;
2513
2514      case tcc_exceptional:
2515      case tcc_unary:
2516      case tcc_binary:
2517      case tcc_comparison:
2518      case tcc_expression:
2519      case tcc_reference:
2520      case tcc_statement:
2521	switch (TREE_CODE_LENGTH (code))
2522	  {
2523	  case 0:
2524	    return exp;
2525
2526	  case 1:
2527	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2528	    if (op0 == TREE_OPERAND (exp, 0))
2529	      return exp;
2530	    else
2531	      return fold_build1 (code, TREE_TYPE (exp), op0);
2532
2533	  case 2:
2534	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2535	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2536
2537	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2538	      return exp;
2539	    else
2540	      return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2541
2542	  case 3:
2543	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2544	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2545	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2546
2547	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2548		&& op2 == TREE_OPERAND (exp, 2))
2549	      return exp;
2550	    else
2551	      return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2552
2553	  case 4:
2554	    op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2555	    op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2556	    op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2557	    op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2558
2559	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2560		&& op2 == TREE_OPERAND (exp, 2)
2561		&& op3 == TREE_OPERAND (exp, 3))
2562	      return exp;
2563	    else
2564	      return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2565
2566	  default:
2567	    gcc_unreachable ();
2568	  }
2569	break;
2570
2571      default:
2572	gcc_unreachable ();
2573      }
2574}
2575
2576/* Stabilize a reference so that we can use it any number of times
2577   without causing its operands to be evaluated more than once.
2578   Returns the stabilized reference.  This works by means of save_expr,
2579   so see the caveats in the comments about save_expr.
2580
2581   Also allows conversion expressions whose operands are references.
2582   Any other kind of expression is returned unchanged.  */
2583
2584tree
2585stabilize_reference (tree ref)
2586{
2587  tree result;
2588  enum tree_code code = TREE_CODE (ref);
2589
2590  switch (code)
2591    {
2592    case VAR_DECL:
2593    case PARM_DECL:
2594    case RESULT_DECL:
2595      /* No action is needed in this case.  */
2596      return ref;
2597
2598    case NOP_EXPR:
2599    case CONVERT_EXPR:
2600    case FLOAT_EXPR:
2601    case FIX_TRUNC_EXPR:
2602    case FIX_FLOOR_EXPR:
2603    case FIX_ROUND_EXPR:
2604    case FIX_CEIL_EXPR:
2605      result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2606      break;
2607
2608    case INDIRECT_REF:
2609      result = build_nt (INDIRECT_REF,
2610			 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2611      break;
2612
2613    case COMPONENT_REF:
2614      result = build_nt (COMPONENT_REF,
2615			 stabilize_reference (TREE_OPERAND (ref, 0)),
2616			 TREE_OPERAND (ref, 1), NULL_TREE);
2617      break;
2618
2619    case BIT_FIELD_REF:
2620      result = build_nt (BIT_FIELD_REF,
2621			 stabilize_reference (TREE_OPERAND (ref, 0)),
2622			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2623			 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2624      break;
2625
2626    case ARRAY_REF:
2627      result = build_nt (ARRAY_REF,
2628			 stabilize_reference (TREE_OPERAND (ref, 0)),
2629			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2630			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2631      break;
2632
2633    case ARRAY_RANGE_REF:
2634      result = build_nt (ARRAY_RANGE_REF,
2635			 stabilize_reference (TREE_OPERAND (ref, 0)),
2636			 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2637			 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2638      break;
2639
2640    case COMPOUND_EXPR:
2641      /* We cannot wrap the first expression in a SAVE_EXPR, as then
2642	 it wouldn't be ignored.  This matters when dealing with
2643	 volatiles.  */
2644      return stabilize_reference_1 (ref);
2645
2646      /* If arg isn't a kind of lvalue we recognize, make no change.
2647	 Caller should recognize the error for an invalid lvalue.  */
2648    default:
2649      return ref;
2650
2651    case ERROR_MARK:
2652      return error_mark_node;
2653    }
2654
2655  TREE_TYPE (result) = TREE_TYPE (ref);
2656  TREE_READONLY (result) = TREE_READONLY (ref);
2657  TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2658  TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2659
2660  return result;
2661}
2662
2663/* Subroutine of stabilize_reference; this is called for subtrees of
2664   references.  Any expression with side-effects must be put in a SAVE_EXPR
2665   to ensure that it is only evaluated once.
2666
2667   We don't put SAVE_EXPR nodes around everything, because assigning very
2668   simple expressions to temporaries causes us to miss good opportunities
2669   for optimizations.  Among other things, the opportunity to fold in the
2670   addition of a constant into an addressing mode often gets lost, e.g.
2671   "y[i+1] += x;".  In general, we take the approach that we should not make
2672   an assignment unless we are forced into it - i.e., that any non-side effect
2673   operator should be allowed, and that cse should take care of coalescing
2674   multiple utterances of the same expression should that prove fruitful.  */
2675
2676tree
2677stabilize_reference_1 (tree e)
2678{
2679  tree result;
2680  enum tree_code code = TREE_CODE (e);
2681
2682  /* We cannot ignore const expressions because it might be a reference
2683     to a const array but whose index contains side-effects.  But we can
2684     ignore things that are actual constant or that already have been
2685     handled by this function.  */
2686
2687  if (TREE_INVARIANT (e))
2688    return e;
2689
2690  switch (TREE_CODE_CLASS (code))
2691    {
2692    case tcc_exceptional:
2693    case tcc_type:
2694    case tcc_declaration:
2695    case tcc_comparison:
2696    case tcc_statement:
2697    case tcc_expression:
2698    case tcc_reference:
2699      /* If the expression has side-effects, then encase it in a SAVE_EXPR
2700	 so that it will only be evaluated once.  */
2701      /* The reference (r) and comparison (<) classes could be handled as
2702	 below, but it is generally faster to only evaluate them once.  */
2703      if (TREE_SIDE_EFFECTS (e))
2704	return save_expr (e);
2705      return e;
2706
2707    case tcc_constant:
2708      /* Constants need no processing.  In fact, we should never reach
2709	 here.  */
2710      return e;
2711
2712    case tcc_binary:
2713      /* Division is slow and tends to be compiled with jumps,
2714	 especially the division by powers of 2 that is often
2715	 found inside of an array reference.  So do it just once.  */
2716      if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2717	  || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2718	  || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2719	  || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2720	return save_expr (e);
2721      /* Recursively stabilize each operand.  */
2722      result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2723			 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2724      break;
2725
2726    case tcc_unary:
2727      /* Recursively stabilize each operand.  */
2728      result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2729      break;
2730
2731    default:
2732      gcc_unreachable ();
2733    }
2734
2735  TREE_TYPE (result) = TREE_TYPE (e);
2736  TREE_READONLY (result) = TREE_READONLY (e);
2737  TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2738  TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2739  TREE_INVARIANT (result) = 1;
2740
2741  return result;
2742}
2743
2744/* Low-level constructors for expressions.  */
2745
2746/* A helper function for build1 and constant folders.  Set TREE_CONSTANT,
2747   TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR.  */
2748
2749void
2750recompute_tree_invariant_for_addr_expr (tree t)
2751{
2752  tree node;
2753  bool tc = true, ti = true, se = false;
2754
2755  /* We started out assuming this address is both invariant and constant, but
2756     does not have side effects.  Now go down any handled components and see if
2757     any of them involve offsets that are either non-constant or non-invariant.
2758     Also check for side-effects.
2759
2760     ??? Note that this code makes no attempt to deal with the case where
2761     taking the address of something causes a copy due to misalignment.  */
2762
2763#define UPDATE_TITCSE(NODE)  \
2764do { tree _node = (NODE); \
2765     if (_node && !TREE_INVARIANT (_node)) ti = false; \
2766     if (_node && !TREE_CONSTANT (_node)) tc = false; \
2767     if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2768
2769  for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2770       node = TREE_OPERAND (node, 0))
2771    {
2772      /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2773	 array reference (probably made temporarily by the G++ front end),
2774	 so ignore all the operands.  */
2775      if ((TREE_CODE (node) == ARRAY_REF
2776	   || TREE_CODE (node) == ARRAY_RANGE_REF)
2777	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2778	{
2779	  UPDATE_TITCSE (TREE_OPERAND (node, 1));
2780	  if (TREE_OPERAND (node, 2))
2781	    UPDATE_TITCSE (TREE_OPERAND (node, 2));
2782	  if (TREE_OPERAND (node, 3))
2783	    UPDATE_TITCSE (TREE_OPERAND (node, 3));
2784	}
2785      /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2786	 FIELD_DECL, apparently.  The G++ front end can put something else
2787	 there, at least temporarily.  */
2788      else if (TREE_CODE (node) == COMPONENT_REF
2789	       && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2790	{
2791	  if (TREE_OPERAND (node, 2))
2792	    UPDATE_TITCSE (TREE_OPERAND (node, 2));
2793	}
2794      else if (TREE_CODE (node) == BIT_FIELD_REF)
2795	UPDATE_TITCSE (TREE_OPERAND (node, 2));
2796    }
2797
2798  node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2799
2800  /* Now see what's inside.  If it's an INDIRECT_REF, copy our properties from
2801     the address, since &(*a)->b is a form of addition.  If it's a decl, it's
2802     invariant and constant if the decl is static.  It's also invariant if it's
2803     a decl in the current function.  Taking the address of a volatile variable
2804     is not volatile.  If it's a constant, the address is both invariant and
2805     constant.  Otherwise it's neither.  */
2806  if (TREE_CODE (node) == INDIRECT_REF)
2807    UPDATE_TITCSE (TREE_OPERAND (node, 0));
2808  else if (DECL_P (node))
2809    {
2810      if (staticp (node))
2811	;
2812      else if (decl_function_context (node) == current_function_decl
2813	       /* Addresses of thread-local variables are invariant.  */
2814	       || (TREE_CODE (node) == VAR_DECL
2815		   && DECL_THREAD_LOCAL_P (node)))
2816	tc = false;
2817      else
2818	ti = tc = false;
2819    }
2820  else if (CONSTANT_CLASS_P (node))
2821    ;
2822  else
2823    {
2824      ti = tc = false;
2825      se |= TREE_SIDE_EFFECTS (node);
2826    }
2827
2828  TREE_CONSTANT (t) = tc;
2829  TREE_INVARIANT (t) = ti;
2830  TREE_SIDE_EFFECTS (t) = se;
2831#undef UPDATE_TITCSE
2832}
2833
2834/* Build an expression of code CODE, data type TYPE, and operands as
2835   specified.  Expressions and reference nodes can be created this way.
2836   Constants, decls, types and misc nodes cannot be.
2837
2838   We define 5 non-variadic functions, from 0 to 4 arguments.  This is
2839   enough for all extant tree codes.  */
2840
2841tree
2842build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2843{
2844  tree t;
2845
2846  gcc_assert (TREE_CODE_LENGTH (code) == 0);
2847
2848  t = make_node_stat (code PASS_MEM_STAT);
2849  TREE_TYPE (t) = tt;
2850
2851  return t;
2852}
2853
2854tree
2855build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2856{
2857  int length = sizeof (struct tree_exp);
2858#ifdef GATHER_STATISTICS
2859  tree_node_kind kind;
2860#endif
2861  tree t;
2862
2863#ifdef GATHER_STATISTICS
2864  switch (TREE_CODE_CLASS (code))
2865    {
2866    case tcc_statement:  /* an expression with side effects */
2867      kind = s_kind;
2868      break;
2869    case tcc_reference:  /* a reference */
2870      kind = r_kind;
2871      break;
2872    default:
2873      kind = e_kind;
2874      break;
2875    }
2876
2877  tree_node_counts[(int) kind]++;
2878  tree_node_sizes[(int) kind] += length;
2879#endif
2880
2881  gcc_assert (TREE_CODE_LENGTH (code) == 1);
2882
2883  t = ggc_alloc_zone_pass_stat (length, &tree_zone);
2884
2885  memset (t, 0, sizeof (struct tree_common));
2886
2887  TREE_SET_CODE (t, code);
2888
2889  TREE_TYPE (t) = type;
2890#ifdef USE_MAPPED_LOCATION
2891  SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2892#else
2893  SET_EXPR_LOCUS (t, NULL);
2894#endif
2895  TREE_COMPLEXITY (t) = 0;
2896  TREE_OPERAND (t, 0) = node;
2897  TREE_BLOCK (t) = NULL_TREE;
2898  if (node && !TYPE_P (node))
2899    {
2900      TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2901      TREE_READONLY (t) = TREE_READONLY (node);
2902    }
2903
2904  if (TREE_CODE_CLASS (code) == tcc_statement)
2905    TREE_SIDE_EFFECTS (t) = 1;
2906  else switch (code)
2907    {
2908    case VA_ARG_EXPR:
2909      /* All of these have side-effects, no matter what their
2910	 operands are.  */
2911      TREE_SIDE_EFFECTS (t) = 1;
2912      TREE_READONLY (t) = 0;
2913      break;
2914
2915    case MISALIGNED_INDIRECT_REF:
2916    case ALIGN_INDIRECT_REF:
2917    case INDIRECT_REF:
2918      /* Whether a dereference is readonly has nothing to do with whether
2919	 its operand is readonly.  */
2920      TREE_READONLY (t) = 0;
2921      break;
2922
2923    case ADDR_EXPR:
2924      if (node)
2925	recompute_tree_invariant_for_addr_expr (t);
2926      break;
2927
2928    default:
2929      if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
2930	  && node && !TYPE_P (node)
2931	  && TREE_CONSTANT (node))
2932	TREE_CONSTANT (t) = 1;
2933      if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
2934	  && node && TREE_INVARIANT (node))
2935	TREE_INVARIANT (t) = 1;
2936      if (TREE_CODE_CLASS (code) == tcc_reference
2937	  && node && TREE_THIS_VOLATILE (node))
2938	TREE_THIS_VOLATILE (t) = 1;
2939      break;
2940    }
2941
2942  return t;
2943}
2944
2945#define PROCESS_ARG(N)			\
2946  do {					\
2947    TREE_OPERAND (t, N) = arg##N;	\
2948    if (arg##N &&!TYPE_P (arg##N))	\
2949      {					\
2950        if (TREE_SIDE_EFFECTS (arg##N))	\
2951	  side_effects = 1;		\
2952        if (!TREE_READONLY (arg##N))	\
2953	  read_only = 0;		\
2954        if (!TREE_CONSTANT (arg##N))	\
2955	  constant = 0;			\
2956	if (!TREE_INVARIANT (arg##N))	\
2957	  invariant = 0;		\
2958      }					\
2959  } while (0)
2960
2961tree
2962build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2963{
2964  bool constant, read_only, side_effects, invariant;
2965  tree t;
2966
2967  gcc_assert (TREE_CODE_LENGTH (code) == 2);
2968
2969  t = make_node_stat (code PASS_MEM_STAT);
2970  TREE_TYPE (t) = tt;
2971
2972  /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2973     result based on those same flags for the arguments.  But if the
2974     arguments aren't really even `tree' expressions, we shouldn't be trying
2975     to do this.  */
2976
2977  /* Expressions without side effects may be constant if their
2978     arguments are as well.  */
2979  constant = (TREE_CODE_CLASS (code) == tcc_comparison
2980	      || TREE_CODE_CLASS (code) == tcc_binary);
2981  read_only = 1;
2982  side_effects = TREE_SIDE_EFFECTS (t);
2983  invariant = constant;
2984
2985  PROCESS_ARG(0);
2986  PROCESS_ARG(1);
2987
2988  TREE_READONLY (t) = read_only;
2989  TREE_CONSTANT (t) = constant;
2990  TREE_INVARIANT (t) = invariant;
2991  TREE_SIDE_EFFECTS (t) = side_effects;
2992  TREE_THIS_VOLATILE (t)
2993    = (TREE_CODE_CLASS (code) == tcc_reference
2994       && arg0 && TREE_THIS_VOLATILE (arg0));
2995
2996  return t;
2997}
2998
2999tree
3000build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3001	     tree arg2 MEM_STAT_DECL)
3002{
3003  bool constant, read_only, side_effects, invariant;
3004  tree t;
3005
3006  gcc_assert (TREE_CODE_LENGTH (code) == 3);
3007
3008  t = make_node_stat (code PASS_MEM_STAT);
3009  TREE_TYPE (t) = tt;
3010
3011  side_effects = TREE_SIDE_EFFECTS (t);
3012
3013  PROCESS_ARG(0);
3014  PROCESS_ARG(1);
3015  PROCESS_ARG(2);
3016
3017  if (code == CALL_EXPR && !side_effects)
3018    {
3019      tree node;
3020      int i;
3021
3022      /* Calls have side-effects, except those to const or
3023	 pure functions.  */
3024      i = call_expr_flags (t);
3025      if (!(i & (ECF_CONST | ECF_PURE)))
3026	side_effects = 1;
3027
3028      /* And even those have side-effects if their arguments do.  */
3029      else for (node = arg1; node; node = TREE_CHAIN (node))
3030	if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
3031	  {
3032	    side_effects = 1;
3033	    break;
3034	  }
3035    }
3036
3037  TREE_SIDE_EFFECTS (t) = side_effects;
3038  TREE_THIS_VOLATILE (t)
3039    = (TREE_CODE_CLASS (code) == tcc_reference
3040       && arg0 && TREE_THIS_VOLATILE (arg0));
3041
3042  return t;
3043}
3044
3045tree
3046build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3047	     tree arg2, tree arg3 MEM_STAT_DECL)
3048{
3049  bool constant, read_only, side_effects, invariant;
3050  tree t;
3051
3052  gcc_assert (TREE_CODE_LENGTH (code) == 4);
3053
3054  t = make_node_stat (code PASS_MEM_STAT);
3055  TREE_TYPE (t) = tt;
3056
3057  side_effects = TREE_SIDE_EFFECTS (t);
3058
3059  PROCESS_ARG(0);
3060  PROCESS_ARG(1);
3061  PROCESS_ARG(2);
3062  PROCESS_ARG(3);
3063
3064  TREE_SIDE_EFFECTS (t) = side_effects;
3065  TREE_THIS_VOLATILE (t)
3066    = (TREE_CODE_CLASS (code) == tcc_reference
3067       && arg0 && TREE_THIS_VOLATILE (arg0));
3068
3069  return t;
3070}
3071
3072tree
3073build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3074	     tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3075{
3076  bool constant, read_only, side_effects, invariant;
3077  tree t;
3078
3079  gcc_assert (TREE_CODE_LENGTH (code) == 5);
3080
3081  t = make_node_stat (code PASS_MEM_STAT);
3082  TREE_TYPE (t) = tt;
3083
3084  side_effects = TREE_SIDE_EFFECTS (t);
3085
3086  PROCESS_ARG(0);
3087  PROCESS_ARG(1);
3088  PROCESS_ARG(2);
3089  PROCESS_ARG(3);
3090  PROCESS_ARG(4);
3091
3092  TREE_SIDE_EFFECTS (t) = side_effects;
3093  TREE_THIS_VOLATILE (t)
3094    = (TREE_CODE_CLASS (code) == tcc_reference
3095       && arg0 && TREE_THIS_VOLATILE (arg0));
3096
3097  return t;
3098}
3099
3100tree
3101build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3102	     tree arg2, tree arg3, tree arg4, tree arg5,
3103	     tree arg6 MEM_STAT_DECL)
3104{
3105  bool constant, read_only, side_effects, invariant;
3106  tree t;
3107
3108  gcc_assert (code == TARGET_MEM_REF);
3109
3110  t = make_node_stat (code PASS_MEM_STAT);
3111  TREE_TYPE (t) = tt;
3112
3113  side_effects = TREE_SIDE_EFFECTS (t);
3114
3115  PROCESS_ARG(0);
3116  PROCESS_ARG(1);
3117  PROCESS_ARG(2);
3118  PROCESS_ARG(3);
3119  PROCESS_ARG(4);
3120  PROCESS_ARG(5);
3121  PROCESS_ARG(6);
3122
3123  TREE_SIDE_EFFECTS (t) = side_effects;
3124  TREE_THIS_VOLATILE (t) = 0;
3125
3126  return t;
3127}
3128
3129/* Similar except don't specify the TREE_TYPE
3130   and leave the TREE_SIDE_EFFECTS as 0.
3131   It is permissible for arguments to be null,
3132   or even garbage if their values do not matter.  */
3133
3134tree
3135build_nt (enum tree_code code, ...)
3136{
3137  tree t;
3138  int length;
3139  int i;
3140  va_list p;
3141
3142  va_start (p, code);
3143
3144  t = make_node (code);
3145  length = TREE_CODE_LENGTH (code);
3146
3147  for (i = 0; i < length; i++)
3148    TREE_OPERAND (t, i) = va_arg (p, tree);
3149
3150  va_end (p);
3151  return t;
3152}
3153
3154/* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3155   We do NOT enter this node in any sort of symbol table.
3156
3157   layout_decl is used to set up the decl's storage layout.
3158   Other slots are initialized to 0 or null pointers.  */
3159
3160tree
3161build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3162{
3163  tree t;
3164
3165  t = make_node_stat (code PASS_MEM_STAT);
3166
3167/*  if (type == error_mark_node)
3168    type = integer_type_node; */
3169/* That is not done, deliberately, so that having error_mark_node
3170   as the type can suppress useless errors in the use of this variable.  */
3171
3172  DECL_NAME (t) = name;
3173  TREE_TYPE (t) = type;
3174
3175  if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3176    layout_decl (t, 0);
3177  else if (code == FUNCTION_DECL)
3178    DECL_MODE (t) = FUNCTION_MODE;
3179
3180  return t;
3181}
3182
3183/* Builds and returns function declaration with NAME and TYPE.  */
3184
3185tree
3186build_fn_decl (const char *name, tree type)
3187{
3188  tree id = get_identifier (name);
3189  tree decl = build_decl (FUNCTION_DECL, id, type);
3190
3191  DECL_EXTERNAL (decl) = 1;
3192  TREE_PUBLIC (decl) = 1;
3193  DECL_ARTIFICIAL (decl) = 1;
3194  TREE_NOTHROW (decl) = 1;
3195
3196  return decl;
3197}
3198
3199
3200/* BLOCK nodes are used to represent the structure of binding contours
3201   and declarations, once those contours have been exited and their contents
3202   compiled.  This information is used for outputting debugging info.  */
3203
3204tree
3205build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3206{
3207  tree block = make_node (BLOCK);
3208
3209  BLOCK_VARS (block) = vars;
3210  BLOCK_SUBBLOCKS (block) = subblocks;
3211  BLOCK_SUPERCONTEXT (block) = supercontext;
3212  BLOCK_CHAIN (block) = chain;
3213  return block;
3214}
3215
3216#if 1 /* ! defined(USE_MAPPED_LOCATION) */
3217/* ??? gengtype doesn't handle conditionals */
3218static GTY(()) source_locus last_annotated_node;
3219#endif
3220
3221#ifdef USE_MAPPED_LOCATION
3222
3223expanded_location
3224expand_location (source_location loc)
3225{
3226  expanded_location xloc;
3227  if (loc == 0) { xloc.file = NULL; xloc.line = 0;  xloc.column = 0; }
3228  else
3229    {
3230      const struct line_map *map = linemap_lookup (&line_table, loc);
3231      xloc.file = map->to_file;
3232      xloc.line = SOURCE_LINE (map, loc);
3233      xloc.column = SOURCE_COLUMN (map, loc);
3234    };
3235  return xloc;
3236}
3237
3238#else
3239
3240/* Record the exact location where an expression or an identifier were
3241   encountered.  */
3242
3243void
3244annotate_with_file_line (tree node, const char *file, int line)
3245{
3246  /* Roughly one percent of the calls to this function are to annotate
3247     a node with the same information already attached to that node!
3248     Just return instead of wasting memory.  */
3249  if (EXPR_LOCUS (node)
3250      && EXPR_LINENO (node) == line
3251      && (EXPR_FILENAME (node) == file
3252	  || !strcmp (EXPR_FILENAME (node), file)))
3253    {
3254      last_annotated_node = EXPR_LOCUS (node);
3255      return;
3256    }
3257
3258  /* In heavily macroized code (such as GCC itself) this single
3259     entry cache can reduce the number of allocations by more
3260     than half.  */
3261  if (last_annotated_node
3262      && last_annotated_node->line == line
3263      && (last_annotated_node->file == file
3264	  || !strcmp (last_annotated_node->file, file)))
3265    {
3266      SET_EXPR_LOCUS (node, last_annotated_node);
3267      return;
3268    }
3269
3270  SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
3271  EXPR_LINENO (node) = line;
3272  EXPR_FILENAME (node) = file;
3273  last_annotated_node = EXPR_LOCUS (node);
3274}
3275
3276void
3277annotate_with_locus (tree node, location_t locus)
3278{
3279  annotate_with_file_line (node, locus.file, locus.line);
3280}
3281#endif
3282
3283/* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3284   is ATTRIBUTE.  */
3285
3286tree
3287build_decl_attribute_variant (tree ddecl, tree attribute)
3288{
3289  DECL_ATTRIBUTES (ddecl) = attribute;
3290  return ddecl;
3291}
3292
3293/* Borrowed from hashtab.c iterative_hash implementation.  */
3294#define mix(a,b,c) \
3295{ \
3296  a -= b; a -= c; a ^= (c>>13); \
3297  b -= c; b -= a; b ^= (a<< 8); \
3298  c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3299  a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3300  b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3301  c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3302  a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3303  b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3304  c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3305}
3306
3307
3308/* Produce good hash value combining VAL and VAL2.  */
3309static inline hashval_t
3310iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3311{
3312  /* the golden ratio; an arbitrary value.  */
3313  hashval_t a = 0x9e3779b9;
3314
3315  mix (a, val, val2);
3316  return val2;
3317}
3318
3319/* Produce good hash value combining PTR and VAL2.  */
3320static inline hashval_t
3321iterative_hash_pointer (void *ptr, hashval_t val2)
3322{
3323  if (sizeof (ptr) == sizeof (hashval_t))
3324    return iterative_hash_hashval_t ((size_t) ptr, val2);
3325  else
3326    {
3327      hashval_t a = (hashval_t) (size_t) ptr;
3328      /* Avoid warnings about shifting of more than the width of the type on
3329         hosts that won't execute this path.  */
3330      int zero = 0;
3331      hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3332      mix (a, b, val2);
3333      return val2;
3334    }
3335}
3336
3337/* Produce good hash value combining VAL and VAL2.  */
3338static inline hashval_t
3339iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3340{
3341  if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3342    return iterative_hash_hashval_t (val, val2);
3343  else
3344    {
3345      hashval_t a = (hashval_t) val;
3346      /* Avoid warnings about shifting of more than the width of the type on
3347         hosts that won't execute this path.  */
3348      int zero = 0;
3349      hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3350      mix (a, b, val2);
3351      if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3352	{
3353	  hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3354	  hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3355	  mix (a, b, val2);
3356	}
3357      return val2;
3358    }
3359}
3360
3361/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3362   is ATTRIBUTE and its qualifiers are QUALS.
3363
3364   Record such modified types already made so we don't make duplicates.  */
3365
3366static tree
3367build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3368{
3369  if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3370    {
3371      hashval_t hashcode = 0;
3372      tree ntype;
3373      enum tree_code code = TREE_CODE (ttype);
3374
3375      ntype = copy_node (ttype);
3376
3377      TYPE_POINTER_TO (ntype) = 0;
3378      TYPE_REFERENCE_TO (ntype) = 0;
3379      TYPE_ATTRIBUTES (ntype) = attribute;
3380
3381      /* Create a new main variant of TYPE.  */
3382      TYPE_MAIN_VARIANT (ntype) = ntype;
3383      TYPE_NEXT_VARIANT (ntype) = 0;
3384      set_type_quals (ntype, TYPE_UNQUALIFIED);
3385
3386      hashcode = iterative_hash_object (code, hashcode);
3387      if (TREE_TYPE (ntype))
3388	hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3389					  hashcode);
3390      hashcode = attribute_hash_list (attribute, hashcode);
3391
3392      switch (TREE_CODE (ntype))
3393	{
3394	case FUNCTION_TYPE:
3395	  hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3396	  break;
3397	case ARRAY_TYPE:
3398	  hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3399					    hashcode);
3400	  break;
3401	case INTEGER_TYPE:
3402	  hashcode = iterative_hash_object
3403	    (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3404	  hashcode = iterative_hash_object
3405	    (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3406	  break;
3407	case REAL_TYPE:
3408	  {
3409	    unsigned int precision = TYPE_PRECISION (ntype);
3410	    hashcode = iterative_hash_object (precision, hashcode);
3411	  }
3412	  break;
3413	default:
3414	  break;
3415	}
3416
3417      ntype = type_hash_canon (hashcode, ntype);
3418      ttype = build_qualified_type (ntype, quals);
3419    }
3420
3421  return ttype;
3422}
3423
3424
3425/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3426   is ATTRIBUTE.
3427
3428   Record such modified types already made so we don't make duplicates.  */
3429
3430tree
3431build_type_attribute_variant (tree ttype, tree attribute)
3432{
3433  return build_type_attribute_qual_variant (ttype, attribute,
3434					    TYPE_QUALS (ttype));
3435}
3436
3437/* Return nonzero if IDENT is a valid name for attribute ATTR,
3438   or zero if not.
3439
3440   We try both `text' and `__text__', ATTR may be either one.  */
3441/* ??? It might be a reasonable simplification to require ATTR to be only
3442   `text'.  One might then also require attribute lists to be stored in
3443   their canonicalized form.  */
3444
3445static int
3446is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3447{
3448  int ident_len;
3449  const char *p;
3450
3451  if (TREE_CODE (ident) != IDENTIFIER_NODE)
3452    return 0;
3453
3454  p = IDENTIFIER_POINTER (ident);
3455  ident_len = IDENTIFIER_LENGTH (ident);
3456
3457  if (ident_len == attr_len
3458      && strcmp (attr, p) == 0)
3459    return 1;
3460
3461  /* If ATTR is `__text__', IDENT must be `text'; and vice versa.  */
3462  if (attr[0] == '_')
3463    {
3464      gcc_assert (attr[1] == '_');
3465      gcc_assert (attr[attr_len - 2] == '_');
3466      gcc_assert (attr[attr_len - 1] == '_');
3467      if (ident_len == attr_len - 4
3468	  && strncmp (attr + 2, p, attr_len - 4) == 0)
3469	return 1;
3470    }
3471  else
3472    {
3473      if (ident_len == attr_len + 4
3474	  && p[0] == '_' && p[1] == '_'
3475	  && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3476	  && strncmp (attr, p + 2, attr_len) == 0)
3477	return 1;
3478    }
3479
3480  return 0;
3481}
3482
3483/* Return nonzero if IDENT is a valid name for attribute ATTR,
3484   or zero if not.
3485
3486   We try both `text' and `__text__', ATTR may be either one.  */
3487
3488int
3489is_attribute_p (const char *attr, tree ident)
3490{
3491  return is_attribute_with_length_p (attr, strlen (attr), ident);
3492}
3493
3494/* Given an attribute name and a list of attributes, return a pointer to the
3495   attribute's list element if the attribute is part of the list, or NULL_TREE
3496   if not found.  If the attribute appears more than once, this only
3497   returns the first occurrence; the TREE_CHAIN of the return value should
3498   be passed back in if further occurrences are wanted.  */
3499
3500tree
3501lookup_attribute (const char *attr_name, tree list)
3502{
3503  tree l;
3504  size_t attr_len = strlen (attr_name);
3505
3506  for (l = list; l; l = TREE_CHAIN (l))
3507    {
3508      gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3509      if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3510	return l;
3511    }
3512
3513  return NULL_TREE;
3514}
3515
3516/* Remove any instances of attribute ATTR_NAME in LIST and return the
3517   modified list.  */
3518
3519tree
3520remove_attribute (const char *attr_name, tree list)
3521{
3522  tree *p;
3523  size_t attr_len = strlen (attr_name);
3524
3525  for (p = &list; *p; )
3526    {
3527      tree l = *p;
3528      gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3529      if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3530	*p = TREE_CHAIN (l);
3531      else
3532	p = &TREE_CHAIN (l);
3533    }
3534
3535  return list;
3536}
3537
3538/* Return an attribute list that is the union of a1 and a2.  */
3539
3540tree
3541merge_attributes (tree a1, tree a2)
3542{
3543  tree attributes;
3544
3545  /* Either one unset?  Take the set one.  */
3546
3547  if ((attributes = a1) == 0)
3548    attributes = a2;
3549
3550  /* One that completely contains the other?  Take it.  */
3551
3552  else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3553    {
3554      if (attribute_list_contained (a2, a1))
3555	attributes = a2;
3556      else
3557	{
3558	  /* Pick the longest list, and hang on the other list.  */
3559
3560	  if (list_length (a1) < list_length (a2))
3561	    attributes = a2, a2 = a1;
3562
3563	  for (; a2 != 0; a2 = TREE_CHAIN (a2))
3564	    {
3565	      tree a;
3566	      for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3567					 attributes);
3568		   a != NULL_TREE;
3569		   a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3570					 TREE_CHAIN (a)))
3571		{
3572		  if (TREE_VALUE (a) != NULL
3573		      && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3574		      && TREE_VALUE (a2) != NULL
3575		      && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3576		    {
3577		      if (simple_cst_list_equal (TREE_VALUE (a),
3578						 TREE_VALUE (a2)) == 1)
3579			break;
3580		    }
3581		  else if (simple_cst_equal (TREE_VALUE (a),
3582					     TREE_VALUE (a2)) == 1)
3583		    break;
3584		}
3585	      if (a == NULL_TREE)
3586		{
3587		  a1 = copy_node (a2);
3588		  TREE_CHAIN (a1) = attributes;
3589		  attributes = a1;
3590		}
3591	    }
3592	}
3593    }
3594  return attributes;
3595}
3596
3597/* Given types T1 and T2, merge their attributes and return
3598  the result.  */
3599
3600tree
3601merge_type_attributes (tree t1, tree t2)
3602{
3603  return merge_attributes (TYPE_ATTRIBUTES (t1),
3604			   TYPE_ATTRIBUTES (t2));
3605}
3606
3607/* Given decls OLDDECL and NEWDECL, merge their attributes and return
3608   the result.  */
3609
3610tree
3611merge_decl_attributes (tree olddecl, tree newdecl)
3612{
3613  return merge_attributes (DECL_ATTRIBUTES (olddecl),
3614			   DECL_ATTRIBUTES (newdecl));
3615}
3616
3617#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3618
3619/* Specialization of merge_decl_attributes for various Windows targets.
3620
3621   This handles the following situation:
3622
3623     __declspec (dllimport) int foo;
3624     int foo;
3625
3626   The second instance of `foo' nullifies the dllimport.  */
3627
3628tree
3629merge_dllimport_decl_attributes (tree old, tree new)
3630{
3631  tree a;
3632  int delete_dllimport_p = 1;
3633
3634  /* What we need to do here is remove from `old' dllimport if it doesn't
3635     appear in `new'.  dllimport behaves like extern: if a declaration is
3636     marked dllimport and a definition appears later, then the object
3637     is not dllimport'd.  We also remove a `new' dllimport if the old list
3638     contains dllexport:  dllexport always overrides dllimport, regardless
3639     of the order of declaration.  */
3640  if (!VAR_OR_FUNCTION_DECL_P (new))
3641    delete_dllimport_p = 0;
3642  else if (DECL_DLLIMPORT_P (new)
3643     	   && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3644    {
3645      DECL_DLLIMPORT_P (new) = 0;
3646      warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3647	      "dllimport ignored", new);
3648    }
3649  else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3650    {
3651      /* Warn about overriding a symbol that has already been used. eg:
3652           extern int __attribute__ ((dllimport)) foo;
3653	   int* bar () {return &foo;}
3654	   int foo;
3655      */
3656      if (TREE_USED (old))
3657	{
3658	  warning (0, "%q+D redeclared without dllimport attribute "
3659		   "after being referenced with dll linkage", new);
3660	  /* If we have used a variable's address with dllimport linkage,
3661	      keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3662	      decl may already have had TREE_INVARIANT and TREE_CONSTANT
3663	      computed.
3664	      We still remove the attribute so that assembler code refers
3665	      to '&foo rather than '_imp__foo'.  */
3666	  if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3667	    DECL_DLLIMPORT_P (new) = 1;
3668	}
3669
3670      /* Let an inline definition silently override the external reference,
3671	 but otherwise warn about attribute inconsistency.  */
3672      else if (TREE_CODE (new) == VAR_DECL
3673	       || !DECL_DECLARED_INLINE_P (new))
3674	warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3675		  "previous dllimport ignored", new);
3676    }
3677  else
3678    delete_dllimport_p = 0;
3679
3680  a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3681
3682  if (delete_dllimport_p)
3683    {
3684      tree prev, t;
3685      const size_t attr_len = strlen ("dllimport");
3686
3687      /* Scan the list for dllimport and delete it.  */
3688      for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3689	{
3690	  if (is_attribute_with_length_p ("dllimport", attr_len,
3691					  TREE_PURPOSE (t)))
3692	    {
3693	      if (prev == NULL_TREE)
3694		a = TREE_CHAIN (a);
3695	      else
3696		TREE_CHAIN (prev) = TREE_CHAIN (t);
3697	      break;
3698	    }
3699	}
3700    }
3701
3702  return a;
3703}
3704
3705/* Handle a "dllimport" or "dllexport" attribute; arguments as in
3706   struct attribute_spec.handler.  */
3707
3708tree
3709handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3710		      bool *no_add_attrs)
3711{
3712  tree node = *pnode;
3713
3714  /* These attributes may apply to structure and union types being created,
3715     but otherwise should pass to the declaration involved.  */
3716  if (!DECL_P (node))
3717    {
3718      if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3719		   | (int) ATTR_FLAG_ARRAY_NEXT))
3720	{
3721	  *no_add_attrs = true;
3722	  return tree_cons (name, args, NULL_TREE);
3723	}
3724      if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3725	{
3726	  warning (OPT_Wattributes, "%qs attribute ignored",
3727		   IDENTIFIER_POINTER (name));
3728	  *no_add_attrs = true;
3729	}
3730
3731      return NULL_TREE;
3732    }
3733
3734  if (TREE_CODE (node) != FUNCTION_DECL
3735      && TREE_CODE (node) != VAR_DECL)
3736    {
3737      *no_add_attrs = true;
3738      warning (OPT_Wattributes, "%qs attribute ignored",
3739	       IDENTIFIER_POINTER (name));
3740      return NULL_TREE;
3741    }
3742
3743  /* Report error on dllimport ambiguities seen now before they cause
3744     any damage.  */
3745  else if (is_attribute_p ("dllimport", name))
3746    {
3747      /* Honor any target-specific overrides. */
3748      if (!targetm.valid_dllimport_attribute_p (node))
3749	*no_add_attrs = true;
3750
3751     else if (TREE_CODE (node) == FUNCTION_DECL
3752	        && DECL_DECLARED_INLINE_P (node))
3753	{
3754	  warning (OPT_Wattributes, "inline function %q+D declared as "
3755		  " dllimport: attribute ignored", node);
3756	  *no_add_attrs = true;
3757	}
3758      /* Like MS, treat definition of dllimported variables and
3759	 non-inlined functions on declaration as syntax errors. */
3760     else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
3761	{
3762	  error ("function %q+D definition is marked dllimport", node);
3763	  *no_add_attrs = true;
3764	}
3765
3766     else if (TREE_CODE (node) == VAR_DECL)
3767	{
3768	  if (DECL_INITIAL (node))
3769	    {
3770	      error ("variable %q+D definition is marked dllimport",
3771		     node);
3772	      *no_add_attrs = true;
3773	    }
3774
3775	  /* `extern' needn't be specified with dllimport.
3776	     Specify `extern' now and hope for the best.  Sigh.  */
3777	  DECL_EXTERNAL (node) = 1;
3778	  /* Also, implicitly give dllimport'd variables declared within
3779	     a function global scope, unless declared static.  */
3780	  if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3781	    TREE_PUBLIC (node) = 1;
3782	}
3783
3784      if (*no_add_attrs == false)
3785        DECL_DLLIMPORT_P (node) = 1;
3786    }
3787
3788  /*  Report error if symbol is not accessible at global scope.  */
3789  if (!TREE_PUBLIC (node)
3790      && (TREE_CODE (node) == VAR_DECL
3791	  || TREE_CODE (node) == FUNCTION_DECL))
3792    {
3793      error ("external linkage required for symbol %q+D because of "
3794	     "%qs attribute", node, IDENTIFIER_POINTER (name));
3795      *no_add_attrs = true;
3796    }
3797
3798  return NULL_TREE;
3799}
3800
3801#endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES  */
3802
3803/* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3804   of the various TYPE_QUAL values.  */
3805
3806static void
3807set_type_quals (tree type, int type_quals)
3808{
3809  TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3810  TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3811  TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3812}
3813
3814/* Returns true iff cand is equivalent to base with type_quals.  */
3815
3816bool
3817check_qualified_type (tree cand, tree base, int type_quals)
3818{
3819  return (TYPE_QUALS (cand) == type_quals
3820	  && TYPE_NAME (cand) == TYPE_NAME (base)
3821	  /* Apparently this is needed for Objective-C.  */
3822	  && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3823	  && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3824				   TYPE_ATTRIBUTES (base)));
3825}
3826
3827/* Return a version of the TYPE, qualified as indicated by the
3828   TYPE_QUALS, if one exists.  If no qualified version exists yet,
3829   return NULL_TREE.  */
3830
3831tree
3832get_qualified_type (tree type, int type_quals)
3833{
3834  tree t;
3835
3836  if (TYPE_QUALS (type) == type_quals)
3837    return type;
3838
3839  /* Search the chain of variants to see if there is already one there just
3840     like the one we need to have.  If so, use that existing one.  We must
3841     preserve the TYPE_NAME, since there is code that depends on this.  */
3842  for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3843    if (check_qualified_type (t, type, type_quals))
3844      return t;
3845
3846  return NULL_TREE;
3847}
3848
3849/* Like get_qualified_type, but creates the type if it does not
3850   exist.  This function never returns NULL_TREE.  */
3851
3852tree
3853build_qualified_type (tree type, int type_quals)
3854{
3855  tree t;
3856
3857  /* See if we already have the appropriate qualified variant.  */
3858  t = get_qualified_type (type, type_quals);
3859
3860  /* If not, build it.  */
3861  if (!t)
3862    {
3863      t = build_variant_type_copy (type);
3864      set_type_quals (t, type_quals);
3865    }
3866
3867  return t;
3868}
3869
3870/* Create a new distinct copy of TYPE.  The new type is made its own
3871   MAIN_VARIANT.  */
3872
3873tree
3874build_distinct_type_copy (tree type)
3875{
3876  tree t = copy_node (type);
3877
3878  TYPE_POINTER_TO (t) = 0;
3879  TYPE_REFERENCE_TO (t) = 0;
3880
3881  /* Make it its own variant.  */
3882  TYPE_MAIN_VARIANT (t) = t;
3883  TYPE_NEXT_VARIANT (t) = 0;
3884
3885  /* Note that it is now possible for TYPE_MIN_VALUE to be a value
3886     whose TREE_TYPE is not t.  This can also happen in the Ada
3887     frontend when using subtypes.  */
3888
3889  return t;
3890}
3891
3892/* Create a new variant of TYPE, equivalent but distinct.
3893   This is so the caller can modify it.  */
3894
3895tree
3896build_variant_type_copy (tree type)
3897{
3898  tree t, m = TYPE_MAIN_VARIANT (type);
3899
3900  t = build_distinct_type_copy (type);
3901
3902  /* Add the new type to the chain of variants of TYPE.  */
3903  TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3904  TYPE_NEXT_VARIANT (m) = t;
3905  TYPE_MAIN_VARIANT (t) = m;
3906
3907  return t;
3908}
3909
3910/* Return true if the from tree in both tree maps are equal.  */
3911
3912int
3913tree_map_eq (const void *va, const void *vb)
3914{
3915  const struct tree_map  *a = va, *b = vb;
3916  return (a->from == b->from);
3917}
3918
3919/* Hash a from tree in a tree_map.  */
3920
3921unsigned int
3922tree_map_hash (const void *item)
3923{
3924  return (((const struct tree_map *) item)->hash);
3925}
3926
3927/* Return true if this tree map structure is marked for garbage collection
3928   purposes.  We simply return true if the from tree is marked, so that this
3929   structure goes away when the from tree goes away.  */
3930
3931int
3932tree_map_marked_p (const void *p)
3933{
3934  tree from = ((struct tree_map *) p)->from;
3935
3936  return ggc_marked_p (from);
3937}
3938
3939/* Return true if the trees in the tree_int_map *'s VA and VB are equal.  */
3940
3941static int
3942tree_int_map_eq (const void *va, const void *vb)
3943{
3944  const struct tree_int_map  *a = va, *b = vb;
3945  return (a->from == b->from);
3946}
3947
3948/* Hash a from tree in the tree_int_map * ITEM.  */
3949
3950static unsigned int
3951tree_int_map_hash (const void *item)
3952{
3953  return htab_hash_pointer (((const struct tree_int_map *)item)->from);
3954}
3955
3956/* Return true if this tree int map structure is marked for garbage collection
3957   purposes.  We simply return true if the from tree_int_map *P's from tree is marked, so that this
3958   structure goes away when the from tree goes away.  */
3959
3960static int
3961tree_int_map_marked_p (const void *p)
3962{
3963  tree from = ((struct tree_int_map *) p)->from;
3964
3965  return ggc_marked_p (from);
3966}
3967/* Lookup an init priority for FROM, and return it if we find one.  */
3968
3969unsigned short
3970decl_init_priority_lookup (tree from)
3971{
3972  struct tree_int_map *h, in;
3973  in.from = from;
3974
3975  h = htab_find_with_hash (init_priority_for_decl,
3976			   &in, htab_hash_pointer (from));
3977  if (h)
3978    return h->to;
3979  return 0;
3980}
3981
3982/* Insert a mapping FROM->TO in the init priority hashtable.  */
3983
3984void
3985decl_init_priority_insert (tree from, unsigned short to)
3986{
3987  struct tree_int_map *h;
3988  void **loc;
3989
3990  h = ggc_alloc (sizeof (struct tree_int_map));
3991  h->from = from;
3992  h->to = to;
3993  loc = htab_find_slot_with_hash (init_priority_for_decl, h,
3994				  htab_hash_pointer (from), INSERT);
3995  *(struct tree_int_map **) loc = h;
3996}
3997
3998/* Look up a restrict qualified base decl for FROM.  */
3999
4000tree
4001decl_restrict_base_lookup (tree from)
4002{
4003  struct tree_map *h;
4004  struct tree_map in;
4005
4006  in.from = from;
4007  h = htab_find_with_hash (restrict_base_for_decl, &in,
4008			   htab_hash_pointer (from));
4009  return h ? h->to : NULL_TREE;
4010}
4011
4012/* Record the restrict qualified base TO for FROM.  */
4013
4014void
4015decl_restrict_base_insert (tree from, tree to)
4016{
4017  struct tree_map *h;
4018  void **loc;
4019
4020  h = ggc_alloc (sizeof (struct tree_map));
4021  h->hash = htab_hash_pointer (from);
4022  h->from = from;
4023  h->to = to;
4024  loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4025  *(struct tree_map **) loc = h;
4026}
4027
4028/* Print out the statistics for the DECL_DEBUG_EXPR hash table.  */
4029
4030static void
4031print_debug_expr_statistics (void)
4032{
4033  fprintf (stderr, "DECL_DEBUG_EXPR  hash: size %ld, %ld elements, %f collisions\n",
4034	   (long) htab_size (debug_expr_for_decl),
4035	   (long) htab_elements (debug_expr_for_decl),
4036	   htab_collisions (debug_expr_for_decl));
4037}
4038
4039/* Print out the statistics for the DECL_VALUE_EXPR hash table.  */
4040
4041static void
4042print_value_expr_statistics (void)
4043{
4044  fprintf (stderr, "DECL_VALUE_EXPR  hash: size %ld, %ld elements, %f collisions\n",
4045	   (long) htab_size (value_expr_for_decl),
4046	   (long) htab_elements (value_expr_for_decl),
4047	   htab_collisions (value_expr_for_decl));
4048}
4049
4050/* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4051   don't print anything if the table is empty.  */
4052
4053static void
4054print_restrict_base_statistics (void)
4055{
4056  if (htab_elements (restrict_base_for_decl) != 0)
4057    fprintf (stderr,
4058	     "RESTRICT_BASE    hash: size %ld, %ld elements, %f collisions\n",
4059	     (long) htab_size (restrict_base_for_decl),
4060	     (long) htab_elements (restrict_base_for_decl),
4061	     htab_collisions (restrict_base_for_decl));
4062}
4063
4064/* Lookup a debug expression for FROM, and return it if we find one.  */
4065
4066tree
4067decl_debug_expr_lookup (tree from)
4068{
4069  struct tree_map *h, in;
4070  in.from = from;
4071
4072  h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4073  if (h)
4074    return h->to;
4075  return NULL_TREE;
4076}
4077
4078/* Insert a mapping FROM->TO in the debug expression hashtable.  */
4079
4080void
4081decl_debug_expr_insert (tree from, tree to)
4082{
4083  struct tree_map *h;
4084  void **loc;
4085
4086  h = ggc_alloc (sizeof (struct tree_map));
4087  h->hash = htab_hash_pointer (from);
4088  h->from = from;
4089  h->to = to;
4090  loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4091  *(struct tree_map **) loc = h;
4092}
4093
4094/* Lookup a value expression for FROM, and return it if we find one.  */
4095
4096tree
4097decl_value_expr_lookup (tree from)
4098{
4099  struct tree_map *h, in;
4100  in.from = from;
4101
4102  h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4103  if (h)
4104    return h->to;
4105  return NULL_TREE;
4106}
4107
4108/* Insert a mapping FROM->TO in the value expression hashtable.  */
4109
4110void
4111decl_value_expr_insert (tree from, tree to)
4112{
4113  struct tree_map *h;
4114  void **loc;
4115
4116  h = ggc_alloc (sizeof (struct tree_map));
4117  h->hash = htab_hash_pointer (from);
4118  h->from = from;
4119  h->to = to;
4120  loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4121  *(struct tree_map **) loc = h;
4122}
4123
4124/* Hashing of types so that we don't make duplicates.
4125   The entry point is `type_hash_canon'.  */
4126
4127/* Compute a hash code for a list of types (chain of TREE_LIST nodes
4128   with types in the TREE_VALUE slots), by adding the hash codes
4129   of the individual types.  */
4130
4131unsigned int
4132type_hash_list (tree list, hashval_t hashcode)
4133{
4134  tree tail;
4135
4136  for (tail = list; tail; tail = TREE_CHAIN (tail))
4137    if (TREE_VALUE (tail) != error_mark_node)
4138      hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4139					hashcode);
4140
4141  return hashcode;
4142}
4143
4144/* These are the Hashtable callback functions.  */
4145
4146/* Returns true iff the types are equivalent.  */
4147
4148static int
4149type_hash_eq (const void *va, const void *vb)
4150{
4151  const struct type_hash *a = va, *b = vb;
4152
4153  /* First test the things that are the same for all types.  */
4154  if (a->hash != b->hash
4155      || TREE_CODE (a->type) != TREE_CODE (b->type)
4156      || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4157      || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4158				 TYPE_ATTRIBUTES (b->type))
4159      || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4160      || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4161    return 0;
4162
4163  switch (TREE_CODE (a->type))
4164    {
4165    case VOID_TYPE:
4166    case COMPLEX_TYPE:
4167    case POINTER_TYPE:
4168    case REFERENCE_TYPE:
4169      return 1;
4170
4171    case VECTOR_TYPE:
4172      return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4173
4174    case ENUMERAL_TYPE:
4175      if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4176	  && !(TYPE_VALUES (a->type)
4177	       && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4178	       && TYPE_VALUES (b->type)
4179	       && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4180	       && type_list_equal (TYPE_VALUES (a->type),
4181				   TYPE_VALUES (b->type))))
4182	return 0;
4183
4184      /* ... fall through ... */
4185
4186    case INTEGER_TYPE:
4187    case REAL_TYPE:
4188    case BOOLEAN_TYPE:
4189      return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4190	       || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4191				      TYPE_MAX_VALUE (b->type)))
4192	      && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4193		  || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4194					 TYPE_MIN_VALUE (b->type))));
4195
4196    case OFFSET_TYPE:
4197      return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4198
4199    case METHOD_TYPE:
4200      return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4201	      && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4202		  || (TYPE_ARG_TYPES (a->type)
4203		      && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4204		      && TYPE_ARG_TYPES (b->type)
4205		      && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4206		      && type_list_equal (TYPE_ARG_TYPES (a->type),
4207					  TYPE_ARG_TYPES (b->type)))));
4208
4209    case ARRAY_TYPE:
4210      return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4211
4212    case RECORD_TYPE:
4213    case UNION_TYPE:
4214    case QUAL_UNION_TYPE:
4215      return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4216	      || (TYPE_FIELDS (a->type)
4217		  && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4218		  && TYPE_FIELDS (b->type)
4219		  && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4220		  && type_list_equal (TYPE_FIELDS (a->type),
4221				      TYPE_FIELDS (b->type))));
4222
4223    case FUNCTION_TYPE:
4224      return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4225	      || (TYPE_ARG_TYPES (a->type)
4226		  && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4227		  && TYPE_ARG_TYPES (b->type)
4228		  && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4229		  && type_list_equal (TYPE_ARG_TYPES (a->type),
4230				      TYPE_ARG_TYPES (b->type))));
4231
4232    default:
4233      return 0;
4234    }
4235}
4236
4237/* Return the cached hash value.  */
4238
4239static hashval_t
4240type_hash_hash (const void *item)
4241{
4242  return ((const struct type_hash *) item)->hash;
4243}
4244
4245/* Look in the type hash table for a type isomorphic to TYPE.
4246   If one is found, return it.  Otherwise return 0.  */
4247
4248tree
4249type_hash_lookup (hashval_t hashcode, tree type)
4250{
4251  struct type_hash *h, in;
4252
4253  /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4254     must call that routine before comparing TYPE_ALIGNs.  */
4255  layout_type (type);
4256
4257  in.hash = hashcode;
4258  in.type = type;
4259
4260  h = htab_find_with_hash (type_hash_table, &in, hashcode);
4261  if (h)
4262    return h->type;
4263  return NULL_TREE;
4264}
4265
4266/* Add an entry to the type-hash-table
4267   for a type TYPE whose hash code is HASHCODE.  */
4268
4269void
4270type_hash_add (hashval_t hashcode, tree type)
4271{
4272  struct type_hash *h;
4273  void **loc;
4274
4275  h = ggc_alloc (sizeof (struct type_hash));
4276  h->hash = hashcode;
4277  h->type = type;
4278  loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4279  *(struct type_hash **) loc = h;
4280}
4281
4282/* Given TYPE, and HASHCODE its hash code, return the canonical
4283   object for an identical type if one already exists.
4284   Otherwise, return TYPE, and record it as the canonical object.
4285
4286   To use this function, first create a type of the sort you want.
4287   Then compute its hash code from the fields of the type that
4288   make it different from other similar types.
4289   Then call this function and use the value.  */
4290
4291tree
4292type_hash_canon (unsigned int hashcode, tree type)
4293{
4294  tree t1;
4295
4296  /* The hash table only contains main variants, so ensure that's what we're
4297     being passed.  */
4298  gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4299
4300  if (!lang_hooks.types.hash_types)
4301    return type;
4302
4303  /* See if the type is in the hash table already.  If so, return it.
4304     Otherwise, add the type.  */
4305  t1 = type_hash_lookup (hashcode, type);
4306  if (t1 != 0)
4307    {
4308#ifdef GATHER_STATISTICS
4309      tree_node_counts[(int) t_kind]--;
4310      tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4311#endif
4312      return t1;
4313    }
4314  else
4315    {
4316      type_hash_add (hashcode, type);
4317      return type;
4318    }
4319}
4320
4321/* See if the data pointed to by the type hash table is marked.  We consider
4322   it marked if the type is marked or if a debug type number or symbol
4323   table entry has been made for the type.  This reduces the amount of
4324   debugging output and eliminates that dependency of the debug output on
4325   the number of garbage collections.  */
4326
4327static int
4328type_hash_marked_p (const void *p)
4329{
4330  tree type = ((struct type_hash *) p)->type;
4331
4332  return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4333}
4334
4335static void
4336print_type_hash_statistics (void)
4337{
4338  fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4339	   (long) htab_size (type_hash_table),
4340	   (long) htab_elements (type_hash_table),
4341	   htab_collisions (type_hash_table));
4342}
4343
4344/* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4345   with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4346   by adding the hash codes of the individual attributes.  */
4347
4348unsigned int
4349attribute_hash_list (tree list, hashval_t hashcode)
4350{
4351  tree tail;
4352
4353  for (tail = list; tail; tail = TREE_CHAIN (tail))
4354    /* ??? Do we want to add in TREE_VALUE too? */
4355    hashcode = iterative_hash_object
4356      (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4357  return hashcode;
4358}
4359
4360/* Given two lists of attributes, return true if list l2 is
4361   equivalent to l1.  */
4362
4363int
4364attribute_list_equal (tree l1, tree l2)
4365{
4366  return attribute_list_contained (l1, l2)
4367	 && attribute_list_contained (l2, l1);
4368}
4369
4370/* Given two lists of attributes, return true if list L2 is
4371   completely contained within L1.  */
4372/* ??? This would be faster if attribute names were stored in a canonicalized
4373   form.  Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4374   must be used to show these elements are equivalent (which they are).  */
4375/* ??? It's not clear that attributes with arguments will always be handled
4376   correctly.  */
4377
4378int
4379attribute_list_contained (tree l1, tree l2)
4380{
4381  tree t1, t2;
4382
4383  /* First check the obvious, maybe the lists are identical.  */
4384  if (l1 == l2)
4385    return 1;
4386
4387  /* Maybe the lists are similar.  */
4388  for (t1 = l1, t2 = l2;
4389       t1 != 0 && t2 != 0
4390        && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4391        && TREE_VALUE (t1) == TREE_VALUE (t2);
4392       t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4393
4394  /* Maybe the lists are equal.  */
4395  if (t1 == 0 && t2 == 0)
4396    return 1;
4397
4398  for (; t2 != 0; t2 = TREE_CHAIN (t2))
4399    {
4400      tree attr;
4401      for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4402	   attr != NULL_TREE;
4403	   attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4404				    TREE_CHAIN (attr)))
4405	{
4406	  if (TREE_VALUE (t2) != NULL
4407	      && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4408	      && TREE_VALUE (attr) != NULL
4409	      && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4410	    {
4411	      if (simple_cst_list_equal (TREE_VALUE (t2),
4412					 TREE_VALUE (attr)) == 1)
4413		break;
4414	    }
4415	  else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4416	    break;
4417	}
4418
4419      if (attr == 0)
4420	return 0;
4421    }
4422
4423  return 1;
4424}
4425
4426/* Given two lists of types
4427   (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4428   return 1 if the lists contain the same types in the same order.
4429   Also, the TREE_PURPOSEs must match.  */
4430
4431int
4432type_list_equal (tree l1, tree l2)
4433{
4434  tree t1, t2;
4435
4436  for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4437    if (TREE_VALUE (t1) != TREE_VALUE (t2)
4438	|| (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4439	    && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4440		  && (TREE_TYPE (TREE_PURPOSE (t1))
4441		      == TREE_TYPE (TREE_PURPOSE (t2))))))
4442      return 0;
4443
4444  return t1 == t2;
4445}
4446
4447/* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4448   given by TYPE.  If the argument list accepts variable arguments,
4449   then this function counts only the ordinary arguments.  */
4450
4451int
4452type_num_arguments (tree type)
4453{
4454  int i = 0;
4455  tree t;
4456
4457  for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4458    /* If the function does not take a variable number of arguments,
4459       the last element in the list will have type `void'.  */
4460    if (VOID_TYPE_P (TREE_VALUE (t)))
4461      break;
4462    else
4463      ++i;
4464
4465  return i;
4466}
4467
4468/* Nonzero if integer constants T1 and T2
4469   represent the same constant value.  */
4470
4471int
4472tree_int_cst_equal (tree t1, tree t2)
4473{
4474  if (t1 == t2)
4475    return 1;
4476
4477  if (t1 == 0 || t2 == 0)
4478    return 0;
4479
4480  if (TREE_CODE (t1) == INTEGER_CST
4481      && TREE_CODE (t2) == INTEGER_CST
4482      && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4483      && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4484    return 1;
4485
4486  return 0;
4487}
4488
4489/* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4490   The precise way of comparison depends on their data type.  */
4491
4492int
4493tree_int_cst_lt (tree t1, tree t2)
4494{
4495  if (t1 == t2)
4496    return 0;
4497
4498  if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4499    {
4500      int t1_sgn = tree_int_cst_sgn (t1);
4501      int t2_sgn = tree_int_cst_sgn (t2);
4502
4503      if (t1_sgn < t2_sgn)
4504	return 1;
4505      else if (t1_sgn > t2_sgn)
4506	return 0;
4507      /* Otherwise, both are non-negative, so we compare them as
4508	 unsigned just in case one of them would overflow a signed
4509	 type.  */
4510    }
4511  else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4512    return INT_CST_LT (t1, t2);
4513
4514  return INT_CST_LT_UNSIGNED (t1, t2);
4515}
4516
4517/* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2.  */
4518
4519int
4520tree_int_cst_compare (tree t1, tree t2)
4521{
4522  if (tree_int_cst_lt (t1, t2))
4523    return -1;
4524  else if (tree_int_cst_lt (t2, t1))
4525    return 1;
4526  else
4527    return 0;
4528}
4529
4530/* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4531   the host.  If POS is zero, the value can be represented in a single
4532   HOST_WIDE_INT.  If POS is nonzero, the value must be non-negative and can
4533   be represented in a single unsigned HOST_WIDE_INT.  */
4534
4535int
4536host_integerp (tree t, int pos)
4537{
4538  return (TREE_CODE (t) == INTEGER_CST
4539	  && ((TREE_INT_CST_HIGH (t) == 0
4540	       && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4541	      || (! pos && TREE_INT_CST_HIGH (t) == -1
4542		  && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4543		  && (!TYPE_UNSIGNED (TREE_TYPE (t))
4544		      || TYPE_IS_SIZETYPE (TREE_TYPE (t))))
4545	      || (pos && TREE_INT_CST_HIGH (t) == 0)));
4546}
4547
4548/* Return the HOST_WIDE_INT least significant bits of T if it is an
4549   INTEGER_CST and there is no overflow.  POS is nonzero if the result must
4550   be non-negative.  We must be able to satisfy the above conditions.  */
4551
4552HOST_WIDE_INT
4553tree_low_cst (tree t, int pos)
4554{
4555  gcc_assert (host_integerp (t, pos));
4556  return TREE_INT_CST_LOW (t);
4557}
4558
4559/* Return the most significant bit of the integer constant T.  */
4560
4561int
4562tree_int_cst_msb (tree t)
4563{
4564  int prec;
4565  HOST_WIDE_INT h;
4566  unsigned HOST_WIDE_INT l;
4567
4568  /* Note that using TYPE_PRECISION here is wrong.  We care about the
4569     actual bits, not the (arbitrary) range of the type.  */
4570  prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4571  rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4572		 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4573  return (l & 1) == 1;
4574}
4575
4576/* Return an indication of the sign of the integer constant T.
4577   The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4578   Note that -1 will never be returned if T's type is unsigned.  */
4579
4580int
4581tree_int_cst_sgn (tree t)
4582{
4583  if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4584    return 0;
4585  else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4586    return 1;
4587  else if (TREE_INT_CST_HIGH (t) < 0)
4588    return -1;
4589  else
4590    return 1;
4591}
4592
4593/* Compare two constructor-element-type constants.  Return 1 if the lists
4594   are known to be equal; otherwise return 0.  */
4595
4596int
4597simple_cst_list_equal (tree l1, tree l2)
4598{
4599  while (l1 != NULL_TREE && l2 != NULL_TREE)
4600    {
4601      if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4602	return 0;
4603
4604      l1 = TREE_CHAIN (l1);
4605      l2 = TREE_CHAIN (l2);
4606    }
4607
4608  return l1 == l2;
4609}
4610
4611/* Return truthvalue of whether T1 is the same tree structure as T2.
4612   Return 1 if they are the same.
4613   Return 0 if they are understandably different.
4614   Return -1 if either contains tree structure not understood by
4615   this function.  */
4616
4617int
4618simple_cst_equal (tree t1, tree t2)
4619{
4620  enum tree_code code1, code2;
4621  int cmp;
4622  int i;
4623
4624  if (t1 == t2)
4625    return 1;
4626  if (t1 == 0 || t2 == 0)
4627    return 0;
4628
4629  code1 = TREE_CODE (t1);
4630  code2 = TREE_CODE (t2);
4631
4632  if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4633    {
4634      if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4635	  || code2 == NON_LVALUE_EXPR)
4636	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4637      else
4638	return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4639    }
4640
4641  else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4642	   || code2 == NON_LVALUE_EXPR)
4643    return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4644
4645  if (code1 != code2)
4646    return 0;
4647
4648  switch (code1)
4649    {
4650    case INTEGER_CST:
4651      return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4652	      && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
4653
4654    case REAL_CST:
4655      return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4656
4657    case STRING_CST:
4658      return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4659	      && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4660			 TREE_STRING_LENGTH (t1)));
4661
4662    case CONSTRUCTOR:
4663      {
4664	unsigned HOST_WIDE_INT idx;
4665	VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
4666	VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
4667
4668	if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
4669	  return false;
4670
4671        for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
4672	  /* ??? Should we handle also fields here? */
4673	  if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
4674				 VEC_index (constructor_elt, v2, idx)->value))
4675	    return false;
4676	return true;
4677      }
4678
4679    case SAVE_EXPR:
4680      return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4681
4682    case CALL_EXPR:
4683      cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4684      if (cmp <= 0)
4685	return cmp;
4686      return
4687	simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4688
4689    case TARGET_EXPR:
4690      /* Special case: if either target is an unallocated VAR_DECL,
4691	 it means that it's going to be unified with whatever the
4692	 TARGET_EXPR is really supposed to initialize, so treat it
4693	 as being equivalent to anything.  */
4694      if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4695	   && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4696	   && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
4697	  || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4698	      && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4699	      && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
4700	cmp = 1;
4701      else
4702	cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4703
4704      if (cmp <= 0)
4705	return cmp;
4706
4707      return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4708
4709    case WITH_CLEANUP_EXPR:
4710      cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4711      if (cmp <= 0)
4712	return cmp;
4713
4714      return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
4715
4716    case COMPONENT_REF:
4717      if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4718	return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4719
4720      return 0;
4721
4722    case VAR_DECL:
4723    case PARM_DECL:
4724    case CONST_DECL:
4725    case FUNCTION_DECL:
4726      return 0;
4727
4728    default:
4729      break;
4730    }
4731
4732  /* This general rule works for most tree codes.  All exceptions should be
4733     handled above.  If this is a language-specific tree code, we can't
4734     trust what might be in the operand, so say we don't know
4735     the situation.  */
4736  if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4737    return -1;
4738
4739  switch (TREE_CODE_CLASS (code1))
4740    {
4741    case tcc_unary:
4742    case tcc_binary:
4743    case tcc_comparison:
4744    case tcc_expression:
4745    case tcc_reference:
4746    case tcc_statement:
4747      cmp = 1;
4748      for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4749	{
4750	  cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4751	  if (cmp <= 0)
4752	    return cmp;
4753	}
4754
4755      return cmp;
4756
4757    default:
4758      return -1;
4759    }
4760}
4761
4762/* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4763   Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4764   than U, respectively.  */
4765
4766int
4767compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4768{
4769  if (tree_int_cst_sgn (t) < 0)
4770    return -1;
4771  else if (TREE_INT_CST_HIGH (t) != 0)
4772    return 1;
4773  else if (TREE_INT_CST_LOW (t) == u)
4774    return 0;
4775  else if (TREE_INT_CST_LOW (t) < u)
4776    return -1;
4777  else
4778    return 1;
4779}
4780
4781/* Return true if CODE represents an associative tree code.  Otherwise
4782   return false.  */
4783bool
4784associative_tree_code (enum tree_code code)
4785{
4786  switch (code)
4787    {
4788    case BIT_IOR_EXPR:
4789    case BIT_AND_EXPR:
4790    case BIT_XOR_EXPR:
4791    case PLUS_EXPR:
4792    case MULT_EXPR:
4793    case MIN_EXPR:
4794    case MAX_EXPR:
4795      return true;
4796
4797    default:
4798      break;
4799    }
4800  return false;
4801}
4802
4803/* Return true if CODE represents a commutative tree code.  Otherwise
4804   return false.  */
4805bool
4806commutative_tree_code (enum tree_code code)
4807{
4808  switch (code)
4809    {
4810    case PLUS_EXPR:
4811    case MULT_EXPR:
4812    case MIN_EXPR:
4813    case MAX_EXPR:
4814    case BIT_IOR_EXPR:
4815    case BIT_XOR_EXPR:
4816    case BIT_AND_EXPR:
4817    case NE_EXPR:
4818    case EQ_EXPR:
4819    case UNORDERED_EXPR:
4820    case ORDERED_EXPR:
4821    case UNEQ_EXPR:
4822    case LTGT_EXPR:
4823    case TRUTH_AND_EXPR:
4824    case TRUTH_XOR_EXPR:
4825    case TRUTH_OR_EXPR:
4826      return true;
4827
4828    default:
4829      break;
4830    }
4831  return false;
4832}
4833
4834/* Generate a hash value for an expression.  This can be used iteratively
4835   by passing a previous result as the "val" argument.
4836
4837   This function is intended to produce the same hash for expressions which
4838   would compare equal using operand_equal_p.  */
4839
4840hashval_t
4841iterative_hash_expr (tree t, hashval_t val)
4842{
4843  int i;
4844  enum tree_code code;
4845  char class;
4846
4847  if (t == NULL_TREE)
4848    return iterative_hash_pointer (t, val);
4849
4850  code = TREE_CODE (t);
4851
4852  switch (code)
4853    {
4854    /* Alas, constants aren't shared, so we can't rely on pointer
4855       identity.  */
4856    case INTEGER_CST:
4857      val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4858      return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4859    case REAL_CST:
4860      {
4861	unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4862
4863	return iterative_hash_hashval_t (val2, val);
4864      }
4865    case STRING_CST:
4866      return iterative_hash (TREE_STRING_POINTER (t),
4867			     TREE_STRING_LENGTH (t), val);
4868    case COMPLEX_CST:
4869      val = iterative_hash_expr (TREE_REALPART (t), val);
4870      return iterative_hash_expr (TREE_IMAGPART (t), val);
4871    case VECTOR_CST:
4872      return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4873
4874    case SSA_NAME:
4875    case VALUE_HANDLE:
4876      /* we can just compare by pointer.  */
4877      return iterative_hash_pointer (t, val);
4878
4879    case TREE_LIST:
4880      /* A list of expressions, for a CALL_EXPR or as the elements of a
4881	 VECTOR_CST.  */
4882      for (; t; t = TREE_CHAIN (t))
4883	val = iterative_hash_expr (TREE_VALUE (t), val);
4884      return val;
4885    case CONSTRUCTOR:
4886      {
4887	unsigned HOST_WIDE_INT idx;
4888	tree field, value;
4889	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
4890	  {
4891	    val = iterative_hash_expr (field, val);
4892	    val = iterative_hash_expr (value, val);
4893	  }
4894	return val;
4895      }
4896    case FUNCTION_DECL:
4897      /* When referring to a built-in FUNCTION_DECL, use the
4898	 __builtin__ form.  Otherwise nodes that compare equal
4899	 according to operand_equal_p might get different
4900	 hash codes.  */
4901      if (DECL_BUILT_IN (t))
4902	{
4903	  val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
4904				      val);
4905	  return val;
4906	}
4907      /* else FALL THROUGH */
4908    default:
4909      class = TREE_CODE_CLASS (code);
4910
4911      if (class == tcc_declaration)
4912	{
4913	  /* DECL's have a unique ID */
4914	  val = iterative_hash_host_wide_int (DECL_UID (t), val);
4915	}
4916      else
4917	{
4918	  gcc_assert (IS_EXPR_CODE_CLASS (class));
4919
4920	  val = iterative_hash_object (code, val);
4921
4922	  /* Don't hash the type, that can lead to having nodes which
4923	     compare equal according to operand_equal_p, but which
4924	     have different hash codes.  */
4925	  if (code == NOP_EXPR
4926	      || code == CONVERT_EXPR
4927	      || code == NON_LVALUE_EXPR)
4928	    {
4929	      /* Make sure to include signness in the hash computation.  */
4930	      val += TYPE_UNSIGNED (TREE_TYPE (t));
4931	      val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4932	    }
4933
4934	  else if (commutative_tree_code (code))
4935	    {
4936	      /* It's a commutative expression.  We want to hash it the same
4937		 however it appears.  We do this by first hashing both operands
4938		 and then rehashing based on the order of their independent
4939		 hashes.  */
4940	      hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4941	      hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4942	      hashval_t t;
4943
4944	      if (one > two)
4945		t = one, one = two, two = t;
4946
4947	      val = iterative_hash_hashval_t (one, val);
4948	      val = iterative_hash_hashval_t (two, val);
4949	    }
4950	  else
4951	    for (i = TREE_CODE_LENGTH (code) - 1; i >= 0; --i)
4952	      val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4953	}
4954      return val;
4955      break;
4956    }
4957}
4958
4959/* Constructors for pointer, array and function types.
4960   (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4961   constructed by language-dependent code, not here.)  */
4962
4963/* Construct, lay out and return the type of pointers to TO_TYPE with
4964   mode MODE.  If CAN_ALIAS_ALL is TRUE, indicate this type can
4965   reference all of memory. If such a type has already been
4966   constructed, reuse it.  */
4967
4968tree
4969build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4970			     bool can_alias_all)
4971{
4972  tree t;
4973
4974  if (to_type == error_mark_node)
4975    return error_mark_node;
4976
4977  /* In some cases, languages will have things that aren't a POINTER_TYPE
4978     (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4979     In that case, return that type without regard to the rest of our
4980     operands.
4981
4982     ??? This is a kludge, but consistent with the way this function has
4983     always operated and there doesn't seem to be a good way to avoid this
4984     at the moment.  */
4985  if (TYPE_POINTER_TO (to_type) != 0
4986      && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4987    return TYPE_POINTER_TO (to_type);
4988
4989  /* First, if we already have a type for pointers to TO_TYPE and it's
4990     the proper mode, use it.  */
4991  for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4992    if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4993      return t;
4994
4995  t = make_node (POINTER_TYPE);
4996
4997  TREE_TYPE (t) = to_type;
4998  TYPE_MODE (t) = mode;
4999  TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5000  TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5001  TYPE_POINTER_TO (to_type) = t;
5002
5003  /* Lay out the type.  This function has many callers that are concerned
5004     with expression-construction, and this simplifies them all.  */
5005  layout_type (t);
5006
5007  return t;
5008}
5009
5010/* By default build pointers in ptr_mode.  */
5011
5012tree
5013build_pointer_type (tree to_type)
5014{
5015  return build_pointer_type_for_mode (to_type, ptr_mode, false);
5016}
5017
5018/* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE.  */
5019
5020tree
5021build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5022			       bool can_alias_all)
5023{
5024  tree t;
5025
5026  /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5027     (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5028     In that case, return that type without regard to the rest of our
5029     operands.
5030
5031     ??? This is a kludge, but consistent with the way this function has
5032     always operated and there doesn't seem to be a good way to avoid this
5033     at the moment.  */
5034  if (TYPE_REFERENCE_TO (to_type) != 0
5035      && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5036    return TYPE_REFERENCE_TO (to_type);
5037
5038  /* First, if we already have a type for pointers to TO_TYPE and it's
5039     the proper mode, use it.  */
5040  for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5041    if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5042      return t;
5043
5044  t = make_node (REFERENCE_TYPE);
5045
5046  TREE_TYPE (t) = to_type;
5047  TYPE_MODE (t) = mode;
5048  TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5049  TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5050  TYPE_REFERENCE_TO (to_type) = t;
5051
5052  layout_type (t);
5053
5054  return t;
5055}
5056
5057
5058/* Build the node for the type of references-to-TO_TYPE by default
5059   in ptr_mode.  */
5060
5061tree
5062build_reference_type (tree to_type)
5063{
5064  return build_reference_type_for_mode (to_type, ptr_mode, false);
5065}
5066
5067/* Build a type that is compatible with t but has no cv quals anywhere
5068   in its type, thus
5069
5070   const char *const *const *  ->  char ***.  */
5071
5072tree
5073build_type_no_quals (tree t)
5074{
5075  switch (TREE_CODE (t))
5076    {
5077    case POINTER_TYPE:
5078      return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5079					  TYPE_MODE (t),
5080					  TYPE_REF_CAN_ALIAS_ALL (t));
5081    case REFERENCE_TYPE:
5082      return
5083	build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5084				       TYPE_MODE (t),
5085				       TYPE_REF_CAN_ALIAS_ALL (t));
5086    default:
5087      return TYPE_MAIN_VARIANT (t);
5088    }
5089}
5090
5091/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5092   MAXVAL should be the maximum value in the domain
5093   (one less than the length of the array).
5094
5095   The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5096   We don't enforce this limit, that is up to caller (e.g. language front end).
5097   The limit exists because the result is a signed type and we don't handle
5098   sizes that use more than one HOST_WIDE_INT.  */
5099
5100tree
5101build_index_type (tree maxval)
5102{
5103  tree itype = make_node (INTEGER_TYPE);
5104
5105  TREE_TYPE (itype) = sizetype;
5106  TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5107  TYPE_MIN_VALUE (itype) = size_zero_node;
5108  TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5109  TYPE_MODE (itype) = TYPE_MODE (sizetype);
5110  TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5111  TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5112  TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5113  TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5114
5115  if (host_integerp (maxval, 1))
5116    return type_hash_canon (tree_low_cst (maxval, 1), itype);
5117  else
5118    return itype;
5119}
5120
5121/* Builds a signed or unsigned integer type of precision PRECISION.
5122   Used for C bitfields whose precision does not match that of
5123   built-in target types.  */
5124tree
5125build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5126				int unsignedp)
5127{
5128  tree itype = make_node (INTEGER_TYPE);
5129
5130  TYPE_PRECISION (itype) = precision;
5131
5132  if (unsignedp)
5133    fixup_unsigned_type (itype);
5134  else
5135    fixup_signed_type (itype);
5136
5137  if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5138    return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5139
5140  return itype;
5141}
5142
5143/* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5144   ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5145   high bound HIGHVAL.  If TYPE is NULL, sizetype is used.  */
5146
5147tree
5148build_range_type (tree type, tree lowval, tree highval)
5149{
5150  tree itype = make_node (INTEGER_TYPE);
5151
5152  TREE_TYPE (itype) = type;
5153  if (type == NULL_TREE)
5154    type = sizetype;
5155
5156  TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5157  TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5158
5159  TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5160  TYPE_MODE (itype) = TYPE_MODE (type);
5161  TYPE_SIZE (itype) = TYPE_SIZE (type);
5162  TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5163  TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5164  TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5165
5166  if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5167    return type_hash_canon (tree_low_cst (highval, 0)
5168			    - tree_low_cst (lowval, 0),
5169			    itype);
5170  else
5171    return itype;
5172}
5173
5174/* Just like build_index_type, but takes lowval and highval instead
5175   of just highval (maxval).  */
5176
5177tree
5178build_index_2_type (tree lowval, tree highval)
5179{
5180  return build_range_type (sizetype, lowval, highval);
5181}
5182
5183/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5184   and number of elements specified by the range of values of INDEX_TYPE.
5185   If such a type has already been constructed, reuse it.  */
5186
5187tree
5188build_array_type (tree elt_type, tree index_type)
5189{
5190  tree t;
5191  hashval_t hashcode = 0;
5192
5193  if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5194    {
5195      error ("arrays of functions are not meaningful");
5196      elt_type = integer_type_node;
5197    }
5198
5199  t = make_node (ARRAY_TYPE);
5200  TREE_TYPE (t) = elt_type;
5201  TYPE_DOMAIN (t) = index_type;
5202
5203  if (index_type == 0)
5204    {
5205      tree save = t;
5206      hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5207      t = type_hash_canon (hashcode, t);
5208      if (save == t)
5209	layout_type (t);
5210      return t;
5211    }
5212
5213  hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5214  hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5215  t = type_hash_canon (hashcode, t);
5216
5217  if (!COMPLETE_TYPE_P (t))
5218    layout_type (t);
5219  return t;
5220}
5221
5222/* Return the TYPE of the elements comprising
5223   the innermost dimension of ARRAY.  */
5224
5225tree
5226get_inner_array_type (tree array)
5227{
5228  tree type = TREE_TYPE (array);
5229
5230  while (TREE_CODE (type) == ARRAY_TYPE)
5231    type = TREE_TYPE (type);
5232
5233  return type;
5234}
5235
5236/* Construct, lay out and return
5237   the type of functions returning type VALUE_TYPE
5238   given arguments of types ARG_TYPES.
5239   ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5240   are data type nodes for the arguments of the function.
5241   If such a type has already been constructed, reuse it.  */
5242
5243tree
5244build_function_type (tree value_type, tree arg_types)
5245{
5246  tree t;
5247  hashval_t hashcode = 0;
5248
5249  if (TREE_CODE (value_type) == FUNCTION_TYPE)
5250    {
5251      error ("function return type cannot be function");
5252      value_type = integer_type_node;
5253    }
5254
5255  /* Make a node of the sort we want.  */
5256  t = make_node (FUNCTION_TYPE);
5257  TREE_TYPE (t) = value_type;
5258  TYPE_ARG_TYPES (t) = arg_types;
5259
5260  /* If we already have such a type, use the old one.  */
5261  hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5262  hashcode = type_hash_list (arg_types, hashcode);
5263  t = type_hash_canon (hashcode, t);
5264
5265  if (!COMPLETE_TYPE_P (t))
5266    layout_type (t);
5267  return t;
5268}
5269
5270/* Build a function type.  The RETURN_TYPE is the type returned by the
5271   function.  If additional arguments are provided, they are
5272   additional argument types.  The list of argument types must always
5273   be terminated by NULL_TREE.  */
5274
5275tree
5276build_function_type_list (tree return_type, ...)
5277{
5278  tree t, args, last;
5279  va_list p;
5280
5281  va_start (p, return_type);
5282
5283  t = va_arg (p, tree);
5284  for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5285    args = tree_cons (NULL_TREE, t, args);
5286
5287  if (args == NULL_TREE)
5288    args = void_list_node;
5289  else
5290    {
5291      last = args;
5292      args = nreverse (args);
5293      TREE_CHAIN (last) = void_list_node;
5294    }
5295  args = build_function_type (return_type, args);
5296
5297  va_end (p);
5298  return args;
5299}
5300
5301/* Build a METHOD_TYPE for a member of BASETYPE.  The RETTYPE (a TYPE)
5302   and ARGTYPES (a TREE_LIST) are the return type and arguments types
5303   for the method.  An implicit additional parameter (of type
5304   pointer-to-BASETYPE) is added to the ARGTYPES.  */
5305
5306tree
5307build_method_type_directly (tree basetype,
5308			    tree rettype,
5309			    tree argtypes)
5310{
5311  tree t;
5312  tree ptype;
5313  int hashcode = 0;
5314
5315  /* Make a node of the sort we want.  */
5316  t = make_node (METHOD_TYPE);
5317
5318  TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5319  TREE_TYPE (t) = rettype;
5320  ptype = build_pointer_type (basetype);
5321
5322  /* The actual arglist for this function includes a "hidden" argument
5323     which is "this".  Put it into the list of argument types.  */
5324  argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5325  TYPE_ARG_TYPES (t) = argtypes;
5326
5327  /* If we already have such a type, use the old one.  */
5328  hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5329  hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5330  hashcode = type_hash_list (argtypes, hashcode);
5331  t = type_hash_canon (hashcode, t);
5332
5333  if (!COMPLETE_TYPE_P (t))
5334    layout_type (t);
5335
5336  return t;
5337}
5338
5339/* Construct, lay out and return the type of methods belonging to class
5340   BASETYPE and whose arguments and values are described by TYPE.
5341   If that type exists already, reuse it.
5342   TYPE must be a FUNCTION_TYPE node.  */
5343
5344tree
5345build_method_type (tree basetype, tree type)
5346{
5347  gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5348
5349  return build_method_type_directly (basetype,
5350				     TREE_TYPE (type),
5351				     TYPE_ARG_TYPES (type));
5352}
5353
5354/* Construct, lay out and return the type of offsets to a value
5355   of type TYPE, within an object of type BASETYPE.
5356   If a suitable offset type exists already, reuse it.  */
5357
5358tree
5359build_offset_type (tree basetype, tree type)
5360{
5361  tree t;
5362  hashval_t hashcode = 0;
5363
5364  /* Make a node of the sort we want.  */
5365  t = make_node (OFFSET_TYPE);
5366
5367  TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5368  TREE_TYPE (t) = type;
5369
5370  /* If we already have such a type, use the old one.  */
5371  hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5372  hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5373  t = type_hash_canon (hashcode, t);
5374
5375  if (!COMPLETE_TYPE_P (t))
5376    layout_type (t);
5377
5378  return t;
5379}
5380
5381/* Create a complex type whose components are COMPONENT_TYPE.  */
5382
5383tree
5384build_complex_type (tree component_type)
5385{
5386  tree t;
5387  hashval_t hashcode;
5388
5389  /* Make a node of the sort we want.  */
5390  t = make_node (COMPLEX_TYPE);
5391
5392  TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5393
5394  /* If we already have such a type, use the old one.  */
5395  hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5396  t = type_hash_canon (hashcode, t);
5397
5398  if (!COMPLETE_TYPE_P (t))
5399    layout_type (t);
5400
5401  /* If we are writing Dwarf2 output we need to create a name,
5402     since complex is a fundamental type.  */
5403  if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
5404      && ! TYPE_NAME (t))
5405    {
5406      const char *name;
5407      if (component_type == char_type_node)
5408	name = "complex char";
5409      else if (component_type == signed_char_type_node)
5410	name = "complex signed char";
5411      else if (component_type == unsigned_char_type_node)
5412	name = "complex unsigned char";
5413      else if (component_type == short_integer_type_node)
5414	name = "complex short int";
5415      else if (component_type == short_unsigned_type_node)
5416	name = "complex short unsigned int";
5417      else if (component_type == integer_type_node)
5418	name = "complex int";
5419      else if (component_type == unsigned_type_node)
5420	name = "complex unsigned int";
5421      else if (component_type == long_integer_type_node)
5422	name = "complex long int";
5423      else if (component_type == long_unsigned_type_node)
5424	name = "complex long unsigned int";
5425      else if (component_type == long_long_integer_type_node)
5426	name = "complex long long int";
5427      else if (component_type == long_long_unsigned_type_node)
5428	name = "complex long long unsigned int";
5429      else
5430	name = 0;
5431
5432      if (name != 0)
5433	TYPE_NAME (t) = get_identifier (name);
5434    }
5435
5436  return build_qualified_type (t, TYPE_QUALS (component_type));
5437}
5438
5439/* Return OP, stripped of any conversions to wider types as much as is safe.
5440   Converting the value back to OP's type makes a value equivalent to OP.
5441
5442   If FOR_TYPE is nonzero, we return a value which, if converted to
5443   type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
5444
5445   If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
5446   narrowest type that can hold the value, even if they don't exactly fit.
5447   Otherwise, bit-field references are changed to a narrower type
5448   only if they can be fetched directly from memory in that type.
5449
5450   OP must have integer, real or enumeral type.  Pointers are not allowed!
5451
5452   There are some cases where the obvious value we could return
5453   would regenerate to OP if converted to OP's type,
5454   but would not extend like OP to wider types.
5455   If FOR_TYPE indicates such extension is contemplated, we eschew such values.
5456   For example, if OP is (unsigned short)(signed char)-1,
5457   we avoid returning (signed char)-1 if FOR_TYPE is int,
5458   even though extending that to an unsigned short would regenerate OP,
5459   since the result of extending (signed char)-1 to (int)
5460   is different from (int) OP.  */
5461
5462tree
5463get_unwidened (tree op, tree for_type)
5464{
5465  /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension.  */
5466  tree type = TREE_TYPE (op);
5467  unsigned final_prec
5468    = TYPE_PRECISION (for_type != 0 ? for_type : type);
5469  int uns
5470    = (for_type != 0 && for_type != type
5471       && final_prec > TYPE_PRECISION (type)
5472       && TYPE_UNSIGNED (type));
5473  tree win = op;
5474
5475  while (TREE_CODE (op) == NOP_EXPR
5476	 || TREE_CODE (op) == CONVERT_EXPR)
5477    {
5478      int bitschange;
5479
5480      /* TYPE_PRECISION on vector types has different meaning
5481	 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
5482	 so avoid them here.  */
5483      if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
5484	break;
5485
5486      bitschange = TYPE_PRECISION (TREE_TYPE (op))
5487		   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
5488
5489      /* Truncations are many-one so cannot be removed.
5490	 Unless we are later going to truncate down even farther.  */
5491      if (bitschange < 0
5492	  && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
5493	break;
5494
5495      /* See what's inside this conversion.  If we decide to strip it,
5496	 we will set WIN.  */
5497      op = TREE_OPERAND (op, 0);
5498
5499      /* If we have not stripped any zero-extensions (uns is 0),
5500	 we can strip any kind of extension.
5501	 If we have previously stripped a zero-extension,
5502	 only zero-extensions can safely be stripped.
5503	 Any extension can be stripped if the bits it would produce
5504	 are all going to be discarded later by truncating to FOR_TYPE.  */
5505
5506      if (bitschange > 0)
5507	{
5508	  if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
5509	    win = op;
5510	  /* TYPE_UNSIGNED says whether this is a zero-extension.
5511	     Let's avoid computing it if it does not affect WIN
5512	     and if UNS will not be needed again.  */
5513	  if ((uns
5514	       || TREE_CODE (op) == NOP_EXPR
5515	       || TREE_CODE (op) == CONVERT_EXPR)
5516	      && TYPE_UNSIGNED (TREE_TYPE (op)))
5517	    {
5518	      uns = 1;
5519	      win = op;
5520	    }
5521	}
5522    }
5523
5524  if (TREE_CODE (op) == COMPONENT_REF
5525      /* Since type_for_size always gives an integer type.  */
5526      && TREE_CODE (type) != REAL_TYPE
5527      /* Don't crash if field not laid out yet.  */
5528      && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5529      && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5530    {
5531      unsigned int innerprec
5532	= tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5533      int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5534		       || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5535      type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5536
5537      /* We can get this structure field in the narrowest type it fits in.
5538	 If FOR_TYPE is 0, do this only for a field that matches the
5539	 narrower type exactly and is aligned for it
5540	 The resulting extension to its nominal type (a fullword type)
5541	 must fit the same conditions as for other extensions.  */
5542
5543      if (type != 0
5544	  && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
5545	  && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
5546	  && (! uns || final_prec <= innerprec || unsignedp))
5547	{
5548	  win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5549			TREE_OPERAND (op, 1), NULL_TREE);
5550	  TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5551	  TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5552	}
5553    }
5554
5555  return win;
5556}
5557
5558/* Return OP or a simpler expression for a narrower value
5559   which can be sign-extended or zero-extended to give back OP.
5560   Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
5561   or 0 if the value should be sign-extended.  */
5562
5563tree
5564get_narrower (tree op, int *unsignedp_ptr)
5565{
5566  int uns = 0;
5567  int first = 1;
5568  tree win = op;
5569  bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
5570
5571  while (TREE_CODE (op) == NOP_EXPR)
5572    {
5573      int bitschange
5574	= (TYPE_PRECISION (TREE_TYPE (op))
5575	   - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
5576
5577      /* Truncations are many-one so cannot be removed.  */
5578      if (bitschange < 0)
5579	break;
5580
5581      /* See what's inside this conversion.  If we decide to strip it,
5582	 we will set WIN.  */
5583
5584      if (bitschange > 0)
5585	{
5586	  op = TREE_OPERAND (op, 0);
5587	  /* An extension: the outermost one can be stripped,
5588	     but remember whether it is zero or sign extension.  */
5589	  if (first)
5590	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
5591	  /* Otherwise, if a sign extension has been stripped,
5592	     only sign extensions can now be stripped;
5593	     if a zero extension has been stripped, only zero-extensions.  */
5594	  else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
5595	    break;
5596	  first = 0;
5597	}
5598      else /* bitschange == 0 */
5599	{
5600	  /* A change in nominal type can always be stripped, but we must
5601	     preserve the unsignedness.  */
5602	  if (first)
5603	    uns = TYPE_UNSIGNED (TREE_TYPE (op));
5604	  first = 0;
5605	  op = TREE_OPERAND (op, 0);
5606	  /* Keep trying to narrow, but don't assign op to win if it
5607	     would turn an integral type into something else.  */
5608	  if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
5609	    continue;
5610	}
5611
5612      win = op;
5613    }
5614
5615  if (TREE_CODE (op) == COMPONENT_REF
5616      /* Since type_for_size always gives an integer type.  */
5617      && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
5618      /* Ensure field is laid out already.  */
5619      && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5620      && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5621    {
5622      unsigned HOST_WIDE_INT innerprec
5623	= tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5624      int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5625		       || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5626      tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5627
5628      /* We can get this structure field in a narrower type that fits it,
5629	 but the resulting extension to its nominal type (a fullword type)
5630	 must satisfy the same conditions as for other extensions.
5631
5632	 Do this only for fields that are aligned (not bit-fields),
5633	 because when bit-field insns will be used there is no
5634	 advantage in doing this.  */
5635
5636      if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
5637	  && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
5638	  && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
5639	  && type != 0)
5640	{
5641	  if (first)
5642	    uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
5643	  win = fold_convert (type, op);
5644	}
5645    }
5646
5647  *unsignedp_ptr = uns;
5648  return win;
5649}
5650
5651/* Nonzero if integer constant C has a value that is permissible
5652   for type TYPE (an INTEGER_TYPE).  */
5653
5654int
5655int_fits_type_p (tree c, tree type)
5656{
5657  tree type_low_bound = TYPE_MIN_VALUE (type);
5658  tree type_high_bound = TYPE_MAX_VALUE (type);
5659  bool ok_for_low_bound, ok_for_high_bound;
5660  tree tmp;
5661
5662  /* If at least one bound of the type is a constant integer, we can check
5663     ourselves and maybe make a decision. If no such decision is possible, but
5664     this type is a subtype, try checking against that.  Otherwise, use
5665     force_fit_type, which checks against the precision.
5666
5667     Compute the status for each possibly constant bound, and return if we see
5668     one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
5669     for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
5670     for "constant known to fit".  */
5671
5672  /* Check if C >= type_low_bound.  */
5673  if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
5674    {
5675      if (tree_int_cst_lt (c, type_low_bound))
5676	return 0;
5677      ok_for_low_bound = true;
5678    }
5679  else
5680    ok_for_low_bound = false;
5681
5682  /* Check if c <= type_high_bound.  */
5683  if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
5684    {
5685      if (tree_int_cst_lt (type_high_bound, c))
5686	return 0;
5687      ok_for_high_bound = true;
5688    }
5689  else
5690    ok_for_high_bound = false;
5691
5692  /* If the constant fits both bounds, the result is known.  */
5693  if (ok_for_low_bound && ok_for_high_bound)
5694    return 1;
5695
5696  /* Perform some generic filtering which may allow making a decision
5697     even if the bounds are not constant.  First, negative integers
5698     never fit in unsigned types, */
5699  if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
5700    return 0;
5701
5702  /* Second, narrower types always fit in wider ones.  */
5703  if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
5704    return 1;
5705
5706  /* Third, unsigned integers with top bit set never fit signed types.  */
5707  if (! TYPE_UNSIGNED (type)
5708      && TYPE_UNSIGNED (TREE_TYPE (c))
5709      && tree_int_cst_msb (c))
5710    return 0;
5711
5712  /* If we haven't been able to decide at this point, there nothing more we
5713     can check ourselves here.  Look at the base type if we have one and it
5714     has the same precision.  */
5715  if (TREE_CODE (type) == INTEGER_TYPE
5716      && TREE_TYPE (type) != 0
5717      && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
5718    return int_fits_type_p (c, TREE_TYPE (type));
5719
5720  /* Or to force_fit_type, if nothing else.  */
5721  tmp = copy_node (c);
5722  TREE_TYPE (tmp) = type;
5723  tmp = force_fit_type (tmp, -1, false, false);
5724  return TREE_INT_CST_HIGH (tmp) == TREE_INT_CST_HIGH (c)
5725         && TREE_INT_CST_LOW (tmp) == TREE_INT_CST_LOW (c);
5726}
5727
5728/* Subprogram of following function.  Called by walk_tree.
5729
5730   Return *TP if it is an automatic variable or parameter of the
5731   function passed in as DATA.  */
5732
5733static tree
5734find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
5735{
5736  tree fn = (tree) data;
5737
5738  if (TYPE_P (*tp))
5739    *walk_subtrees = 0;
5740
5741  else if (DECL_P (*tp)
5742	   && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
5743    return *tp;
5744
5745  return NULL_TREE;
5746}
5747
5748/* Returns true if T is, contains, or refers to a type with variable
5749   size.  For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
5750   arguments, but not the return type.  If FN is nonzero, only return
5751   true if a modifier of the type or position of FN is a variable or
5752   parameter inside FN.
5753
5754   This concept is more general than that of C99 'variably modified types':
5755   in C99, a struct type is never variably modified because a VLA may not
5756   appear as a structure member.  However, in GNU C code like:
5757
5758     struct S { int i[f()]; };
5759
5760   is valid, and other languages may define similar constructs.  */
5761
5762bool
5763variably_modified_type_p (tree type, tree fn)
5764{
5765  tree t;
5766
5767/* Test if T is either variable (if FN is zero) or an expression containing
5768   a variable in FN.  */
5769#define RETURN_TRUE_IF_VAR(T)						\
5770  do { tree _t = (T);							\
5771    if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST	\
5772        && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL)))	\
5773      return true;  } while (0)
5774
5775  if (type == error_mark_node)
5776    return false;
5777
5778  /* If TYPE itself has variable size, it is variably modified.  */
5779  RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
5780  RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
5781
5782  switch (TREE_CODE (type))
5783    {
5784    case POINTER_TYPE:
5785    case REFERENCE_TYPE:
5786    case VECTOR_TYPE:
5787      if (variably_modified_type_p (TREE_TYPE (type), fn))
5788	return true;
5789      break;
5790
5791    case FUNCTION_TYPE:
5792    case METHOD_TYPE:
5793      /* If TYPE is a function type, it is variably modified if the
5794	 return type is variably modified.  */
5795      if (variably_modified_type_p (TREE_TYPE (type), fn))
5796	  return true;
5797      break;
5798
5799    case INTEGER_TYPE:
5800    case REAL_TYPE:
5801    case ENUMERAL_TYPE:
5802    case BOOLEAN_TYPE:
5803      /* Scalar types are variably modified if their end points
5804	 aren't constant.  */
5805      RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5806      RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5807      break;
5808
5809    case RECORD_TYPE:
5810    case UNION_TYPE:
5811    case QUAL_UNION_TYPE:
5812      /* We can't see if any of the fields are variably-modified by the
5813	 definition we normally use, since that would produce infinite
5814	 recursion via pointers.  */
5815      /* This is variably modified if some field's type is.  */
5816      for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5817	if (TREE_CODE (t) == FIELD_DECL)
5818	  {
5819	    RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5820	    RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5821	    RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5822
5823	    if (TREE_CODE (type) == QUAL_UNION_TYPE)
5824	      RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5825	  }
5826	break;
5827
5828    case ARRAY_TYPE:
5829      /* Do not call ourselves to avoid infinite recursion.  This is
5830	 variably modified if the element type is.  */
5831      RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
5832      RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
5833      break;
5834
5835    default:
5836      break;
5837    }
5838
5839  /* The current language may have other cases to check, but in general,
5840     all other types are not variably modified.  */
5841  return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5842
5843#undef RETURN_TRUE_IF_VAR
5844}
5845
5846/* Given a DECL or TYPE, return the scope in which it was declared, or
5847   NULL_TREE if there is no containing scope.  */
5848
5849tree
5850get_containing_scope (tree t)
5851{
5852  return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5853}
5854
5855/* Return the innermost context enclosing DECL that is
5856   a FUNCTION_DECL, or zero if none.  */
5857
5858tree
5859decl_function_context (tree decl)
5860{
5861  tree context;
5862
5863  if (TREE_CODE (decl) == ERROR_MARK)
5864    return 0;
5865
5866  /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5867     where we look up the function at runtime.  Such functions always take
5868     a first argument of type 'pointer to real context'.
5869
5870     C++ should really be fixed to use DECL_CONTEXT for the real context,
5871     and use something else for the "virtual context".  */
5872  else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5873    context
5874      = TYPE_MAIN_VARIANT
5875	(TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5876  else
5877    context = DECL_CONTEXT (decl);
5878
5879  while (context && TREE_CODE (context) != FUNCTION_DECL)
5880    {
5881      if (TREE_CODE (context) == BLOCK)
5882	context = BLOCK_SUPERCONTEXT (context);
5883      else
5884	context = get_containing_scope (context);
5885    }
5886
5887  return context;
5888}
5889
5890/* Return the innermost context enclosing DECL that is
5891   a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5892   TYPE_DECLs and FUNCTION_DECLs are transparent to this function.  */
5893
5894tree
5895decl_type_context (tree decl)
5896{
5897  tree context = DECL_CONTEXT (decl);
5898
5899  while (context)
5900    switch (TREE_CODE (context))
5901      {
5902      case NAMESPACE_DECL:
5903      case TRANSLATION_UNIT_DECL:
5904	return NULL_TREE;
5905
5906      case RECORD_TYPE:
5907      case UNION_TYPE:
5908      case QUAL_UNION_TYPE:
5909	return context;
5910
5911      case TYPE_DECL:
5912      case FUNCTION_DECL:
5913	context = DECL_CONTEXT (context);
5914	break;
5915
5916      case BLOCK:
5917	context = BLOCK_SUPERCONTEXT (context);
5918	break;
5919
5920      default:
5921	gcc_unreachable ();
5922      }
5923
5924  return NULL_TREE;
5925}
5926
5927/* CALL is a CALL_EXPR.  Return the declaration for the function
5928   called, or NULL_TREE if the called function cannot be
5929   determined.  */
5930
5931tree
5932get_callee_fndecl (tree call)
5933{
5934  tree addr;
5935
5936  if (call == error_mark_node)
5937    return call;
5938
5939  /* It's invalid to call this function with anything but a
5940     CALL_EXPR.  */
5941  gcc_assert (TREE_CODE (call) == CALL_EXPR);
5942
5943  /* The first operand to the CALL is the address of the function
5944     called.  */
5945  addr = TREE_OPERAND (call, 0);
5946
5947  STRIP_NOPS (addr);
5948
5949  /* If this is a readonly function pointer, extract its initial value.  */
5950  if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5951      && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5952      && DECL_INITIAL (addr))
5953    addr = DECL_INITIAL (addr);
5954
5955  /* If the address is just `&f' for some function `f', then we know
5956     that `f' is being called.  */
5957  if (TREE_CODE (addr) == ADDR_EXPR
5958      && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5959    return TREE_OPERAND (addr, 0);
5960
5961  /* We couldn't figure out what was being called.  Maybe the front
5962     end has some idea.  */
5963  return lang_hooks.lang_get_callee_fndecl (call);
5964}
5965
5966/* Print debugging information about tree nodes generated during the compile,
5967   and any language-specific information.  */
5968
5969void
5970dump_tree_statistics (void)
5971{
5972#ifdef GATHER_STATISTICS
5973  int i;
5974  int total_nodes, total_bytes;
5975#endif
5976
5977  fprintf (stderr, "\n??? tree nodes created\n\n");
5978#ifdef GATHER_STATISTICS
5979  fprintf (stderr, "Kind                   Nodes      Bytes\n");
5980  fprintf (stderr, "---------------------------------------\n");
5981  total_nodes = total_bytes = 0;
5982  for (i = 0; i < (int) all_kinds; i++)
5983    {
5984      fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5985	       tree_node_counts[i], tree_node_sizes[i]);
5986      total_nodes += tree_node_counts[i];
5987      total_bytes += tree_node_sizes[i];
5988    }
5989  fprintf (stderr, "---------------------------------------\n");
5990  fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5991  fprintf (stderr, "---------------------------------------\n");
5992  ssanames_print_statistics ();
5993  phinodes_print_statistics ();
5994#else
5995  fprintf (stderr, "(No per-node statistics)\n");
5996#endif
5997  print_type_hash_statistics ();
5998  print_debug_expr_statistics ();
5999  print_value_expr_statistics ();
6000  print_restrict_base_statistics ();
6001  lang_hooks.print_statistics ();
6002}
6003
6004#define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6005
6006/* Generate a crc32 of a string.  */
6007
6008unsigned
6009crc32_string (unsigned chksum, const char *string)
6010{
6011  do
6012    {
6013      unsigned value = *string << 24;
6014      unsigned ix;
6015
6016      for (ix = 8; ix--; value <<= 1)
6017  	{
6018  	  unsigned feedback;
6019
6020  	  feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6021 	  chksum <<= 1;
6022 	  chksum ^= feedback;
6023  	}
6024    }
6025  while (*string++);
6026  return chksum;
6027}
6028
6029/* P is a string that will be used in a symbol.  Mask out any characters
6030   that are not valid in that context.  */
6031
6032void
6033clean_symbol_name (char *p)
6034{
6035  for (; *p; p++)
6036    if (! (ISALNUM (*p)
6037#ifndef NO_DOLLAR_IN_LABEL	/* this for `$'; unlikely, but... -- kr */
6038	    || *p == '$'
6039#endif
6040#ifndef NO_DOT_IN_LABEL		/* this for `.'; unlikely, but...  */
6041	    || *p == '.'
6042#endif
6043	   ))
6044      *p = '_';
6045}
6046
6047/* Generate a name for a special-purpose function function.
6048   The generated name may need to be unique across the whole link.
6049   TYPE is some string to identify the purpose of this function to the
6050   linker or collect2; it must start with an uppercase letter,
6051   one of:
6052   I - for constructors
6053   D - for destructors
6054   N - for C++ anonymous namespaces
6055   F - for DWARF unwind frame information.  */
6056
6057tree
6058get_file_function_name (const char *type)
6059{
6060  char *buf;
6061  const char *p;
6062  char *q;
6063
6064  /* If we already have a name we know to be unique, just use that.  */
6065  if (first_global_object_name)
6066    p = first_global_object_name;
6067  /* If the target is handling the constructors/destructors, they
6068     will be local to this file and the name is only necessary for
6069     debugging purposes.  */
6070  else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
6071    {
6072      const char *file = main_input_filename;
6073      if (! file)
6074	file = input_filename;
6075      /* Just use the file's basename, because the full pathname
6076	 might be quite long.  */
6077      p = strrchr (file, '/');
6078      if (p)
6079	p++;
6080      else
6081	p = file;
6082      p = q = ASTRDUP (p);
6083      clean_symbol_name (q);
6084    }
6085  else
6086    {
6087      /* Otherwise, the name must be unique across the entire link.
6088	 We don't have anything that we know to be unique to this translation
6089	 unit, so use what we do have and throw in some randomness.  */
6090      unsigned len;
6091      const char *name = weak_global_object_name;
6092      const char *file = main_input_filename;
6093
6094      if (! name)
6095	name = "";
6096      if (! file)
6097	file = input_filename;
6098
6099      len = strlen (file);
6100      q = alloca (9 * 2 + len + 1);
6101      memcpy (q, file, len + 1);
6102      clean_symbol_name (q);
6103
6104      sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6105	       crc32_string (0, flag_random_seed));
6106
6107      p = q;
6108    }
6109
6110  buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6111
6112  /* Set up the name of the file-level functions we may need.
6113     Use a global object (which is already required to be unique over
6114     the program) rather than the file name (which imposes extra
6115     constraints).  */
6116  sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6117
6118  return get_identifier (buf);
6119}
6120
6121#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6122
6123/* Complain that the tree code of NODE does not match the expected 0
6124   terminated list of trailing codes. The trailing code list can be
6125   empty, for a more vague error message.  FILE, LINE, and FUNCTION
6126   are of the caller.  */
6127
6128void
6129tree_check_failed (const tree node, const char *file,
6130		   int line, const char *function, ...)
6131{
6132  va_list args;
6133  char *buffer;
6134  unsigned length = 0;
6135  int code;
6136
6137  va_start (args, function);
6138  while ((code = va_arg (args, int)))
6139    length += 4 + strlen (tree_code_name[code]);
6140  va_end (args);
6141  if (length)
6142    {
6143      va_start (args, function);
6144      length += strlen ("expected ");
6145      buffer = alloca (length);
6146      length = 0;
6147      while ((code = va_arg (args, int)))
6148	{
6149	  const char *prefix = length ? " or " : "expected ";
6150
6151	  strcpy (buffer + length, prefix);
6152	  length += strlen (prefix);
6153	  strcpy (buffer + length, tree_code_name[code]);
6154	  length += strlen (tree_code_name[code]);
6155	}
6156      va_end (args);
6157    }
6158  else
6159    buffer = (char *)"unexpected node";
6160
6161  internal_error ("tree check: %s, have %s in %s, at %s:%d",
6162		  buffer, tree_code_name[TREE_CODE (node)],
6163		  function, trim_filename (file), line);
6164}
6165
6166/* Complain that the tree code of NODE does match the expected 0
6167   terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6168   the caller.  */
6169
6170void
6171tree_not_check_failed (const tree node, const char *file,
6172		       int line, const char *function, ...)
6173{
6174  va_list args;
6175  char *buffer;
6176  unsigned length = 0;
6177  int code;
6178
6179  va_start (args, function);
6180  while ((code = va_arg (args, int)))
6181    length += 4 + strlen (tree_code_name[code]);
6182  va_end (args);
6183  va_start (args, function);
6184  buffer = alloca (length);
6185  length = 0;
6186  while ((code = va_arg (args, int)))
6187    {
6188      if (length)
6189	{
6190	  strcpy (buffer + length, " or ");
6191	  length += 4;
6192	}
6193      strcpy (buffer + length, tree_code_name[code]);
6194      length += strlen (tree_code_name[code]);
6195    }
6196  va_end (args);
6197
6198  internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6199		  buffer, tree_code_name[TREE_CODE (node)],
6200		  function, trim_filename (file), line);
6201}
6202
6203/* Similar to tree_check_failed, except that we check for a class of tree
6204   code, given in CL.  */
6205
6206void
6207tree_class_check_failed (const tree node, const enum tree_code_class cl,
6208			 const char *file, int line, const char *function)
6209{
6210  internal_error
6211    ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6212     TREE_CODE_CLASS_STRING (cl),
6213     TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6214     tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6215}
6216
6217/* Similar to tree_check_failed, except that instead of specifying a
6218   dozen codes, use the knowledge that they're all sequential.  */
6219
6220void
6221tree_range_check_failed (const tree node, const char *file, int line,
6222			 const char *function, enum tree_code c1,
6223			 enum tree_code c2)
6224{
6225  char *buffer;
6226  unsigned length = 0;
6227  enum tree_code c;
6228
6229  for (c = c1; c <= c2; ++c)
6230    length += 4 + strlen (tree_code_name[c]);
6231
6232  length += strlen ("expected ");
6233  buffer = alloca (length);
6234  length = 0;
6235
6236  for (c = c1; c <= c2; ++c)
6237    {
6238      const char *prefix = length ? " or " : "expected ";
6239
6240      strcpy (buffer + length, prefix);
6241      length += strlen (prefix);
6242      strcpy (buffer + length, tree_code_name[c]);
6243      length += strlen (tree_code_name[c]);
6244    }
6245
6246  internal_error ("tree check: %s, have %s in %s, at %s:%d",
6247		  buffer, tree_code_name[TREE_CODE (node)],
6248		  function, trim_filename (file), line);
6249}
6250
6251
6252/* Similar to tree_check_failed, except that we check that a tree does
6253   not have the specified code, given in CL.  */
6254
6255void
6256tree_not_class_check_failed (const tree node, const enum tree_code_class cl,
6257			     const char *file, int line, const char *function)
6258{
6259  internal_error
6260    ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6261     TREE_CODE_CLASS_STRING (cl),
6262     TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6263     tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6264}
6265
6266
6267/* Similar to tree_check_failed but applied to OMP_CLAUSE codes.  */
6268
6269void
6270omp_clause_check_failed (const tree node, const char *file, int line,
6271                         const char *function, enum omp_clause_code code)
6272{
6273  internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6274		  omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6275		  function, trim_filename (file), line);
6276}
6277
6278
6279/* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes.  */
6280
6281void
6282omp_clause_range_check_failed (const tree node, const char *file, int line,
6283			       const char *function, enum omp_clause_code c1,
6284			       enum omp_clause_code c2)
6285{
6286  char *buffer;
6287  unsigned length = 0;
6288  enum omp_clause_code c;
6289
6290  for (c = c1; c <= c2; ++c)
6291    length += 4 + strlen (omp_clause_code_name[c]);
6292
6293  length += strlen ("expected ");
6294  buffer = alloca (length);
6295  length = 0;
6296
6297  for (c = c1; c <= c2; ++c)
6298    {
6299      const char *prefix = length ? " or " : "expected ";
6300
6301      strcpy (buffer + length, prefix);
6302      length += strlen (prefix);
6303      strcpy (buffer + length, omp_clause_code_name[c]);
6304      length += strlen (omp_clause_code_name[c]);
6305    }
6306
6307  internal_error ("tree check: %s, have %s in %s, at %s:%d",
6308		  buffer, omp_clause_code_name[TREE_CODE (node)],
6309		  function, trim_filename (file), line);
6310}
6311
6312
6313#undef DEFTREESTRUCT
6314#define DEFTREESTRUCT(VAL, NAME) NAME,
6315
6316static const char *ts_enum_names[] = {
6317#include "treestruct.def"
6318};
6319#undef DEFTREESTRUCT
6320
6321#define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6322
6323/* Similar to tree_class_check_failed, except that we check for
6324   whether CODE contains the tree structure identified by EN.  */
6325
6326void
6327tree_contains_struct_check_failed (const tree node,
6328				   const enum tree_node_structure_enum en,
6329				   const char *file, int line,
6330				   const char *function)
6331{
6332  internal_error
6333    ("tree check: expected tree that contains %qs structure, have %qs  in %s, at %s:%d",
6334     TS_ENUM_NAME(en),
6335     tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6336}
6337
6338
6339/* Similar to above, except that the check is for the bounds of a TREE_VEC's
6340   (dynamically sized) vector.  */
6341
6342void
6343tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6344			   const char *function)
6345{
6346  internal_error
6347    ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6348     idx + 1, len, function, trim_filename (file), line);
6349}
6350
6351/* Similar to above, except that the check is for the bounds of a PHI_NODE's
6352   (dynamically sized) vector.  */
6353
6354void
6355phi_node_elt_check_failed (int idx, int len, const char *file, int line,
6356			    const char *function)
6357{
6358  internal_error
6359    ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
6360     idx + 1, len, function, trim_filename (file), line);
6361}
6362
6363/* Similar to above, except that the check is for the bounds of the operand
6364   vector of an expression node.  */
6365
6366void
6367tree_operand_check_failed (int idx, enum tree_code code, const char *file,
6368			   int line, const char *function)
6369{
6370  internal_error
6371    ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
6372     idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
6373     function, trim_filename (file), line);
6374}
6375
6376/* Similar to above, except that the check is for the number of
6377   operands of an OMP_CLAUSE node.  */
6378
6379void
6380omp_clause_operand_check_failed (int idx, tree t, const char *file,
6381			         int line, const char *function)
6382{
6383  internal_error
6384    ("tree check: accessed operand %d of omp_clause %s with %d operands "
6385     "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
6386     omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
6387     trim_filename (file), line);
6388}
6389#endif /* ENABLE_TREE_CHECKING */
6390
6391/* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
6392   and mapped to the machine mode MODE.  Initialize its fields and build
6393   the information necessary for debugging output.  */
6394
6395static tree
6396make_vector_type (tree innertype, int nunits, enum machine_mode mode)
6397{
6398  tree t;
6399  hashval_t hashcode = 0;
6400
6401  /* Build a main variant, based on the main variant of the inner type, then
6402     use it to build the variant we return.  */
6403  if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
6404      && TYPE_MAIN_VARIANT (innertype) != innertype)
6405    return build_type_attribute_qual_variant (
6406	    make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
6407	    TYPE_ATTRIBUTES (innertype),
6408	    TYPE_QUALS (innertype));
6409
6410  t = make_node (VECTOR_TYPE);
6411  TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
6412  SET_TYPE_VECTOR_SUBPARTS (t, nunits);
6413  TYPE_MODE (t) = mode;
6414  TYPE_READONLY (t) = TYPE_READONLY (innertype);
6415  TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
6416
6417  layout_type (t);
6418
6419  {
6420    tree index = build_int_cst (NULL_TREE, nunits - 1);
6421    tree array = build_array_type (innertype, build_index_type (index));
6422    tree rt = make_node (RECORD_TYPE);
6423
6424    TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
6425    DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
6426    layout_type (rt);
6427    TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
6428    /* In dwarfout.c, type lookup uses TYPE_UID numbers.  We want to output
6429       the representation type, and we want to find that die when looking up
6430       the vector type.  This is most easily achieved by making the TYPE_UID
6431       numbers equal.  */
6432    TYPE_UID (rt) = TYPE_UID (t);
6433  }
6434
6435  hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
6436  hashcode = iterative_hash_host_wide_int (mode, hashcode);
6437  hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
6438  return type_hash_canon (hashcode, t);
6439}
6440
6441static tree
6442make_or_reuse_type (unsigned size, int unsignedp)
6443{
6444  if (size == INT_TYPE_SIZE)
6445    return unsignedp ? unsigned_type_node : integer_type_node;
6446  if (size == CHAR_TYPE_SIZE)
6447    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
6448  if (size == SHORT_TYPE_SIZE)
6449    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
6450  if (size == LONG_TYPE_SIZE)
6451    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
6452  if (size == LONG_LONG_TYPE_SIZE)
6453    return (unsignedp ? long_long_unsigned_type_node
6454            : long_long_integer_type_node);
6455
6456  if (unsignedp)
6457    return make_unsigned_type (size);
6458  else
6459    return make_signed_type (size);
6460}
6461
6462/* Create nodes for all integer types (and error_mark_node) using the sizes
6463   of C datatypes.  The caller should call set_sizetype soon after calling
6464   this function to select one of the types as sizetype.  */
6465
6466void
6467build_common_tree_nodes (bool signed_char, bool signed_sizetype)
6468{
6469  error_mark_node = make_node (ERROR_MARK);
6470  TREE_TYPE (error_mark_node) = error_mark_node;
6471
6472  initialize_sizetypes (signed_sizetype);
6473
6474  /* Define both `signed char' and `unsigned char'.  */
6475  signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
6476  TYPE_STRING_FLAG (signed_char_type_node) = 1;
6477  unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
6478  TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
6479
6480  /* Define `char', which is like either `signed char' or `unsigned char'
6481     but not the same as either.  */
6482  char_type_node
6483    = (signed_char
6484       ? make_signed_type (CHAR_TYPE_SIZE)
6485       : make_unsigned_type (CHAR_TYPE_SIZE));
6486  TYPE_STRING_FLAG (char_type_node) = 1;
6487
6488  short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
6489  short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
6490  integer_type_node = make_signed_type (INT_TYPE_SIZE);
6491  unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
6492  long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
6493  long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
6494  long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
6495  long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
6496
6497  /* Define a boolean type.  This type only represents boolean values but
6498     may be larger than char depending on the value of BOOL_TYPE_SIZE.
6499     Front ends which want to override this size (i.e. Java) can redefine
6500     boolean_type_node before calling build_common_tree_nodes_2.  */
6501  boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
6502  TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
6503  TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
6504  TYPE_PRECISION (boolean_type_node) = 1;
6505
6506  /* Fill in the rest of the sized types.  Reuse existing type nodes
6507     when possible.  */
6508  intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
6509  intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
6510  intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
6511  intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
6512  intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
6513
6514  unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
6515  unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
6516  unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
6517  unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
6518  unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
6519
6520  access_public_node = get_identifier ("public");
6521  access_protected_node = get_identifier ("protected");
6522  access_private_node = get_identifier ("private");
6523}
6524
6525/* Call this function after calling build_common_tree_nodes and set_sizetype.
6526   It will create several other common tree nodes.  */
6527
6528void
6529build_common_tree_nodes_2 (int short_double)
6530{
6531  /* Define these next since types below may used them.  */
6532  integer_zero_node = build_int_cst (NULL_TREE, 0);
6533  integer_one_node = build_int_cst (NULL_TREE, 1);
6534  integer_minus_one_node = build_int_cst (NULL_TREE, -1);
6535
6536  size_zero_node = size_int (0);
6537  size_one_node = size_int (1);
6538  bitsize_zero_node = bitsize_int (0);
6539  bitsize_one_node = bitsize_int (1);
6540  bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
6541
6542  boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
6543  boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
6544
6545  void_type_node = make_node (VOID_TYPE);
6546  layout_type (void_type_node);
6547
6548  /* We are not going to have real types in C with less than byte alignment,
6549     so we might as well not have any types that claim to have it.  */
6550  TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
6551  TYPE_USER_ALIGN (void_type_node) = 0;
6552
6553  null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
6554  layout_type (TREE_TYPE (null_pointer_node));
6555
6556  ptr_type_node = build_pointer_type (void_type_node);
6557  const_ptr_type_node
6558    = build_pointer_type (build_type_variant (void_type_node, 1, 0));
6559  fileptr_type_node = ptr_type_node;
6560
6561  float_type_node = make_node (REAL_TYPE);
6562  TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
6563  layout_type (float_type_node);
6564
6565  double_type_node = make_node (REAL_TYPE);
6566  if (short_double)
6567    TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
6568  else
6569    TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
6570  layout_type (double_type_node);
6571
6572  long_double_type_node = make_node (REAL_TYPE);
6573  TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
6574  layout_type (long_double_type_node);
6575
6576  float_ptr_type_node = build_pointer_type (float_type_node);
6577  double_ptr_type_node = build_pointer_type (double_type_node);
6578  long_double_ptr_type_node = build_pointer_type (long_double_type_node);
6579  integer_ptr_type_node = build_pointer_type (integer_type_node);
6580
6581  /* Fixed size integer types.  */
6582  uint32_type_node = build_nonstandard_integer_type (32, true);
6583  uint64_type_node = build_nonstandard_integer_type (64, true);
6584
6585  /* Decimal float types. */
6586  dfloat32_type_node = make_node (REAL_TYPE);
6587  TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
6588  layout_type (dfloat32_type_node);
6589  TYPE_MODE (dfloat32_type_node) = SDmode;
6590  dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
6591
6592  dfloat64_type_node = make_node (REAL_TYPE);
6593  TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
6594  layout_type (dfloat64_type_node);
6595  TYPE_MODE (dfloat64_type_node) = DDmode;
6596  dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
6597
6598  dfloat128_type_node = make_node (REAL_TYPE);
6599  TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
6600  layout_type (dfloat128_type_node);
6601  TYPE_MODE (dfloat128_type_node) = TDmode;
6602  dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
6603
6604  complex_integer_type_node = make_node (COMPLEX_TYPE);
6605  TREE_TYPE (complex_integer_type_node) = integer_type_node;
6606  layout_type (complex_integer_type_node);
6607
6608  complex_float_type_node = make_node (COMPLEX_TYPE);
6609  TREE_TYPE (complex_float_type_node) = float_type_node;
6610  layout_type (complex_float_type_node);
6611
6612  complex_double_type_node = make_node (COMPLEX_TYPE);
6613  TREE_TYPE (complex_double_type_node) = double_type_node;
6614  layout_type (complex_double_type_node);
6615
6616  complex_long_double_type_node = make_node (COMPLEX_TYPE);
6617  TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
6618  layout_type (complex_long_double_type_node);
6619
6620  {
6621    tree t = targetm.build_builtin_va_list ();
6622
6623    /* Many back-ends define record types without setting TYPE_NAME.
6624       If we copied the record type here, we'd keep the original
6625       record type without a name.  This breaks name mangling.  So,
6626       don't copy record types and let c_common_nodes_and_builtins()
6627       declare the type to be __builtin_va_list.  */
6628    if (TREE_CODE (t) != RECORD_TYPE)
6629      t = build_variant_type_copy (t);
6630
6631    va_list_type_node = t;
6632  }
6633}
6634
6635/* A subroutine of build_common_builtin_nodes.  Define a builtin function.  */
6636
6637static void
6638local_define_builtin (const char *name, tree type, enum built_in_function code,
6639                      const char *library_name, int ecf_flags)
6640{
6641  tree decl;
6642
6643  decl = lang_hooks.builtin_function (name, type, code, BUILT_IN_NORMAL,
6644				      library_name, NULL_TREE);
6645  if (ecf_flags & ECF_CONST)
6646    TREE_READONLY (decl) = 1;
6647  if (ecf_flags & ECF_PURE)
6648    DECL_IS_PURE (decl) = 1;
6649  if (ecf_flags & ECF_NORETURN)
6650    TREE_THIS_VOLATILE (decl) = 1;
6651  if (ecf_flags & ECF_NOTHROW)
6652    TREE_NOTHROW (decl) = 1;
6653  if (ecf_flags & ECF_MALLOC)
6654    DECL_IS_MALLOC (decl) = 1;
6655
6656  built_in_decls[code] = decl;
6657  implicit_built_in_decls[code] = decl;
6658}
6659
6660/* Call this function after instantiating all builtins that the language
6661   front end cares about.  This will build the rest of the builtins that
6662   are relied upon by the tree optimizers and the middle-end.  */
6663
6664void
6665build_common_builtin_nodes (void)
6666{
6667  tree tmp, ftype;
6668
6669  if (built_in_decls[BUILT_IN_MEMCPY] == NULL
6670      || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6671    {
6672      tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6673      tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6674      tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6675      ftype = build_function_type (ptr_type_node, tmp);
6676
6677      if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
6678	local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
6679			      "memcpy", ECF_NOTHROW);
6680      if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6681	local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
6682			      "memmove", ECF_NOTHROW);
6683    }
6684
6685  if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
6686    {
6687      tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6688      tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6689      tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6690      ftype = build_function_type (integer_type_node, tmp);
6691      local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
6692			    "memcmp", ECF_PURE | ECF_NOTHROW);
6693    }
6694
6695  if (built_in_decls[BUILT_IN_MEMSET] == NULL)
6696    {
6697      tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6698      tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
6699      tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6700      ftype = build_function_type (ptr_type_node, tmp);
6701      local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
6702			    "memset", ECF_NOTHROW);
6703    }
6704
6705  if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
6706    {
6707      tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6708      ftype = build_function_type (ptr_type_node, tmp);
6709      local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
6710			    "alloca", ECF_NOTHROW | ECF_MALLOC);
6711    }
6712
6713  tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6714  tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6715  tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6716  ftype = build_function_type (void_type_node, tmp);
6717  local_define_builtin ("__builtin_init_trampoline", ftype,
6718			BUILT_IN_INIT_TRAMPOLINE,
6719			"__builtin_init_trampoline", ECF_NOTHROW);
6720
6721  tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6722  ftype = build_function_type (ptr_type_node, tmp);
6723  local_define_builtin ("__builtin_adjust_trampoline", ftype,
6724			BUILT_IN_ADJUST_TRAMPOLINE,
6725			"__builtin_adjust_trampoline",
6726			ECF_CONST | ECF_NOTHROW);
6727
6728  tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6729  tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6730  ftype = build_function_type (void_type_node, tmp);
6731  local_define_builtin ("__builtin_nonlocal_goto", ftype,
6732			BUILT_IN_NONLOCAL_GOTO,
6733			"__builtin_nonlocal_goto",
6734			ECF_NORETURN | ECF_NOTHROW);
6735
6736  tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6737  tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6738  ftype = build_function_type (void_type_node, tmp);
6739  local_define_builtin ("__builtin_setjmp_setup", ftype,
6740			BUILT_IN_SETJMP_SETUP,
6741			"__builtin_setjmp_setup", ECF_NOTHROW);
6742
6743  tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6744  ftype = build_function_type (ptr_type_node, tmp);
6745  local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
6746			BUILT_IN_SETJMP_DISPATCHER,
6747			"__builtin_setjmp_dispatcher",
6748			ECF_PURE | ECF_NOTHROW);
6749
6750  tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6751  ftype = build_function_type (void_type_node, tmp);
6752  local_define_builtin ("__builtin_setjmp_receiver", ftype,
6753			BUILT_IN_SETJMP_RECEIVER,
6754			"__builtin_setjmp_receiver", ECF_NOTHROW);
6755
6756  ftype = build_function_type (ptr_type_node, void_list_node);
6757  local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
6758			"__builtin_stack_save", ECF_NOTHROW);
6759
6760  tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6761  ftype = build_function_type (void_type_node, tmp);
6762  local_define_builtin ("__builtin_stack_restore", ftype,
6763			BUILT_IN_STACK_RESTORE,
6764			"__builtin_stack_restore", ECF_NOTHROW);
6765
6766  ftype = build_function_type (void_type_node, void_list_node);
6767  local_define_builtin ("__builtin_profile_func_enter", ftype,
6768			BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
6769  local_define_builtin ("__builtin_profile_func_exit", ftype,
6770			BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
6771
6772  /* Complex multiplication and division.  These are handled as builtins
6773     rather than optabs because emit_library_call_value doesn't support
6774     complex.  Further, we can do slightly better with folding these
6775     beasties if the real and complex parts of the arguments are separate.  */
6776  {
6777    enum machine_mode mode;
6778
6779    for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
6780      {
6781	char mode_name_buf[4], *q;
6782	const char *p;
6783	enum built_in_function mcode, dcode;
6784	tree type, inner_type;
6785
6786	type = lang_hooks.types.type_for_mode (mode, 0);
6787	if (type == NULL)
6788	  continue;
6789	inner_type = TREE_TYPE (type);
6790
6791	tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
6792	tmp = tree_cons (NULL_TREE, inner_type, tmp);
6793	tmp = tree_cons (NULL_TREE, inner_type, tmp);
6794	tmp = tree_cons (NULL_TREE, inner_type, tmp);
6795	ftype = build_function_type (type, tmp);
6796
6797        mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6798        dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6799
6800        for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
6801	  *q = TOLOWER (*p);
6802	*q = '\0';
6803
6804	built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
6805        local_define_builtin (built_in_names[mcode], ftype, mcode,
6806			      built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
6807
6808	built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
6809        local_define_builtin (built_in_names[dcode], ftype, dcode,
6810			      built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
6811      }
6812  }
6813}
6814
6815/* HACK.  GROSS.  This is absolutely disgusting.  I wish there was a
6816   better way.
6817
6818   If we requested a pointer to a vector, build up the pointers that
6819   we stripped off while looking for the inner type.  Similarly for
6820   return values from functions.
6821
6822   The argument TYPE is the top of the chain, and BOTTOM is the
6823   new type which we will point to.  */
6824
6825tree
6826reconstruct_complex_type (tree type, tree bottom)
6827{
6828  tree inner, outer;
6829
6830  if (POINTER_TYPE_P (type))
6831    {
6832      inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6833      outer = build_pointer_type (inner);
6834    }
6835  else if (TREE_CODE (type) == ARRAY_TYPE)
6836    {
6837      inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6838      outer = build_array_type (inner, TYPE_DOMAIN (type));
6839    }
6840  else if (TREE_CODE (type) == FUNCTION_TYPE)
6841    {
6842      inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6843      outer = build_function_type (inner, TYPE_ARG_TYPES (type));
6844    }
6845  else if (TREE_CODE (type) == METHOD_TYPE)
6846    {
6847      tree argtypes;
6848      inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6849      /* The build_method_type_directly() routine prepends 'this' to argument list,
6850         so we must compensate by getting rid of it.  */
6851      argtypes = TYPE_ARG_TYPES (type);
6852      outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
6853					  inner,
6854					  TYPE_ARG_TYPES (type));
6855      TYPE_ARG_TYPES (outer) = argtypes;
6856    }
6857  else
6858    return bottom;
6859
6860  TYPE_READONLY (outer) = TYPE_READONLY (type);
6861  TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
6862
6863  return outer;
6864}
6865
6866/* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
6867   the inner type.  */
6868tree
6869build_vector_type_for_mode (tree innertype, enum machine_mode mode)
6870{
6871  int nunits;
6872
6873  switch (GET_MODE_CLASS (mode))
6874    {
6875    case MODE_VECTOR_INT:
6876    case MODE_VECTOR_FLOAT:
6877      nunits = GET_MODE_NUNITS (mode);
6878      break;
6879
6880    case MODE_INT:
6881      /* Check that there are no leftover bits.  */
6882      gcc_assert (GET_MODE_BITSIZE (mode)
6883		  % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
6884
6885      nunits = GET_MODE_BITSIZE (mode)
6886	       / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
6887      break;
6888
6889    default:
6890      gcc_unreachable ();
6891    }
6892
6893  return make_vector_type (innertype, nunits, mode);
6894}
6895
6896/* Similarly, but takes the inner type and number of units, which must be
6897   a power of two.  */
6898
6899tree
6900build_vector_type (tree innertype, int nunits)
6901{
6902  return make_vector_type (innertype, nunits, VOIDmode);
6903}
6904
6905
6906/* Build RESX_EXPR with given REGION_NUMBER.  */
6907tree
6908build_resx (int region_number)
6909{
6910  tree t;
6911  t = build1 (RESX_EXPR, void_type_node,
6912	      build_int_cst (NULL_TREE, region_number));
6913  return t;
6914}
6915
6916/* Given an initializer INIT, return TRUE if INIT is zero or some
6917   aggregate of zeros.  Otherwise return FALSE.  */
6918bool
6919initializer_zerop (tree init)
6920{
6921  tree elt;
6922
6923  STRIP_NOPS (init);
6924
6925  switch (TREE_CODE (init))
6926    {
6927    case INTEGER_CST:
6928      return integer_zerop (init);
6929
6930    case REAL_CST:
6931      /* ??? Note that this is not correct for C4X float formats.  There,
6932	 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
6933	 negative exponent.  */
6934      return real_zerop (init)
6935	&& ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
6936
6937    case COMPLEX_CST:
6938      return integer_zerop (init)
6939	|| (real_zerop (init)
6940	    && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
6941	    && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
6942
6943    case VECTOR_CST:
6944      for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
6945	if (!initializer_zerop (TREE_VALUE (elt)))
6946	  return false;
6947      return true;
6948
6949    case CONSTRUCTOR:
6950      {
6951	unsigned HOST_WIDE_INT idx;
6952
6953	FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
6954	  if (!initializer_zerop (elt))
6955	    return false;
6956	return true;
6957      }
6958
6959    default:
6960      return false;
6961    }
6962}
6963
6964/* Build an empty statement.  */
6965
6966tree
6967build_empty_stmt (void)
6968{
6969  return build1 (NOP_EXPR, void_type_node, size_zero_node);
6970}
6971
6972
6973/* Build an OpenMP clause with code CODE.  */
6974
6975tree
6976build_omp_clause (enum omp_clause_code code)
6977{
6978  tree t;
6979  int size, length;
6980
6981  length = omp_clause_num_ops[code];
6982  size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
6983
6984  t = ggc_alloc (size);
6985  memset (t, 0, size);
6986  TREE_SET_CODE (t, OMP_CLAUSE);
6987  OMP_CLAUSE_SET_CODE (t, code);
6988
6989#ifdef GATHER_STATISTICS
6990  tree_node_counts[(int) omp_clause_kind]++;
6991  tree_node_sizes[(int) omp_clause_kind] += size;
6992#endif
6993
6994  return t;
6995}
6996
6997
6998/* Returns true if it is possible to prove that the index of
6999   an array access REF (an ARRAY_REF expression) falls into the
7000   array bounds.  */
7001
7002bool
7003in_array_bounds_p (tree ref)
7004{
7005  tree idx = TREE_OPERAND (ref, 1);
7006  tree min, max;
7007
7008  if (TREE_CODE (idx) != INTEGER_CST)
7009    return false;
7010
7011  min = array_ref_low_bound (ref);
7012  max = array_ref_up_bound (ref);
7013  if (!min
7014      || !max
7015      || TREE_CODE (min) != INTEGER_CST
7016      || TREE_CODE (max) != INTEGER_CST)
7017    return false;
7018
7019  if (tree_int_cst_lt (idx, min)
7020      || tree_int_cst_lt (max, idx))
7021    return false;
7022
7023  return true;
7024}
7025
7026/* Returns true if it is possible to prove that the range of
7027   an array access REF (an ARRAY_RANGE_REF expression) falls
7028   into the array bounds.  */
7029
7030bool
7031range_in_array_bounds_p (tree ref)
7032{
7033  tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7034  tree range_min, range_max, min, max;
7035
7036  range_min = TYPE_MIN_VALUE (domain_type);
7037  range_max = TYPE_MAX_VALUE (domain_type);
7038  if (!range_min
7039      || !range_max
7040      || TREE_CODE (range_min) != INTEGER_CST
7041      || TREE_CODE (range_max) != INTEGER_CST)
7042    return false;
7043
7044  min = array_ref_low_bound (ref);
7045  max = array_ref_up_bound (ref);
7046  if (!min
7047      || !max
7048      || TREE_CODE (min) != INTEGER_CST
7049      || TREE_CODE (max) != INTEGER_CST)
7050    return false;
7051
7052  if (tree_int_cst_lt (range_min, min)
7053      || tree_int_cst_lt (max, range_max))
7054    return false;
7055
7056  return true;
7057}
7058
7059/* Return true if T (assumed to be a DECL) is a global variable.  */
7060
7061bool
7062is_global_var (tree t)
7063{
7064  if (MTAG_P (t))
7065    return (TREE_STATIC (t) || MTAG_GLOBAL (t));
7066  else
7067    return (TREE_STATIC (t) || DECL_EXTERNAL (t));
7068}
7069
7070/* Return true if T (assumed to be a DECL) must be assigned a memory
7071   location.  */
7072
7073bool
7074needs_to_live_in_memory (tree t)
7075{
7076  return (TREE_ADDRESSABLE (t)
7077	  || is_global_var (t)
7078	  || (TREE_CODE (t) == RESULT_DECL
7079	      && aggregate_value_p (t, current_function_decl)));
7080}
7081
7082/* There are situations in which a language considers record types
7083   compatible which have different field lists.  Decide if two fields
7084   are compatible.  It is assumed that the parent records are compatible.  */
7085
7086bool
7087fields_compatible_p (tree f1, tree f2)
7088{
7089  if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
7090			DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
7091    return false;
7092
7093  if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
7094                        DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
7095    return false;
7096
7097  if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
7098    return false;
7099
7100  return true;
7101}
7102
7103/* Locate within RECORD a field that is compatible with ORIG_FIELD.  */
7104
7105tree
7106find_compatible_field (tree record, tree orig_field)
7107{
7108  tree f;
7109
7110  for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
7111    if (TREE_CODE (f) == FIELD_DECL
7112	&& fields_compatible_p (f, orig_field))
7113      return f;
7114
7115  /* ??? Why isn't this on the main fields list?  */
7116  f = TYPE_VFIELD (record);
7117  if (f && TREE_CODE (f) == FIELD_DECL
7118      && fields_compatible_p (f, orig_field))
7119    return f;
7120
7121  /* ??? We should abort here, but Java appears to do Bad Things
7122     with inherited fields.  */
7123  return orig_field;
7124}
7125
7126/* Return value of a constant X.  */
7127
7128HOST_WIDE_INT
7129int_cst_value (tree x)
7130{
7131  unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
7132  unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
7133  bool negative = ((val >> (bits - 1)) & 1) != 0;
7134
7135  gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
7136
7137  if (negative)
7138    val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
7139  else
7140    val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
7141
7142  return val;
7143}
7144
7145/* Returns the greatest common divisor of A and B, which must be
7146   INTEGER_CSTs.  */
7147
7148tree
7149tree_fold_gcd (tree a, tree b)
7150{
7151  tree a_mod_b;
7152  tree type = TREE_TYPE (a);
7153
7154  gcc_assert (TREE_CODE (a) == INTEGER_CST);
7155  gcc_assert (TREE_CODE (b) == INTEGER_CST);
7156
7157  if (integer_zerop (a))
7158    return b;
7159
7160  if (integer_zerop (b))
7161    return a;
7162
7163  if (tree_int_cst_sgn (a) == -1)
7164    a = fold_build2 (MULT_EXPR, type, a,
7165		     build_int_cst (type, -1));
7166
7167  if (tree_int_cst_sgn (b) == -1)
7168    b = fold_build2 (MULT_EXPR, type, b,
7169		     build_int_cst (type, -1));
7170
7171  while (1)
7172    {
7173      a_mod_b = fold_build2 (FLOOR_MOD_EXPR, type, a, b);
7174
7175      if (!TREE_INT_CST_LOW (a_mod_b)
7176	  && !TREE_INT_CST_HIGH (a_mod_b))
7177	return b;
7178
7179      a = b;
7180      b = a_mod_b;
7181    }
7182}
7183
7184/* Returns unsigned variant of TYPE.  */
7185
7186tree
7187unsigned_type_for (tree type)
7188{
7189  if (POINTER_TYPE_P (type))
7190    return lang_hooks.types.unsigned_type (size_type_node);
7191  return lang_hooks.types.unsigned_type (type);
7192}
7193
7194/* Returns signed variant of TYPE.  */
7195
7196tree
7197signed_type_for (tree type)
7198{
7199  if (POINTER_TYPE_P (type))
7200    return lang_hooks.types.signed_type (size_type_node);
7201  return lang_hooks.types.signed_type (type);
7202}
7203
7204/* Returns the largest value obtainable by casting something in INNER type to
7205   OUTER type.  */
7206
7207tree
7208upper_bound_in_type (tree outer, tree inner)
7209{
7210  unsigned HOST_WIDE_INT lo, hi;
7211  unsigned int det = 0;
7212  unsigned oprec = TYPE_PRECISION (outer);
7213  unsigned iprec = TYPE_PRECISION (inner);
7214  unsigned prec;
7215
7216  /* Compute a unique number for every combination.  */
7217  det |= (oprec > iprec) ? 4 : 0;
7218  det |= TYPE_UNSIGNED (outer) ? 2 : 0;
7219  det |= TYPE_UNSIGNED (inner) ? 1 : 0;
7220
7221  /* Determine the exponent to use.  */
7222  switch (det)
7223    {
7224    case 0:
7225    case 1:
7226      /* oprec <= iprec, outer: signed, inner: don't care.  */
7227      prec = oprec - 1;
7228      break;
7229    case 2:
7230    case 3:
7231      /* oprec <= iprec, outer: unsigned, inner: don't care.  */
7232      prec = oprec;
7233      break;
7234    case 4:
7235      /* oprec > iprec, outer: signed, inner: signed.  */
7236      prec = iprec - 1;
7237      break;
7238    case 5:
7239      /* oprec > iprec, outer: signed, inner: unsigned.  */
7240      prec = iprec;
7241      break;
7242    case 6:
7243      /* oprec > iprec, outer: unsigned, inner: signed.  */
7244      prec = oprec;
7245      break;
7246    case 7:
7247      /* oprec > iprec, outer: unsigned, inner: unsigned.  */
7248      prec = iprec;
7249      break;
7250    default:
7251      gcc_unreachable ();
7252    }
7253
7254  /* Compute 2^^prec - 1.  */
7255  if (prec <= HOST_BITS_PER_WIDE_INT)
7256    {
7257      hi = 0;
7258      lo = ((~(unsigned HOST_WIDE_INT) 0)
7259	    >> (HOST_BITS_PER_WIDE_INT - prec));
7260    }
7261  else
7262    {
7263      hi = ((~(unsigned HOST_WIDE_INT) 0)
7264	    >> (2 * HOST_BITS_PER_WIDE_INT - prec));
7265      lo = ~(unsigned HOST_WIDE_INT) 0;
7266    }
7267
7268  return build_int_cst_wide (outer, lo, hi);
7269}
7270
7271/* Returns the smallest value obtainable by casting something in INNER type to
7272   OUTER type.  */
7273
7274tree
7275lower_bound_in_type (tree outer, tree inner)
7276{
7277  unsigned HOST_WIDE_INT lo, hi;
7278  unsigned oprec = TYPE_PRECISION (outer);
7279  unsigned iprec = TYPE_PRECISION (inner);
7280
7281  /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
7282     and obtain 0.  */
7283  if (TYPE_UNSIGNED (outer)
7284      /* If we are widening something of an unsigned type, OUTER type
7285	 contains all values of INNER type.  In particular, both INNER
7286	 and OUTER types have zero in common.  */
7287      || (oprec > iprec && TYPE_UNSIGNED (inner)))
7288    lo = hi = 0;
7289  else
7290    {
7291      /* If we are widening a signed type to another signed type, we
7292	 want to obtain -2^^(iprec-1).  If we are keeping the
7293	 precision or narrowing to a signed type, we want to obtain
7294	 -2^(oprec-1).  */
7295      unsigned prec = oprec > iprec ? iprec : oprec;
7296
7297      if (prec <= HOST_BITS_PER_WIDE_INT)
7298	{
7299	  hi = ~(unsigned HOST_WIDE_INT) 0;
7300	  lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
7301	}
7302      else
7303	{
7304	  hi = ((~(unsigned HOST_WIDE_INT) 0)
7305		<< (prec - HOST_BITS_PER_WIDE_INT - 1));
7306	  lo = 0;
7307	}
7308    }
7309
7310  return build_int_cst_wide (outer, lo, hi);
7311}
7312
7313/* Return nonzero if two operands that are suitable for PHI nodes are
7314   necessarily equal.  Specifically, both ARG0 and ARG1 must be either
7315   SSA_NAME or invariant.  Note that this is strictly an optimization.
7316   That is, callers of this function can directly call operand_equal_p
7317   and get the same result, only slower.  */
7318
7319int
7320operand_equal_for_phi_arg_p (tree arg0, tree arg1)
7321{
7322  if (arg0 == arg1)
7323    return 1;
7324  if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
7325    return 0;
7326  return operand_equal_p (arg0, arg1, 0);
7327}
7328
7329/* Returns number of zeros at the end of binary representation of X.
7330
7331   ??? Use ffs if available?  */
7332
7333tree
7334num_ending_zeros (tree x)
7335{
7336  unsigned HOST_WIDE_INT fr, nfr;
7337  unsigned num, abits;
7338  tree type = TREE_TYPE (x);
7339
7340  if (TREE_INT_CST_LOW (x) == 0)
7341    {
7342      num = HOST_BITS_PER_WIDE_INT;
7343      fr = TREE_INT_CST_HIGH (x);
7344    }
7345  else
7346    {
7347      num = 0;
7348      fr = TREE_INT_CST_LOW (x);
7349    }
7350
7351  for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
7352    {
7353      nfr = fr >> abits;
7354      if (nfr << abits == fr)
7355	{
7356	  num += abits;
7357	  fr = nfr;
7358	}
7359    }
7360
7361  if (num > TYPE_PRECISION (type))
7362    num = TYPE_PRECISION (type);
7363
7364  return build_int_cst_type (type, num);
7365}
7366
7367
7368#define WALK_SUBTREE(NODE)				\
7369  do							\
7370    {							\
7371      result = walk_tree (&(NODE), func, data, pset);	\
7372      if (result)					\
7373	return result;					\
7374    }							\
7375  while (0)
7376
7377/* This is a subroutine of walk_tree that walks field of TYPE that are to
7378   be walked whenever a type is seen in the tree.  Rest of operands and return
7379   value are as for walk_tree.  */
7380
7381static tree
7382walk_type_fields (tree type, walk_tree_fn func, void *data,
7383		  struct pointer_set_t *pset)
7384{
7385  tree result = NULL_TREE;
7386
7387  switch (TREE_CODE (type))
7388    {
7389    case POINTER_TYPE:
7390    case REFERENCE_TYPE:
7391      /* We have to worry about mutually recursive pointers.  These can't
7392	 be written in C.  They can in Ada.  It's pathological, but
7393	 there's an ACATS test (c38102a) that checks it.  Deal with this
7394	 by checking if we're pointing to another pointer, that one
7395	 points to another pointer, that one does too, and we have no htab.
7396	 If so, get a hash table.  We check three levels deep to avoid
7397	 the cost of the hash table if we don't need one.  */
7398      if (POINTER_TYPE_P (TREE_TYPE (type))
7399	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
7400	  && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
7401	  && !pset)
7402	{
7403	  result = walk_tree_without_duplicates (&TREE_TYPE (type),
7404						 func, data);
7405	  if (result)
7406	    return result;
7407
7408	  break;
7409	}
7410
7411      /* ... fall through ... */
7412
7413    case COMPLEX_TYPE:
7414      WALK_SUBTREE (TREE_TYPE (type));
7415      break;
7416
7417    case METHOD_TYPE:
7418      WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
7419
7420      /* Fall through.  */
7421
7422    case FUNCTION_TYPE:
7423      WALK_SUBTREE (TREE_TYPE (type));
7424      {
7425	tree arg;
7426
7427	/* We never want to walk into default arguments.  */
7428	for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
7429	  WALK_SUBTREE (TREE_VALUE (arg));
7430      }
7431      break;
7432
7433    case ARRAY_TYPE:
7434      /* Don't follow this nodes's type if a pointer for fear that
7435	 we'll have infinite recursion.  If we have a PSET, then we
7436	 need not fear.  */
7437      if (pset
7438	  || (!POINTER_TYPE_P (TREE_TYPE (type))
7439	      && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
7440	WALK_SUBTREE (TREE_TYPE (type));
7441      WALK_SUBTREE (TYPE_DOMAIN (type));
7442      break;
7443
7444    case BOOLEAN_TYPE:
7445    case ENUMERAL_TYPE:
7446    case INTEGER_TYPE:
7447    case REAL_TYPE:
7448      WALK_SUBTREE (TYPE_MIN_VALUE (type));
7449      WALK_SUBTREE (TYPE_MAX_VALUE (type));
7450      break;
7451
7452    case OFFSET_TYPE:
7453      WALK_SUBTREE (TREE_TYPE (type));
7454      WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
7455      break;
7456
7457    default:
7458      break;
7459    }
7460
7461  return NULL_TREE;
7462}
7463
7464/* Apply FUNC to all the sub-trees of TP in a pre-order traversal.  FUNC is
7465   called with the DATA and the address of each sub-tree.  If FUNC returns a
7466   non-NULL value, the traversal is stopped, and the value returned by FUNC
7467   is returned.  If PSET is non-NULL it is used to record the nodes visited,
7468   and to avoid visiting a node more than once.  */
7469
7470tree
7471walk_tree (tree *tp, walk_tree_fn func, void *data, struct pointer_set_t *pset)
7472{
7473  enum tree_code code;
7474  int walk_subtrees;
7475  tree result;
7476
7477#define WALK_SUBTREE_TAIL(NODE)				\
7478  do							\
7479    {							\
7480       tp = & (NODE);					\
7481       goto tail_recurse;				\
7482    }							\
7483  while (0)
7484
7485 tail_recurse:
7486  /* Skip empty subtrees.  */
7487  if (!*tp)
7488    return NULL_TREE;
7489
7490  /* Don't walk the same tree twice, if the user has requested
7491     that we avoid doing so.  */
7492  if (pset && pointer_set_insert (pset, *tp))
7493    return NULL_TREE;
7494
7495  /* Call the function.  */
7496  walk_subtrees = 1;
7497  result = (*func) (tp, &walk_subtrees, data);
7498
7499  /* If we found something, return it.  */
7500  if (result)
7501    return result;
7502
7503  code = TREE_CODE (*tp);
7504
7505  /* Even if we didn't, FUNC may have decided that there was nothing
7506     interesting below this point in the tree.  */
7507  if (!walk_subtrees)
7508    {
7509      /* But we still need to check our siblings.  */
7510      if (code == TREE_LIST)
7511	WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7512      else if (code == OMP_CLAUSE)
7513	WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7514      else
7515	return NULL_TREE;
7516    }
7517
7518  result = lang_hooks.tree_inlining.walk_subtrees (tp, &walk_subtrees, func,
7519						   data, pset);
7520  if (result || ! walk_subtrees)
7521    return result;
7522
7523  switch (code)
7524    {
7525    case ERROR_MARK:
7526    case IDENTIFIER_NODE:
7527    case INTEGER_CST:
7528    case REAL_CST:
7529    case VECTOR_CST:
7530    case STRING_CST:
7531    case BLOCK:
7532    case PLACEHOLDER_EXPR:
7533    case SSA_NAME:
7534    case FIELD_DECL:
7535    case RESULT_DECL:
7536      /* None of these have subtrees other than those already walked
7537	 above.  */
7538      break;
7539
7540    case TREE_LIST:
7541      WALK_SUBTREE (TREE_VALUE (*tp));
7542      WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7543      break;
7544
7545    case TREE_VEC:
7546      {
7547	int len = TREE_VEC_LENGTH (*tp);
7548
7549	if (len == 0)
7550	  break;
7551
7552	/* Walk all elements but the first.  */
7553	while (--len)
7554	  WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
7555
7556	/* Now walk the first one as a tail call.  */
7557	WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
7558      }
7559
7560    case COMPLEX_CST:
7561      WALK_SUBTREE (TREE_REALPART (*tp));
7562      WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
7563
7564    case CONSTRUCTOR:
7565      {
7566	unsigned HOST_WIDE_INT idx;
7567	constructor_elt *ce;
7568
7569	for (idx = 0;
7570	     VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
7571	     idx++)
7572	  WALK_SUBTREE (ce->value);
7573      }
7574      break;
7575
7576    case SAVE_EXPR:
7577      WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
7578
7579    case BIND_EXPR:
7580      {
7581	tree decl;
7582	for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
7583	  {
7584	    /* Walk the DECL_INITIAL and DECL_SIZE.  We don't want to walk
7585	       into declarations that are just mentioned, rather than
7586	       declared; they don't really belong to this part of the tree.
7587	       And, we can see cycles: the initializer for a declaration
7588	       can refer to the declaration itself.  */
7589	    WALK_SUBTREE (DECL_INITIAL (decl));
7590	    WALK_SUBTREE (DECL_SIZE (decl));
7591	    WALK_SUBTREE (DECL_SIZE_UNIT (decl));
7592	  }
7593	WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
7594      }
7595
7596    case STATEMENT_LIST:
7597      {
7598	tree_stmt_iterator i;
7599	for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
7600	  WALK_SUBTREE (*tsi_stmt_ptr (i));
7601      }
7602      break;
7603
7604    case OMP_CLAUSE:
7605      switch (OMP_CLAUSE_CODE (*tp))
7606	{
7607	case OMP_CLAUSE_PRIVATE:
7608	case OMP_CLAUSE_SHARED:
7609	case OMP_CLAUSE_FIRSTPRIVATE:
7610	case OMP_CLAUSE_LASTPRIVATE:
7611	case OMP_CLAUSE_COPYIN:
7612	case OMP_CLAUSE_COPYPRIVATE:
7613	case OMP_CLAUSE_IF:
7614	case OMP_CLAUSE_NUM_THREADS:
7615	case OMP_CLAUSE_SCHEDULE:
7616	  WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
7617	  /* FALLTHRU */
7618
7619	case OMP_CLAUSE_NOWAIT:
7620	case OMP_CLAUSE_ORDERED:
7621	case OMP_CLAUSE_DEFAULT:
7622	  WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7623
7624	case OMP_CLAUSE_REDUCTION:
7625	  {
7626	    int i;
7627	    for (i = 0; i < 4; i++)
7628	      WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
7629	    WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
7630	  }
7631
7632	default:
7633	  gcc_unreachable ();
7634	}
7635      break;
7636
7637    case TARGET_EXPR:
7638      {
7639	int i, len;
7640
7641	/* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
7642	   But, we only want to walk once.  */
7643	len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
7644	for (i = 0; i < len; ++i)
7645	  WALK_SUBTREE (TREE_OPERAND (*tp, i));
7646	WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
7647      }
7648
7649    case DECL_EXPR:
7650      /* Walk into various fields of the type that it's defining.  We only
7651	 want to walk into these fields of a type in this case.  Note that
7652	 decls get walked as part of the processing of a BIND_EXPR.
7653
7654	 ??? Precisely which fields of types that we are supposed to walk in
7655	 this case vs. the normal case aren't well defined.  */
7656      if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL
7657	  && TREE_CODE (TREE_TYPE (DECL_EXPR_DECL (*tp))) != ERROR_MARK)
7658	{
7659	  tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
7660
7661	  /* Call the function for the type.  See if it returns anything or
7662	     doesn't want us to continue.  If we are to continue, walk both
7663	     the normal fields and those for the declaration case.  */
7664	  result = (*func) (type_p, &walk_subtrees, data);
7665	  if (result || !walk_subtrees)
7666	    return NULL_TREE;
7667
7668	  result = walk_type_fields (*type_p, func, data, pset);
7669	  if (result)
7670	    return result;
7671
7672	  /* If this is a record type, also walk the fields.  */
7673	  if (TREE_CODE (*type_p) == RECORD_TYPE
7674	      || TREE_CODE (*type_p) == UNION_TYPE
7675	      || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7676	    {
7677	      tree field;
7678
7679	      for (field = TYPE_FIELDS (*type_p); field;
7680		   field = TREE_CHAIN (field))
7681		{
7682		  /* We'd like to look at the type of the field, but we can
7683		     easily get infinite recursion.  So assume it's pointed
7684		     to elsewhere in the tree.  Also, ignore things that
7685		     aren't fields.  */
7686		  if (TREE_CODE (field) != FIELD_DECL)
7687		    continue;
7688
7689		  WALK_SUBTREE (DECL_FIELD_OFFSET (field));
7690		  WALK_SUBTREE (DECL_SIZE (field));
7691		  WALK_SUBTREE (DECL_SIZE_UNIT (field));
7692		  if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7693		    WALK_SUBTREE (DECL_QUALIFIER (field));
7694		}
7695	    }
7696
7697	  WALK_SUBTREE (TYPE_SIZE (*type_p));
7698	  WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
7699	}
7700      /* FALLTHRU */
7701
7702    default:
7703      if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
7704	{
7705	  int i, len;
7706
7707	  /* Walk over all the sub-trees of this operand.  */
7708	  len = TREE_CODE_LENGTH (code);
7709
7710	  /* Go through the subtrees.  We need to do this in forward order so
7711	     that the scope of a FOR_EXPR is handled properly.  */
7712	  if (len)
7713	    {
7714	      for (i = 0; i < len - 1; ++i)
7715		WALK_SUBTREE (TREE_OPERAND (*tp, i));
7716	      WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
7717	    }
7718	}
7719
7720      /* If this is a type, walk the needed fields in the type.  */
7721      else if (TYPE_P (*tp))
7722	return walk_type_fields (*tp, func, data, pset);
7723      break;
7724    }
7725
7726  /* We didn't find what we were looking for.  */
7727  return NULL_TREE;
7728
7729#undef WALK_SUBTREE_TAIL
7730}
7731#undef WALK_SUBTREE
7732
7733/* Like walk_tree, but does not walk duplicate nodes more than once.  */
7734
7735tree
7736walk_tree_without_duplicates (tree *tp, walk_tree_fn func, void *data)
7737{
7738  tree result;
7739  struct pointer_set_t *pset;
7740
7741  pset = pointer_set_create ();
7742  result = walk_tree (tp, func, data, pset);
7743  pointer_set_destroy (pset);
7744  return result;
7745}
7746
7747
7748/* Return true if STMT is an empty statement or contains nothing but
7749   empty statements.  */
7750
7751bool
7752empty_body_p (tree stmt)
7753{
7754  tree_stmt_iterator i;
7755  tree body;
7756
7757  if (IS_EMPTY_STMT (stmt))
7758    return true;
7759  else if (TREE_CODE (stmt) == BIND_EXPR)
7760    body = BIND_EXPR_BODY (stmt);
7761  else if (TREE_CODE (stmt) == STATEMENT_LIST)
7762    body = stmt;
7763  else
7764    return false;
7765
7766  for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
7767    if (!empty_body_p (tsi_stmt (i)))
7768      return false;
7769
7770  return true;
7771}
7772
7773#include "gt-tree.h"
7774