expr.c revision 259563
1/* Convert tree expression to rtl instructions, for GNU compiler.
2   Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4   Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
26#include "tm.h"
27#include "machmode.h"
28#include "real.h"
29#include "rtl.h"
30#include "tree.h"
31#include "flags.h"
32#include "regs.h"
33#include "hard-reg-set.h"
34#include "except.h"
35#include "function.h"
36#include "insn-config.h"
37#include "insn-attr.h"
38/* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
39#include "expr.h"
40#include "optabs.h"
41#include "libfuncs.h"
42#include "recog.h"
43#include "reload.h"
44#include "output.h"
45#include "typeclass.h"
46#include "toplev.h"
47#include "ggc.h"
48#include "langhooks.h"
49#include "intl.h"
50#include "tm_p.h"
51#include "tree-iterator.h"
52#include "tree-pass.h"
53#include "tree-flow.h"
54#include "target.h"
55#include "timevar.h"
56
57/* Decide whether a function's arguments should be processed
58   from first to last or from last to first.
59
60   They should if the stack and args grow in opposite directions, but
61   only if we have push insns.  */
62
63#ifdef PUSH_ROUNDING
64
65#ifndef PUSH_ARGS_REVERSED
66#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67#define PUSH_ARGS_REVERSED	/* If it's last to first.  */
68#endif
69#endif
70
71#endif
72
73#ifndef STACK_PUSH_CODE
74#ifdef STACK_GROWS_DOWNWARD
75#define STACK_PUSH_CODE PRE_DEC
76#else
77#define STACK_PUSH_CODE PRE_INC
78#endif
79#endif
80
81
82/* If this is nonzero, we do not bother generating VOLATILE
83   around volatile memory references, and we are willing to
84   output indirect addresses.  If cse is to follow, we reject
85   indirect addresses so a useful potential cse is generated;
86   if it is used only once, instruction combination will produce
87   the same indirect address eventually.  */
88int cse_not_expected;
89
90/* This structure is used by move_by_pieces to describe the move to
91   be performed.  */
92struct move_by_pieces
93{
94  rtx to;
95  rtx to_addr;
96  int autinc_to;
97  int explicit_inc_to;
98  rtx from;
99  rtx from_addr;
100  int autinc_from;
101  int explicit_inc_from;
102  unsigned HOST_WIDE_INT len;
103  HOST_WIDE_INT offset;
104  int reverse;
105};
106
107/* This structure is used by store_by_pieces to describe the clear to
108   be performed.  */
109
110struct store_by_pieces
111{
112  rtx to;
113  rtx to_addr;
114  int autinc_to;
115  int explicit_inc_to;
116  unsigned HOST_WIDE_INT len;
117  HOST_WIDE_INT offset;
118  rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
119  void *constfundata;
120  int reverse;
121};
122
123static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
124						     unsigned int,
125						     unsigned int);
126static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
127			      struct move_by_pieces *);
128static bool block_move_libcall_safe_for_call_parm (void);
129static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned);
130static rtx emit_block_move_via_libcall (rtx, rtx, rtx, bool);
131static tree emit_block_move_libcall_fn (int);
132static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
136static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137			       struct store_by_pieces *);
138static rtx clear_storage_via_libcall (rtx, rtx, bool);
139static tree clear_storage_libcall_fn (int);
140static rtx compress_float_constant (rtx, rtx);
141static rtx get_subtarget (rtx);
142static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143				     HOST_WIDE_INT, enum machine_mode,
144				     tree, tree, int, int);
145static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
147			tree, tree, int);
148
149static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (tree, tree);
150
151static int is_aligning_offset (tree, tree);
152static void expand_operands (tree, tree, rtx, rtx*, rtx*,
153			     enum expand_modifier);
154static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
155static rtx do_store_flag (tree, rtx, enum machine_mode, int);
156#ifdef PUSH_ROUNDING
157static void emit_single_push_insn (enum machine_mode, rtx, tree);
158#endif
159static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
160static rtx const_vector_from_tree (tree);
161static void write_complex_part (rtx, rtx, bool);
162
163/* Record for each mode whether we can move a register directly to or
164   from an object of that mode in memory.  If we can't, we won't try
165   to use that mode directly when accessing a field of that mode.  */
166
167static char direct_load[NUM_MACHINE_MODES];
168static char direct_store[NUM_MACHINE_MODES];
169
170/* Record for each mode whether we can float-extend from memory.  */
171
172static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
173
174/* This macro is used to determine whether move_by_pieces should be called
175   to perform a structure copy.  */
176#ifndef MOVE_BY_PIECES_P
177#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178  (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179   < (unsigned int) MOVE_RATIO)
180#endif
181
182/* This macro is used to determine whether clear_by_pieces should be
183   called to clear storage.  */
184#ifndef CLEAR_BY_PIECES_P
185#define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186  (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187   < (unsigned int) CLEAR_RATIO)
188#endif
189
190/* This macro is used to determine whether store_by_pieces should be
191   called to "memset" storage with byte values other than zero, or
192   to "memcpy" storage when the source is a constant string.  */
193#ifndef STORE_BY_PIECES_P
194#define STORE_BY_PIECES_P(SIZE, ALIGN) \
195  (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196   < (unsigned int) MOVE_RATIO)
197#endif
198
199/* This array records the insn_code of insns to perform block moves.  */
200enum insn_code movmem_optab[NUM_MACHINE_MODES];
201
202/* This array records the insn_code of insns to perform block sets.  */
203enum insn_code setmem_optab[NUM_MACHINE_MODES];
204
205/* These arrays record the insn_code of three different kinds of insns
206   to perform block compares.  */
207enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
208enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
209enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
210
211/* Synchronization primitives.  */
212enum insn_code sync_add_optab[NUM_MACHINE_MODES];
213enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
214enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
215enum insn_code sync_and_optab[NUM_MACHINE_MODES];
216enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
217enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
218enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
219enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
220enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
221enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
222enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
223enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
224enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
225enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
226enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
227enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
228enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
229enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
230enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
231enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
232enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
233enum insn_code sync_lock_release[NUM_MACHINE_MODES];
234
235/* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow.  */
236
237#ifndef SLOW_UNALIGNED_ACCESS
238#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
239#endif
240
241/* This is run once per compilation to set up which modes can be used
242   directly in memory and to initialize the block move optab.  */
243
244void
245init_expr_once (void)
246{
247  rtx insn, pat;
248  enum machine_mode mode;
249  int num_clobbers;
250  rtx mem, mem1;
251  rtx reg;
252
253  /* Try indexing by frame ptr and try by stack ptr.
254     It is known that on the Convex the stack ptr isn't a valid index.
255     With luck, one or the other is valid on any machine.  */
256  mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
257  mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
258
259  /* A scratch register we can modify in-place below to avoid
260     useless RTL allocations.  */
261  reg = gen_rtx_REG (VOIDmode, -1);
262
263  insn = rtx_alloc (INSN);
264  pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
265  PATTERN (insn) = pat;
266
267  for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
268       mode = (enum machine_mode) ((int) mode + 1))
269    {
270      int regno;
271
272      direct_load[(int) mode] = direct_store[(int) mode] = 0;
273      PUT_MODE (mem, mode);
274      PUT_MODE (mem1, mode);
275      PUT_MODE (reg, mode);
276
277      /* See if there is some register that can be used in this mode and
278	 directly loaded or stored from memory.  */
279
280      if (mode != VOIDmode && mode != BLKmode)
281	for (regno = 0; regno < FIRST_PSEUDO_REGISTER
282	     && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
283	     regno++)
284	  {
285	    if (! HARD_REGNO_MODE_OK (regno, mode))
286	      continue;
287
288	    REGNO (reg) = regno;
289
290	    SET_SRC (pat) = mem;
291	    SET_DEST (pat) = reg;
292	    if (recog (pat, insn, &num_clobbers) >= 0)
293	      direct_load[(int) mode] = 1;
294
295	    SET_SRC (pat) = mem1;
296	    SET_DEST (pat) = reg;
297	    if (recog (pat, insn, &num_clobbers) >= 0)
298	      direct_load[(int) mode] = 1;
299
300	    SET_SRC (pat) = reg;
301	    SET_DEST (pat) = mem;
302	    if (recog (pat, insn, &num_clobbers) >= 0)
303	      direct_store[(int) mode] = 1;
304
305	    SET_SRC (pat) = reg;
306	    SET_DEST (pat) = mem1;
307	    if (recog (pat, insn, &num_clobbers) >= 0)
308	      direct_store[(int) mode] = 1;
309	  }
310    }
311
312  mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
313
314  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
315       mode = GET_MODE_WIDER_MODE (mode))
316    {
317      enum machine_mode srcmode;
318      for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
319	   srcmode = GET_MODE_WIDER_MODE (srcmode))
320	{
321	  enum insn_code ic;
322
323	  ic = can_extend_p (mode, srcmode, 0);
324	  if (ic == CODE_FOR_nothing)
325	    continue;
326
327	  PUT_MODE (mem, srcmode);
328
329	  if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
330	    float_extend_from_mem[mode][srcmode] = true;
331	}
332    }
333}
334
335/* This is run at the start of compiling a function.  */
336
337void
338init_expr (void)
339{
340  cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
341}
342
343/* Copy data from FROM to TO, where the machine modes are not the same.
344   Both modes may be integer, or both may be floating.
345   UNSIGNEDP should be nonzero if FROM is an unsigned type.
346   This causes zero-extension instead of sign-extension.  */
347
348void
349convert_move (rtx to, rtx from, int unsignedp)
350{
351  enum machine_mode to_mode = GET_MODE (to);
352  enum machine_mode from_mode = GET_MODE (from);
353  int to_real = SCALAR_FLOAT_MODE_P (to_mode);
354  int from_real = SCALAR_FLOAT_MODE_P (from_mode);
355  enum insn_code code;
356  rtx libcall;
357
358  /* rtx code for making an equivalent value.  */
359  enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
360			      : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
361
362
363  gcc_assert (to_real == from_real);
364  gcc_assert (to_mode != BLKmode);
365  gcc_assert (from_mode != BLKmode);
366
367  /* If the source and destination are already the same, then there's
368     nothing to do.  */
369  if (to == from)
370    return;
371
372  /* If FROM is a SUBREG that indicates that we have already done at least
373     the required extension, strip it.  We don't handle such SUBREGs as
374     TO here.  */
375
376  if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
377      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
378	  >= GET_MODE_SIZE (to_mode))
379      && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
380    from = gen_lowpart (to_mode, from), from_mode = to_mode;
381
382  gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
383
384  if (to_mode == from_mode
385      || (from_mode == VOIDmode && CONSTANT_P (from)))
386    {
387      emit_move_insn (to, from);
388      return;
389    }
390
391  if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
392    {
393      gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
394
395      if (VECTOR_MODE_P (to_mode))
396	from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
397      else
398	to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
399
400      emit_move_insn (to, from);
401      return;
402    }
403
404  if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
405    {
406      convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
407      convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
408      return;
409    }
410
411  if (to_real)
412    {
413      rtx value, insns;
414      convert_optab tab;
415
416      gcc_assert ((GET_MODE_PRECISION (from_mode)
417		   != GET_MODE_PRECISION (to_mode))
418		  || (DECIMAL_FLOAT_MODE_P (from_mode)
419		      != DECIMAL_FLOAT_MODE_P (to_mode)));
420
421      if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
422	/* Conversion between decimal float and binary float, same size.  */
423	tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
424      else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
425	tab = sext_optab;
426      else
427	tab = trunc_optab;
428
429      /* Try converting directly if the insn is supported.  */
430
431      code = tab->handlers[to_mode][from_mode].insn_code;
432      if (code != CODE_FOR_nothing)
433	{
434	  emit_unop_insn (code, to, from,
435			  tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
436	  return;
437	}
438
439      /* Otherwise use a libcall.  */
440      libcall = tab->handlers[to_mode][from_mode].libfunc;
441
442      /* Is this conversion implemented yet?  */
443      gcc_assert (libcall);
444
445      start_sequence ();
446      value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
447				       1, from, from_mode);
448      insns = get_insns ();
449      end_sequence ();
450      emit_libcall_block (insns, to, value,
451			  tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
452								       from)
453			  : gen_rtx_FLOAT_EXTEND (to_mode, from));
454      return;
455    }
456
457  /* Handle pointer conversion.  */			/* SPEE 900220.  */
458  /* Targets are expected to provide conversion insns between PxImode and
459     xImode for all MODE_PARTIAL_INT modes they use, but no others.  */
460  if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
461    {
462      enum machine_mode full_mode
463	= smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
464
465      gcc_assert (trunc_optab->handlers[to_mode][full_mode].insn_code
466		  != CODE_FOR_nothing);
467
468      if (full_mode != from_mode)
469	from = convert_to_mode (full_mode, from, unsignedp);
470      emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code,
471		      to, from, UNKNOWN);
472      return;
473    }
474  if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
475    {
476      rtx new_from;
477      enum machine_mode full_mode
478	= smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
479
480      gcc_assert (sext_optab->handlers[full_mode][from_mode].insn_code
481		  != CODE_FOR_nothing);
482
483      if (to_mode == full_mode)
484	{
485	  emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
486			  to, from, UNKNOWN);
487	  return;
488	}
489
490      new_from = gen_reg_rtx (full_mode);
491      emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
492		      new_from, from, UNKNOWN);
493
494      /* else proceed to integer conversions below.  */
495      from_mode = full_mode;
496      from = new_from;
497    }
498
499  /* Now both modes are integers.  */
500
501  /* Handle expanding beyond a word.  */
502  if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
503      && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
504    {
505      rtx insns;
506      rtx lowpart;
507      rtx fill_value;
508      rtx lowfrom;
509      int i;
510      enum machine_mode lowpart_mode;
511      int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
512
513      /* Try converting directly if the insn is supported.  */
514      if ((code = can_extend_p (to_mode, from_mode, unsignedp))
515	  != CODE_FOR_nothing)
516	{
517	  /* If FROM is a SUBREG, put it into a register.  Do this
518	     so that we always generate the same set of insns for
519	     better cse'ing; if an intermediate assignment occurred,
520	     we won't be doing the operation directly on the SUBREG.  */
521	  if (optimize > 0 && GET_CODE (from) == SUBREG)
522	    from = force_reg (from_mode, from);
523	  emit_unop_insn (code, to, from, equiv_code);
524	  return;
525	}
526      /* Next, try converting via full word.  */
527      else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
528	       && ((code = can_extend_p (to_mode, word_mode, unsignedp))
529		   != CODE_FOR_nothing))
530	{
531	  if (REG_P (to))
532	    {
533	      if (reg_overlap_mentioned_p (to, from))
534		from = force_reg (from_mode, from);
535	      emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
536	    }
537	  convert_move (gen_lowpart (word_mode, to), from, unsignedp);
538	  emit_unop_insn (code, to,
539			  gen_lowpart (word_mode, to), equiv_code);
540	  return;
541	}
542
543      /* No special multiword conversion insn; do it by hand.  */
544      start_sequence ();
545
546      /* Since we will turn this into a no conflict block, we must ensure
547	 that the source does not overlap the target.  */
548
549      if (reg_overlap_mentioned_p (to, from))
550	from = force_reg (from_mode, from);
551
552      /* Get a copy of FROM widened to a word, if necessary.  */
553      if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
554	lowpart_mode = word_mode;
555      else
556	lowpart_mode = from_mode;
557
558      lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
559
560      lowpart = gen_lowpart (lowpart_mode, to);
561      emit_move_insn (lowpart, lowfrom);
562
563      /* Compute the value to put in each remaining word.  */
564      if (unsignedp)
565	fill_value = const0_rtx;
566      else
567	{
568#ifdef HAVE_slt
569	  if (HAVE_slt
570	      && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
571	      && STORE_FLAG_VALUE == -1)
572	    {
573	      emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
574			     lowpart_mode, 0);
575	      fill_value = gen_reg_rtx (word_mode);
576	      emit_insn (gen_slt (fill_value));
577	    }
578	  else
579#endif
580	    {
581	      fill_value
582		= expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
583				size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
584				NULL_RTX, 0);
585	      fill_value = convert_to_mode (word_mode, fill_value, 1);
586	    }
587	}
588
589      /* Fill the remaining words.  */
590      for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
591	{
592	  int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
593	  rtx subword = operand_subword (to, index, 1, to_mode);
594
595	  gcc_assert (subword);
596
597	  if (fill_value != subword)
598	    emit_move_insn (subword, fill_value);
599	}
600
601      insns = get_insns ();
602      end_sequence ();
603
604      emit_no_conflict_block (insns, to, from, NULL_RTX,
605			      gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
606      return;
607    }
608
609  /* Truncating multi-word to a word or less.  */
610  if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
611      && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
612    {
613      if (!((MEM_P (from)
614	     && ! MEM_VOLATILE_P (from)
615	     && direct_load[(int) to_mode]
616	     && ! mode_dependent_address_p (XEXP (from, 0)))
617	    || REG_P (from)
618	    || GET_CODE (from) == SUBREG))
619	from = force_reg (from_mode, from);
620      convert_move (to, gen_lowpart (word_mode, from), 0);
621      return;
622    }
623
624  /* Now follow all the conversions between integers
625     no more than a word long.  */
626
627  /* For truncation, usually we can just refer to FROM in a narrower mode.  */
628  if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
629      && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
630				GET_MODE_BITSIZE (from_mode)))
631    {
632      if (!((MEM_P (from)
633	     && ! MEM_VOLATILE_P (from)
634	     && direct_load[(int) to_mode]
635	     && ! mode_dependent_address_p (XEXP (from, 0)))
636	    || REG_P (from)
637	    || GET_CODE (from) == SUBREG))
638	from = force_reg (from_mode, from);
639      if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
640	  && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
641	from = copy_to_reg (from);
642      emit_move_insn (to, gen_lowpart (to_mode, from));
643      return;
644    }
645
646  /* Handle extension.  */
647  if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
648    {
649      /* Convert directly if that works.  */
650      if ((code = can_extend_p (to_mode, from_mode, unsignedp))
651	  != CODE_FOR_nothing)
652	{
653	  emit_unop_insn (code, to, from, equiv_code);
654	  return;
655	}
656      else
657	{
658	  enum machine_mode intermediate;
659	  rtx tmp;
660	  tree shift_amount;
661
662	  /* Search for a mode to convert via.  */
663	  for (intermediate = from_mode; intermediate != VOIDmode;
664	       intermediate = GET_MODE_WIDER_MODE (intermediate))
665	    if (((can_extend_p (to_mode, intermediate, unsignedp)
666		  != CODE_FOR_nothing)
667		 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
668		     && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
669					       GET_MODE_BITSIZE (intermediate))))
670		&& (can_extend_p (intermediate, from_mode, unsignedp)
671		    != CODE_FOR_nothing))
672	      {
673		convert_move (to, convert_to_mode (intermediate, from,
674						   unsignedp), unsignedp);
675		return;
676	      }
677
678	  /* No suitable intermediate mode.
679	     Generate what we need with	shifts.  */
680	  shift_amount = build_int_cst (NULL_TREE,
681					GET_MODE_BITSIZE (to_mode)
682					- GET_MODE_BITSIZE (from_mode));
683	  from = gen_lowpart (to_mode, force_reg (from_mode, from));
684	  tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
685			      to, unsignedp);
686	  tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
687			      to, unsignedp);
688	  if (tmp != to)
689	    emit_move_insn (to, tmp);
690	  return;
691	}
692    }
693
694  /* Support special truncate insns for certain modes.  */
695  if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing)
696    {
697      emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code,
698		      to, from, UNKNOWN);
699      return;
700    }
701
702  /* Handle truncation of volatile memrefs, and so on;
703     the things that couldn't be truncated directly,
704     and for which there was no special instruction.
705
706     ??? Code above formerly short-circuited this, for most integer
707     mode pairs, with a force_reg in from_mode followed by a recursive
708     call to this routine.  Appears always to have been wrong.  */
709  if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
710    {
711      rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
712      emit_move_insn (to, temp);
713      return;
714    }
715
716  /* Mode combination is not recognized.  */
717  gcc_unreachable ();
718}
719
720/* Return an rtx for a value that would result
721   from converting X to mode MODE.
722   Both X and MODE may be floating, or both integer.
723   UNSIGNEDP is nonzero if X is an unsigned value.
724   This can be done by referring to a part of X in place
725   or by copying to a new temporary with conversion.  */
726
727rtx
728convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
729{
730  return convert_modes (mode, VOIDmode, x, unsignedp);
731}
732
733/* Return an rtx for a value that would result
734   from converting X from mode OLDMODE to mode MODE.
735   Both modes may be floating, or both integer.
736   UNSIGNEDP is nonzero if X is an unsigned value.
737
738   This can be done by referring to a part of X in place
739   or by copying to a new temporary with conversion.
740
741   You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode.  */
742
743rtx
744convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
745{
746  rtx temp;
747
748  /* If FROM is a SUBREG that indicates that we have already done at least
749     the required extension, strip it.  */
750
751  if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
752      && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
753      && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
754    x = gen_lowpart (mode, x);
755
756  if (GET_MODE (x) != VOIDmode)
757    oldmode = GET_MODE (x);
758
759  if (mode == oldmode)
760    return x;
761
762  /* There is one case that we must handle specially: If we are converting
763     a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
764     we are to interpret the constant as unsigned, gen_lowpart will do
765     the wrong if the constant appears negative.  What we want to do is
766     make the high-order word of the constant zero, not all ones.  */
767
768  if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
769      && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
770      && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
771    {
772      HOST_WIDE_INT val = INTVAL (x);
773
774      if (oldmode != VOIDmode
775	  && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
776	{
777	  int width = GET_MODE_BITSIZE (oldmode);
778
779	  /* We need to zero extend VAL.  */
780	  val &= ((HOST_WIDE_INT) 1 << width) - 1;
781	}
782
783      return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
784    }
785
786  /* We can do this with a gen_lowpart if both desired and current modes
787     are integer, and this is either a constant integer, a register, or a
788     non-volatile MEM.  Except for the constant case where MODE is no
789     wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand.  */
790
791  if ((GET_CODE (x) == CONST_INT
792       && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
793      || (GET_MODE_CLASS (mode) == MODE_INT
794	  && GET_MODE_CLASS (oldmode) == MODE_INT
795	  && (GET_CODE (x) == CONST_DOUBLE
796	      || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
797		  && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
798		       && direct_load[(int) mode])
799		      || (REG_P (x)
800			  && (! HARD_REGISTER_P (x)
801			      || HARD_REGNO_MODE_OK (REGNO (x), mode))
802			  && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
803						    GET_MODE_BITSIZE (GET_MODE (x)))))))))
804    {
805      /* ?? If we don't know OLDMODE, we have to assume here that
806	 X does not need sign- or zero-extension.   This may not be
807	 the case, but it's the best we can do.  */
808      if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
809	  && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
810	{
811	  HOST_WIDE_INT val = INTVAL (x);
812	  int width = GET_MODE_BITSIZE (oldmode);
813
814	  /* We must sign or zero-extend in this case.  Start by
815	     zero-extending, then sign extend if we need to.  */
816	  val &= ((HOST_WIDE_INT) 1 << width) - 1;
817	  if (! unsignedp
818	      && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
819	    val |= (HOST_WIDE_INT) (-1) << width;
820
821	  return gen_int_mode (val, mode);
822	}
823
824      return gen_lowpart (mode, x);
825    }
826
827  /* Converting from integer constant into mode is always equivalent to an
828     subreg operation.  */
829  if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
830    {
831      gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
832      return simplify_gen_subreg (mode, x, oldmode, 0);
833    }
834
835  temp = gen_reg_rtx (mode);
836  convert_move (temp, x, unsignedp);
837  return temp;
838}
839
840/* STORE_MAX_PIECES is the number of bytes at a time that we can
841   store efficiently.  Due to internal GCC limitations, this is
842   MOVE_MAX_PIECES limited by the number of bytes GCC can represent
843   for an immediate constant.  */
844
845#define STORE_MAX_PIECES  MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
846
847/* Determine whether the LEN bytes can be moved by using several move
848   instructions.  Return nonzero if a call to move_by_pieces should
849   succeed.  */
850
851int
852can_move_by_pieces (unsigned HOST_WIDE_INT len,
853		    unsigned int align ATTRIBUTE_UNUSED)
854{
855  return MOVE_BY_PIECES_P (len, align);
856}
857
858/* Generate several move instructions to copy LEN bytes from block FROM to
859   block TO.  (These are MEM rtx's with BLKmode).
860
861   If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
862   used to push FROM to the stack.
863
864   ALIGN is maximum stack alignment we can assume.
865
866   If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
867   mempcpy, and if ENDP is 2 return memory the end minus one byte ala
868   stpcpy.  */
869
870rtx
871move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
872		unsigned int align, int endp)
873{
874  struct move_by_pieces data;
875  rtx to_addr, from_addr = XEXP (from, 0);
876  unsigned int max_size = MOVE_MAX_PIECES + 1;
877  enum machine_mode mode = VOIDmode, tmode;
878  enum insn_code icode;
879
880  align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
881
882  data.offset = 0;
883  data.from_addr = from_addr;
884  if (to)
885    {
886      to_addr = XEXP (to, 0);
887      data.to = to;
888      data.autinc_to
889	= (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
890	   || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
891      data.reverse
892	= (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
893    }
894  else
895    {
896      to_addr = NULL_RTX;
897      data.to = NULL_RTX;
898      data.autinc_to = 1;
899#ifdef STACK_GROWS_DOWNWARD
900      data.reverse = 1;
901#else
902      data.reverse = 0;
903#endif
904    }
905  data.to_addr = to_addr;
906  data.from = from;
907  data.autinc_from
908    = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
909       || GET_CODE (from_addr) == POST_INC
910       || GET_CODE (from_addr) == POST_DEC);
911
912  data.explicit_inc_from = 0;
913  data.explicit_inc_to = 0;
914  if (data.reverse) data.offset = len;
915  data.len = len;
916
917  /* If copying requires more than two move insns,
918     copy addresses to registers (to make displacements shorter)
919     and use post-increment if available.  */
920  if (!(data.autinc_from && data.autinc_to)
921      && move_by_pieces_ninsns (len, align, max_size) > 2)
922    {
923      /* Find the mode of the largest move...  */
924      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
925	   tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
926	if (GET_MODE_SIZE (tmode) < max_size)
927	  mode = tmode;
928
929      if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
930	{
931	  data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
932	  data.autinc_from = 1;
933	  data.explicit_inc_from = -1;
934	}
935      if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
936	{
937	  data.from_addr = copy_addr_to_reg (from_addr);
938	  data.autinc_from = 1;
939	  data.explicit_inc_from = 1;
940	}
941      if (!data.autinc_from && CONSTANT_P (from_addr))
942	data.from_addr = copy_addr_to_reg (from_addr);
943      if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
944	{
945	  data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
946	  data.autinc_to = 1;
947	  data.explicit_inc_to = -1;
948	}
949      if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
950	{
951	  data.to_addr = copy_addr_to_reg (to_addr);
952	  data.autinc_to = 1;
953	  data.explicit_inc_to = 1;
954	}
955      if (!data.autinc_to && CONSTANT_P (to_addr))
956	data.to_addr = copy_addr_to_reg (to_addr);
957    }
958
959  tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
960  if (align >= GET_MODE_ALIGNMENT (tmode))
961    align = GET_MODE_ALIGNMENT (tmode);
962  else
963    {
964      enum machine_mode xmode;
965
966      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
967	   tmode != VOIDmode;
968	   xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
969	if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
970	    || SLOW_UNALIGNED_ACCESS (tmode, align))
971	  break;
972
973      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
974    }
975
976  /* First move what we can in the largest integer mode, then go to
977     successively smaller modes.  */
978
979  while (max_size > 1)
980    {
981      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
982	   tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
983	if (GET_MODE_SIZE (tmode) < max_size)
984	  mode = tmode;
985
986      if (mode == VOIDmode)
987	break;
988
989      icode = mov_optab->handlers[(int) mode].insn_code;
990      if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
991	move_by_pieces_1 (GEN_FCN (icode), mode, &data);
992
993      max_size = GET_MODE_SIZE (mode);
994    }
995
996  /* The code above should have handled everything.  */
997  gcc_assert (!data.len);
998
999  if (endp)
1000    {
1001      rtx to1;
1002
1003      gcc_assert (!data.reverse);
1004      if (data.autinc_to)
1005	{
1006	  if (endp == 2)
1007	    {
1008	      if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1009		emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1010	      else
1011		data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1012								-1));
1013	    }
1014	  to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1015					   data.offset);
1016	}
1017      else
1018	{
1019	  if (endp == 2)
1020	    --data.offset;
1021	  to1 = adjust_address (data.to, QImode, data.offset);
1022	}
1023      return to1;
1024    }
1025  else
1026    return data.to;
1027}
1028
1029/* Return number of insns required to move L bytes by pieces.
1030   ALIGN (in bits) is maximum alignment we can assume.  */
1031
1032static unsigned HOST_WIDE_INT
1033move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1034		       unsigned int max_size)
1035{
1036  unsigned HOST_WIDE_INT n_insns = 0;
1037  enum machine_mode tmode;
1038
1039  tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1040  if (align >= GET_MODE_ALIGNMENT (tmode))
1041    align = GET_MODE_ALIGNMENT (tmode);
1042  else
1043    {
1044      enum machine_mode tmode, xmode;
1045
1046      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1047	   tmode != VOIDmode;
1048	   xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1049	if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1050	    || SLOW_UNALIGNED_ACCESS (tmode, align))
1051	  break;
1052
1053      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1054    }
1055
1056  while (max_size > 1)
1057    {
1058      enum machine_mode mode = VOIDmode;
1059      enum insn_code icode;
1060
1061      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1062	   tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1063	if (GET_MODE_SIZE (tmode) < max_size)
1064	  mode = tmode;
1065
1066      if (mode == VOIDmode)
1067	break;
1068
1069      icode = mov_optab->handlers[(int) mode].insn_code;
1070      if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1071	n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1072
1073      max_size = GET_MODE_SIZE (mode);
1074    }
1075
1076  gcc_assert (!l);
1077  return n_insns;
1078}
1079
1080/* Subroutine of move_by_pieces.  Move as many bytes as appropriate
1081   with move instructions for mode MODE.  GENFUN is the gen_... function
1082   to make a move insn for that mode.  DATA has all the other info.  */
1083
1084static void
1085move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1086		  struct move_by_pieces *data)
1087{
1088  unsigned int size = GET_MODE_SIZE (mode);
1089  rtx to1 = NULL_RTX, from1;
1090
1091  while (data->len >= size)
1092    {
1093      if (data->reverse)
1094	data->offset -= size;
1095
1096      if (data->to)
1097	{
1098	  if (data->autinc_to)
1099	    to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1100					     data->offset);
1101	  else
1102	    to1 = adjust_address (data->to, mode, data->offset);
1103	}
1104
1105      if (data->autinc_from)
1106	from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1107					   data->offset);
1108      else
1109	from1 = adjust_address (data->from, mode, data->offset);
1110
1111      if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1112	emit_insn (gen_add2_insn (data->to_addr,
1113				  GEN_INT (-(HOST_WIDE_INT)size)));
1114      if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1115	emit_insn (gen_add2_insn (data->from_addr,
1116				  GEN_INT (-(HOST_WIDE_INT)size)));
1117
1118      if (data->to)
1119	emit_insn ((*genfun) (to1, from1));
1120      else
1121	{
1122#ifdef PUSH_ROUNDING
1123	  emit_single_push_insn (mode, from1, NULL);
1124#else
1125	  gcc_unreachable ();
1126#endif
1127	}
1128
1129      if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1130	emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1131      if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1132	emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1133
1134      if (! data->reverse)
1135	data->offset += size;
1136
1137      data->len -= size;
1138    }
1139}
1140
1141/* Emit code to move a block Y to a block X.  This may be done with
1142   string-move instructions, with multiple scalar move instructions,
1143   or with a library call.
1144
1145   Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1146   SIZE is an rtx that says how long they are.
1147   ALIGN is the maximum alignment we can assume they have.
1148   METHOD describes what kind of copy this is, and what mechanisms may be used.
1149
1150   Return the address of the new block, if memcpy is called and returns it,
1151   0 otherwise.  */
1152
1153rtx
1154emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1155{
1156  bool may_use_call;
1157  rtx retval = 0;
1158  unsigned int align;
1159
1160  switch (method)
1161    {
1162    case BLOCK_OP_NORMAL:
1163    case BLOCK_OP_TAILCALL:
1164      may_use_call = true;
1165      break;
1166
1167    case BLOCK_OP_CALL_PARM:
1168      may_use_call = block_move_libcall_safe_for_call_parm ();
1169
1170      /* Make inhibit_defer_pop nonzero around the library call
1171	 to force it to pop the arguments right away.  */
1172      NO_DEFER_POP;
1173      break;
1174
1175    case BLOCK_OP_NO_LIBCALL:
1176      may_use_call = false;
1177      break;
1178
1179    default:
1180      gcc_unreachable ();
1181    }
1182
1183  align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1184
1185  gcc_assert (MEM_P (x));
1186  gcc_assert (MEM_P (y));
1187  gcc_assert (size);
1188
1189  /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1190     block copy is more efficient for other large modes, e.g. DCmode.  */
1191  x = adjust_address (x, BLKmode, 0);
1192  y = adjust_address (y, BLKmode, 0);
1193
1194  /* Set MEM_SIZE as appropriate for this block copy.  The main place this
1195     can be incorrect is coming from __builtin_memcpy.  */
1196  if (GET_CODE (size) == CONST_INT)
1197    {
1198      if (INTVAL (size) == 0)
1199	return 0;
1200
1201      x = shallow_copy_rtx (x);
1202      y = shallow_copy_rtx (y);
1203      set_mem_size (x, size);
1204      set_mem_size (y, size);
1205    }
1206
1207  if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1208    move_by_pieces (x, y, INTVAL (size), align, 0);
1209  else if (emit_block_move_via_movmem (x, y, size, align))
1210    ;
1211  else if (may_use_call)
1212    retval = emit_block_move_via_libcall (x, y, size,
1213					  method == BLOCK_OP_TAILCALL);
1214  else
1215    emit_block_move_via_loop (x, y, size, align);
1216
1217  if (method == BLOCK_OP_CALL_PARM)
1218    OK_DEFER_POP;
1219
1220  return retval;
1221}
1222
1223/* A subroutine of emit_block_move.  Returns true if calling the
1224   block move libcall will not clobber any parameters which may have
1225   already been placed on the stack.  */
1226
1227static bool
1228block_move_libcall_safe_for_call_parm (void)
1229{
1230  /* If arguments are pushed on the stack, then they're safe.  */
1231  if (PUSH_ARGS)
1232    return true;
1233
1234  /* If registers go on the stack anyway, any argument is sure to clobber
1235     an outgoing argument.  */
1236#if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1237  {
1238    tree fn = emit_block_move_libcall_fn (false);
1239    (void) fn;
1240    if (REG_PARM_STACK_SPACE (fn) != 0)
1241      return false;
1242  }
1243#endif
1244
1245  /* If any argument goes in memory, then it might clobber an outgoing
1246     argument.  */
1247  {
1248    CUMULATIVE_ARGS args_so_far;
1249    tree fn, arg;
1250
1251    fn = emit_block_move_libcall_fn (false);
1252    INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1253
1254    arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1255    for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1256      {
1257	enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1258	rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1259	if (!tmp || !REG_P (tmp))
1260	  return false;
1261	if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1262	  return false;
1263	FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1264      }
1265  }
1266  return true;
1267}
1268
1269/* A subroutine of emit_block_move.  Expand a movmem pattern;
1270   return true if successful.  */
1271
1272static bool
1273emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align)
1274{
1275  rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1276  int save_volatile_ok = volatile_ok;
1277  enum machine_mode mode;
1278
1279  /* Since this is a move insn, we don't care about volatility.  */
1280  volatile_ok = 1;
1281
1282  /* Try the most limited insn first, because there's no point
1283     including more than one in the machine description unless
1284     the more limited one has some advantage.  */
1285
1286  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1287       mode = GET_MODE_WIDER_MODE (mode))
1288    {
1289      enum insn_code code = movmem_optab[(int) mode];
1290      insn_operand_predicate_fn pred;
1291
1292      if (code != CODE_FOR_nothing
1293	  /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1294	     here because if SIZE is less than the mode mask, as it is
1295	     returned by the macro, it will definitely be less than the
1296	     actual mode mask.  */
1297	  && ((GET_CODE (size) == CONST_INT
1298	       && ((unsigned HOST_WIDE_INT) INTVAL (size)
1299		   <= (GET_MODE_MASK (mode) >> 1)))
1300	      || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1301	  && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1302	      || (*pred) (x, BLKmode))
1303	  && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1304	      || (*pred) (y, BLKmode))
1305	  && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1306	      || (*pred) (opalign, VOIDmode)))
1307	{
1308	  rtx op2;
1309	  rtx last = get_last_insn ();
1310	  rtx pat;
1311
1312	  op2 = convert_to_mode (mode, size, 1);
1313	  pred = insn_data[(int) code].operand[2].predicate;
1314	  if (pred != 0 && ! (*pred) (op2, mode))
1315	    op2 = copy_to_mode_reg (mode, op2);
1316
1317	  /* ??? When called via emit_block_move_for_call, it'd be
1318	     nice if there were some way to inform the backend, so
1319	     that it doesn't fail the expansion because it thinks
1320	     emitting the libcall would be more efficient.  */
1321
1322	  pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1323	  if (pat)
1324	    {
1325	      emit_insn (pat);
1326	      volatile_ok = save_volatile_ok;
1327	      return true;
1328	    }
1329	  else
1330	    delete_insns_since (last);
1331	}
1332    }
1333
1334  volatile_ok = save_volatile_ok;
1335  return false;
1336}
1337
1338/* A subroutine of emit_block_move.  Expand a call to memcpy.
1339   Return the return value from memcpy, 0 otherwise.  */
1340
1341static rtx
1342emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1343{
1344  rtx dst_addr, src_addr;
1345  tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree;
1346  enum machine_mode size_mode;
1347  rtx retval;
1348
1349  /* Emit code to copy the addresses of DST and SRC and SIZE into new
1350     pseudos.  We can then place those new pseudos into a VAR_DECL and
1351     use them later.  */
1352
1353  dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1354  src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1355
1356  dst_addr = convert_memory_address (ptr_mode, dst_addr);
1357  src_addr = convert_memory_address (ptr_mode, src_addr);
1358
1359  dst_tree = make_tree (ptr_type_node, dst_addr);
1360  src_tree = make_tree (ptr_type_node, src_addr);
1361
1362  size_mode = TYPE_MODE (sizetype);
1363
1364  size = convert_to_mode (size_mode, size, 1);
1365  size = copy_to_mode_reg (size_mode, size);
1366
1367  /* It is incorrect to use the libcall calling conventions to call
1368     memcpy in this context.  This could be a user call to memcpy and
1369     the user may wish to examine the return value from memcpy.  For
1370     targets where libcalls and normal calls have different conventions
1371     for returning pointers, we could end up generating incorrect code.  */
1372
1373  size_tree = make_tree (sizetype, size);
1374
1375  fn = emit_block_move_libcall_fn (true);
1376  arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
1377  arg_list = tree_cons (NULL_TREE, src_tree, arg_list);
1378  arg_list = tree_cons (NULL_TREE, dst_tree, arg_list);
1379
1380  /* Now we have to build up the CALL_EXPR itself.  */
1381  call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1382  call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1383		      call_expr, arg_list, NULL_TREE);
1384  CALL_EXPR_TAILCALL (call_expr) = tailcall;
1385
1386  retval = expand_normal (call_expr);
1387
1388  return retval;
1389}
1390
1391/* A subroutine of emit_block_move_via_libcall.  Create the tree node
1392   for the function we use for block copies.  The first time FOR_CALL
1393   is true, we call assemble_external.  */
1394
1395static GTY(()) tree block_move_fn;
1396
1397void
1398init_block_move_fn (const char *asmspec)
1399{
1400  if (!block_move_fn)
1401    {
1402      tree args, fn;
1403
1404      fn = get_identifier ("memcpy");
1405      args = build_function_type_list (ptr_type_node, ptr_type_node,
1406				       const_ptr_type_node, sizetype,
1407				       NULL_TREE);
1408
1409      fn = build_decl (FUNCTION_DECL, fn, args);
1410      DECL_EXTERNAL (fn) = 1;
1411      TREE_PUBLIC (fn) = 1;
1412      DECL_ARTIFICIAL (fn) = 1;
1413      TREE_NOTHROW (fn) = 1;
1414      DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1415      DECL_VISIBILITY_SPECIFIED (fn) = 1;
1416
1417      block_move_fn = fn;
1418    }
1419
1420  if (asmspec)
1421    set_user_assembler_name (block_move_fn, asmspec);
1422}
1423
1424static tree
1425emit_block_move_libcall_fn (int for_call)
1426{
1427  static bool emitted_extern;
1428
1429  if (!block_move_fn)
1430    init_block_move_fn (NULL);
1431
1432  if (for_call && !emitted_extern)
1433    {
1434      emitted_extern = true;
1435      make_decl_rtl (block_move_fn);
1436      assemble_external (block_move_fn);
1437    }
1438
1439  return block_move_fn;
1440}
1441
1442/* A subroutine of emit_block_move.  Copy the data via an explicit
1443   loop.  This is used only when libcalls are forbidden.  */
1444/* ??? It'd be nice to copy in hunks larger than QImode.  */
1445
1446static void
1447emit_block_move_via_loop (rtx x, rtx y, rtx size,
1448			  unsigned int align ATTRIBUTE_UNUSED)
1449{
1450  rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1451  enum machine_mode iter_mode;
1452
1453  iter_mode = GET_MODE (size);
1454  if (iter_mode == VOIDmode)
1455    iter_mode = word_mode;
1456
1457  top_label = gen_label_rtx ();
1458  cmp_label = gen_label_rtx ();
1459  iter = gen_reg_rtx (iter_mode);
1460
1461  emit_move_insn (iter, const0_rtx);
1462
1463  x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1464  y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1465  do_pending_stack_adjust ();
1466
1467  emit_jump (cmp_label);
1468  emit_label (top_label);
1469
1470  tmp = convert_modes (Pmode, iter_mode, iter, true);
1471  x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1472  y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1473  x = change_address (x, QImode, x_addr);
1474  y = change_address (y, QImode, y_addr);
1475
1476  emit_move_insn (x, y);
1477
1478  tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1479			     true, OPTAB_LIB_WIDEN);
1480  if (tmp != iter)
1481    emit_move_insn (iter, tmp);
1482
1483  emit_label (cmp_label);
1484
1485  emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1486			   true, top_label);
1487}
1488
1489/* Copy all or part of a value X into registers starting at REGNO.
1490   The number of registers to be filled is NREGS.  */
1491
1492void
1493move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1494{
1495  int i;
1496#ifdef HAVE_load_multiple
1497  rtx pat;
1498  rtx last;
1499#endif
1500
1501  if (nregs == 0)
1502    return;
1503
1504  if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1505    x = validize_mem (force_const_mem (mode, x));
1506
1507  /* See if the machine can do this with a load multiple insn.  */
1508#ifdef HAVE_load_multiple
1509  if (HAVE_load_multiple)
1510    {
1511      last = get_last_insn ();
1512      pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1513			       GEN_INT (nregs));
1514      if (pat)
1515	{
1516	  emit_insn (pat);
1517	  return;
1518	}
1519      else
1520	delete_insns_since (last);
1521    }
1522#endif
1523
1524  for (i = 0; i < nregs; i++)
1525    emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1526		    operand_subword_force (x, i, mode));
1527}
1528
1529/* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1530   The number of registers to be filled is NREGS.  */
1531
1532void
1533move_block_from_reg (int regno, rtx x, int nregs)
1534{
1535  int i;
1536
1537  if (nregs == 0)
1538    return;
1539
1540  /* See if the machine can do this with a store multiple insn.  */
1541#ifdef HAVE_store_multiple
1542  if (HAVE_store_multiple)
1543    {
1544      rtx last = get_last_insn ();
1545      rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1546				    GEN_INT (nregs));
1547      if (pat)
1548	{
1549	  emit_insn (pat);
1550	  return;
1551	}
1552      else
1553	delete_insns_since (last);
1554    }
1555#endif
1556
1557  for (i = 0; i < nregs; i++)
1558    {
1559      rtx tem = operand_subword (x, i, 1, BLKmode);
1560
1561      gcc_assert (tem);
1562
1563      emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1564    }
1565}
1566
1567/* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1568   ORIG, where ORIG is a non-consecutive group of registers represented by
1569   a PARALLEL.  The clone is identical to the original except in that the
1570   original set of registers is replaced by a new set of pseudo registers.
1571   The new set has the same modes as the original set.  */
1572
1573rtx
1574gen_group_rtx (rtx orig)
1575{
1576  int i, length;
1577  rtx *tmps;
1578
1579  gcc_assert (GET_CODE (orig) == PARALLEL);
1580
1581  length = XVECLEN (orig, 0);
1582  tmps = alloca (sizeof (rtx) * length);
1583
1584  /* Skip a NULL entry in first slot.  */
1585  i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1586
1587  if (i)
1588    tmps[0] = 0;
1589
1590  for (; i < length; i++)
1591    {
1592      enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1593      rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1594
1595      tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1596    }
1597
1598  return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1599}
1600
1601/* A subroutine of emit_group_load.  Arguments as for emit_group_load,
1602   except that values are placed in TMPS[i], and must later be moved
1603   into corresponding XEXP (XVECEXP (DST, 0, i), 0) element.  */
1604
1605static void
1606emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1607{
1608  rtx src;
1609  int start, i;
1610  enum machine_mode m = GET_MODE (orig_src);
1611
1612  gcc_assert (GET_CODE (dst) == PARALLEL);
1613
1614  if (m != VOIDmode
1615      && !SCALAR_INT_MODE_P (m)
1616      && !MEM_P (orig_src)
1617      && GET_CODE (orig_src) != CONCAT)
1618    {
1619      enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1620      if (imode == BLKmode)
1621	src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1622      else
1623	src = gen_reg_rtx (imode);
1624      if (imode != BLKmode)
1625	src = gen_lowpart (GET_MODE (orig_src), src);
1626      emit_move_insn (src, orig_src);
1627      /* ...and back again.  */
1628      if (imode != BLKmode)
1629	src = gen_lowpart (imode, src);
1630      emit_group_load_1 (tmps, dst, src, type, ssize);
1631      return;
1632    }
1633
1634  /* Check for a NULL entry, used to indicate that the parameter goes
1635     both on the stack and in registers.  */
1636  if (XEXP (XVECEXP (dst, 0, 0), 0))
1637    start = 0;
1638  else
1639    start = 1;
1640
1641  /* Process the pieces.  */
1642  for (i = start; i < XVECLEN (dst, 0); i++)
1643    {
1644      enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1645      HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1646      unsigned int bytelen = GET_MODE_SIZE (mode);
1647      int shift = 0;
1648
1649      /* Handle trailing fragments that run over the size of the struct.  */
1650      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1651	{
1652	  /* Arrange to shift the fragment to where it belongs.
1653	     extract_bit_field loads to the lsb of the reg.  */
1654	  if (
1655#ifdef BLOCK_REG_PADDING
1656	      BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1657	      == (BYTES_BIG_ENDIAN ? upward : downward)
1658#else
1659	      BYTES_BIG_ENDIAN
1660#endif
1661	      )
1662	    shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1663	  bytelen = ssize - bytepos;
1664	  gcc_assert (bytelen > 0);
1665	}
1666
1667      /* If we won't be loading directly from memory, protect the real source
1668	 from strange tricks we might play; but make sure that the source can
1669	 be loaded directly into the destination.  */
1670      src = orig_src;
1671      if (!MEM_P (orig_src)
1672	  && (!CONSTANT_P (orig_src)
1673	      || (GET_MODE (orig_src) != mode
1674		  && GET_MODE (orig_src) != VOIDmode)))
1675	{
1676	  if (GET_MODE (orig_src) == VOIDmode)
1677	    src = gen_reg_rtx (mode);
1678	  else
1679	    src = gen_reg_rtx (GET_MODE (orig_src));
1680
1681	  emit_move_insn (src, orig_src);
1682	}
1683
1684      /* Optimize the access just a bit.  */
1685      if (MEM_P (src)
1686	  && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1687	      || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1688	  && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1689	  && bytelen == GET_MODE_SIZE (mode))
1690	{
1691	  tmps[i] = gen_reg_rtx (mode);
1692	  emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1693	}
1694      else if (COMPLEX_MODE_P (mode)
1695	       && GET_MODE (src) == mode
1696	       && bytelen == GET_MODE_SIZE (mode))
1697	/* Let emit_move_complex do the bulk of the work.  */
1698	tmps[i] = src;
1699      else if (GET_CODE (src) == CONCAT)
1700	{
1701	  unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1702	  unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1703
1704	  if ((bytepos == 0 && bytelen == slen0)
1705	      || (bytepos != 0 && bytepos + bytelen <= slen))
1706	    {
1707	      /* The following assumes that the concatenated objects all
1708		 have the same size.  In this case, a simple calculation
1709		 can be used to determine the object and the bit field
1710		 to be extracted.  */
1711	      tmps[i] = XEXP (src, bytepos / slen0);
1712	      if (! CONSTANT_P (tmps[i])
1713		  && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1714		tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1715					     (bytepos % slen0) * BITS_PER_UNIT,
1716					     1, NULL_RTX, mode, mode);
1717	    }
1718	  else
1719	    {
1720	      rtx mem;
1721
1722	      gcc_assert (!bytepos);
1723	      mem = assign_stack_temp (GET_MODE (src), slen, 0);
1724	      emit_move_insn (mem, src);
1725	      tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1726					   0, 1, NULL_RTX, mode, mode);
1727	    }
1728	}
1729      /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1730	 SIMD register, which is currently broken.  While we get GCC
1731	 to emit proper RTL for these cases, let's dump to memory.  */
1732      else if (VECTOR_MODE_P (GET_MODE (dst))
1733	       && REG_P (src))
1734	{
1735	  int slen = GET_MODE_SIZE (GET_MODE (src));
1736	  rtx mem;
1737
1738	  mem = assign_stack_temp (GET_MODE (src), slen, 0);
1739	  emit_move_insn (mem, src);
1740	  tmps[i] = adjust_address (mem, mode, (int) bytepos);
1741	}
1742      else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1743               && XVECLEN (dst, 0) > 1)
1744        tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1745      else if (CONSTANT_P (src)
1746	       || (REG_P (src) && GET_MODE (src) == mode))
1747	tmps[i] = src;
1748      else
1749	tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1750				     bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1751				     mode, mode);
1752
1753      if (shift)
1754	tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1755				build_int_cst (NULL_TREE, shift), tmps[i], 0);
1756    }
1757}
1758
1759/* Emit code to move a block SRC of type TYPE to a block DST,
1760   where DST is non-consecutive registers represented by a PARALLEL.
1761   SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1762   if not known.  */
1763
1764void
1765emit_group_load (rtx dst, rtx src, tree type, int ssize)
1766{
1767  rtx *tmps;
1768  int i;
1769
1770  tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
1771  emit_group_load_1 (tmps, dst, src, type, ssize);
1772
1773  /* Copy the extracted pieces into the proper (probable) hard regs.  */
1774  for (i = 0; i < XVECLEN (dst, 0); i++)
1775    {
1776      rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1777      if (d == NULL)
1778	continue;
1779      emit_move_insn (d, tmps[i]);
1780    }
1781}
1782
1783/* Similar, but load SRC into new pseudos in a format that looks like
1784   PARALLEL.  This can later be fed to emit_group_move to get things
1785   in the right place.  */
1786
1787rtx
1788emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1789{
1790  rtvec vec;
1791  int i;
1792
1793  vec = rtvec_alloc (XVECLEN (parallel, 0));
1794  emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1795
1796  /* Convert the vector to look just like the original PARALLEL, except
1797     with the computed values.  */
1798  for (i = 0; i < XVECLEN (parallel, 0); i++)
1799    {
1800      rtx e = XVECEXP (parallel, 0, i);
1801      rtx d = XEXP (e, 0);
1802
1803      if (d)
1804	{
1805	  d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1806	  e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1807	}
1808      RTVEC_ELT (vec, i) = e;
1809    }
1810
1811  return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1812}
1813
1814/* Emit code to move a block SRC to block DST, where SRC and DST are
1815   non-consecutive groups of registers, each represented by a PARALLEL.  */
1816
1817void
1818emit_group_move (rtx dst, rtx src)
1819{
1820  int i;
1821
1822  gcc_assert (GET_CODE (src) == PARALLEL
1823	      && GET_CODE (dst) == PARALLEL
1824	      && XVECLEN (src, 0) == XVECLEN (dst, 0));
1825
1826  /* Skip first entry if NULL.  */
1827  for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1828    emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1829		    XEXP (XVECEXP (src, 0, i), 0));
1830}
1831
1832/* Move a group of registers represented by a PARALLEL into pseudos.  */
1833
1834rtx
1835emit_group_move_into_temps (rtx src)
1836{
1837  rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1838  int i;
1839
1840  for (i = 0; i < XVECLEN (src, 0); i++)
1841    {
1842      rtx e = XVECEXP (src, 0, i);
1843      rtx d = XEXP (e, 0);
1844
1845      if (d)
1846	e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1847      RTVEC_ELT (vec, i) = e;
1848    }
1849
1850  return gen_rtx_PARALLEL (GET_MODE (src), vec);
1851}
1852
1853/* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1854   where SRC is non-consecutive registers represented by a PARALLEL.
1855   SSIZE represents the total size of block ORIG_DST, or -1 if not
1856   known.  */
1857
1858void
1859emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1860{
1861  rtx *tmps, dst;
1862  int start, finish, i;
1863  enum machine_mode m = GET_MODE (orig_dst);
1864
1865  gcc_assert (GET_CODE (src) == PARALLEL);
1866
1867  if (!SCALAR_INT_MODE_P (m)
1868      && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1869    {
1870      enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1871      if (imode == BLKmode)
1872        dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1873      else
1874        dst = gen_reg_rtx (imode);
1875      emit_group_store (dst, src, type, ssize);
1876      if (imode != BLKmode)
1877        dst = gen_lowpart (GET_MODE (orig_dst), dst);
1878      emit_move_insn (orig_dst, dst);
1879      return;
1880    }
1881
1882  /* Check for a NULL entry, used to indicate that the parameter goes
1883     both on the stack and in registers.  */
1884  if (XEXP (XVECEXP (src, 0, 0), 0))
1885    start = 0;
1886  else
1887    start = 1;
1888  finish = XVECLEN (src, 0);
1889
1890  tmps = alloca (sizeof (rtx) * finish);
1891
1892  /* Copy the (probable) hard regs into pseudos.  */
1893  for (i = start; i < finish; i++)
1894    {
1895      rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1896      if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1897	{
1898	  tmps[i] = gen_reg_rtx (GET_MODE (reg));
1899	  emit_move_insn (tmps[i], reg);
1900	}
1901      else
1902	tmps[i] = reg;
1903    }
1904
1905  /* If we won't be storing directly into memory, protect the real destination
1906     from strange tricks we might play.  */
1907  dst = orig_dst;
1908  if (GET_CODE (dst) == PARALLEL)
1909    {
1910      rtx temp;
1911
1912      /* We can get a PARALLEL dst if there is a conditional expression in
1913	 a return statement.  In that case, the dst and src are the same,
1914	 so no action is necessary.  */
1915      if (rtx_equal_p (dst, src))
1916	return;
1917
1918      /* It is unclear if we can ever reach here, but we may as well handle
1919	 it.  Allocate a temporary, and split this into a store/load to/from
1920	 the temporary.  */
1921
1922      temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1923      emit_group_store (temp, src, type, ssize);
1924      emit_group_load (dst, temp, type, ssize);
1925      return;
1926    }
1927  else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1928    {
1929      enum machine_mode outer = GET_MODE (dst);
1930      enum machine_mode inner;
1931      HOST_WIDE_INT bytepos;
1932      bool done = false;
1933      rtx temp;
1934
1935      if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1936	dst = gen_reg_rtx (outer);
1937
1938      /* Make life a bit easier for combine.  */
1939      /* If the first element of the vector is the low part
1940	 of the destination mode, use a paradoxical subreg to
1941	 initialize the destination.  */
1942      if (start < finish)
1943	{
1944	  inner = GET_MODE (tmps[start]);
1945	  bytepos = subreg_lowpart_offset (inner, outer);
1946	  if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1947	    {
1948	      temp = simplify_gen_subreg (outer, tmps[start],
1949					  inner, 0);
1950	      if (temp)
1951		{
1952		  emit_move_insn (dst, temp);
1953		  done = true;
1954		  start++;
1955		}
1956	    }
1957	}
1958
1959      /* If the first element wasn't the low part, try the last.  */
1960      if (!done
1961	  && start < finish - 1)
1962	{
1963	  inner = GET_MODE (tmps[finish - 1]);
1964	  bytepos = subreg_lowpart_offset (inner, outer);
1965	  if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1966	    {
1967	      temp = simplify_gen_subreg (outer, tmps[finish - 1],
1968					  inner, 0);
1969	      if (temp)
1970		{
1971		  emit_move_insn (dst, temp);
1972		  done = true;
1973		  finish--;
1974		}
1975	    }
1976	}
1977
1978      /* Otherwise, simply initialize the result to zero.  */
1979      if (!done)
1980        emit_move_insn (dst, CONST0_RTX (outer));
1981    }
1982
1983  /* Process the pieces.  */
1984  for (i = start; i < finish; i++)
1985    {
1986      HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1987      enum machine_mode mode = GET_MODE (tmps[i]);
1988      unsigned int bytelen = GET_MODE_SIZE (mode);
1989      rtx dest = dst;
1990
1991      /* Handle trailing fragments that run over the size of the struct.  */
1992      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1993	{
1994	  /* store_bit_field always takes its value from the lsb.
1995	     Move the fragment to the lsb if it's not already there.  */
1996	  if (
1997#ifdef BLOCK_REG_PADDING
1998	      BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
1999	      == (BYTES_BIG_ENDIAN ? upward : downward)
2000#else
2001	      BYTES_BIG_ENDIAN
2002#endif
2003	      )
2004	    {
2005	      int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2006	      tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2007				      build_int_cst (NULL_TREE, shift),
2008				      tmps[i], 0);
2009	    }
2010	  bytelen = ssize - bytepos;
2011	}
2012
2013      if (GET_CODE (dst) == CONCAT)
2014	{
2015	  if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2016	    dest = XEXP (dst, 0);
2017	  else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2018	    {
2019	      bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2020	      dest = XEXP (dst, 1);
2021	    }
2022	  else
2023	    {
2024	      gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2025	      dest = assign_stack_temp (GET_MODE (dest),
2026				        GET_MODE_SIZE (GET_MODE (dest)), 0);
2027	      emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
2028			      tmps[i]);
2029	      dst = dest;
2030	      break;
2031	    }
2032	}
2033
2034      /* Optimize the access just a bit.  */
2035      if (MEM_P (dest)
2036	  && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2037	      || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2038	  && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2039	  && bytelen == GET_MODE_SIZE (mode))
2040	emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2041      else
2042	store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2043			 mode, tmps[i]);
2044    }
2045
2046  /* Copy from the pseudo into the (probable) hard reg.  */
2047  if (orig_dst != dst)
2048    emit_move_insn (orig_dst, dst);
2049}
2050
2051/* Generate code to copy a BLKmode object of TYPE out of a
2052   set of registers starting with SRCREG into TGTBLK.  If TGTBLK
2053   is null, a stack temporary is created.  TGTBLK is returned.
2054
2055   The purpose of this routine is to handle functions that return
2056   BLKmode structures in registers.  Some machines (the PA for example)
2057   want to return all small structures in registers regardless of the
2058   structure's alignment.  */
2059
2060rtx
2061copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2062{
2063  unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2064  rtx src = NULL, dst = NULL;
2065  unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2066  unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2067
2068  if (tgtblk == 0)
2069    {
2070      tgtblk = assign_temp (build_qualified_type (type,
2071						  (TYPE_QUALS (type)
2072						   | TYPE_QUAL_CONST)),
2073			    0, 1, 1);
2074      preserve_temp_slots (tgtblk);
2075    }
2076
2077  /* This code assumes srcreg is at least a full word.  If it isn't, copy it
2078     into a new pseudo which is a full word.  */
2079
2080  if (GET_MODE (srcreg) != BLKmode
2081      && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2082    srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2083
2084  /* If the structure doesn't take up a whole number of words, see whether
2085     SRCREG is padded on the left or on the right.  If it's on the left,
2086     set PADDING_CORRECTION to the number of bits to skip.
2087
2088     In most ABIs, the structure will be returned at the least end of
2089     the register, which translates to right padding on little-endian
2090     targets and left padding on big-endian targets.  The opposite
2091     holds if the structure is returned at the most significant
2092     end of the register.  */
2093  if (bytes % UNITS_PER_WORD != 0
2094      && (targetm.calls.return_in_msb (type)
2095	  ? !BYTES_BIG_ENDIAN
2096	  : BYTES_BIG_ENDIAN))
2097    padding_correction
2098      = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2099
2100  /* Copy the structure BITSIZE bites at a time.
2101
2102     We could probably emit more efficient code for machines which do not use
2103     strict alignment, but it doesn't seem worth the effort at the current
2104     time.  */
2105  for (bitpos = 0, xbitpos = padding_correction;
2106       bitpos < bytes * BITS_PER_UNIT;
2107       bitpos += bitsize, xbitpos += bitsize)
2108    {
2109      /* We need a new source operand each time xbitpos is on a
2110	 word boundary and when xbitpos == padding_correction
2111	 (the first time through).  */
2112      if (xbitpos % BITS_PER_WORD == 0
2113	  || xbitpos == padding_correction)
2114	src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2115				     GET_MODE (srcreg));
2116
2117      /* We need a new destination operand each time bitpos is on
2118	 a word boundary.  */
2119      if (bitpos % BITS_PER_WORD == 0)
2120	dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2121
2122      /* Use xbitpos for the source extraction (right justified) and
2123	 xbitpos for the destination store (left justified).  */
2124      store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
2125		       extract_bit_field (src, bitsize,
2126					  xbitpos % BITS_PER_WORD, 1,
2127					  NULL_RTX, word_mode, word_mode));
2128    }
2129
2130  return tgtblk;
2131}
2132
2133/* Add a USE expression for REG to the (possibly empty) list pointed
2134   to by CALL_FUSAGE.  REG must denote a hard register.  */
2135
2136void
2137use_reg (rtx *call_fusage, rtx reg)
2138{
2139  gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2140
2141  *call_fusage
2142    = gen_rtx_EXPR_LIST (VOIDmode,
2143			 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2144}
2145
2146/* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2147   starting at REGNO.  All of these registers must be hard registers.  */
2148
2149void
2150use_regs (rtx *call_fusage, int regno, int nregs)
2151{
2152  int i;
2153
2154  gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2155
2156  for (i = 0; i < nregs; i++)
2157    use_reg (call_fusage, regno_reg_rtx[regno + i]);
2158}
2159
2160/* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2161   PARALLEL REGS.  This is for calls that pass values in multiple
2162   non-contiguous locations.  The Irix 6 ABI has examples of this.  */
2163
2164void
2165use_group_regs (rtx *call_fusage, rtx regs)
2166{
2167  int i;
2168
2169  for (i = 0; i < XVECLEN (regs, 0); i++)
2170    {
2171      rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2172
2173      /* A NULL entry means the parameter goes both on the stack and in
2174	 registers.  This can also be a MEM for targets that pass values
2175	 partially on the stack and partially in registers.  */
2176      if (reg != 0 && REG_P (reg))
2177	use_reg (call_fusage, reg);
2178    }
2179}
2180
2181
2182/* Determine whether the LEN bytes generated by CONSTFUN can be
2183   stored to memory using several move instructions.  CONSTFUNDATA is
2184   a pointer which will be passed as argument in every CONSTFUN call.
2185   ALIGN is maximum alignment we can assume.  Return nonzero if a
2186   call to store_by_pieces should succeed.  */
2187
2188int
2189can_store_by_pieces (unsigned HOST_WIDE_INT len,
2190		     rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2191		     void *constfundata, unsigned int align)
2192{
2193  unsigned HOST_WIDE_INT l;
2194  unsigned int max_size;
2195  HOST_WIDE_INT offset = 0;
2196  enum machine_mode mode, tmode;
2197  enum insn_code icode;
2198  int reverse;
2199  rtx cst;
2200
2201  if (len == 0)
2202    return 1;
2203
2204  if (! STORE_BY_PIECES_P (len, align))
2205    return 0;
2206
2207  tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2208  if (align >= GET_MODE_ALIGNMENT (tmode))
2209    align = GET_MODE_ALIGNMENT (tmode);
2210  else
2211    {
2212      enum machine_mode xmode;
2213
2214      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2215	   tmode != VOIDmode;
2216	   xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2217	if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2218	    || SLOW_UNALIGNED_ACCESS (tmode, align))
2219	  break;
2220
2221      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2222    }
2223
2224  /* We would first store what we can in the largest integer mode, then go to
2225     successively smaller modes.  */
2226
2227  for (reverse = 0;
2228       reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2229       reverse++)
2230    {
2231      l = len;
2232      mode = VOIDmode;
2233      max_size = STORE_MAX_PIECES + 1;
2234      while (max_size > 1)
2235	{
2236	  for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2237	       tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2238	    if (GET_MODE_SIZE (tmode) < max_size)
2239	      mode = tmode;
2240
2241	  if (mode == VOIDmode)
2242	    break;
2243
2244	  icode = mov_optab->handlers[(int) mode].insn_code;
2245	  if (icode != CODE_FOR_nothing
2246	      && align >= GET_MODE_ALIGNMENT (mode))
2247	    {
2248	      unsigned int size = GET_MODE_SIZE (mode);
2249
2250	      while (l >= size)
2251		{
2252		  if (reverse)
2253		    offset -= size;
2254
2255		  cst = (*constfun) (constfundata, offset, mode);
2256		  if (!LEGITIMATE_CONSTANT_P (cst))
2257		    return 0;
2258
2259		  if (!reverse)
2260		    offset += size;
2261
2262		  l -= size;
2263		}
2264	    }
2265
2266	  max_size = GET_MODE_SIZE (mode);
2267	}
2268
2269      /* The code above should have handled everything.  */
2270      gcc_assert (!l);
2271    }
2272
2273  return 1;
2274}
2275
2276/* Generate several move instructions to store LEN bytes generated by
2277   CONSTFUN to block TO.  (A MEM rtx with BLKmode).  CONSTFUNDATA is a
2278   pointer which will be passed as argument in every CONSTFUN call.
2279   ALIGN is maximum alignment we can assume.
2280   If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2281   mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2282   stpcpy.  */
2283
2284rtx
2285store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2286		 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2287		 void *constfundata, unsigned int align, int endp)
2288{
2289  struct store_by_pieces data;
2290
2291  if (len == 0)
2292    {
2293      gcc_assert (endp != 2);
2294      return to;
2295    }
2296
2297  gcc_assert (STORE_BY_PIECES_P (len, align));
2298  data.constfun = constfun;
2299  data.constfundata = constfundata;
2300  data.len = len;
2301  data.to = to;
2302  store_by_pieces_1 (&data, align);
2303  if (endp)
2304    {
2305      rtx to1;
2306
2307      gcc_assert (!data.reverse);
2308      if (data.autinc_to)
2309	{
2310	  if (endp == 2)
2311	    {
2312	      if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2313		emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2314	      else
2315		data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2316								-1));
2317	    }
2318	  to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2319					   data.offset);
2320	}
2321      else
2322	{
2323	  if (endp == 2)
2324	    --data.offset;
2325	  to1 = adjust_address (data.to, QImode, data.offset);
2326	}
2327      return to1;
2328    }
2329  else
2330    return data.to;
2331}
2332
2333/* Generate several move instructions to clear LEN bytes of block TO.  (A MEM
2334   rtx with BLKmode).  ALIGN is maximum alignment we can assume.  */
2335
2336static void
2337clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2338{
2339  struct store_by_pieces data;
2340
2341  if (len == 0)
2342    return;
2343
2344  data.constfun = clear_by_pieces_1;
2345  data.constfundata = NULL;
2346  data.len = len;
2347  data.to = to;
2348  store_by_pieces_1 (&data, align);
2349}
2350
2351/* Callback routine for clear_by_pieces.
2352   Return const0_rtx unconditionally.  */
2353
2354static rtx
2355clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2356		   HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2357		   enum machine_mode mode ATTRIBUTE_UNUSED)
2358{
2359  return const0_rtx;
2360}
2361
2362/* Subroutine of clear_by_pieces and store_by_pieces.
2363   Generate several move instructions to store LEN bytes of block TO.  (A MEM
2364   rtx with BLKmode).  ALIGN is maximum alignment we can assume.  */
2365
2366static void
2367store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2368		   unsigned int align ATTRIBUTE_UNUSED)
2369{
2370  rtx to_addr = XEXP (data->to, 0);
2371  unsigned int max_size = STORE_MAX_PIECES + 1;
2372  enum machine_mode mode = VOIDmode, tmode;
2373  enum insn_code icode;
2374
2375  data->offset = 0;
2376  data->to_addr = to_addr;
2377  data->autinc_to
2378    = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2379       || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2380
2381  data->explicit_inc_to = 0;
2382  data->reverse
2383    = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2384  if (data->reverse)
2385    data->offset = data->len;
2386
2387  /* If storing requires more than two move insns,
2388     copy addresses to registers (to make displacements shorter)
2389     and use post-increment if available.  */
2390  if (!data->autinc_to
2391      && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2392    {
2393      /* Determine the main mode we'll be using.  */
2394      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2395	   tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2396	if (GET_MODE_SIZE (tmode) < max_size)
2397	  mode = tmode;
2398
2399      if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2400	{
2401	  data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2402	  data->autinc_to = 1;
2403	  data->explicit_inc_to = -1;
2404	}
2405
2406      if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2407	  && ! data->autinc_to)
2408	{
2409	  data->to_addr = copy_addr_to_reg (to_addr);
2410	  data->autinc_to = 1;
2411	  data->explicit_inc_to = 1;
2412	}
2413
2414      if ( !data->autinc_to && CONSTANT_P (to_addr))
2415	data->to_addr = copy_addr_to_reg (to_addr);
2416    }
2417
2418  tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2419  if (align >= GET_MODE_ALIGNMENT (tmode))
2420    align = GET_MODE_ALIGNMENT (tmode);
2421  else
2422    {
2423      enum machine_mode xmode;
2424
2425      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2426	   tmode != VOIDmode;
2427	   xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2428	if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2429	    || SLOW_UNALIGNED_ACCESS (tmode, align))
2430	  break;
2431
2432      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2433    }
2434
2435  /* First store what we can in the largest integer mode, then go to
2436     successively smaller modes.  */
2437
2438  while (max_size > 1)
2439    {
2440      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2441	   tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2442	if (GET_MODE_SIZE (tmode) < max_size)
2443	  mode = tmode;
2444
2445      if (mode == VOIDmode)
2446	break;
2447
2448      icode = mov_optab->handlers[(int) mode].insn_code;
2449      if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2450	store_by_pieces_2 (GEN_FCN (icode), mode, data);
2451
2452      max_size = GET_MODE_SIZE (mode);
2453    }
2454
2455  /* The code above should have handled everything.  */
2456  gcc_assert (!data->len);
2457}
2458
2459/* Subroutine of store_by_pieces_1.  Store as many bytes as appropriate
2460   with move instructions for mode MODE.  GENFUN is the gen_... function
2461   to make a move insn for that mode.  DATA has all the other info.  */
2462
2463static void
2464store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2465		   struct store_by_pieces *data)
2466{
2467  unsigned int size = GET_MODE_SIZE (mode);
2468  rtx to1, cst;
2469
2470  while (data->len >= size)
2471    {
2472      if (data->reverse)
2473	data->offset -= size;
2474
2475      if (data->autinc_to)
2476	to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2477					 data->offset);
2478      else
2479	to1 = adjust_address (data->to, mode, data->offset);
2480
2481      if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2482	emit_insn (gen_add2_insn (data->to_addr,
2483				  GEN_INT (-(HOST_WIDE_INT) size)));
2484
2485      cst = (*data->constfun) (data->constfundata, data->offset, mode);
2486      emit_insn ((*genfun) (to1, cst));
2487
2488      if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2489	emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2490
2491      if (! data->reverse)
2492	data->offset += size;
2493
2494      data->len -= size;
2495    }
2496}
2497
2498/* Write zeros through the storage of OBJECT.  If OBJECT has BLKmode, SIZE is
2499   its length in bytes.  */
2500
2501rtx
2502clear_storage (rtx object, rtx size, enum block_op_methods method)
2503{
2504  enum machine_mode mode = GET_MODE (object);
2505  unsigned int align;
2506
2507  gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2508
2509  /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2510     just move a zero.  Otherwise, do this a piece at a time.  */
2511  if (mode != BLKmode
2512      && GET_CODE (size) == CONST_INT
2513      && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2514    {
2515      rtx zero = CONST0_RTX (mode);
2516      if (zero != NULL)
2517	{
2518	  emit_move_insn (object, zero);
2519	  return NULL;
2520	}
2521
2522      if (COMPLEX_MODE_P (mode))
2523	{
2524	  zero = CONST0_RTX (GET_MODE_INNER (mode));
2525	  if (zero != NULL)
2526	    {
2527	      write_complex_part (object, zero, 0);
2528	      write_complex_part (object, zero, 1);
2529	      return NULL;
2530	    }
2531	}
2532    }
2533
2534  if (size == const0_rtx)
2535    return NULL;
2536
2537  align = MEM_ALIGN (object);
2538
2539  if (GET_CODE (size) == CONST_INT
2540      && CLEAR_BY_PIECES_P (INTVAL (size), align))
2541    clear_by_pieces (object, INTVAL (size), align);
2542  else if (set_storage_via_setmem (object, size, const0_rtx, align))
2543    ;
2544  else
2545    return clear_storage_via_libcall (object, size,
2546				      method == BLOCK_OP_TAILCALL);
2547
2548  return NULL;
2549}
2550
2551/* A subroutine of clear_storage.  Expand a call to memset.
2552   Return the return value of memset, 0 otherwise.  */
2553
2554static rtx
2555clear_storage_via_libcall (rtx object, rtx size, bool tailcall)
2556{
2557  tree call_expr, arg_list, fn, object_tree, size_tree;
2558  enum machine_mode size_mode;
2559  rtx retval;
2560
2561  /* Emit code to copy OBJECT and SIZE into new pseudos.  We can then
2562     place those into new pseudos into a VAR_DECL and use them later.  */
2563
2564  object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2565
2566  size_mode = TYPE_MODE (sizetype);
2567  size = convert_to_mode (size_mode, size, 1);
2568  size = copy_to_mode_reg (size_mode, size);
2569
2570  /* It is incorrect to use the libcall calling conventions to call
2571     memset in this context.  This could be a user call to memset and
2572     the user may wish to examine the return value from memset.  For
2573     targets where libcalls and normal calls have different conventions
2574     for returning pointers, we could end up generating incorrect code.  */
2575
2576  object_tree = make_tree (ptr_type_node, object);
2577  size_tree = make_tree (sizetype, size);
2578
2579  fn = clear_storage_libcall_fn (true);
2580  arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
2581  arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list);
2582  arg_list = tree_cons (NULL_TREE, object_tree, arg_list);
2583
2584  /* Now we have to build up the CALL_EXPR itself.  */
2585  call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
2586  call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
2587		      call_expr, arg_list, NULL_TREE);
2588  CALL_EXPR_TAILCALL (call_expr) = tailcall;
2589
2590  retval = expand_normal (call_expr);
2591
2592  return retval;
2593}
2594
2595/* A subroutine of clear_storage_via_libcall.  Create the tree node
2596   for the function we use for block clears.  The first time FOR_CALL
2597   is true, we call assemble_external.  */
2598
2599static GTY(()) tree block_clear_fn;
2600
2601void
2602init_block_clear_fn (const char *asmspec)
2603{
2604  if (!block_clear_fn)
2605    {
2606      tree fn, args;
2607
2608      fn = get_identifier ("memset");
2609      args = build_function_type_list (ptr_type_node, ptr_type_node,
2610				       integer_type_node, sizetype,
2611				       NULL_TREE);
2612
2613      fn = build_decl (FUNCTION_DECL, fn, args);
2614      DECL_EXTERNAL (fn) = 1;
2615      TREE_PUBLIC (fn) = 1;
2616      DECL_ARTIFICIAL (fn) = 1;
2617      TREE_NOTHROW (fn) = 1;
2618      DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2619      DECL_VISIBILITY_SPECIFIED (fn) = 1;
2620
2621      block_clear_fn = fn;
2622    }
2623
2624  if (asmspec)
2625    set_user_assembler_name (block_clear_fn, asmspec);
2626}
2627
2628static tree
2629clear_storage_libcall_fn (int for_call)
2630{
2631  static bool emitted_extern;
2632
2633  if (!block_clear_fn)
2634    init_block_clear_fn (NULL);
2635
2636  if (for_call && !emitted_extern)
2637    {
2638      emitted_extern = true;
2639      make_decl_rtl (block_clear_fn);
2640      assemble_external (block_clear_fn);
2641    }
2642
2643  return block_clear_fn;
2644}
2645
2646/* Expand a setmem pattern; return true if successful.  */
2647
2648bool
2649set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align)
2650{
2651  /* Try the most limited insn first, because there's no point
2652     including more than one in the machine description unless
2653     the more limited one has some advantage.  */
2654
2655  rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2656  enum machine_mode mode;
2657
2658  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2659       mode = GET_MODE_WIDER_MODE (mode))
2660    {
2661      enum insn_code code = setmem_optab[(int) mode];
2662      insn_operand_predicate_fn pred;
2663
2664      if (code != CODE_FOR_nothing
2665	  /* We don't need MODE to be narrower than
2666	     BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2667	     the mode mask, as it is returned by the macro, it will
2668	     definitely be less than the actual mode mask.  */
2669	  && ((GET_CODE (size) == CONST_INT
2670	       && ((unsigned HOST_WIDE_INT) INTVAL (size)
2671		   <= (GET_MODE_MASK (mode) >> 1)))
2672	      || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2673	  && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2674	      || (*pred) (object, BLKmode))
2675	  && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2676	      || (*pred) (opalign, VOIDmode)))
2677	{
2678	  rtx opsize, opchar;
2679	  enum machine_mode char_mode;
2680	  rtx last = get_last_insn ();
2681	  rtx pat;
2682
2683	  opsize = convert_to_mode (mode, size, 1);
2684	  pred = insn_data[(int) code].operand[1].predicate;
2685	  if (pred != 0 && ! (*pred) (opsize, mode))
2686	    opsize = copy_to_mode_reg (mode, opsize);
2687
2688	  opchar = val;
2689	  char_mode = insn_data[(int) code].operand[2].mode;
2690	  if (char_mode != VOIDmode)
2691	    {
2692	      opchar = convert_to_mode (char_mode, opchar, 1);
2693	      pred = insn_data[(int) code].operand[2].predicate;
2694	      if (pred != 0 && ! (*pred) (opchar, char_mode))
2695		opchar = copy_to_mode_reg (char_mode, opchar);
2696	    }
2697
2698	  pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2699	  if (pat)
2700	    {
2701	      emit_insn (pat);
2702	      return true;
2703	    }
2704	  else
2705	    delete_insns_since (last);
2706	}
2707    }
2708
2709  return false;
2710}
2711
2712
2713/* Write to one of the components of the complex value CPLX.  Write VAL to
2714   the real part if IMAG_P is false, and the imaginary part if its true.  */
2715
2716static void
2717write_complex_part (rtx cplx, rtx val, bool imag_p)
2718{
2719  enum machine_mode cmode;
2720  enum machine_mode imode;
2721  unsigned ibitsize;
2722
2723  if (GET_CODE (cplx) == CONCAT)
2724    {
2725      emit_move_insn (XEXP (cplx, imag_p), val);
2726      return;
2727    }
2728
2729  cmode = GET_MODE (cplx);
2730  imode = GET_MODE_INNER (cmode);
2731  ibitsize = GET_MODE_BITSIZE (imode);
2732
2733  /* For MEMs simplify_gen_subreg may generate an invalid new address
2734     because, e.g., the original address is considered mode-dependent
2735     by the target, which restricts simplify_subreg from invoking
2736     adjust_address_nv.  Instead of preparing fallback support for an
2737     invalid address, we call adjust_address_nv directly.  */
2738  if (MEM_P (cplx))
2739    {
2740      emit_move_insn (adjust_address_nv (cplx, imode,
2741					 imag_p ? GET_MODE_SIZE (imode) : 0),
2742		      val);
2743      return;
2744    }
2745
2746  /* If the sub-object is at least word sized, then we know that subregging
2747     will work.  This special case is important, since store_bit_field
2748     wants to operate on integer modes, and there's rarely an OImode to
2749     correspond to TCmode.  */
2750  if (ibitsize >= BITS_PER_WORD
2751      /* For hard regs we have exact predicates.  Assume we can split
2752	 the original object if it spans an even number of hard regs.
2753	 This special case is important for SCmode on 64-bit platforms
2754	 where the natural size of floating-point regs is 32-bit.  */
2755      || (REG_P (cplx)
2756	  && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2757	  && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2758    {
2759      rtx part = simplify_gen_subreg (imode, cplx, cmode,
2760				      imag_p ? GET_MODE_SIZE (imode) : 0);
2761      if (part)
2762        {
2763	  emit_move_insn (part, val);
2764	  return;
2765	}
2766      else
2767	/* simplify_gen_subreg may fail for sub-word MEMs.  */
2768	gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2769    }
2770
2771  store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2772}
2773
2774/* Extract one of the components of the complex value CPLX.  Extract the
2775   real part if IMAG_P is false, and the imaginary part if it's true.  */
2776
2777static rtx
2778read_complex_part (rtx cplx, bool imag_p)
2779{
2780  enum machine_mode cmode, imode;
2781  unsigned ibitsize;
2782
2783  if (GET_CODE (cplx) == CONCAT)
2784    return XEXP (cplx, imag_p);
2785
2786  cmode = GET_MODE (cplx);
2787  imode = GET_MODE_INNER (cmode);
2788  ibitsize = GET_MODE_BITSIZE (imode);
2789
2790  /* Special case reads from complex constants that got spilled to memory.  */
2791  if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2792    {
2793      tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2794      if (decl && TREE_CODE (decl) == COMPLEX_CST)
2795	{
2796	  tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2797	  if (CONSTANT_CLASS_P (part))
2798	    return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2799	}
2800    }
2801
2802  /* For MEMs simplify_gen_subreg may generate an invalid new address
2803     because, e.g., the original address is considered mode-dependent
2804     by the target, which restricts simplify_subreg from invoking
2805     adjust_address_nv.  Instead of preparing fallback support for an
2806     invalid address, we call adjust_address_nv directly.  */
2807  if (MEM_P (cplx))
2808    return adjust_address_nv (cplx, imode,
2809			      imag_p ? GET_MODE_SIZE (imode) : 0);
2810
2811  /* If the sub-object is at least word sized, then we know that subregging
2812     will work.  This special case is important, since extract_bit_field
2813     wants to operate on integer modes, and there's rarely an OImode to
2814     correspond to TCmode.  */
2815  if (ibitsize >= BITS_PER_WORD
2816      /* For hard regs we have exact predicates.  Assume we can split
2817	 the original object if it spans an even number of hard regs.
2818	 This special case is important for SCmode on 64-bit platforms
2819	 where the natural size of floating-point regs is 32-bit.  */
2820      || (REG_P (cplx)
2821	  && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2822	  && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2823    {
2824      rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2825				     imag_p ? GET_MODE_SIZE (imode) : 0);
2826      if (ret)
2827        return ret;
2828      else
2829	/* simplify_gen_subreg may fail for sub-word MEMs.  */
2830	gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2831    }
2832
2833  return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2834			    true, NULL_RTX, imode, imode);
2835}
2836
2837/* A subroutine of emit_move_insn_1.  Yet another lowpart generator.
2838   NEW_MODE and OLD_MODE are the same size.  Return NULL if X cannot be
2839   represented in NEW_MODE.  If FORCE is true, this will never happen, as
2840   we'll force-create a SUBREG if needed.  */
2841
2842static rtx
2843emit_move_change_mode (enum machine_mode new_mode,
2844		       enum machine_mode old_mode, rtx x, bool force)
2845{
2846  rtx ret;
2847
2848  if (MEM_P (x))
2849    {
2850      /* We don't have to worry about changing the address since the
2851	 size in bytes is supposed to be the same.  */
2852      if (reload_in_progress)
2853	{
2854	  /* Copy the MEM to change the mode and move any
2855	     substitutions from the old MEM to the new one.  */
2856	  ret = adjust_address_nv (x, new_mode, 0);
2857	  copy_replacements (x, ret);
2858	}
2859      else
2860	ret = adjust_address (x, new_mode, 0);
2861    }
2862  else
2863    {
2864      /* Note that we do want simplify_subreg's behavior of validating
2865	 that the new mode is ok for a hard register.  If we were to use
2866	 simplify_gen_subreg, we would create the subreg, but would
2867	 probably run into the target not being able to implement it.  */
2868      /* Except, of course, when FORCE is true, when this is exactly what
2869	 we want.  Which is needed for CCmodes on some targets.  */
2870      if (force)
2871	ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2872      else
2873	ret = simplify_subreg (new_mode, x, old_mode, 0);
2874    }
2875
2876  return ret;
2877}
2878
2879/* A subroutine of emit_move_insn_1.  Generate a move from Y into X using
2880   an integer mode of the same size as MODE.  Returns the instruction
2881   emitted, or NULL if such a move could not be generated.  */
2882
2883static rtx
2884emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2885{
2886  enum machine_mode imode;
2887  enum insn_code code;
2888
2889  /* There must exist a mode of the exact size we require.  */
2890  imode = int_mode_for_mode (mode);
2891  if (imode == BLKmode)
2892    return NULL_RTX;
2893
2894  /* The target must support moves in this mode.  */
2895  code = mov_optab->handlers[imode].insn_code;
2896  if (code == CODE_FOR_nothing)
2897    return NULL_RTX;
2898
2899  x = emit_move_change_mode (imode, mode, x, force);
2900  if (x == NULL_RTX)
2901    return NULL_RTX;
2902  y = emit_move_change_mode (imode, mode, y, force);
2903  if (y == NULL_RTX)
2904    return NULL_RTX;
2905  return emit_insn (GEN_FCN (code) (x, y));
2906}
2907
2908/* A subroutine of emit_move_insn_1.  X is a push_operand in MODE.
2909   Return an equivalent MEM that does not use an auto-increment.  */
2910
2911static rtx
2912emit_move_resolve_push (enum machine_mode mode, rtx x)
2913{
2914  enum rtx_code code = GET_CODE (XEXP (x, 0));
2915  HOST_WIDE_INT adjust;
2916  rtx temp;
2917
2918  adjust = GET_MODE_SIZE (mode);
2919#ifdef PUSH_ROUNDING
2920  adjust = PUSH_ROUNDING (adjust);
2921#endif
2922  if (code == PRE_DEC || code == POST_DEC)
2923    adjust = -adjust;
2924  else if (code == PRE_MODIFY || code == POST_MODIFY)
2925    {
2926      rtx expr = XEXP (XEXP (x, 0), 1);
2927      HOST_WIDE_INT val;
2928
2929      gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2930      gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
2931      val = INTVAL (XEXP (expr, 1));
2932      if (GET_CODE (expr) == MINUS)
2933	val = -val;
2934      gcc_assert (adjust == val || adjust == -val);
2935      adjust = val;
2936    }
2937
2938  /* Do not use anti_adjust_stack, since we don't want to update
2939     stack_pointer_delta.  */
2940  temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
2941			      GEN_INT (adjust), stack_pointer_rtx,
2942			      0, OPTAB_LIB_WIDEN);
2943  if (temp != stack_pointer_rtx)
2944    emit_move_insn (stack_pointer_rtx, temp);
2945
2946  switch (code)
2947    {
2948    case PRE_INC:
2949    case PRE_DEC:
2950    case PRE_MODIFY:
2951      temp = stack_pointer_rtx;
2952      break;
2953    case POST_INC:
2954    case POST_DEC:
2955    case POST_MODIFY:
2956      temp = plus_constant (stack_pointer_rtx, -adjust);
2957      break;
2958    default:
2959      gcc_unreachable ();
2960    }
2961
2962  return replace_equiv_address (x, temp);
2963}
2964
2965/* A subroutine of emit_move_complex.  Generate a move from Y into X.
2966   X is known to satisfy push_operand, and MODE is known to be complex.
2967   Returns the last instruction emitted.  */
2968
2969static rtx
2970emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
2971{
2972  enum machine_mode submode = GET_MODE_INNER (mode);
2973  bool imag_first;
2974
2975#ifdef PUSH_ROUNDING
2976  unsigned int submodesize = GET_MODE_SIZE (submode);
2977
2978  /* In case we output to the stack, but the size is smaller than the
2979     machine can push exactly, we need to use move instructions.  */
2980  if (PUSH_ROUNDING (submodesize) != submodesize)
2981    {
2982      x = emit_move_resolve_push (mode, x);
2983      return emit_move_insn (x, y);
2984    }
2985#endif
2986
2987  /* Note that the real part always precedes the imag part in memory
2988     regardless of machine's endianness.  */
2989  switch (GET_CODE (XEXP (x, 0)))
2990    {
2991    case PRE_DEC:
2992    case POST_DEC:
2993      imag_first = true;
2994      break;
2995    case PRE_INC:
2996    case POST_INC:
2997      imag_first = false;
2998      break;
2999    default:
3000      gcc_unreachable ();
3001    }
3002
3003  emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3004		  read_complex_part (y, imag_first));
3005  return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3006			 read_complex_part (y, !imag_first));
3007}
3008
3009/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
3010   MODE is known to be complex.  Returns the last instruction emitted.  */
3011
3012static rtx
3013emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3014{
3015  bool try_int;
3016
3017  /* Need to take special care for pushes, to maintain proper ordering
3018     of the data, and possibly extra padding.  */
3019  if (push_operand (x, mode))
3020    return emit_move_complex_push (mode, x, y);
3021
3022  /* See if we can coerce the target into moving both values at once.  */
3023
3024  /* Move floating point as parts.  */
3025  if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3026      && mov_optab->handlers[GET_MODE_INNER (mode)].insn_code != CODE_FOR_nothing)
3027    try_int = false;
3028  /* Not possible if the values are inherently not adjacent.  */
3029  else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3030    try_int = false;
3031  /* Is possible if both are registers (or subregs of registers).  */
3032  else if (register_operand (x, mode) && register_operand (y, mode))
3033    try_int = true;
3034  /* If one of the operands is a memory, and alignment constraints
3035     are friendly enough, we may be able to do combined memory operations.
3036     We do not attempt this if Y is a constant because that combination is
3037     usually better with the by-parts thing below.  */
3038  else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3039	   && (!STRICT_ALIGNMENT
3040	       || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3041    try_int = true;
3042  else
3043    try_int = false;
3044
3045  if (try_int)
3046    {
3047      rtx ret;
3048
3049      /* For memory to memory moves, optimal behavior can be had with the
3050	 existing block move logic.  */
3051      if (MEM_P (x) && MEM_P (y))
3052	{
3053	  emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3054			   BLOCK_OP_NO_LIBCALL);
3055	  return get_last_insn ();
3056	}
3057
3058      ret = emit_move_via_integer (mode, x, y, true);
3059      if (ret)
3060	return ret;
3061    }
3062
3063  /* Show the output dies here.  This is necessary for SUBREGs
3064     of pseudos since we cannot track their lifetimes correctly;
3065     hard regs shouldn't appear here except as return values.  */
3066  if (!reload_completed && !reload_in_progress
3067      && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3068    emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3069
3070  write_complex_part (x, read_complex_part (y, false), false);
3071  write_complex_part (x, read_complex_part (y, true), true);
3072  return get_last_insn ();
3073}
3074
3075/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
3076   MODE is known to be MODE_CC.  Returns the last instruction emitted.  */
3077
3078static rtx
3079emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3080{
3081  rtx ret;
3082
3083  /* Assume all MODE_CC modes are equivalent; if we have movcc, use it.  */
3084  if (mode != CCmode)
3085    {
3086      enum insn_code code = mov_optab->handlers[CCmode].insn_code;
3087      if (code != CODE_FOR_nothing)
3088	{
3089	  x = emit_move_change_mode (CCmode, mode, x, true);
3090	  y = emit_move_change_mode (CCmode, mode, y, true);
3091	  return emit_insn (GEN_FCN (code) (x, y));
3092	}
3093    }
3094
3095  /* Otherwise, find the MODE_INT mode of the same width.  */
3096  ret = emit_move_via_integer (mode, x, y, false);
3097  gcc_assert (ret != NULL);
3098  return ret;
3099}
3100
3101/* Return true if word I of OP lies entirely in the
3102   undefined bits of a paradoxical subreg.  */
3103
3104static bool
3105undefined_operand_subword_p (rtx op, int i)
3106{
3107  enum machine_mode innermode, innermostmode;
3108  int offset;
3109  if (GET_CODE (op) != SUBREG)
3110    return false;
3111  innermode = GET_MODE (op);
3112  innermostmode = GET_MODE (SUBREG_REG (op));
3113  offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3114  /* The SUBREG_BYTE represents offset, as if the value were stored in
3115     memory, except for a paradoxical subreg where we define
3116     SUBREG_BYTE to be 0; undo this exception as in
3117     simplify_subreg.  */
3118  if (SUBREG_BYTE (op) == 0
3119      && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3120    {
3121      int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3122      if (WORDS_BIG_ENDIAN)
3123	offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3124      if (BYTES_BIG_ENDIAN)
3125	offset += difference % UNITS_PER_WORD;
3126    }
3127  if (offset >= GET_MODE_SIZE (innermostmode)
3128      || offset <= -GET_MODE_SIZE (word_mode))
3129    return true;
3130  return false;
3131}
3132
3133/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
3134   MODE is any multi-word or full-word mode that lacks a move_insn
3135   pattern.  Note that you will get better code if you define such
3136   patterns, even if they must turn into multiple assembler instructions.  */
3137
3138static rtx
3139emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3140{
3141  rtx last_insn = 0;
3142  rtx seq, inner;
3143  bool need_clobber;
3144  int i;
3145
3146  gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3147
3148  /* If X is a push on the stack, do the push now and replace
3149     X with a reference to the stack pointer.  */
3150  if (push_operand (x, mode))
3151    x = emit_move_resolve_push (mode, x);
3152
3153  /* If we are in reload, see if either operand is a MEM whose address
3154     is scheduled for replacement.  */
3155  if (reload_in_progress && MEM_P (x)
3156      && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3157    x = replace_equiv_address_nv (x, inner);
3158  if (reload_in_progress && MEM_P (y)
3159      && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3160    y = replace_equiv_address_nv (y, inner);
3161
3162  start_sequence ();
3163
3164  need_clobber = false;
3165  for (i = 0;
3166       i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3167       i++)
3168    {
3169      rtx xpart = operand_subword (x, i, 1, mode);
3170      rtx ypart;
3171
3172      /* Do not generate code for a move if it would come entirely
3173	 from the undefined bits of a paradoxical subreg.  */
3174      if (undefined_operand_subword_p (y, i))
3175	continue;
3176
3177      ypart = operand_subword (y, i, 1, mode);
3178
3179      /* If we can't get a part of Y, put Y into memory if it is a
3180	 constant.  Otherwise, force it into a register.  Then we must
3181	 be able to get a part of Y.  */
3182      if (ypart == 0 && CONSTANT_P (y))
3183	{
3184	  y = use_anchored_address (force_const_mem (mode, y));
3185	  ypart = operand_subword (y, i, 1, mode);
3186	}
3187      else if (ypart == 0)
3188	ypart = operand_subword_force (y, i, mode);
3189
3190      gcc_assert (xpart && ypart);
3191
3192      need_clobber |= (GET_CODE (xpart) == SUBREG);
3193
3194      last_insn = emit_move_insn (xpart, ypart);
3195    }
3196
3197  seq = get_insns ();
3198  end_sequence ();
3199
3200  /* Show the output dies here.  This is necessary for SUBREGs
3201     of pseudos since we cannot track their lifetimes correctly;
3202     hard regs shouldn't appear here except as return values.
3203     We never want to emit such a clobber after reload.  */
3204  if (x != y
3205      && ! (reload_in_progress || reload_completed)
3206      && need_clobber != 0)
3207    emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3208
3209  emit_insn (seq);
3210
3211  return last_insn;
3212}
3213
3214/* Low level part of emit_move_insn.
3215   Called just like emit_move_insn, but assumes X and Y
3216   are basically valid.  */
3217
3218rtx
3219emit_move_insn_1 (rtx x, rtx y)
3220{
3221  enum machine_mode mode = GET_MODE (x);
3222  enum insn_code code;
3223
3224  gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3225
3226  code = mov_optab->handlers[mode].insn_code;
3227  if (code != CODE_FOR_nothing)
3228    return emit_insn (GEN_FCN (code) (x, y));
3229
3230  /* Expand complex moves by moving real part and imag part.  */
3231  if (COMPLEX_MODE_P (mode))
3232    return emit_move_complex (mode, x, y);
3233
3234  if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT)
3235    {
3236      rtx result = emit_move_via_integer (mode, x, y, true);
3237
3238      /* If we can't find an integer mode, use multi words.  */
3239      if (result)
3240	return result;
3241      else
3242	return emit_move_multi_word (mode, x, y);
3243    }
3244
3245  if (GET_MODE_CLASS (mode) == MODE_CC)
3246    return emit_move_ccmode (mode, x, y);
3247
3248  /* Try using a move pattern for the corresponding integer mode.  This is
3249     only safe when simplify_subreg can convert MODE constants into integer
3250     constants.  At present, it can only do this reliably if the value
3251     fits within a HOST_WIDE_INT.  */
3252  if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3253    {
3254      rtx ret = emit_move_via_integer (mode, x, y, false);
3255      if (ret)
3256	return ret;
3257    }
3258
3259  return emit_move_multi_word (mode, x, y);
3260}
3261
3262/* Generate code to copy Y into X.
3263   Both Y and X must have the same mode, except that
3264   Y can be a constant with VOIDmode.
3265   This mode cannot be BLKmode; use emit_block_move for that.
3266
3267   Return the last instruction emitted.  */
3268
3269rtx
3270emit_move_insn (rtx x, rtx y)
3271{
3272  enum machine_mode mode = GET_MODE (x);
3273  rtx y_cst = NULL_RTX;
3274  rtx last_insn, set;
3275
3276  gcc_assert (mode != BLKmode
3277	      && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3278
3279  if (CONSTANT_P (y))
3280    {
3281      if (optimize
3282	  && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3283	  && (last_insn = compress_float_constant (x, y)))
3284	return last_insn;
3285
3286      y_cst = y;
3287
3288      if (!LEGITIMATE_CONSTANT_P (y))
3289	{
3290	  y = force_const_mem (mode, y);
3291
3292	  /* If the target's cannot_force_const_mem prevented the spill,
3293	     assume that the target's move expanders will also take care
3294	     of the non-legitimate constant.  */
3295	  if (!y)
3296	    y = y_cst;
3297	  else
3298	    y = use_anchored_address (y);
3299	}
3300    }
3301
3302  /* If X or Y are memory references, verify that their addresses are valid
3303     for the machine.  */
3304  if (MEM_P (x)
3305      && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
3306	   && ! push_operand (x, GET_MODE (x)))
3307	  || (flag_force_addr
3308	      && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
3309    x = validize_mem (x);
3310
3311  if (MEM_P (y)
3312      && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
3313	  || (flag_force_addr
3314	      && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
3315    y = validize_mem (y);
3316
3317  gcc_assert (mode != BLKmode);
3318
3319  last_insn = emit_move_insn_1 (x, y);
3320
3321  if (y_cst && REG_P (x)
3322      && (set = single_set (last_insn)) != NULL_RTX
3323      && SET_DEST (set) == x
3324      && ! rtx_equal_p (y_cst, SET_SRC (set)))
3325    set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3326
3327  return last_insn;
3328}
3329
3330/* If Y is representable exactly in a narrower mode, and the target can
3331   perform the extension directly from constant or memory, then emit the
3332   move as an extension.  */
3333
3334static rtx
3335compress_float_constant (rtx x, rtx y)
3336{
3337  enum machine_mode dstmode = GET_MODE (x);
3338  enum machine_mode orig_srcmode = GET_MODE (y);
3339  enum machine_mode srcmode;
3340  REAL_VALUE_TYPE r;
3341  int oldcost, newcost;
3342
3343  REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3344
3345  if (LEGITIMATE_CONSTANT_P (y))
3346    oldcost = rtx_cost (y, SET);
3347  else
3348    oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
3349
3350  for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3351       srcmode != orig_srcmode;
3352       srcmode = GET_MODE_WIDER_MODE (srcmode))
3353    {
3354      enum insn_code ic;
3355      rtx trunc_y, last_insn;
3356
3357      /* Skip if the target can't extend this way.  */
3358      ic = can_extend_p (dstmode, srcmode, 0);
3359      if (ic == CODE_FOR_nothing)
3360	continue;
3361
3362      /* Skip if the narrowed value isn't exact.  */
3363      if (! exact_real_truncate (srcmode, &r))
3364	continue;
3365
3366      trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3367
3368      if (LEGITIMATE_CONSTANT_P (trunc_y))
3369	{
3370	  /* Skip if the target needs extra instructions to perform
3371	     the extension.  */
3372	  if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3373	    continue;
3374	  /* This is valid, but may not be cheaper than the original. */
3375	  newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3376	  if (oldcost < newcost)
3377	    continue;
3378	}
3379      else if (float_extend_from_mem[dstmode][srcmode])
3380	{
3381	  trunc_y = force_const_mem (srcmode, trunc_y);
3382	  /* This is valid, but may not be cheaper than the original. */
3383	  newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3384	  if (oldcost < newcost)
3385	    continue;
3386	  trunc_y = validize_mem (trunc_y);
3387	}
3388      else
3389	continue;
3390
3391      /* For CSE's benefit, force the compressed constant pool entry
3392	 into a new pseudo.  This constant may be used in different modes,
3393	 and if not, combine will put things back together for us.  */
3394      trunc_y = force_reg (srcmode, trunc_y);
3395      emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3396      last_insn = get_last_insn ();
3397
3398      if (REG_P (x))
3399	set_unique_reg_note (last_insn, REG_EQUAL, y);
3400
3401      return last_insn;
3402    }
3403
3404  return NULL_RTX;
3405}
3406
3407/* Pushing data onto the stack.  */
3408
3409/* Push a block of length SIZE (perhaps variable)
3410   and return an rtx to address the beginning of the block.
3411   The value may be virtual_outgoing_args_rtx.
3412
3413   EXTRA is the number of bytes of padding to push in addition to SIZE.
3414   BELOW nonzero means this padding comes at low addresses;
3415   otherwise, the padding comes at high addresses.  */
3416
3417rtx
3418push_block (rtx size, int extra, int below)
3419{
3420  rtx temp;
3421
3422  size = convert_modes (Pmode, ptr_mode, size, 1);
3423  if (CONSTANT_P (size))
3424    anti_adjust_stack (plus_constant (size, extra));
3425  else if (REG_P (size) && extra == 0)
3426    anti_adjust_stack (size);
3427  else
3428    {
3429      temp = copy_to_mode_reg (Pmode, size);
3430      if (extra != 0)
3431	temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3432			     temp, 0, OPTAB_LIB_WIDEN);
3433      anti_adjust_stack (temp);
3434    }
3435
3436#ifndef STACK_GROWS_DOWNWARD
3437  if (0)
3438#else
3439  if (1)
3440#endif
3441    {
3442      temp = virtual_outgoing_args_rtx;
3443      if (extra != 0 && below)
3444	temp = plus_constant (temp, extra);
3445    }
3446  else
3447    {
3448      if (GET_CODE (size) == CONST_INT)
3449	temp = plus_constant (virtual_outgoing_args_rtx,
3450			      -INTVAL (size) - (below ? 0 : extra));
3451      else if (extra != 0 && !below)
3452	temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3453			     negate_rtx (Pmode, plus_constant (size, extra)));
3454      else
3455	temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3456			     negate_rtx (Pmode, size));
3457    }
3458
3459  return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3460}
3461
3462#ifdef PUSH_ROUNDING
3463
3464/* Emit single push insn.  */
3465
3466static void
3467emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3468{
3469  rtx dest_addr;
3470  unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3471  rtx dest;
3472  enum insn_code icode;
3473  insn_operand_predicate_fn pred;
3474
3475  stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3476  /* If there is push pattern, use it.  Otherwise try old way of throwing
3477     MEM representing push operation to move expander.  */
3478  icode = push_optab->handlers[(int) mode].insn_code;
3479  if (icode != CODE_FOR_nothing)
3480    {
3481      if (((pred = insn_data[(int) icode].operand[0].predicate)
3482	   && !((*pred) (x, mode))))
3483	x = force_reg (mode, x);
3484      emit_insn (GEN_FCN (icode) (x));
3485      return;
3486    }
3487  if (GET_MODE_SIZE (mode) == rounded_size)
3488    dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3489  /* If we are to pad downward, adjust the stack pointer first and
3490     then store X into the stack location using an offset.  This is
3491     because emit_move_insn does not know how to pad; it does not have
3492     access to type.  */
3493  else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3494    {
3495      unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3496      HOST_WIDE_INT offset;
3497
3498      emit_move_insn (stack_pointer_rtx,
3499		      expand_binop (Pmode,
3500#ifdef STACK_GROWS_DOWNWARD
3501				    sub_optab,
3502#else
3503				    add_optab,
3504#endif
3505				    stack_pointer_rtx,
3506				    GEN_INT (rounded_size),
3507				    NULL_RTX, 0, OPTAB_LIB_WIDEN));
3508
3509      offset = (HOST_WIDE_INT) padding_size;
3510#ifdef STACK_GROWS_DOWNWARD
3511      if (STACK_PUSH_CODE == POST_DEC)
3512	/* We have already decremented the stack pointer, so get the
3513	   previous value.  */
3514	offset += (HOST_WIDE_INT) rounded_size;
3515#else
3516      if (STACK_PUSH_CODE == POST_INC)
3517	/* We have already incremented the stack pointer, so get the
3518	   previous value.  */
3519	offset -= (HOST_WIDE_INT) rounded_size;
3520#endif
3521      dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3522    }
3523  else
3524    {
3525#ifdef STACK_GROWS_DOWNWARD
3526      /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC.  */
3527      dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3528				GEN_INT (-(HOST_WIDE_INT) rounded_size));
3529#else
3530      /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC.  */
3531      dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3532				GEN_INT (rounded_size));
3533#endif
3534      dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3535    }
3536
3537  dest = gen_rtx_MEM (mode, dest_addr);
3538
3539  if (type != 0)
3540    {
3541      set_mem_attributes (dest, type, 1);
3542
3543      if (flag_optimize_sibling_calls)
3544	/* Function incoming arguments may overlap with sibling call
3545	   outgoing arguments and we cannot allow reordering of reads
3546	   from function arguments with stores to outgoing arguments
3547	   of sibling calls.  */
3548	set_mem_alias_set (dest, 0);
3549    }
3550  emit_move_insn (dest, x);
3551}
3552#endif
3553
3554/* Generate code to push X onto the stack, assuming it has mode MODE and
3555   type TYPE.
3556   MODE is redundant except when X is a CONST_INT (since they don't
3557   carry mode info).
3558   SIZE is an rtx for the size of data to be copied (in bytes),
3559   needed only if X is BLKmode.
3560
3561   ALIGN (in bits) is maximum alignment we can assume.
3562
3563   If PARTIAL and REG are both nonzero, then copy that many of the first
3564   bytes of X into registers starting with REG, and push the rest of X.
3565   The amount of space pushed is decreased by PARTIAL bytes.
3566   REG must be a hard register in this case.
3567   If REG is zero but PARTIAL is not, take any all others actions for an
3568   argument partially in registers, but do not actually load any
3569   registers.
3570
3571   EXTRA is the amount in bytes of extra space to leave next to this arg.
3572   This is ignored if an argument block has already been allocated.
3573
3574   On a machine that lacks real push insns, ARGS_ADDR is the address of
3575   the bottom of the argument block for this call.  We use indexing off there
3576   to store the arg.  On machines with push insns, ARGS_ADDR is 0 when a
3577   argument block has not been preallocated.
3578
3579   ARGS_SO_FAR is the size of args previously pushed for this call.
3580
3581   REG_PARM_STACK_SPACE is nonzero if functions require stack space
3582   for arguments passed in registers.  If nonzero, it will be the number
3583   of bytes required.  */
3584
3585void
3586emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3587		unsigned int align, int partial, rtx reg, int extra,
3588		rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3589		rtx alignment_pad)
3590{
3591  rtx xinner;
3592  enum direction stack_direction
3593#ifdef STACK_GROWS_DOWNWARD
3594    = downward;
3595#else
3596    = upward;
3597#endif
3598
3599  /* Decide where to pad the argument: `downward' for below,
3600     `upward' for above, or `none' for don't pad it.
3601     Default is below for small data on big-endian machines; else above.  */
3602  enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3603
3604  /* Invert direction if stack is post-decrement.
3605     FIXME: why?  */
3606  if (STACK_PUSH_CODE == POST_DEC)
3607    if (where_pad != none)
3608      where_pad = (where_pad == downward ? upward : downward);
3609
3610  xinner = x;
3611
3612  if (mode == BLKmode)
3613    {
3614      /* Copy a block into the stack, entirely or partially.  */
3615
3616      rtx temp;
3617      int used;
3618      int offset;
3619      int skip;
3620
3621      offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3622      used = partial - offset;
3623
3624      gcc_assert (size);
3625
3626      /* USED is now the # of bytes we need not copy to the stack
3627	 because registers will take care of them.  */
3628
3629      if (partial != 0)
3630	xinner = adjust_address (xinner, BLKmode, used);
3631
3632      /* If the partial register-part of the arg counts in its stack size,
3633	 skip the part of stack space corresponding to the registers.
3634	 Otherwise, start copying to the beginning of the stack space,
3635	 by setting SKIP to 0.  */
3636      skip = (reg_parm_stack_space == 0) ? 0 : used;
3637
3638#ifdef PUSH_ROUNDING
3639      /* Do it with several push insns if that doesn't take lots of insns
3640	 and if there is no difficulty with push insns that skip bytes
3641	 on the stack for alignment purposes.  */
3642      if (args_addr == 0
3643	  && PUSH_ARGS
3644	  && GET_CODE (size) == CONST_INT
3645	  && skip == 0
3646	  && MEM_ALIGN (xinner) >= align
3647	  && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3648	  /* Here we avoid the case of a structure whose weak alignment
3649	     forces many pushes of a small amount of data,
3650	     and such small pushes do rounding that causes trouble.  */
3651	  && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3652	      || align >= BIGGEST_ALIGNMENT
3653	      || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3654		  == (align / BITS_PER_UNIT)))
3655	  && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3656	{
3657	  /* Push padding now if padding above and stack grows down,
3658	     or if padding below and stack grows up.
3659	     But if space already allocated, this has already been done.  */
3660	  if (extra && args_addr == 0
3661	      && where_pad != none && where_pad != stack_direction)
3662	    anti_adjust_stack (GEN_INT (extra));
3663
3664	  move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3665	}
3666      else
3667#endif /* PUSH_ROUNDING  */
3668	{
3669	  rtx target;
3670
3671	  /* Otherwise make space on the stack and copy the data
3672	     to the address of that space.  */
3673
3674	  /* Deduct words put into registers from the size we must copy.  */
3675	  if (partial != 0)
3676	    {
3677	      if (GET_CODE (size) == CONST_INT)
3678		size = GEN_INT (INTVAL (size) - used);
3679	      else
3680		size = expand_binop (GET_MODE (size), sub_optab, size,
3681				     GEN_INT (used), NULL_RTX, 0,
3682				     OPTAB_LIB_WIDEN);
3683	    }
3684
3685	  /* Get the address of the stack space.
3686	     In this case, we do not deal with EXTRA separately.
3687	     A single stack adjust will do.  */
3688	  if (! args_addr)
3689	    {
3690	      temp = push_block (size, extra, where_pad == downward);
3691	      extra = 0;
3692	    }
3693	  else if (GET_CODE (args_so_far) == CONST_INT)
3694	    temp = memory_address (BLKmode,
3695				   plus_constant (args_addr,
3696						  skip + INTVAL (args_so_far)));
3697	  else
3698	    temp = memory_address (BLKmode,
3699				   plus_constant (gen_rtx_PLUS (Pmode,
3700								args_addr,
3701								args_so_far),
3702						  skip));
3703
3704	  if (!ACCUMULATE_OUTGOING_ARGS)
3705	    {
3706	      /* If the source is referenced relative to the stack pointer,
3707		 copy it to another register to stabilize it.  We do not need
3708		 to do this if we know that we won't be changing sp.  */
3709
3710	      if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3711		  || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3712		temp = copy_to_reg (temp);
3713	    }
3714
3715	  target = gen_rtx_MEM (BLKmode, temp);
3716
3717	  /* We do *not* set_mem_attributes here, because incoming arguments
3718	     may overlap with sibling call outgoing arguments and we cannot
3719	     allow reordering of reads from function arguments with stores
3720	     to outgoing arguments of sibling calls.  We do, however, want
3721	     to record the alignment of the stack slot.  */
3722	  /* ALIGN may well be better aligned than TYPE, e.g. due to
3723	     PARM_BOUNDARY.  Assume the caller isn't lying.  */
3724	  set_mem_align (target, align);
3725
3726	  emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3727	}
3728    }
3729  else if (partial > 0)
3730    {
3731      /* Scalar partly in registers.  */
3732
3733      int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3734      int i;
3735      int not_stack;
3736      /* # bytes of start of argument
3737	 that we must make space for but need not store.  */
3738      int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3739      int args_offset = INTVAL (args_so_far);
3740      int skip;
3741
3742      /* Push padding now if padding above and stack grows down,
3743	 or if padding below and stack grows up.
3744	 But if space already allocated, this has already been done.  */
3745      if (extra && args_addr == 0
3746	  && where_pad != none && where_pad != stack_direction)
3747	anti_adjust_stack (GEN_INT (extra));
3748
3749      /* If we make space by pushing it, we might as well push
3750	 the real data.  Otherwise, we can leave OFFSET nonzero
3751	 and leave the space uninitialized.  */
3752      if (args_addr == 0)
3753	offset = 0;
3754
3755      /* Now NOT_STACK gets the number of words that we don't need to
3756	 allocate on the stack.  Convert OFFSET to words too.  */
3757      not_stack = (partial - offset) / UNITS_PER_WORD;
3758      offset /= UNITS_PER_WORD;
3759
3760      /* If the partial register-part of the arg counts in its stack size,
3761	 skip the part of stack space corresponding to the registers.
3762	 Otherwise, start copying to the beginning of the stack space,
3763	 by setting SKIP to 0.  */
3764      skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3765
3766      if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3767	x = validize_mem (force_const_mem (mode, x));
3768
3769      /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3770	 SUBREGs of such registers are not allowed.  */
3771      if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3772	   && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3773	x = copy_to_reg (x);
3774
3775      /* Loop over all the words allocated on the stack for this arg.  */
3776      /* We can do it by words, because any scalar bigger than a word
3777	 has a size a multiple of a word.  */
3778#ifndef PUSH_ARGS_REVERSED
3779      for (i = not_stack; i < size; i++)
3780#else
3781      for (i = size - 1; i >= not_stack; i--)
3782#endif
3783	if (i >= not_stack + offset)
3784	  emit_push_insn (operand_subword_force (x, i, mode),
3785			  word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3786			  0, args_addr,
3787			  GEN_INT (args_offset + ((i - not_stack + skip)
3788						  * UNITS_PER_WORD)),
3789			  reg_parm_stack_space, alignment_pad);
3790    }
3791  else
3792    {
3793      rtx addr;
3794      rtx dest;
3795
3796      /* Push padding now if padding above and stack grows down,
3797	 or if padding below and stack grows up.
3798	 But if space already allocated, this has already been done.  */
3799      if (extra && args_addr == 0
3800	  && where_pad != none && where_pad != stack_direction)
3801	anti_adjust_stack (GEN_INT (extra));
3802
3803#ifdef PUSH_ROUNDING
3804      if (args_addr == 0 && PUSH_ARGS)
3805	emit_single_push_insn (mode, x, type);
3806      else
3807#endif
3808	{
3809	  if (GET_CODE (args_so_far) == CONST_INT)
3810	    addr
3811	      = memory_address (mode,
3812				plus_constant (args_addr,
3813					       INTVAL (args_so_far)));
3814	  else
3815	    addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3816						       args_so_far));
3817	  dest = gen_rtx_MEM (mode, addr);
3818
3819	  /* We do *not* set_mem_attributes here, because incoming arguments
3820	     may overlap with sibling call outgoing arguments and we cannot
3821	     allow reordering of reads from function arguments with stores
3822	     to outgoing arguments of sibling calls.  We do, however, want
3823	     to record the alignment of the stack slot.  */
3824	  /* ALIGN may well be better aligned than TYPE, e.g. due to
3825	     PARM_BOUNDARY.  Assume the caller isn't lying.  */
3826	  set_mem_align (dest, align);
3827
3828	  emit_move_insn (dest, x);
3829	}
3830    }
3831
3832  /* If part should go in registers, copy that part
3833     into the appropriate registers.  Do this now, at the end,
3834     since mem-to-mem copies above may do function calls.  */
3835  if (partial > 0 && reg != 0)
3836    {
3837      /* Handle calls that pass values in multiple non-contiguous locations.
3838	 The Irix 6 ABI has examples of this.  */
3839      if (GET_CODE (reg) == PARALLEL)
3840	emit_group_load (reg, x, type, -1);
3841      else
3842	{
3843	  gcc_assert (partial % UNITS_PER_WORD == 0);
3844	  move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3845	}
3846    }
3847
3848  if (extra && args_addr == 0 && where_pad == stack_direction)
3849    anti_adjust_stack (GEN_INT (extra));
3850
3851  if (alignment_pad && args_addr == 0)
3852    anti_adjust_stack (alignment_pad);
3853}
3854
3855/* Return X if X can be used as a subtarget in a sequence of arithmetic
3856   operations.  */
3857
3858static rtx
3859get_subtarget (rtx x)
3860{
3861  return (optimize
3862          || x == 0
3863	   /* Only registers can be subtargets.  */
3864	   || !REG_P (x)
3865	   /* Don't use hard regs to avoid extending their life.  */
3866	   || REGNO (x) < FIRST_PSEUDO_REGISTER
3867	  ? 0 : x);
3868}
3869
3870/* A subroutine of expand_assignment.  Optimize FIELD op= VAL, where
3871   FIELD is a bitfield.  Returns true if the optimization was successful,
3872   and there's nothing else to do.  */
3873
3874static bool
3875optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3876				 unsigned HOST_WIDE_INT bitpos,
3877				 enum machine_mode mode1, rtx str_rtx,
3878				 tree to, tree src)
3879{
3880  enum machine_mode str_mode = GET_MODE (str_rtx);
3881  unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3882  tree op0, op1;
3883  rtx value, result;
3884  optab binop;
3885
3886  if (mode1 != VOIDmode
3887      || bitsize >= BITS_PER_WORD
3888      || str_bitsize > BITS_PER_WORD
3889      || TREE_SIDE_EFFECTS (to)
3890      || TREE_THIS_VOLATILE (to))
3891    return false;
3892
3893  STRIP_NOPS (src);
3894  if (!BINARY_CLASS_P (src)
3895      || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
3896    return false;
3897
3898  op0 = TREE_OPERAND (src, 0);
3899  op1 = TREE_OPERAND (src, 1);
3900  STRIP_NOPS (op0);
3901
3902  if (!operand_equal_p (to, op0, 0))
3903    return false;
3904
3905  if (MEM_P (str_rtx))
3906    {
3907      unsigned HOST_WIDE_INT offset1;
3908
3909      if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
3910	str_mode = word_mode;
3911      str_mode = get_best_mode (bitsize, bitpos,
3912				MEM_ALIGN (str_rtx), str_mode, 0);
3913      if (str_mode == VOIDmode)
3914	return false;
3915      str_bitsize = GET_MODE_BITSIZE (str_mode);
3916
3917      offset1 = bitpos;
3918      bitpos %= str_bitsize;
3919      offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
3920      str_rtx = adjust_address (str_rtx, str_mode, offset1);
3921    }
3922  else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
3923    return false;
3924
3925  /* If the bit field covers the whole REG/MEM, store_field
3926     will likely generate better code.  */
3927  if (bitsize >= str_bitsize)
3928    return false;
3929
3930  /* We can't handle fields split across multiple entities.  */
3931  if (bitpos + bitsize > str_bitsize)
3932    return false;
3933
3934  if (BYTES_BIG_ENDIAN)
3935    bitpos = str_bitsize - bitpos - bitsize;
3936
3937  switch (TREE_CODE (src))
3938    {
3939    case PLUS_EXPR:
3940    case MINUS_EXPR:
3941      /* For now, just optimize the case of the topmost bitfield
3942	 where we don't need to do any masking and also
3943	 1 bit bitfields where xor can be used.
3944	 We might win by one instruction for the other bitfields
3945	 too if insv/extv instructions aren't used, so that
3946	 can be added later.  */
3947      if (bitpos + bitsize != str_bitsize
3948	  && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
3949	break;
3950
3951      value = expand_expr (op1, NULL_RTX, str_mode, 0);
3952      value = convert_modes (str_mode,
3953			     TYPE_MODE (TREE_TYPE (op1)), value,
3954			     TYPE_UNSIGNED (TREE_TYPE (op1)));
3955
3956      /* We may be accessing data outside the field, which means
3957	 we can alias adjacent data.  */
3958      if (MEM_P (str_rtx))
3959	{
3960	  str_rtx = shallow_copy_rtx (str_rtx);
3961	  set_mem_alias_set (str_rtx, 0);
3962	  set_mem_expr (str_rtx, 0);
3963	}
3964
3965      binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
3966      if (bitsize == 1 && bitpos + bitsize != str_bitsize)
3967	{
3968	  value = expand_and (str_mode, value, const1_rtx, NULL);
3969	  binop = xor_optab;
3970	}
3971      value = expand_shift (LSHIFT_EXPR, str_mode, value,
3972			    build_int_cst (NULL_TREE, bitpos),
3973			    NULL_RTX, 1);
3974      result = expand_binop (str_mode, binop, str_rtx,
3975			     value, str_rtx, 1, OPTAB_WIDEN);
3976      if (result != str_rtx)
3977	emit_move_insn (str_rtx, result);
3978      return true;
3979
3980    case BIT_IOR_EXPR:
3981    case BIT_XOR_EXPR:
3982      if (TREE_CODE (op1) != INTEGER_CST)
3983	break;
3984      value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), 0);
3985      value = convert_modes (GET_MODE (str_rtx),
3986			     TYPE_MODE (TREE_TYPE (op1)), value,
3987			     TYPE_UNSIGNED (TREE_TYPE (op1)));
3988
3989      /* We may be accessing data outside the field, which means
3990	 we can alias adjacent data.  */
3991      if (MEM_P (str_rtx))
3992	{
3993	  str_rtx = shallow_copy_rtx (str_rtx);
3994	  set_mem_alias_set (str_rtx, 0);
3995	  set_mem_expr (str_rtx, 0);
3996	}
3997
3998      binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
3999      if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4000	{
4001	  rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4002			      - 1);
4003	  value = expand_and (GET_MODE (str_rtx), value, mask,
4004			      NULL_RTX);
4005	}
4006      value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4007			    build_int_cst (NULL_TREE, bitpos),
4008			    NULL_RTX, 1);
4009      result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4010			     value, str_rtx, 1, OPTAB_WIDEN);
4011      if (result != str_rtx)
4012	emit_move_insn (str_rtx, result);
4013      return true;
4014
4015    default:
4016      break;
4017    }
4018
4019  return false;
4020}
4021
4022
4023/* Expand an assignment that stores the value of FROM into TO.  */
4024
4025void
4026expand_assignment (tree to, tree from)
4027{
4028  rtx to_rtx = 0;
4029  rtx result;
4030
4031  /* Don't crash if the lhs of the assignment was erroneous.  */
4032  if (TREE_CODE (to) == ERROR_MARK)
4033    {
4034      result = expand_normal (from);
4035      return;
4036    }
4037
4038  /* Optimize away no-op moves without side-effects.  */
4039  if (operand_equal_p (to, from, 0))
4040    return;
4041
4042  /* Assignment of a structure component needs special treatment
4043     if the structure component's rtx is not simply a MEM.
4044     Assignment of an array element at a constant index, and assignment of
4045     an array element in an unaligned packed structure field, has the same
4046     problem.  */
4047  if (handled_component_p (to)
4048      || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4049    {
4050      enum machine_mode mode1;
4051      HOST_WIDE_INT bitsize, bitpos;
4052      tree offset;
4053      int unsignedp;
4054      int volatilep = 0;
4055      tree tem;
4056
4057      push_temp_slots ();
4058      tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4059				 &unsignedp, &volatilep, true);
4060
4061      /* If we are going to use store_bit_field and extract_bit_field,
4062	 make sure to_rtx will be safe for multiple use.  */
4063
4064      to_rtx = expand_normal (tem);
4065
4066      if (offset != 0)
4067	{
4068	  rtx offset_rtx;
4069
4070	  if (!MEM_P (to_rtx))
4071	    {
4072	      /* We can get constant negative offsets into arrays with broken
4073		 user code.  Translate this to a trap instead of ICEing.  */
4074	      gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4075	      expand_builtin_trap ();
4076	      to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4077	    }
4078
4079	  offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4080#ifdef POINTERS_EXTEND_UNSIGNED
4081	  if (GET_MODE (offset_rtx) != Pmode)
4082	    offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4083#else
4084	  if (GET_MODE (offset_rtx) != ptr_mode)
4085	    offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4086#endif
4087
4088	  /* A constant address in TO_RTX can have VOIDmode, we must not try
4089	     to call force_reg for that case.  Avoid that case.  */
4090	  if (MEM_P (to_rtx)
4091	      && GET_MODE (to_rtx) == BLKmode
4092	      && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4093	      && bitsize > 0
4094	      && (bitpos % bitsize) == 0
4095	      && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4096	      && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4097	    {
4098	      to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4099	      bitpos = 0;
4100	    }
4101
4102	  to_rtx = offset_address (to_rtx, offset_rtx,
4103				   highest_pow2_factor_for_target (to,
4104				   				   offset));
4105	}
4106
4107      /* Handle expand_expr of a complex value returning a CONCAT.  */
4108      if (GET_CODE (to_rtx) == CONCAT)
4109	{
4110	  if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
4111	    {
4112	      gcc_assert (bitpos == 0);
4113	      result = store_expr (from, to_rtx, false);
4114	    }
4115	  else
4116	    {
4117	      gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4118	      result = store_expr (from, XEXP (to_rtx, bitpos != 0), false);
4119	    }
4120	}
4121      else
4122	{
4123	  if (MEM_P (to_rtx))
4124	    {
4125	      /* If the field is at offset zero, we could have been given the
4126		 DECL_RTX of the parent struct.  Don't munge it.  */
4127	      to_rtx = shallow_copy_rtx (to_rtx);
4128
4129	      set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4130
4131	      /* Deal with volatile and readonly fields.  The former is only
4132		 done for MEM.  Also set MEM_KEEP_ALIAS_SET_P if needed.  */
4133	      if (volatilep)
4134		MEM_VOLATILE_P (to_rtx) = 1;
4135	      if (component_uses_parent_alias_set (to))
4136		MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4137	    }
4138
4139	  if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4140					       to_rtx, to, from))
4141	    result = NULL;
4142	  else
4143	    result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4144				  TREE_TYPE (tem), get_alias_set (to));
4145	}
4146
4147      if (result)
4148	preserve_temp_slots (result);
4149      free_temp_slots ();
4150      pop_temp_slots ();
4151      return;
4152    }
4153
4154  /* If the rhs is a function call and its value is not an aggregate,
4155     call the function before we start to compute the lhs.
4156     This is needed for correct code for cases such as
4157     val = setjmp (buf) on machines where reference to val
4158     requires loading up part of an address in a separate insn.
4159
4160     Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4161     since it might be a promoted variable where the zero- or sign- extension
4162     needs to be done.  Handling this in the normal way is safe because no
4163     computation is done before the call.  */
4164  if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4165      && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4166      && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4167	    && REG_P (DECL_RTL (to))))
4168    {
4169      rtx value;
4170
4171      push_temp_slots ();
4172      value = expand_normal (from);
4173      if (to_rtx == 0)
4174	to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4175
4176      /* Handle calls that return values in multiple non-contiguous locations.
4177	 The Irix 6 ABI has examples of this.  */
4178      if (GET_CODE (to_rtx) == PARALLEL)
4179	emit_group_load (to_rtx, value, TREE_TYPE (from),
4180			 int_size_in_bytes (TREE_TYPE (from)));
4181      else if (GET_MODE (to_rtx) == BLKmode)
4182	emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4183      else
4184	{
4185	  if (POINTER_TYPE_P (TREE_TYPE (to)))
4186	    value = convert_memory_address (GET_MODE (to_rtx), value);
4187	  emit_move_insn (to_rtx, value);
4188	}
4189      preserve_temp_slots (to_rtx);
4190      free_temp_slots ();
4191      pop_temp_slots ();
4192      return;
4193    }
4194
4195  /* Ordinary treatment.  Expand TO to get a REG or MEM rtx.
4196     Don't re-expand if it was expanded already (in COMPONENT_REF case).  */
4197
4198  if (to_rtx == 0)
4199    to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4200
4201  /* Don't move directly into a return register.  */
4202  if (TREE_CODE (to) == RESULT_DECL
4203      && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4204    {
4205      rtx temp;
4206
4207      push_temp_slots ();
4208      temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
4209
4210      if (GET_CODE (to_rtx) == PARALLEL)
4211	emit_group_load (to_rtx, temp, TREE_TYPE (from),
4212			 int_size_in_bytes (TREE_TYPE (from)));
4213      else
4214	emit_move_insn (to_rtx, temp);
4215
4216      preserve_temp_slots (to_rtx);
4217      free_temp_slots ();
4218      pop_temp_slots ();
4219      return;
4220    }
4221
4222  /* In case we are returning the contents of an object which overlaps
4223     the place the value is being stored, use a safe function when copying
4224     a value through a pointer into a structure value return block.  */
4225  if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4226      && current_function_returns_struct
4227      && !current_function_returns_pcc_struct)
4228    {
4229      rtx from_rtx, size;
4230
4231      push_temp_slots ();
4232      size = expr_size (from);
4233      from_rtx = expand_normal (from);
4234
4235      emit_library_call (memmove_libfunc, LCT_NORMAL,
4236			 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4237			 XEXP (from_rtx, 0), Pmode,
4238			 convert_to_mode (TYPE_MODE (sizetype),
4239					  size, TYPE_UNSIGNED (sizetype)),
4240			 TYPE_MODE (sizetype));
4241
4242      preserve_temp_slots (to_rtx);
4243      free_temp_slots ();
4244      pop_temp_slots ();
4245      return;
4246    }
4247
4248  /* Compute FROM and store the value in the rtx we got.  */
4249
4250  push_temp_slots ();
4251  result = store_expr (from, to_rtx, 0);
4252  preserve_temp_slots (result);
4253  free_temp_slots ();
4254  pop_temp_slots ();
4255  return;
4256}
4257
4258/* Generate code for computing expression EXP,
4259   and storing the value into TARGET.
4260
4261   If the mode is BLKmode then we may return TARGET itself.
4262   It turns out that in BLKmode it doesn't cause a problem.
4263   because C has no operators that could combine two different
4264   assignments into the same BLKmode object with different values
4265   with no sequence point.  Will other languages need this to
4266   be more thorough?
4267
4268   If CALL_PARAM_P is nonzero, this is a store into a call param on the
4269   stack, and block moves may need to be treated specially.  */
4270
4271rtx
4272store_expr (tree exp, rtx target, int call_param_p)
4273{
4274  rtx temp;
4275  rtx alt_rtl = NULL_RTX;
4276  int dont_return_target = 0;
4277
4278  if (VOID_TYPE_P (TREE_TYPE (exp)))
4279    {
4280      /* C++ can generate ?: expressions with a throw expression in one
4281	 branch and an rvalue in the other. Here, we resolve attempts to
4282	 store the throw expression's nonexistent result.  */
4283      gcc_assert (!call_param_p);
4284      expand_expr (exp, const0_rtx, VOIDmode, 0);
4285      return NULL_RTX;
4286    }
4287  if (TREE_CODE (exp) == COMPOUND_EXPR)
4288    {
4289      /* Perform first part of compound expression, then assign from second
4290	 part.  */
4291      expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4292		   call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4293      return store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4294    }
4295  else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4296    {
4297      /* For conditional expression, get safe form of the target.  Then
4298	 test the condition, doing the appropriate assignment on either
4299	 side.  This avoids the creation of unnecessary temporaries.
4300	 For non-BLKmode, it is more efficient not to do this.  */
4301
4302      rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4303
4304      do_pending_stack_adjust ();
4305      NO_DEFER_POP;
4306      jumpifnot (TREE_OPERAND (exp, 0), lab1);
4307      store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4308      emit_jump_insn (gen_jump (lab2));
4309      emit_barrier ();
4310      emit_label (lab1);
4311      store_expr (TREE_OPERAND (exp, 2), target, call_param_p);
4312      emit_label (lab2);
4313      OK_DEFER_POP;
4314
4315      return NULL_RTX;
4316    }
4317  else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4318    /* If this is a scalar in a register that is stored in a wider mode
4319       than the declared mode, compute the result into its declared mode
4320       and then convert to the wider mode.  Our value is the computed
4321       expression.  */
4322    {
4323      rtx inner_target = 0;
4324
4325      /* We can do the conversion inside EXP, which will often result
4326	 in some optimizations.  Do the conversion in two steps: first
4327	 change the signedness, if needed, then the extend.  But don't
4328	 do this if the type of EXP is a subtype of something else
4329	 since then the conversion might involve more than just
4330	 converting modes.  */
4331      if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4332	  && TREE_TYPE (TREE_TYPE (exp)) == 0
4333	  && (!lang_hooks.reduce_bit_field_operations
4334	      || (GET_MODE_PRECISION (GET_MODE (target))
4335		  == TYPE_PRECISION (TREE_TYPE (exp)))))
4336	{
4337	  if (TYPE_UNSIGNED (TREE_TYPE (exp))
4338	      != SUBREG_PROMOTED_UNSIGNED_P (target))
4339	    exp = fold_convert
4340	      (lang_hooks.types.signed_or_unsigned_type
4341	       (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp);
4342
4343	  exp = fold_convert (lang_hooks.types.type_for_mode
4344				(GET_MODE (SUBREG_REG (target)),
4345				 SUBREG_PROMOTED_UNSIGNED_P (target)),
4346			      exp);
4347
4348	  inner_target = SUBREG_REG (target);
4349	}
4350
4351      temp = expand_expr (exp, inner_target, VOIDmode,
4352			  call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4353
4354      /* If TEMP is a VOIDmode constant, use convert_modes to make
4355	 sure that we properly convert it.  */
4356      if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4357	{
4358	  temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4359				temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4360	  temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4361			        GET_MODE (target), temp,
4362			        SUBREG_PROMOTED_UNSIGNED_P (target));
4363	}
4364
4365      convert_move (SUBREG_REG (target), temp,
4366		    SUBREG_PROMOTED_UNSIGNED_P (target));
4367
4368      return NULL_RTX;
4369    }
4370  else
4371    {
4372      temp = expand_expr_real (exp, target, GET_MODE (target),
4373			       (call_param_p
4374				? EXPAND_STACK_PARM : EXPAND_NORMAL),
4375			       &alt_rtl);
4376      /* Return TARGET if it's a specified hardware register.
4377	 If TARGET is a volatile mem ref, either return TARGET
4378	 or return a reg copied *from* TARGET; ANSI requires this.
4379
4380	 Otherwise, if TEMP is not TARGET, return TEMP
4381	 if it is constant (for efficiency),
4382	 or if we really want the correct value.  */
4383      if (!(target && REG_P (target)
4384	    && REGNO (target) < FIRST_PSEUDO_REGISTER)
4385	  && !(MEM_P (target) && MEM_VOLATILE_P (target))
4386	  && ! rtx_equal_p (temp, target)
4387	  && CONSTANT_P (temp))
4388	dont_return_target = 1;
4389    }
4390
4391  /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4392     the same as that of TARGET, adjust the constant.  This is needed, for
4393     example, in case it is a CONST_DOUBLE and we want only a word-sized
4394     value.  */
4395  if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4396      && TREE_CODE (exp) != ERROR_MARK
4397      && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4398    temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4399			  temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4400
4401  /* If value was not generated in the target, store it there.
4402     Convert the value to TARGET's type first if necessary and emit the
4403     pending incrementations that have been queued when expanding EXP.
4404     Note that we cannot emit the whole queue blindly because this will
4405     effectively disable the POST_INC optimization later.
4406
4407     If TEMP and TARGET compare equal according to rtx_equal_p, but
4408     one or both of them are volatile memory refs, we have to distinguish
4409     two cases:
4410     - expand_expr has used TARGET.  In this case, we must not generate
4411       another copy.  This can be detected by TARGET being equal according
4412       to == .
4413     - expand_expr has not used TARGET - that means that the source just
4414       happens to have the same RTX form.  Since temp will have been created
4415       by expand_expr, it will compare unequal according to == .
4416       We must generate a copy in this case, to reach the correct number
4417       of volatile memory references.  */
4418
4419  if ((! rtx_equal_p (temp, target)
4420       || (temp != target && (side_effects_p (temp)
4421			      || side_effects_p (target))))
4422      && TREE_CODE (exp) != ERROR_MARK
4423      /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4424	 but TARGET is not valid memory reference, TEMP will differ
4425	 from TARGET although it is really the same location.  */
4426      && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4427      /* If there's nothing to copy, don't bother.  Don't call
4428	 expr_size unless necessary, because some front-ends (C++)
4429	 expr_size-hook must not be given objects that are not
4430	 supposed to be bit-copied or bit-initialized.  */
4431      && expr_size (exp) != const0_rtx)
4432    {
4433      if (GET_MODE (temp) != GET_MODE (target)
4434	  && GET_MODE (temp) != VOIDmode)
4435	{
4436	  int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4437	  if (dont_return_target)
4438	    {
4439	      /* In this case, we will return TEMP,
4440		 so make sure it has the proper mode.
4441		 But don't forget to store the value into TARGET.  */
4442	      temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4443	      emit_move_insn (target, temp);
4444	    }
4445	  else if (GET_MODE (target) == BLKmode)
4446	    emit_block_move (target, temp, expr_size (exp),
4447			     (call_param_p
4448			      ? BLOCK_OP_CALL_PARM
4449			      : BLOCK_OP_NORMAL));
4450	  else
4451	    convert_move (target, temp, unsignedp);
4452	}
4453
4454      else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4455	{
4456	  /* Handle copying a string constant into an array.  The string
4457	     constant may be shorter than the array.  So copy just the string's
4458	     actual length, and clear the rest.  First get the size of the data
4459	     type of the string, which is actually the size of the target.  */
4460	  rtx size = expr_size (exp);
4461
4462	  if (GET_CODE (size) == CONST_INT
4463	      && INTVAL (size) < TREE_STRING_LENGTH (exp))
4464	    emit_block_move (target, temp, size,
4465			     (call_param_p
4466			      ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4467	  else
4468	    {
4469	      /* Compute the size of the data to copy from the string.  */
4470	      tree copy_size
4471		= size_binop (MIN_EXPR,
4472			      make_tree (sizetype, size),
4473			      size_int (TREE_STRING_LENGTH (exp)));
4474	      rtx copy_size_rtx
4475		= expand_expr (copy_size, NULL_RTX, VOIDmode,
4476			       (call_param_p
4477				? EXPAND_STACK_PARM : EXPAND_NORMAL));
4478	      rtx label = 0;
4479
4480	      /* Copy that much.  */
4481	      copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4482					       TYPE_UNSIGNED (sizetype));
4483	      emit_block_move (target, temp, copy_size_rtx,
4484			       (call_param_p
4485				? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4486
4487	      /* Figure out how much is left in TARGET that we have to clear.
4488		 Do all calculations in ptr_mode.  */
4489	      if (GET_CODE (copy_size_rtx) == CONST_INT)
4490		{
4491		  size = plus_constant (size, -INTVAL (copy_size_rtx));
4492		  target = adjust_address (target, BLKmode,
4493					   INTVAL (copy_size_rtx));
4494		}
4495	      else
4496		{
4497		  size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4498				       copy_size_rtx, NULL_RTX, 0,
4499				       OPTAB_LIB_WIDEN);
4500
4501#ifdef POINTERS_EXTEND_UNSIGNED
4502		  if (GET_MODE (copy_size_rtx) != Pmode)
4503		    copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4504						     TYPE_UNSIGNED (sizetype));
4505#endif
4506
4507		  target = offset_address (target, copy_size_rtx,
4508					   highest_pow2_factor (copy_size));
4509		  label = gen_label_rtx ();
4510		  emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4511					   GET_MODE (size), 0, label);
4512		}
4513
4514	      if (size != const0_rtx)
4515		clear_storage (target, size, BLOCK_OP_NORMAL);
4516
4517	      if (label)
4518		emit_label (label);
4519	    }
4520	}
4521      /* Handle calls that return values in multiple non-contiguous locations.
4522	 The Irix 6 ABI has examples of this.  */
4523      else if (GET_CODE (target) == PARALLEL)
4524	emit_group_load (target, temp, TREE_TYPE (exp),
4525			 int_size_in_bytes (TREE_TYPE (exp)));
4526      else if (GET_MODE (temp) == BLKmode)
4527	emit_block_move (target, temp, expr_size (exp),
4528			 (call_param_p
4529			  ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4530      else
4531	{
4532	  temp = force_operand (temp, target);
4533	  if (temp != target)
4534	    emit_move_insn (target, temp);
4535	}
4536    }
4537
4538  return NULL_RTX;
4539}
4540
4541/* Helper for categorize_ctor_elements.  Identical interface.  */
4542
4543static bool
4544categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
4545			    HOST_WIDE_INT *p_elt_count,
4546			    bool *p_must_clear)
4547{
4548  unsigned HOST_WIDE_INT idx;
4549  HOST_WIDE_INT nz_elts, elt_count;
4550  tree value, purpose;
4551
4552  /* Whether CTOR is a valid constant initializer, in accordance with what
4553     initializer_constant_valid_p does.  If inferred from the constructor
4554     elements, true until proven otherwise.  */
4555  bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4556  bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4557
4558  nz_elts = 0;
4559  elt_count = 0;
4560
4561  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4562    {
4563      HOST_WIDE_INT mult;
4564
4565      mult = 1;
4566      if (TREE_CODE (purpose) == RANGE_EXPR)
4567	{
4568	  tree lo_index = TREE_OPERAND (purpose, 0);
4569	  tree hi_index = TREE_OPERAND (purpose, 1);
4570
4571	  if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4572	    mult = (tree_low_cst (hi_index, 1)
4573		    - tree_low_cst (lo_index, 1) + 1);
4574	}
4575
4576      switch (TREE_CODE (value))
4577	{
4578	case CONSTRUCTOR:
4579	  {
4580	    HOST_WIDE_INT nz = 0, ic = 0;
4581
4582	    bool const_elt_p
4583	      = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4584
4585	    nz_elts += mult * nz;
4586 	    elt_count += mult * ic;
4587
4588	    if (const_from_elts_p && const_p)
4589	      const_p = const_elt_p;
4590	  }
4591	  break;
4592
4593	case INTEGER_CST:
4594	case REAL_CST:
4595	  if (!initializer_zerop (value))
4596	    nz_elts += mult;
4597	  elt_count += mult;
4598	  break;
4599
4600	case STRING_CST:
4601	  nz_elts += mult * TREE_STRING_LENGTH (value);
4602	  elt_count += mult * TREE_STRING_LENGTH (value);
4603	  break;
4604
4605	case COMPLEX_CST:
4606	  if (!initializer_zerop (TREE_REALPART (value)))
4607	    nz_elts += mult;
4608	  if (!initializer_zerop (TREE_IMAGPART (value)))
4609	    nz_elts += mult;
4610	  elt_count += mult;
4611	  break;
4612
4613	case VECTOR_CST:
4614	  {
4615	    tree v;
4616	    for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4617	      {
4618		if (!initializer_zerop (TREE_VALUE (v)))
4619		  nz_elts += mult;
4620		elt_count += mult;
4621	      }
4622	  }
4623	  break;
4624
4625	default:
4626	  nz_elts += mult;
4627	  elt_count += mult;
4628
4629	  if (const_from_elts_p && const_p)
4630	    const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4631		      != NULL_TREE;
4632	  break;
4633	}
4634    }
4635
4636  if (!*p_must_clear
4637      && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4638	  || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4639    {
4640      tree init_sub_type;
4641      bool clear_this = true;
4642
4643      if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4644	{
4645	  /* We don't expect more than one element of the union to be
4646	     initialized.  Not sure what we should do otherwise... */
4647          gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4648		      == 1);
4649
4650          init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4651						CONSTRUCTOR_ELTS (ctor),
4652						0)->value);
4653
4654	  /* ??? We could look at each element of the union, and find the
4655	     largest element.  Which would avoid comparing the size of the
4656	     initialized element against any tail padding in the union.
4657	     Doesn't seem worth the effort...  */
4658	  if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4659				TYPE_SIZE (init_sub_type)) == 1)
4660	    {
4661	      /* And now we have to find out if the element itself is fully
4662		 constructed.  E.g. for union { struct { int a, b; } s; } u
4663		 = { .s = { .a = 1 } }.  */
4664	      if (elt_count == count_type_elements (init_sub_type, false))
4665		clear_this = false;
4666	    }
4667	}
4668
4669      *p_must_clear = clear_this;
4670    }
4671
4672  *p_nz_elts += nz_elts;
4673  *p_elt_count += elt_count;
4674
4675  return const_p;
4676}
4677
4678/* Examine CTOR to discover:
4679   * how many scalar fields are set to nonzero values,
4680     and place it in *P_NZ_ELTS;
4681   * how many scalar fields in total are in CTOR,
4682     and place it in *P_ELT_COUNT.
4683   * if a type is a union, and the initializer from the constructor
4684     is not the largest element in the union, then set *p_must_clear.
4685
4686   Return whether or not CTOR is a valid static constant initializer, the same
4687   as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0".  */
4688
4689bool
4690categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
4691			  HOST_WIDE_INT *p_elt_count,
4692			  bool *p_must_clear)
4693{
4694  *p_nz_elts = 0;
4695  *p_elt_count = 0;
4696  *p_must_clear = false;
4697
4698  return
4699    categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
4700}
4701
4702/* Count the number of scalars in TYPE.  Return -1 on overflow or
4703   variable-sized.  If ALLOW_FLEXARR is true, don't count flexible
4704   array member at the end of the structure.  */
4705
4706HOST_WIDE_INT
4707count_type_elements (tree type, bool allow_flexarr)
4708{
4709  const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4710  switch (TREE_CODE (type))
4711    {
4712    case ARRAY_TYPE:
4713      {
4714	tree telts = array_type_nelts (type);
4715	if (telts && host_integerp (telts, 1))
4716	  {
4717	    HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4718	    HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4719	    if (n == 0)
4720	      return 0;
4721	    else if (max / n > m)
4722	      return n * m;
4723	  }
4724	return -1;
4725      }
4726
4727    case RECORD_TYPE:
4728      {
4729	HOST_WIDE_INT n = 0, t;
4730	tree f;
4731
4732	for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4733	  if (TREE_CODE (f) == FIELD_DECL)
4734	    {
4735	      t = count_type_elements (TREE_TYPE (f), false);
4736	      if (t < 0)
4737		{
4738		  /* Check for structures with flexible array member.  */
4739		  tree tf = TREE_TYPE (f);
4740		  if (allow_flexarr
4741		      && TREE_CHAIN (f) == NULL
4742		      && TREE_CODE (tf) == ARRAY_TYPE
4743		      && TYPE_DOMAIN (tf)
4744		      && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
4745		      && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
4746		      && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
4747		      && int_size_in_bytes (type) >= 0)
4748		    break;
4749
4750		  return -1;
4751		}
4752	      n += t;
4753	    }
4754
4755	return n;
4756      }
4757
4758    case UNION_TYPE:
4759    case QUAL_UNION_TYPE:
4760      return -1;
4761
4762    case COMPLEX_TYPE:
4763      return 2;
4764
4765    case VECTOR_TYPE:
4766      return TYPE_VECTOR_SUBPARTS (type);
4767
4768    case INTEGER_TYPE:
4769    case REAL_TYPE:
4770    case ENUMERAL_TYPE:
4771    case BOOLEAN_TYPE:
4772    case POINTER_TYPE:
4773    case OFFSET_TYPE:
4774    case REFERENCE_TYPE:
4775      return 1;
4776
4777    case VOID_TYPE:
4778    case METHOD_TYPE:
4779    case FUNCTION_TYPE:
4780    case LANG_TYPE:
4781    default:
4782      gcc_unreachable ();
4783    }
4784}
4785
4786/* Return 1 if EXP contains mostly (3/4)  zeros.  */
4787
4788static int
4789mostly_zeros_p (tree exp)
4790{
4791  if (TREE_CODE (exp) == CONSTRUCTOR)
4792
4793    {
4794      HOST_WIDE_INT nz_elts, count, elts;
4795      bool must_clear;
4796
4797      categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
4798      if (must_clear)
4799	return 1;
4800
4801      elts = count_type_elements (TREE_TYPE (exp), false);
4802
4803      return nz_elts < elts / 4;
4804    }
4805
4806  return initializer_zerop (exp);
4807}
4808
4809/* Return 1 if EXP contains all zeros.  */
4810
4811static int
4812all_zeros_p (tree exp)
4813{
4814  if (TREE_CODE (exp) == CONSTRUCTOR)
4815
4816    {
4817      HOST_WIDE_INT nz_elts, count;
4818      bool must_clear;
4819
4820      categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
4821      return nz_elts == 0;
4822    }
4823
4824  return initializer_zerop (exp);
4825}
4826
4827/* Helper function for store_constructor.
4828   TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4829   TYPE is the type of the CONSTRUCTOR, not the element type.
4830   CLEARED is as for store_constructor.
4831   ALIAS_SET is the alias set to use for any stores.
4832
4833   This provides a recursive shortcut back to store_constructor when it isn't
4834   necessary to go through store_field.  This is so that we can pass through
4835   the cleared field to let store_constructor know that we may not have to
4836   clear a substructure if the outer structure has already been cleared.  */
4837
4838static void
4839store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
4840			 HOST_WIDE_INT bitpos, enum machine_mode mode,
4841			 tree exp, tree type, int cleared, int alias_set)
4842{
4843  if (TREE_CODE (exp) == CONSTRUCTOR
4844      /* We can only call store_constructor recursively if the size and
4845	 bit position are on a byte boundary.  */
4846      && bitpos % BITS_PER_UNIT == 0
4847      && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
4848      /* If we have a nonzero bitpos for a register target, then we just
4849	 let store_field do the bitfield handling.  This is unlikely to
4850	 generate unnecessary clear instructions anyways.  */
4851      && (bitpos == 0 || MEM_P (target)))
4852    {
4853      if (MEM_P (target))
4854	target
4855	  = adjust_address (target,
4856			    GET_MODE (target) == BLKmode
4857			    || 0 != (bitpos
4858				     % GET_MODE_ALIGNMENT (GET_MODE (target)))
4859			    ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
4860
4861
4862      /* Update the alias set, if required.  */
4863      if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
4864	  && MEM_ALIAS_SET (target) != 0)
4865	{
4866	  target = copy_rtx (target);
4867	  set_mem_alias_set (target, alias_set);
4868	}
4869
4870      store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
4871    }
4872  else
4873    store_field (target, bitsize, bitpos, mode, exp, type, alias_set);
4874}
4875
4876/* Store the value of constructor EXP into the rtx TARGET.
4877   TARGET is either a REG or a MEM; we know it cannot conflict, since
4878   safe_from_p has been called.
4879   CLEARED is true if TARGET is known to have been zero'd.
4880   SIZE is the number of bytes of TARGET we are allowed to modify: this
4881   may not be the same as the size of EXP if we are assigning to a field
4882   which has been packed to exclude padding bits.  */
4883
4884static void
4885store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
4886{
4887  tree type = TREE_TYPE (exp);
4888#ifdef WORD_REGISTER_OPERATIONS
4889  HOST_WIDE_INT exp_size = int_size_in_bytes (type);
4890#endif
4891
4892  switch (TREE_CODE (type))
4893    {
4894    case RECORD_TYPE:
4895    case UNION_TYPE:
4896    case QUAL_UNION_TYPE:
4897      {
4898	unsigned HOST_WIDE_INT idx;
4899	tree field, value;
4900
4901	/* If size is zero or the target is already cleared, do nothing.  */
4902	if (size == 0 || cleared)
4903	  cleared = 1;
4904	/* We either clear the aggregate or indicate the value is dead.  */
4905	else if ((TREE_CODE (type) == UNION_TYPE
4906		  || TREE_CODE (type) == QUAL_UNION_TYPE)
4907		 && ! CONSTRUCTOR_ELTS (exp))
4908	  /* If the constructor is empty, clear the union.  */
4909	  {
4910	    clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
4911	    cleared = 1;
4912	  }
4913
4914	/* If we are building a static constructor into a register,
4915	   set the initial value as zero so we can fold the value into
4916	   a constant.  But if more than one register is involved,
4917	   this probably loses.  */
4918	else if (REG_P (target) && TREE_STATIC (exp)
4919		 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
4920	  {
4921	    emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4922	    cleared = 1;
4923	  }
4924
4925        /* If the constructor has fewer fields than the structure or
4926	   if we are initializing the structure to mostly zeros, clear
4927	   the whole structure first.  Don't do this if TARGET is a
4928	   register whose mode size isn't equal to SIZE since
4929	   clear_storage can't handle this case.  */
4930	else if (size > 0
4931		 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
4932		      != fields_length (type))
4933		     || mostly_zeros_p (exp))
4934		 && (!REG_P (target)
4935		     || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
4936			 == size)))
4937	  {
4938	    clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
4939	    cleared = 1;
4940	  }
4941
4942	if (! cleared)
4943	  emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4944
4945	/* Store each element of the constructor into the
4946	   corresponding field of TARGET.  */
4947	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
4948	  {
4949	    enum machine_mode mode;
4950	    HOST_WIDE_INT bitsize;
4951	    HOST_WIDE_INT bitpos = 0;
4952	    tree offset;
4953	    rtx to_rtx = target;
4954
4955	    /* Just ignore missing fields.  We cleared the whole
4956	       structure, above, if any fields are missing.  */
4957	    if (field == 0)
4958	      continue;
4959
4960	    if (cleared && initializer_zerop (value))
4961	      continue;
4962
4963	    if (host_integerp (DECL_SIZE (field), 1))
4964	      bitsize = tree_low_cst (DECL_SIZE (field), 1);
4965	    else
4966	      bitsize = -1;
4967
4968	    mode = DECL_MODE (field);
4969	    if (DECL_BIT_FIELD (field))
4970	      mode = VOIDmode;
4971
4972	    offset = DECL_FIELD_OFFSET (field);
4973	    if (host_integerp (offset, 0)
4974		&& host_integerp (bit_position (field), 0))
4975	      {
4976		bitpos = int_bit_position (field);
4977		offset = 0;
4978	      }
4979	    else
4980	      bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
4981
4982	    if (offset)
4983	      {
4984		rtx offset_rtx;
4985
4986		offset
4987		  = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
4988						    make_tree (TREE_TYPE (exp),
4989							       target));
4990
4991		offset_rtx = expand_normal (offset);
4992		gcc_assert (MEM_P (to_rtx));
4993
4994#ifdef POINTERS_EXTEND_UNSIGNED
4995		if (GET_MODE (offset_rtx) != Pmode)
4996		  offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4997#else
4998		if (GET_MODE (offset_rtx) != ptr_mode)
4999		  offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
5000#endif
5001
5002		to_rtx = offset_address (to_rtx, offset_rtx,
5003					 highest_pow2_factor (offset));
5004	      }
5005
5006#ifdef WORD_REGISTER_OPERATIONS
5007	    /* If this initializes a field that is smaller than a
5008	       word, at the start of a word, try to widen it to a full
5009	       word.  This special case allows us to output C++ member
5010	       function initializations in a form that the optimizers
5011	       can understand.  */
5012	    if (REG_P (target)
5013		&& bitsize < BITS_PER_WORD
5014		&& bitpos % BITS_PER_WORD == 0
5015		&& GET_MODE_CLASS (mode) == MODE_INT
5016		&& TREE_CODE (value) == INTEGER_CST
5017		&& exp_size >= 0
5018		&& bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5019	      {
5020		tree type = TREE_TYPE (value);
5021
5022		if (TYPE_PRECISION (type) < BITS_PER_WORD)
5023		  {
5024		    type = lang_hooks.types.type_for_size
5025		      (BITS_PER_WORD, TYPE_UNSIGNED (type));
5026		    value = fold_convert (type, value);
5027		  }
5028
5029		if (BYTES_BIG_ENDIAN)
5030		  value
5031		   = fold_build2 (LSHIFT_EXPR, type, value,
5032				   build_int_cst (type,
5033						  BITS_PER_WORD - bitsize));
5034		bitsize = BITS_PER_WORD;
5035		mode = word_mode;
5036	      }
5037#endif
5038
5039	    if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5040		&& DECL_NONADDRESSABLE_P (field))
5041	      {
5042		to_rtx = copy_rtx (to_rtx);
5043		MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5044	      }
5045
5046	    store_constructor_field (to_rtx, bitsize, bitpos, mode,
5047				     value, type, cleared,
5048				     get_alias_set (TREE_TYPE (field)));
5049	  }
5050	break;
5051      }
5052    case ARRAY_TYPE:
5053      {
5054	tree value, index;
5055	unsigned HOST_WIDE_INT i;
5056	int need_to_clear;
5057	tree domain;
5058	tree elttype = TREE_TYPE (type);
5059	int const_bounds_p;
5060	HOST_WIDE_INT minelt = 0;
5061	HOST_WIDE_INT maxelt = 0;
5062
5063	domain = TYPE_DOMAIN (type);
5064	const_bounds_p = (TYPE_MIN_VALUE (domain)
5065			  && TYPE_MAX_VALUE (domain)
5066			  && host_integerp (TYPE_MIN_VALUE (domain), 0)
5067			  && host_integerp (TYPE_MAX_VALUE (domain), 0));
5068
5069	/* If we have constant bounds for the range of the type, get them.  */
5070	if (const_bounds_p)
5071	  {
5072	    minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5073	    maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5074	  }
5075
5076	/* If the constructor has fewer elements than the array, clear
5077           the whole array first.  Similarly if this is static
5078           constructor of a non-BLKmode object.  */
5079	if (cleared)
5080	  need_to_clear = 0;
5081	else if (REG_P (target) && TREE_STATIC (exp))
5082	  need_to_clear = 1;
5083	else
5084	  {
5085	    unsigned HOST_WIDE_INT idx;
5086	    tree index, value;
5087	    HOST_WIDE_INT count = 0, zero_count = 0;
5088	    need_to_clear = ! const_bounds_p;
5089
5090	    /* This loop is a more accurate version of the loop in
5091	       mostly_zeros_p (it handles RANGE_EXPR in an index).  It
5092	       is also needed to check for missing elements.  */
5093	    FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5094	      {
5095		HOST_WIDE_INT this_node_count;
5096
5097		if (need_to_clear)
5098		  break;
5099
5100		if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5101		  {
5102		    tree lo_index = TREE_OPERAND (index, 0);
5103		    tree hi_index = TREE_OPERAND (index, 1);
5104
5105		    if (! host_integerp (lo_index, 1)
5106			|| ! host_integerp (hi_index, 1))
5107		      {
5108			need_to_clear = 1;
5109			break;
5110		      }
5111
5112		    this_node_count = (tree_low_cst (hi_index, 1)
5113				       - tree_low_cst (lo_index, 1) + 1);
5114		  }
5115		else
5116		  this_node_count = 1;
5117
5118		count += this_node_count;
5119		if (mostly_zeros_p (value))
5120		  zero_count += this_node_count;
5121	      }
5122
5123	    /* Clear the entire array first if there are any missing
5124	       elements, or if the incidence of zero elements is >=
5125	       75%.  */
5126	    if (! need_to_clear
5127		&& (count < maxelt - minelt + 1
5128		    || 4 * zero_count >= 3 * count))
5129	      need_to_clear = 1;
5130	  }
5131
5132	if (need_to_clear && size > 0)
5133	  {
5134	    if (REG_P (target))
5135	      emit_move_insn (target,  CONST0_RTX (GET_MODE (target)));
5136	    else
5137	      clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5138	    cleared = 1;
5139	  }
5140
5141	if (!cleared && REG_P (target))
5142	  /* Inform later passes that the old value is dead.  */
5143	  emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5144
5145	/* Store each element of the constructor into the
5146	   corresponding element of TARGET, determined by counting the
5147	   elements.  */
5148	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5149	  {
5150	    enum machine_mode mode;
5151	    HOST_WIDE_INT bitsize;
5152	    HOST_WIDE_INT bitpos;
5153	    int unsignedp;
5154	    rtx xtarget = target;
5155
5156	    if (cleared && initializer_zerop (value))
5157	      continue;
5158
5159	    unsignedp = TYPE_UNSIGNED (elttype);
5160	    mode = TYPE_MODE (elttype);
5161	    if (mode == BLKmode)
5162	      bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5163			 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5164			 : -1);
5165	    else
5166	      bitsize = GET_MODE_BITSIZE (mode);
5167
5168	    if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5169	      {
5170		tree lo_index = TREE_OPERAND (index, 0);
5171		tree hi_index = TREE_OPERAND (index, 1);
5172		rtx index_r, pos_rtx;
5173		HOST_WIDE_INT lo, hi, count;
5174		tree position;
5175
5176		/* If the range is constant and "small", unroll the loop.  */
5177		if (const_bounds_p
5178		    && host_integerp (lo_index, 0)
5179		    && host_integerp (hi_index, 0)
5180		    && (lo = tree_low_cst (lo_index, 0),
5181			hi = tree_low_cst (hi_index, 0),
5182			count = hi - lo + 1,
5183			(!MEM_P (target)
5184			 || count <= 2
5185			 || (host_integerp (TYPE_SIZE (elttype), 1)
5186			     && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5187				 <= 40 * 8)))))
5188		  {
5189		    lo -= minelt;  hi -= minelt;
5190		    for (; lo <= hi; lo++)
5191		      {
5192			bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5193
5194			if (MEM_P (target)
5195			    && !MEM_KEEP_ALIAS_SET_P (target)
5196			    && TREE_CODE (type) == ARRAY_TYPE
5197			    && TYPE_NONALIASED_COMPONENT (type))
5198			  {
5199			    target = copy_rtx (target);
5200			    MEM_KEEP_ALIAS_SET_P (target) = 1;
5201			  }
5202
5203			store_constructor_field
5204			  (target, bitsize, bitpos, mode, value, type, cleared,
5205			   get_alias_set (elttype));
5206		      }
5207		  }
5208		else
5209		  {
5210		    rtx loop_start = gen_label_rtx ();
5211		    rtx loop_end = gen_label_rtx ();
5212		    tree exit_cond;
5213
5214		    expand_normal (hi_index);
5215		    unsignedp = TYPE_UNSIGNED (domain);
5216
5217		    index = build_decl (VAR_DECL, NULL_TREE, domain);
5218
5219		    index_r
5220		      = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
5221						   &unsignedp, 0));
5222		    SET_DECL_RTL (index, index_r);
5223		    store_expr (lo_index, index_r, 0);
5224
5225		    /* Build the head of the loop.  */
5226		    do_pending_stack_adjust ();
5227		    emit_label (loop_start);
5228
5229		    /* Assign value to element index.  */
5230		    position =
5231		      fold_convert (ssizetype,
5232				    fold_build2 (MINUS_EXPR,
5233						 TREE_TYPE (index),
5234						 index,
5235						 TYPE_MIN_VALUE (domain)));
5236
5237		    position =
5238			size_binop (MULT_EXPR, position,
5239				    fold_convert (ssizetype,
5240						  TYPE_SIZE_UNIT (elttype)));
5241
5242		    pos_rtx = expand_normal (position);
5243		    xtarget = offset_address (target, pos_rtx,
5244					      highest_pow2_factor (position));
5245		    xtarget = adjust_address (xtarget, mode, 0);
5246		    if (TREE_CODE (value) == CONSTRUCTOR)
5247		      store_constructor (value, xtarget, cleared,
5248					 bitsize / BITS_PER_UNIT);
5249		    else
5250		      store_expr (value, xtarget, 0);
5251
5252		    /* Generate a conditional jump to exit the loop.  */
5253		    exit_cond = build2 (LT_EXPR, integer_type_node,
5254					index, hi_index);
5255		    jumpif (exit_cond, loop_end);
5256
5257		    /* Update the loop counter, and jump to the head of
5258		       the loop.  */
5259		    expand_assignment (index,
5260				       build2 (PLUS_EXPR, TREE_TYPE (index),
5261					       index, integer_one_node));
5262
5263		    emit_jump (loop_start);
5264
5265		    /* Build the end of the loop.  */
5266		    emit_label (loop_end);
5267		  }
5268	      }
5269	    else if ((index != 0 && ! host_integerp (index, 0))
5270		     || ! host_integerp (TYPE_SIZE (elttype), 1))
5271	      {
5272		tree position;
5273
5274		if (index == 0)
5275		  index = ssize_int (1);
5276
5277		if (minelt)
5278		  index = fold_convert (ssizetype,
5279					fold_build2 (MINUS_EXPR,
5280						     TREE_TYPE (index),
5281						     index,
5282						     TYPE_MIN_VALUE (domain)));
5283
5284		position =
5285		  size_binop (MULT_EXPR, index,
5286			      fold_convert (ssizetype,
5287					    TYPE_SIZE_UNIT (elttype)));
5288		xtarget = offset_address (target,
5289					  expand_normal (position),
5290					  highest_pow2_factor (position));
5291		xtarget = adjust_address (xtarget, mode, 0);
5292		store_expr (value, xtarget, 0);
5293	      }
5294	    else
5295	      {
5296		if (index != 0)
5297		  bitpos = ((tree_low_cst (index, 0) - minelt)
5298			    * tree_low_cst (TYPE_SIZE (elttype), 1));
5299		else
5300		  bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5301
5302		if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5303		    && TREE_CODE (type) == ARRAY_TYPE
5304		    && TYPE_NONALIASED_COMPONENT (type))
5305		  {
5306		    target = copy_rtx (target);
5307		    MEM_KEEP_ALIAS_SET_P (target) = 1;
5308		  }
5309		store_constructor_field (target, bitsize, bitpos, mode, value,
5310					 type, cleared, get_alias_set (elttype));
5311	      }
5312	  }
5313	break;
5314      }
5315
5316    case VECTOR_TYPE:
5317      {
5318	unsigned HOST_WIDE_INT idx;
5319	constructor_elt *ce;
5320	int i;
5321	int need_to_clear;
5322	int icode = 0;
5323	tree elttype = TREE_TYPE (type);
5324	int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5325	enum machine_mode eltmode = TYPE_MODE (elttype);
5326	HOST_WIDE_INT bitsize;
5327	HOST_WIDE_INT bitpos;
5328	rtvec vector = NULL;
5329	unsigned n_elts;
5330
5331	gcc_assert (eltmode != BLKmode);
5332
5333	n_elts = TYPE_VECTOR_SUBPARTS (type);
5334	if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5335	  {
5336	    enum machine_mode mode = GET_MODE (target);
5337
5338	    icode = (int) vec_init_optab->handlers[mode].insn_code;
5339	    if (icode != CODE_FOR_nothing)
5340	      {
5341		unsigned int i;
5342
5343		vector = rtvec_alloc (n_elts);
5344		for (i = 0; i < n_elts; i++)
5345		  RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5346	      }
5347	  }
5348
5349	/* If the constructor has fewer elements than the vector,
5350	   clear the whole array first.  Similarly if this is static
5351	   constructor of a non-BLKmode object.  */
5352	if (cleared)
5353	  need_to_clear = 0;
5354	else if (REG_P (target) && TREE_STATIC (exp))
5355	  need_to_clear = 1;
5356	else
5357	  {
5358	    unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5359	    tree value;
5360
5361	    FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5362	      {
5363		int n_elts_here = tree_low_cst
5364		  (int_const_binop (TRUNC_DIV_EXPR,
5365				    TYPE_SIZE (TREE_TYPE (value)),
5366				    TYPE_SIZE (elttype), 0), 1);
5367
5368		count += n_elts_here;
5369		if (mostly_zeros_p (value))
5370		  zero_count += n_elts_here;
5371	      }
5372
5373	    /* Clear the entire vector first if there are any missing elements,
5374	       or if the incidence of zero elements is >= 75%.  */
5375	    need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5376	  }
5377
5378	if (need_to_clear && size > 0 && !vector)
5379	  {
5380	    if (REG_P (target))
5381	      emit_move_insn (target,  CONST0_RTX (GET_MODE (target)));
5382	    else
5383	      clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5384	    cleared = 1;
5385	  }
5386
5387	/* Inform later passes that the old value is dead.  */
5388	if (!cleared && !vector && REG_P (target))
5389	  emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5390
5391        /* Store each element of the constructor into the corresponding
5392	   element of TARGET, determined by counting the elements.  */
5393	for (idx = 0, i = 0;
5394	     VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5395	     idx++, i += bitsize / elt_size)
5396	  {
5397	    HOST_WIDE_INT eltpos;
5398	    tree value = ce->value;
5399
5400	    bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5401	    if (cleared && initializer_zerop (value))
5402	      continue;
5403
5404	    if (ce->index)
5405	      eltpos = tree_low_cst (ce->index, 1);
5406	    else
5407	      eltpos = i;
5408
5409	    if (vector)
5410	      {
5411	        /* Vector CONSTRUCTORs should only be built from smaller
5412		   vectors in the case of BLKmode vectors.  */
5413		gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5414		RTVEC_ELT (vector, eltpos)
5415		  = expand_normal (value);
5416	      }
5417	    else
5418	      {
5419		enum machine_mode value_mode =
5420		  TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5421		  ? TYPE_MODE (TREE_TYPE (value))
5422		  : eltmode;
5423		bitpos = eltpos * elt_size;
5424		store_constructor_field (target, bitsize, bitpos,
5425					 value_mode, value, type,
5426					 cleared, get_alias_set (elttype));
5427	      }
5428	  }
5429
5430	if (vector)
5431	  emit_insn (GEN_FCN (icode)
5432		     (target,
5433		      gen_rtx_PARALLEL (GET_MODE (target), vector)));
5434	break;
5435      }
5436
5437    default:
5438      gcc_unreachable ();
5439    }
5440}
5441
5442/* Store the value of EXP (an expression tree)
5443   into a subfield of TARGET which has mode MODE and occupies
5444   BITSIZE bits, starting BITPOS bits from the start of TARGET.
5445   If MODE is VOIDmode, it means that we are storing into a bit-field.
5446
5447   Always return const0_rtx unless we have something particular to
5448   return.
5449
5450   TYPE is the type of the underlying object,
5451
5452   ALIAS_SET is the alias set for the destination.  This value will
5453   (in general) be different from that for TARGET, since TARGET is a
5454   reference to the containing structure.  */
5455
5456static rtx
5457store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5458	     enum machine_mode mode, tree exp, tree type, int alias_set)
5459{
5460  HOST_WIDE_INT width_mask = 0;
5461
5462  if (TREE_CODE (exp) == ERROR_MARK)
5463    return const0_rtx;
5464
5465  /* If we have nothing to store, do nothing unless the expression has
5466     side-effects.  */
5467  if (bitsize == 0)
5468    return expand_expr (exp, const0_rtx, VOIDmode, 0);
5469  else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5470    width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5471
5472  /* If we are storing into an unaligned field of an aligned union that is
5473     in a register, we may have the mode of TARGET being an integer mode but
5474     MODE == BLKmode.  In that case, get an aligned object whose size and
5475     alignment are the same as TARGET and store TARGET into it (we can avoid
5476     the store if the field being stored is the entire width of TARGET).  Then
5477     call ourselves recursively to store the field into a BLKmode version of
5478     that object.  Finally, load from the object into TARGET.  This is not
5479     very efficient in general, but should only be slightly more expensive
5480     than the otherwise-required unaligned accesses.  Perhaps this can be
5481     cleaned up later.  It's tempting to make OBJECT readonly, but it's set
5482     twice, once with emit_move_insn and once via store_field.  */
5483
5484  if (mode == BLKmode
5485      && (REG_P (target) || GET_CODE (target) == SUBREG))
5486    {
5487      rtx object = assign_temp (type, 0, 1, 1);
5488      rtx blk_object = adjust_address (object, BLKmode, 0);
5489
5490      if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5491	emit_move_insn (object, target);
5492
5493      store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set);
5494
5495      emit_move_insn (target, object);
5496
5497      /* We want to return the BLKmode version of the data.  */
5498      return blk_object;
5499    }
5500
5501  if (GET_CODE (target) == CONCAT)
5502    {
5503      /* We're storing into a struct containing a single __complex.  */
5504
5505      gcc_assert (!bitpos);
5506      return store_expr (exp, target, 0);
5507    }
5508
5509  /* If the structure is in a register or if the component
5510     is a bit field, we cannot use addressing to access it.
5511     Use bit-field techniques or SUBREG to store in it.  */
5512
5513  if (mode == VOIDmode
5514      || (mode != BLKmode && ! direct_store[(int) mode]
5515	  && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5516	  && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5517      || REG_P (target)
5518      || GET_CODE (target) == SUBREG
5519      /* If the field isn't aligned enough to store as an ordinary memref,
5520	 store it as a bit field.  */
5521      || (mode != BLKmode
5522	  && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5523		|| bitpos % GET_MODE_ALIGNMENT (mode))
5524	       && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5525	      || (bitpos % BITS_PER_UNIT != 0)))
5526      /* If the RHS and field are a constant size and the size of the
5527	 RHS isn't the same size as the bitfield, we must use bitfield
5528	 operations.  */
5529      || (bitsize >= 0
5530	  && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5531	  && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5532    {
5533      rtx temp;
5534
5535      /* If EXP is a NOP_EXPR of precision less than its mode, then that
5536	 implies a mask operation.  If the precision is the same size as
5537	 the field we're storing into, that mask is redundant.  This is
5538	 particularly common with bit field assignments generated by the
5539	 C front end.  */
5540      if (TREE_CODE (exp) == NOP_EXPR)
5541	{
5542	  tree type = TREE_TYPE (exp);
5543	  if (INTEGRAL_TYPE_P (type)
5544	      && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5545	      && bitsize == TYPE_PRECISION (type))
5546	    {
5547	      type = TREE_TYPE (TREE_OPERAND (exp, 0));
5548	      if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5549		exp = TREE_OPERAND (exp, 0);
5550	    }
5551	}
5552
5553      temp = expand_normal (exp);
5554
5555      /* If BITSIZE is narrower than the size of the type of EXP
5556	 we will be narrowing TEMP.  Normally, what's wanted are the
5557	 low-order bits.  However, if EXP's type is a record and this is
5558	 big-endian machine, we want the upper BITSIZE bits.  */
5559      if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5560	  && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5561	  && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5562	temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5563			     size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5564				       - bitsize),
5565			     NULL_RTX, 1);
5566
5567      /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5568	 MODE.  */
5569      if (mode != VOIDmode && mode != BLKmode
5570	  && mode != TYPE_MODE (TREE_TYPE (exp)))
5571	temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5572
5573      /* If the modes of TARGET and TEMP are both BLKmode, both
5574	 must be in memory and BITPOS must be aligned on a byte
5575	 boundary.  If so, we simply do a block copy.  */
5576      if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
5577	{
5578	  gcc_assert (MEM_P (target) && MEM_P (temp)
5579		      && !(bitpos % BITS_PER_UNIT));
5580
5581	  target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5582	  emit_block_move (target, temp,
5583			   GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5584				    / BITS_PER_UNIT),
5585			   BLOCK_OP_NORMAL);
5586
5587	  return const0_rtx;
5588	}
5589
5590      /* Store the value in the bitfield.  */
5591      store_bit_field (target, bitsize, bitpos, mode, temp);
5592
5593      return const0_rtx;
5594    }
5595  else
5596    {
5597      /* Now build a reference to just the desired component.  */
5598      rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5599
5600      if (to_rtx == target)
5601	to_rtx = copy_rtx (to_rtx);
5602
5603      MEM_SET_IN_STRUCT_P (to_rtx, 1);
5604      if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5605	set_mem_alias_set (to_rtx, alias_set);
5606
5607      return store_expr (exp, to_rtx, 0);
5608    }
5609}
5610
5611/* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5612   an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5613   codes and find the ultimate containing object, which we return.
5614
5615   We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5616   bit position, and *PUNSIGNEDP to the signedness of the field.
5617   If the position of the field is variable, we store a tree
5618   giving the variable offset (in units) in *POFFSET.
5619   This offset is in addition to the bit position.
5620   If the position is not variable, we store 0 in *POFFSET.
5621
5622   If any of the extraction expressions is volatile,
5623   we store 1 in *PVOLATILEP.  Otherwise we don't change that.
5624
5625   If the field is a bit-field, *PMODE is set to VOIDmode.  Otherwise, it
5626   is a mode that can be used to access the field.  In that case, *PBITSIZE
5627   is redundant.
5628
5629   If the field describes a variable-sized object, *PMODE is set to
5630   VOIDmode and *PBITSIZE is set to -1.  An access cannot be made in
5631   this case, but the address of the object can be found.
5632
5633   If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5634   look through nodes that serve as markers of a greater alignment than
5635   the one that can be deduced from the expression.  These nodes make it
5636   possible for front-ends to prevent temporaries from being created by
5637   the middle-end on alignment considerations.  For that purpose, the
5638   normal operating mode at high-level is to always pass FALSE so that
5639   the ultimate containing object is really returned; moreover, the
5640   associated predicate handled_component_p will always return TRUE
5641   on these nodes, thus indicating that they are essentially handled
5642   by get_inner_reference.  TRUE should only be passed when the caller
5643   is scanning the expression in order to build another representation
5644   and specifically knows how to handle these nodes; as such, this is
5645   the normal operating mode in the RTL expanders.  */
5646
5647tree
5648get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5649		     HOST_WIDE_INT *pbitpos, tree *poffset,
5650		     enum machine_mode *pmode, int *punsignedp,
5651		     int *pvolatilep, bool keep_aligning)
5652{
5653  tree size_tree = 0;
5654  enum machine_mode mode = VOIDmode;
5655  tree offset = size_zero_node;
5656  tree bit_offset = bitsize_zero_node;
5657
5658  /* First get the mode, signedness, and size.  We do this from just the
5659     outermost expression.  */
5660  if (TREE_CODE (exp) == COMPONENT_REF)
5661    {
5662      size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
5663      if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
5664	mode = DECL_MODE (TREE_OPERAND (exp, 1));
5665
5666      *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
5667    }
5668  else if (TREE_CODE (exp) == BIT_FIELD_REF)
5669    {
5670      size_tree = TREE_OPERAND (exp, 1);
5671      *punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
5672    }
5673  else
5674    {
5675      mode = TYPE_MODE (TREE_TYPE (exp));
5676      *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5677
5678      if (mode == BLKmode)
5679	size_tree = TYPE_SIZE (TREE_TYPE (exp));
5680      else
5681	*pbitsize = GET_MODE_BITSIZE (mode);
5682    }
5683
5684  if (size_tree != 0)
5685    {
5686      if (! host_integerp (size_tree, 1))
5687	mode = BLKmode, *pbitsize = -1;
5688      else
5689	*pbitsize = tree_low_cst (size_tree, 1);
5690    }
5691
5692  *pmode = mode;
5693
5694  /* Compute cumulative bit-offset for nested component-refs and array-refs,
5695     and find the ultimate containing object.  */
5696  while (1)
5697    {
5698      switch (TREE_CODE (exp))
5699	{
5700	case BIT_FIELD_REF:
5701	  bit_offset = size_binop (PLUS_EXPR, bit_offset,
5702				   TREE_OPERAND (exp, 2));
5703	  break;
5704
5705	case COMPONENT_REF:
5706	  {
5707	    tree field = TREE_OPERAND (exp, 1);
5708	    tree this_offset = component_ref_field_offset (exp);
5709
5710	    /* If this field hasn't been filled in yet, don't go past it.
5711	       This should only happen when folding expressions made during
5712	       type construction.  */
5713	    if (this_offset == 0)
5714	      break;
5715
5716	    offset = size_binop (PLUS_EXPR, offset, this_offset);
5717	    bit_offset = size_binop (PLUS_EXPR, bit_offset,
5718				     DECL_FIELD_BIT_OFFSET (field));
5719
5720	    /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN.  */
5721	  }
5722	  break;
5723
5724	case ARRAY_REF:
5725	case ARRAY_RANGE_REF:
5726	  {
5727	    tree index = TREE_OPERAND (exp, 1);
5728	    tree low_bound = array_ref_low_bound (exp);
5729	    tree unit_size = array_ref_element_size (exp);
5730
5731	    /* We assume all arrays have sizes that are a multiple of a byte.
5732	       First subtract the lower bound, if any, in the type of the
5733	       index, then convert to sizetype and multiply by the size of
5734	       the array element.  */
5735	    if (! integer_zerop (low_bound))
5736	      index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5737				   index, low_bound);
5738
5739	    offset = size_binop (PLUS_EXPR, offset,
5740			         size_binop (MULT_EXPR,
5741					     fold_convert (sizetype, index),
5742					     unit_size));
5743	  }
5744	  break;
5745
5746	case REALPART_EXPR:
5747	  break;
5748
5749	case IMAGPART_EXPR:
5750	  bit_offset = size_binop (PLUS_EXPR, bit_offset,
5751				   bitsize_int (*pbitsize));
5752	  break;
5753
5754	case VIEW_CONVERT_EXPR:
5755	  if (keep_aligning && STRICT_ALIGNMENT
5756	      && (TYPE_ALIGN (TREE_TYPE (exp))
5757	       > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
5758	      && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
5759		  < BIGGEST_ALIGNMENT)
5760	      && (TYPE_ALIGN_OK (TREE_TYPE (exp))
5761		  || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
5762	    goto done;
5763	  break;
5764
5765	default:
5766	  goto done;
5767	}
5768
5769      /* If any reference in the chain is volatile, the effect is volatile.  */
5770      if (TREE_THIS_VOLATILE (exp))
5771	*pvolatilep = 1;
5772
5773      exp = TREE_OPERAND (exp, 0);
5774    }
5775 done:
5776
5777  /* If OFFSET is constant, see if we can return the whole thing as a
5778     constant bit position.  Make sure to handle overflow during
5779     this conversion.  */
5780  if (host_integerp (offset, 0))
5781    {
5782      double_int tem = double_int_mul (tree_to_double_int (offset),
5783				       uhwi_to_double_int (BITS_PER_UNIT));
5784      tem = double_int_add (tem, tree_to_double_int (bit_offset));
5785      if (double_int_fits_in_shwi_p (tem))
5786	{
5787	  *pbitpos = double_int_to_shwi (tem);
5788	  *poffset = NULL_TREE;
5789	  return exp;
5790	}
5791    }
5792
5793  /* Otherwise, split it up.  */
5794  *pbitpos = tree_low_cst (bit_offset, 0);
5795  *poffset = offset;
5796
5797  return exp;
5798}
5799
5800/* Given an expression EXP that may be a COMPONENT_REF or an ARRAY_REF,
5801   look for whether EXP or any nested component-refs within EXP is marked
5802   as PACKED.  */
5803
5804bool
5805contains_packed_reference (tree exp)
5806{
5807  bool packed_p = false;
5808
5809  while (1)
5810    {
5811      switch (TREE_CODE (exp))
5812	{
5813	case COMPONENT_REF:
5814	  {
5815	    tree field = TREE_OPERAND (exp, 1);
5816	    packed_p = DECL_PACKED (field)
5817		       || TYPE_PACKED (TREE_TYPE (field))
5818		       || TYPE_PACKED (TREE_TYPE (exp));
5819	    if (packed_p)
5820	      goto done;
5821	  }
5822	  break;
5823
5824	case BIT_FIELD_REF:
5825	case ARRAY_REF:
5826	case ARRAY_RANGE_REF:
5827	case REALPART_EXPR:
5828	case IMAGPART_EXPR:
5829	case VIEW_CONVERT_EXPR:
5830	  break;
5831
5832	default:
5833	  goto done;
5834	}
5835      exp = TREE_OPERAND (exp, 0);
5836    }
5837 done:
5838  return packed_p;
5839}
5840
5841/* Return a tree of sizetype representing the size, in bytes, of the element
5842   of EXP, an ARRAY_REF.  */
5843
5844tree
5845array_ref_element_size (tree exp)
5846{
5847  tree aligned_size = TREE_OPERAND (exp, 3);
5848  tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5849
5850  /* If a size was specified in the ARRAY_REF, it's the size measured
5851     in alignment units of the element type.  So multiply by that value.  */
5852  if (aligned_size)
5853    {
5854      /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5855	 sizetype from another type of the same width and signedness.  */
5856      if (TREE_TYPE (aligned_size) != sizetype)
5857	aligned_size = fold_convert (sizetype, aligned_size);
5858      return size_binop (MULT_EXPR, aligned_size,
5859		         size_int (TYPE_ALIGN_UNIT (elmt_type)));
5860    }
5861
5862  /* Otherwise, take the size from that of the element type.  Substitute
5863     any PLACEHOLDER_EXPR that we have.  */
5864  else
5865    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
5866}
5867
5868/* Return a tree representing the lower bound of the array mentioned in
5869   EXP, an ARRAY_REF.  */
5870
5871tree
5872array_ref_low_bound (tree exp)
5873{
5874  tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5875
5876  /* If a lower bound is specified in EXP, use it.  */
5877  if (TREE_OPERAND (exp, 2))
5878    return TREE_OPERAND (exp, 2);
5879
5880  /* Otherwise, if there is a domain type and it has a lower bound, use it,
5881     substituting for a PLACEHOLDER_EXPR as needed.  */
5882  if (domain_type && TYPE_MIN_VALUE (domain_type))
5883    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
5884
5885  /* Otherwise, return a zero of the appropriate type.  */
5886  return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
5887}
5888
5889/* Return a tree representing the upper bound of the array mentioned in
5890   EXP, an ARRAY_REF.  */
5891
5892tree
5893array_ref_up_bound (tree exp)
5894{
5895  tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5896
5897  /* If there is a domain type and it has an upper bound, use it, substituting
5898     for a PLACEHOLDER_EXPR as needed.  */
5899  if (domain_type && TYPE_MAX_VALUE (domain_type))
5900    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
5901
5902  /* Otherwise fail.  */
5903  return NULL_TREE;
5904}
5905
5906/* Return a tree representing the offset, in bytes, of the field referenced
5907   by EXP.  This does not include any offset in DECL_FIELD_BIT_OFFSET.  */
5908
5909tree
5910component_ref_field_offset (tree exp)
5911{
5912  tree aligned_offset = TREE_OPERAND (exp, 2);
5913  tree field = TREE_OPERAND (exp, 1);
5914
5915  /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5916     in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT.  So multiply by that
5917     value.  */
5918  if (aligned_offset)
5919    {
5920      /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5921	 sizetype from another type of the same width and signedness.  */
5922      if (TREE_TYPE (aligned_offset) != sizetype)
5923	aligned_offset = fold_convert (sizetype, aligned_offset);
5924      return size_binop (MULT_EXPR, aligned_offset,
5925		         size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
5926    }
5927
5928  /* Otherwise, take the offset from that of the field.  Substitute
5929     any PLACEHOLDER_EXPR that we have.  */
5930  else
5931    return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
5932}
5933
5934/* Return 1 if T is an expression that get_inner_reference handles.  */
5935
5936int
5937handled_component_p (tree t)
5938{
5939  switch (TREE_CODE (t))
5940    {
5941    case BIT_FIELD_REF:
5942    case COMPONENT_REF:
5943    case ARRAY_REF:
5944    case ARRAY_RANGE_REF:
5945    case VIEW_CONVERT_EXPR:
5946    case REALPART_EXPR:
5947    case IMAGPART_EXPR:
5948      return 1;
5949
5950    default:
5951      return 0;
5952    }
5953}
5954
5955/* Given an rtx VALUE that may contain additions and multiplications, return
5956   an equivalent value that just refers to a register, memory, or constant.
5957   This is done by generating instructions to perform the arithmetic and
5958   returning a pseudo-register containing the value.
5959
5960   The returned value may be a REG, SUBREG, MEM or constant.  */
5961
5962rtx
5963force_operand (rtx value, rtx target)
5964{
5965  rtx op1, op2;
5966  /* Use subtarget as the target for operand 0 of a binary operation.  */
5967  rtx subtarget = get_subtarget (target);
5968  enum rtx_code code = GET_CODE (value);
5969
5970  /* Check for subreg applied to an expression produced by loop optimizer.  */
5971  if (code == SUBREG
5972      && !REG_P (SUBREG_REG (value))
5973      && !MEM_P (SUBREG_REG (value)))
5974    {
5975      value = simplify_gen_subreg (GET_MODE (value),
5976				   force_reg (GET_MODE (SUBREG_REG (value)),
5977					      force_operand (SUBREG_REG (value),
5978							     NULL_RTX)),
5979				   GET_MODE (SUBREG_REG (value)),
5980				   SUBREG_BYTE (value));
5981      code = GET_CODE (value);
5982    }
5983
5984  /* Check for a PIC address load.  */
5985  if ((code == PLUS || code == MINUS)
5986      && XEXP (value, 0) == pic_offset_table_rtx
5987      && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
5988	  || GET_CODE (XEXP (value, 1)) == LABEL_REF
5989	  || GET_CODE (XEXP (value, 1)) == CONST))
5990    {
5991      if (!subtarget)
5992	subtarget = gen_reg_rtx (GET_MODE (value));
5993      emit_move_insn (subtarget, value);
5994      return subtarget;
5995    }
5996
5997  if (ARITHMETIC_P (value))
5998    {
5999      op2 = XEXP (value, 1);
6000      if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6001	subtarget = 0;
6002      if (code == MINUS && GET_CODE (op2) == CONST_INT)
6003	{
6004	  code = PLUS;
6005	  op2 = negate_rtx (GET_MODE (value), op2);
6006	}
6007
6008      /* Check for an addition with OP2 a constant integer and our first
6009         operand a PLUS of a virtual register and something else.  In that
6010         case, we want to emit the sum of the virtual register and the
6011         constant first and then add the other value.  This allows virtual
6012         register instantiation to simply modify the constant rather than
6013         creating another one around this addition.  */
6014      if (code == PLUS && GET_CODE (op2) == CONST_INT
6015	  && GET_CODE (XEXP (value, 0)) == PLUS
6016	  && REG_P (XEXP (XEXP (value, 0), 0))
6017	  && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6018	  && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6019	{
6020	  rtx temp = expand_simple_binop (GET_MODE (value), code,
6021					  XEXP (XEXP (value, 0), 0), op2,
6022					  subtarget, 0, OPTAB_LIB_WIDEN);
6023	  return expand_simple_binop (GET_MODE (value), code, temp,
6024				      force_operand (XEXP (XEXP (value,
6025								 0), 1), 0),
6026				      target, 0, OPTAB_LIB_WIDEN);
6027	}
6028
6029      op1 = force_operand (XEXP (value, 0), subtarget);
6030      op2 = force_operand (op2, NULL_RTX);
6031      switch (code)
6032	{
6033	case MULT:
6034	  return expand_mult (GET_MODE (value), op1, op2, target, 1);
6035	case DIV:
6036	  if (!INTEGRAL_MODE_P (GET_MODE (value)))
6037	    return expand_simple_binop (GET_MODE (value), code, op1, op2,
6038					target, 1, OPTAB_LIB_WIDEN);
6039	  else
6040	    return expand_divmod (0,
6041				  FLOAT_MODE_P (GET_MODE (value))
6042				  ? RDIV_EXPR : TRUNC_DIV_EXPR,
6043				  GET_MODE (value), op1, op2, target, 0);
6044	  break;
6045	case MOD:
6046	  return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6047				target, 0);
6048	  break;
6049	case UDIV:
6050	  return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6051				target, 1);
6052	  break;
6053	case UMOD:
6054	  return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6055				target, 1);
6056	  break;
6057	case ASHIFTRT:
6058	  return expand_simple_binop (GET_MODE (value), code, op1, op2,
6059				      target, 0, OPTAB_LIB_WIDEN);
6060	  break;
6061	default:
6062	  return expand_simple_binop (GET_MODE (value), code, op1, op2,
6063				      target, 1, OPTAB_LIB_WIDEN);
6064	}
6065    }
6066  if (UNARY_P (value))
6067    {
6068      if (!target)
6069	target = gen_reg_rtx (GET_MODE (value));
6070      op1 = force_operand (XEXP (value, 0), NULL_RTX);
6071      switch (code)
6072	{
6073	case ZERO_EXTEND:
6074	case SIGN_EXTEND:
6075	case TRUNCATE:
6076	case FLOAT_EXTEND:
6077	case FLOAT_TRUNCATE:
6078	  convert_move (target, op1, code == ZERO_EXTEND);
6079	  return target;
6080
6081	case FIX:
6082	case UNSIGNED_FIX:
6083	  expand_fix (target, op1, code == UNSIGNED_FIX);
6084	  return target;
6085
6086	case FLOAT:
6087	case UNSIGNED_FLOAT:
6088	  expand_float (target, op1, code == UNSIGNED_FLOAT);
6089	  return target;
6090
6091	default:
6092	  return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6093	}
6094    }
6095
6096#ifdef INSN_SCHEDULING
6097  /* On machines that have insn scheduling, we want all memory reference to be
6098     explicit, so we need to deal with such paradoxical SUBREGs.  */
6099  if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6100      && (GET_MODE_SIZE (GET_MODE (value))
6101	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6102    value
6103      = simplify_gen_subreg (GET_MODE (value),
6104			     force_reg (GET_MODE (SUBREG_REG (value)),
6105					force_operand (SUBREG_REG (value),
6106						       NULL_RTX)),
6107			     GET_MODE (SUBREG_REG (value)),
6108			     SUBREG_BYTE (value));
6109#endif
6110
6111  return value;
6112}
6113
6114/* Subroutine of expand_expr: return nonzero iff there is no way that
6115   EXP can reference X, which is being modified.  TOP_P is nonzero if this
6116   call is going to be used to determine whether we need a temporary
6117   for EXP, as opposed to a recursive call to this function.
6118
6119   It is always safe for this routine to return zero since it merely
6120   searches for optimization opportunities.  */
6121
6122int
6123safe_from_p (rtx x, tree exp, int top_p)
6124{
6125  rtx exp_rtl = 0;
6126  int i, nops;
6127
6128  if (x == 0
6129      /* If EXP has varying size, we MUST use a target since we currently
6130	 have no way of allocating temporaries of variable size
6131	 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6132	 So we assume here that something at a higher level has prevented a
6133	 clash.  This is somewhat bogus, but the best we can do.  Only
6134	 do this when X is BLKmode and when we are at the top level.  */
6135      || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6136	  && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6137	  && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6138	      || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6139	      || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6140	      != INTEGER_CST)
6141	  && GET_MODE (x) == BLKmode)
6142      /* If X is in the outgoing argument area, it is always safe.  */
6143      || (MEM_P (x)
6144	  && (XEXP (x, 0) == virtual_outgoing_args_rtx
6145	      || (GET_CODE (XEXP (x, 0)) == PLUS
6146		  && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6147    return 1;
6148
6149  /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6150     find the underlying pseudo.  */
6151  if (GET_CODE (x) == SUBREG)
6152    {
6153      x = SUBREG_REG (x);
6154      if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6155	return 0;
6156    }
6157
6158  /* Now look at our tree code and possibly recurse.  */
6159  switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6160    {
6161    case tcc_declaration:
6162      exp_rtl = DECL_RTL_IF_SET (exp);
6163      break;
6164
6165    case tcc_constant:
6166      return 1;
6167
6168    case tcc_exceptional:
6169      if (TREE_CODE (exp) == TREE_LIST)
6170	{
6171	  while (1)
6172	    {
6173	      if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6174		return 0;
6175	      exp = TREE_CHAIN (exp);
6176	      if (!exp)
6177		return 1;
6178	      if (TREE_CODE (exp) != TREE_LIST)
6179		return safe_from_p (x, exp, 0);
6180	    }
6181	}
6182      else if (TREE_CODE (exp) == CONSTRUCTOR)
6183	{
6184	  constructor_elt *ce;
6185	  unsigned HOST_WIDE_INT idx;
6186
6187	  for (idx = 0;
6188	       VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6189	       idx++)
6190	    if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6191		|| !safe_from_p (x, ce->value, 0))
6192	      return 0;
6193	  return 1;
6194	}
6195      else if (TREE_CODE (exp) == ERROR_MARK)
6196	return 1;	/* An already-visited SAVE_EXPR? */
6197      else
6198	return 0;
6199
6200    case tcc_statement:
6201      /* The only case we look at here is the DECL_INITIAL inside a
6202	 DECL_EXPR.  */
6203      return (TREE_CODE (exp) != DECL_EXPR
6204	      || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6205	      || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6206	      || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6207
6208    case tcc_binary:
6209    case tcc_comparison:
6210      if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6211	return 0;
6212      /* Fall through.  */
6213
6214    case tcc_unary:
6215      return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6216
6217    case tcc_expression:
6218    case tcc_reference:
6219      /* Now do code-specific tests.  EXP_RTL is set to any rtx we find in
6220	 the expression.  If it is set, we conflict iff we are that rtx or
6221	 both are in memory.  Otherwise, we check all operands of the
6222	 expression recursively.  */
6223
6224      switch (TREE_CODE (exp))
6225	{
6226	case ADDR_EXPR:
6227	  /* If the operand is static or we are static, we can't conflict.
6228	     Likewise if we don't conflict with the operand at all.  */
6229	  if (staticp (TREE_OPERAND (exp, 0))
6230	      || TREE_STATIC (exp)
6231	      || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6232	    return 1;
6233
6234	  /* Otherwise, the only way this can conflict is if we are taking
6235	     the address of a DECL a that address if part of X, which is
6236	     very rare.  */
6237	  exp = TREE_OPERAND (exp, 0);
6238	  if (DECL_P (exp))
6239	    {
6240	      if (!DECL_RTL_SET_P (exp)
6241		  || !MEM_P (DECL_RTL (exp)))
6242		return 0;
6243	      else
6244		exp_rtl = XEXP (DECL_RTL (exp), 0);
6245	    }
6246	  break;
6247
6248	case MISALIGNED_INDIRECT_REF:
6249	case ALIGN_INDIRECT_REF:
6250	case INDIRECT_REF:
6251	  if (MEM_P (x)
6252	      && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6253					get_alias_set (exp)))
6254	    return 0;
6255	  break;
6256
6257	case CALL_EXPR:
6258	  /* Assume that the call will clobber all hard registers and
6259	     all of memory.  */
6260	  if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6261	      || MEM_P (x))
6262	    return 0;
6263	  break;
6264
6265	case WITH_CLEANUP_EXPR:
6266	case CLEANUP_POINT_EXPR:
6267	  /* Lowered by gimplify.c.  */
6268	  gcc_unreachable ();
6269
6270	case SAVE_EXPR:
6271	  return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6272
6273	default:
6274	  break;
6275	}
6276
6277      /* If we have an rtx, we do not need to scan our operands.  */
6278      if (exp_rtl)
6279	break;
6280
6281      nops = TREE_CODE_LENGTH (TREE_CODE (exp));
6282      for (i = 0; i < nops; i++)
6283	if (TREE_OPERAND (exp, i) != 0
6284	    && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6285	  return 0;
6286
6287      /* If this is a language-specific tree code, it may require
6288	 special handling.  */
6289      if ((unsigned int) TREE_CODE (exp)
6290	  >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
6291	  && !lang_hooks.safe_from_p (x, exp))
6292	return 0;
6293      break;
6294
6295    case tcc_type:
6296      /* Should never get a type here.  */
6297      gcc_unreachable ();
6298    }
6299
6300  /* If we have an rtl, find any enclosed object.  Then see if we conflict
6301     with it.  */
6302  if (exp_rtl)
6303    {
6304      if (GET_CODE (exp_rtl) == SUBREG)
6305	{
6306	  exp_rtl = SUBREG_REG (exp_rtl);
6307	  if (REG_P (exp_rtl)
6308	      && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6309	    return 0;
6310	}
6311
6312      /* If the rtl is X, then it is not safe.  Otherwise, it is unless both
6313	 are memory and they conflict.  */
6314      return ! (rtx_equal_p (x, exp_rtl)
6315		|| (MEM_P (x) && MEM_P (exp_rtl)
6316		    && true_dependence (exp_rtl, VOIDmode, x,
6317					rtx_addr_varies_p)));
6318    }
6319
6320  /* If we reach here, it is safe.  */
6321  return 1;
6322}
6323
6324
6325/* Return the highest power of two that EXP is known to be a multiple of.
6326   This is used in updating alignment of MEMs in array references.  */
6327
6328unsigned HOST_WIDE_INT
6329highest_pow2_factor (tree exp)
6330{
6331  unsigned HOST_WIDE_INT c0, c1;
6332
6333  switch (TREE_CODE (exp))
6334    {
6335    case INTEGER_CST:
6336      /* We can find the lowest bit that's a one.  If the low
6337	 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6338	 We need to handle this case since we can find it in a COND_EXPR,
6339	 a MIN_EXPR, or a MAX_EXPR.  If the constant overflows, we have an
6340	 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6341	 later ICE.  */
6342      if (TREE_CONSTANT_OVERFLOW (exp))
6343	return BIGGEST_ALIGNMENT;
6344      else
6345	{
6346	  /* Note: tree_low_cst is intentionally not used here,
6347	     we don't care about the upper bits.  */
6348	  c0 = TREE_INT_CST_LOW (exp);
6349	  c0 &= -c0;
6350	  return c0 ? c0 : BIGGEST_ALIGNMENT;
6351	}
6352      break;
6353
6354    case PLUS_EXPR:  case MINUS_EXPR:  case MIN_EXPR:  case MAX_EXPR:
6355      c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6356      c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6357      return MIN (c0, c1);
6358
6359    case MULT_EXPR:
6360      c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6361      c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6362      return c0 * c1;
6363
6364    case ROUND_DIV_EXPR:  case TRUNC_DIV_EXPR:  case FLOOR_DIV_EXPR:
6365    case CEIL_DIV_EXPR:
6366      if (integer_pow2p (TREE_OPERAND (exp, 1))
6367	  && host_integerp (TREE_OPERAND (exp, 1), 1))
6368	{
6369	  c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6370	  c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6371	  return MAX (1, c0 / c1);
6372	}
6373      break;
6374
6375    case NON_LVALUE_EXPR:  case NOP_EXPR:  case CONVERT_EXPR:
6376    case SAVE_EXPR:
6377      return highest_pow2_factor (TREE_OPERAND (exp, 0));
6378
6379    case COMPOUND_EXPR:
6380      return highest_pow2_factor (TREE_OPERAND (exp, 1));
6381
6382    case COND_EXPR:
6383      c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6384      c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6385      return MIN (c0, c1);
6386
6387    default:
6388      break;
6389    }
6390
6391  return 1;
6392}
6393
6394/* Similar, except that the alignment requirements of TARGET are
6395   taken into account.  Assume it is at least as aligned as its
6396   type, unless it is a COMPONENT_REF in which case the layout of
6397   the structure gives the alignment.  */
6398
6399static unsigned HOST_WIDE_INT
6400highest_pow2_factor_for_target (tree target, tree exp)
6401{
6402  unsigned HOST_WIDE_INT target_align, factor;
6403
6404  factor = highest_pow2_factor (exp);
6405  if (TREE_CODE (target) == COMPONENT_REF)
6406    target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
6407  else
6408    target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
6409  return MAX (factor, target_align);
6410}
6411
6412/* Expands variable VAR.  */
6413
6414void
6415expand_var (tree var)
6416{
6417  if (DECL_EXTERNAL (var))
6418    return;
6419
6420  if (TREE_STATIC (var))
6421    /* If this is an inlined copy of a static local variable,
6422       look up the original decl.  */
6423    var = DECL_ORIGIN (var);
6424
6425  if (TREE_STATIC (var)
6426      ? !TREE_ASM_WRITTEN (var)
6427      : !DECL_RTL_SET_P (var))
6428    {
6429      if (TREE_CODE (var) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (var))
6430	/* Should be ignored.  */;
6431      else if (lang_hooks.expand_decl (var))
6432	/* OK.  */;
6433      else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
6434	expand_decl (var);
6435      else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
6436	rest_of_decl_compilation (var, 0, 0);
6437      else
6438	/* No expansion needed.  */
6439	gcc_assert (TREE_CODE (var) == TYPE_DECL
6440		    || TREE_CODE (var) == CONST_DECL
6441		    || TREE_CODE (var) == FUNCTION_DECL
6442		    || TREE_CODE (var) == LABEL_DECL);
6443    }
6444}
6445
6446/* Subroutine of expand_expr.  Expand the two operands of a binary
6447   expression EXP0 and EXP1 placing the results in OP0 and OP1.
6448   The value may be stored in TARGET if TARGET is nonzero.  The
6449   MODIFIER argument is as documented by expand_expr.  */
6450
6451static void
6452expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6453		 enum expand_modifier modifier)
6454{
6455  if (! safe_from_p (target, exp1, 1))
6456    target = 0;
6457  if (operand_equal_p (exp0, exp1, 0))
6458    {
6459      *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6460      *op1 = copy_rtx (*op0);
6461    }
6462  else
6463    {
6464      /* If we need to preserve evaluation order, copy exp0 into its own
6465	 temporary variable so that it can't be clobbered by exp1.  */
6466      if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6467	exp0 = save_expr (exp0);
6468      *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6469      *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6470    }
6471}
6472
6473
6474/* Return a MEM that contains constant EXP.  DEFER is as for
6475   output_constant_def and MODIFIER is as for expand_expr.  */
6476
6477static rtx
6478expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6479{
6480  rtx mem;
6481
6482  mem = output_constant_def (exp, defer);
6483  if (modifier != EXPAND_INITIALIZER)
6484    mem = use_anchored_address (mem);
6485  return mem;
6486}
6487
6488/* A subroutine of expand_expr_addr_expr.  Evaluate the address of EXP.
6489   The TARGET, TMODE and MODIFIER arguments are as for expand_expr.  */
6490
6491static rtx
6492expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6493		         enum expand_modifier modifier)
6494{
6495  rtx result, subtarget;
6496  tree inner, offset;
6497  HOST_WIDE_INT bitsize, bitpos;
6498  int volatilep, unsignedp;
6499  enum machine_mode mode1;
6500
6501  /* If we are taking the address of a constant and are at the top level,
6502     we have to use output_constant_def since we can't call force_const_mem
6503     at top level.  */
6504  /* ??? This should be considered a front-end bug.  We should not be
6505     generating ADDR_EXPR of something that isn't an LVALUE.  The only
6506     exception here is STRING_CST.  */
6507  if (TREE_CODE (exp) == CONSTRUCTOR
6508      || CONSTANT_CLASS_P (exp))
6509    return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6510
6511  /* Everything must be something allowed by is_gimple_addressable.  */
6512  switch (TREE_CODE (exp))
6513    {
6514    case INDIRECT_REF:
6515      /* This case will happen via recursion for &a->b.  */
6516      return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6517
6518    case CONST_DECL:
6519      /* Recurse and make the output_constant_def clause above handle this.  */
6520      return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6521				      tmode, modifier);
6522
6523    case REALPART_EXPR:
6524      /* The real part of the complex number is always first, therefore
6525	 the address is the same as the address of the parent object.  */
6526      offset = 0;
6527      bitpos = 0;
6528      inner = TREE_OPERAND (exp, 0);
6529      break;
6530
6531    case IMAGPART_EXPR:
6532      /* The imaginary part of the complex number is always second.
6533	 The expression is therefore always offset by the size of the
6534	 scalar type.  */
6535      offset = 0;
6536      bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6537      inner = TREE_OPERAND (exp, 0);
6538      break;
6539
6540    default:
6541      /* If the object is a DECL, then expand it for its rtl.  Don't bypass
6542	 expand_expr, as that can have various side effects; LABEL_DECLs for
6543	 example, may not have their DECL_RTL set yet.  Assume language
6544	 specific tree nodes can be expanded in some interesting way.  */
6545      if (DECL_P (exp)
6546	  || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6547	{
6548	  result = expand_expr (exp, target, tmode,
6549				modifier == EXPAND_INITIALIZER
6550				? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6551
6552	  /* If the DECL isn't in memory, then the DECL wasn't properly
6553	     marked TREE_ADDRESSABLE, which will be either a front-end
6554	     or a tree optimizer bug.  */
6555	  gcc_assert (MEM_P (result));
6556	  result = XEXP (result, 0);
6557
6558	  /* ??? Is this needed anymore?  */
6559	  if (DECL_P (exp) && !TREE_USED (exp) == 0)
6560	    {
6561	      assemble_external (exp);
6562	      TREE_USED (exp) = 1;
6563	    }
6564
6565	  if (modifier != EXPAND_INITIALIZER
6566	      && modifier != EXPAND_CONST_ADDRESS)
6567	    result = force_operand (result, target);
6568	  return result;
6569	}
6570
6571      /* Pass FALSE as the last argument to get_inner_reference although
6572	 we are expanding to RTL.  The rationale is that we know how to
6573	 handle "aligning nodes" here: we can just bypass them because
6574	 they won't change the final object whose address will be returned
6575	 (they actually exist only for that purpose).  */
6576      inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6577				   &mode1, &unsignedp, &volatilep, false);
6578      break;
6579    }
6580
6581  /* We must have made progress.  */
6582  gcc_assert (inner != exp);
6583
6584  subtarget = offset || bitpos ? NULL_RTX : target;
6585  result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6586
6587  if (offset)
6588    {
6589      rtx tmp;
6590
6591      if (modifier != EXPAND_NORMAL)
6592	result = force_operand (result, NULL);
6593      tmp = expand_expr (offset, NULL, tmode, EXPAND_NORMAL);
6594
6595      result = convert_memory_address (tmode, result);
6596      tmp = convert_memory_address (tmode, tmp);
6597
6598      if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6599	result = gen_rtx_PLUS (tmode, result, tmp);
6600      else
6601	{
6602	  subtarget = bitpos ? NULL_RTX : target;
6603	  result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6604					1, OPTAB_LIB_WIDEN);
6605	}
6606    }
6607
6608  if (bitpos)
6609    {
6610      /* Someone beforehand should have rejected taking the address
6611	 of such an object.  */
6612      gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6613
6614      result = plus_constant (result, bitpos / BITS_PER_UNIT);
6615      if (modifier < EXPAND_SUM)
6616	result = force_operand (result, target);
6617    }
6618
6619  return result;
6620}
6621
6622/* A subroutine of expand_expr.  Evaluate EXP, which is an ADDR_EXPR.
6623   The TARGET, TMODE and MODIFIER arguments are as for expand_expr.  */
6624
6625static rtx
6626expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6627		       enum expand_modifier modifier)
6628{
6629  enum machine_mode rmode;
6630  rtx result;
6631
6632  /* Target mode of VOIDmode says "whatever's natural".  */
6633  if (tmode == VOIDmode)
6634    tmode = TYPE_MODE (TREE_TYPE (exp));
6635
6636  /* We can get called with some Weird Things if the user does silliness
6637     like "(short) &a".  In that case, convert_memory_address won't do
6638     the right thing, so ignore the given target mode.  */
6639  if (tmode != Pmode && tmode != ptr_mode)
6640    tmode = Pmode;
6641
6642  result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6643				    tmode, modifier);
6644
6645  /* Despite expand_expr claims concerning ignoring TMODE when not
6646     strictly convenient, stuff breaks if we don't honor it.  Note
6647     that combined with the above, we only do this for pointer modes.  */
6648  rmode = GET_MODE (result);
6649  if (rmode == VOIDmode)
6650    rmode = tmode;
6651  if (rmode != tmode)
6652    result = convert_memory_address (tmode, result);
6653
6654  return result;
6655}
6656
6657
6658/* expand_expr: generate code for computing expression EXP.
6659   An rtx for the computed value is returned.  The value is never null.
6660   In the case of a void EXP, const0_rtx is returned.
6661
6662   The value may be stored in TARGET if TARGET is nonzero.
6663   TARGET is just a suggestion; callers must assume that
6664   the rtx returned may not be the same as TARGET.
6665
6666   If TARGET is CONST0_RTX, it means that the value will be ignored.
6667
6668   If TMODE is not VOIDmode, it suggests generating the
6669   result in mode TMODE.  But this is done only when convenient.
6670   Otherwise, TMODE is ignored and the value generated in its natural mode.
6671   TMODE is just a suggestion; callers must assume that
6672   the rtx returned may not have mode TMODE.
6673
6674   Note that TARGET may have neither TMODE nor MODE.  In that case, it
6675   probably will not be used.
6676
6677   If MODIFIER is EXPAND_SUM then when EXP is an addition
6678   we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6679   or a nest of (PLUS ...) and (MINUS ...) where the terms are
6680   products as above, or REG or MEM, or constant.
6681   Ordinarily in such cases we would output mul or add instructions
6682   and then return a pseudo reg containing the sum.
6683
6684   EXPAND_INITIALIZER is much like EXPAND_SUM except that
6685   it also marks a label as absolutely required (it can't be dead).
6686   It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6687   This is used for outputting expressions used in initializers.
6688
6689   EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6690   with a constant address even if that address is not normally legitimate.
6691   EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6692
6693   EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6694   a call parameter.  Such targets require special care as we haven't yet
6695   marked TARGET so that it's safe from being trashed by libcalls.  We
6696   don't want to use TARGET for anything but the final result;
6697   Intermediate values must go elsewhere.   Additionally, calls to
6698   emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6699
6700   If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6701   address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6702   DECL_RTL of the VAR_DECL.  *ALT_RTL is also set if EXP is a
6703   COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6704   recursively.  */
6705
6706static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
6707			       enum expand_modifier, rtx *);
6708
6709rtx
6710expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
6711		  enum expand_modifier modifier, rtx *alt_rtl)
6712{
6713  int rn = -1;
6714  rtx ret, last = NULL;
6715
6716  /* Handle ERROR_MARK before anybody tries to access its type.  */
6717  if (TREE_CODE (exp) == ERROR_MARK
6718      || TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)
6719    {
6720      ret = CONST0_RTX (tmode);
6721      return ret ? ret : const0_rtx;
6722    }
6723
6724  if (flag_non_call_exceptions)
6725    {
6726      rn = lookup_stmt_eh_region (exp);
6727      /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw.  */
6728      if (rn >= 0)
6729	last = get_last_insn ();
6730    }
6731
6732  /* If this is an expression of some kind and it has an associated line
6733     number, then emit the line number before expanding the expression.
6734
6735     We need to save and restore the file and line information so that
6736     errors discovered during expansion are emitted with the right
6737     information.  It would be better of the diagnostic routines
6738     used the file/line information embedded in the tree nodes rather
6739     than globals.  */
6740  if (cfun && cfun->ib_boundaries_block && EXPR_HAS_LOCATION (exp))
6741    {
6742      location_t saved_location = input_location;
6743      input_location = EXPR_LOCATION (exp);
6744      emit_line_note (input_location);
6745
6746      /* Record where the insns produced belong.  */
6747      record_block_change (TREE_BLOCK (exp));
6748
6749      ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6750
6751      input_location = saved_location;
6752    }
6753  else
6754    {
6755      ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6756    }
6757
6758  /* If using non-call exceptions, mark all insns that may trap.
6759     expand_call() will mark CALL_INSNs before we get to this code,
6760     but it doesn't handle libcalls, and these may trap.  */
6761  if (rn >= 0)
6762    {
6763      rtx insn;
6764      for (insn = next_real_insn (last); insn;
6765	   insn = next_real_insn (insn))
6766	{
6767	  if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
6768	      /* If we want exceptions for non-call insns, any
6769		 may_trap_p instruction may throw.  */
6770	      && GET_CODE (PATTERN (insn)) != CLOBBER
6771	      && GET_CODE (PATTERN (insn)) != USE
6772	      && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
6773	    {
6774	      REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
6775						  REG_NOTES (insn));
6776	    }
6777	}
6778    }
6779
6780  return ret;
6781}
6782
6783static rtx
6784expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
6785		    enum expand_modifier modifier, rtx *alt_rtl)
6786{
6787  rtx op0, op1, temp, decl_rtl;
6788  tree type = TREE_TYPE (exp);
6789  int unsignedp;
6790  enum machine_mode mode;
6791  enum tree_code code = TREE_CODE (exp);
6792  optab this_optab;
6793  rtx subtarget, original_target;
6794  int ignore;
6795  tree context, subexp0, subexp1;
6796  bool reduce_bit_field = false;
6797#define REDUCE_BIT_FIELD(expr)	(reduce_bit_field && !ignore		  \
6798				 ? reduce_to_bit_field_precision ((expr), \
6799								  target, \
6800								  type)	  \
6801				 : (expr))
6802
6803  mode = TYPE_MODE (type);
6804  unsignedp = TYPE_UNSIGNED (type);
6805  if (lang_hooks.reduce_bit_field_operations
6806      && TREE_CODE (type) == INTEGER_TYPE
6807      && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
6808    {
6809      /* An operation in what may be a bit-field type needs the
6810	 result to be reduced to the precision of the bit-field type,
6811	 which is narrower than that of the type's mode.  */
6812      reduce_bit_field = true;
6813      if (modifier == EXPAND_STACK_PARM)
6814	target = 0;
6815    }
6816
6817  /* Use subtarget as the target for operand 0 of a binary operation.  */
6818  subtarget = get_subtarget (target);
6819  original_target = target;
6820  ignore = (target == const0_rtx
6821	    || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
6822		 || code == CONVERT_EXPR || code == COND_EXPR
6823		 || code == VIEW_CONVERT_EXPR)
6824		&& TREE_CODE (type) == VOID_TYPE));
6825
6826  /* If we are going to ignore this result, we need only do something
6827     if there is a side-effect somewhere in the expression.  If there
6828     is, short-circuit the most common cases here.  Note that we must
6829     not call expand_expr with anything but const0_rtx in case this
6830     is an initial expansion of a size that contains a PLACEHOLDER_EXPR.  */
6831
6832  if (ignore)
6833    {
6834      if (! TREE_SIDE_EFFECTS (exp))
6835	return const0_rtx;
6836
6837      /* Ensure we reference a volatile object even if value is ignored, but
6838	 don't do this if all we are doing is taking its address.  */
6839      if (TREE_THIS_VOLATILE (exp)
6840	  && TREE_CODE (exp) != FUNCTION_DECL
6841	  && mode != VOIDmode && mode != BLKmode
6842	  && modifier != EXPAND_CONST_ADDRESS)
6843	{
6844	  temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
6845	  if (MEM_P (temp))
6846	    temp = copy_to_reg (temp);
6847	  return const0_rtx;
6848	}
6849
6850      if (TREE_CODE_CLASS (code) == tcc_unary
6851	  || code == COMPONENT_REF || code == INDIRECT_REF)
6852	return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6853			    modifier);
6854
6855      else if (TREE_CODE_CLASS (code) == tcc_binary
6856	       || TREE_CODE_CLASS (code) == tcc_comparison
6857	       || code == ARRAY_REF || code == ARRAY_RANGE_REF)
6858	{
6859	  expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6860	  expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6861	  return const0_rtx;
6862	}
6863      else if (code == BIT_FIELD_REF)
6864	{
6865	  expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6866	  expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6867	  expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
6868	  return const0_rtx;
6869	}
6870
6871      target = 0;
6872    }
6873
6874
6875  switch (code)
6876    {
6877    case LABEL_DECL:
6878      {
6879	tree function = decl_function_context (exp);
6880
6881	temp = label_rtx (exp);
6882	temp = gen_rtx_LABEL_REF (Pmode, temp);
6883
6884	if (function != current_function_decl
6885	    && function != 0)
6886	  LABEL_REF_NONLOCAL_P (temp) = 1;
6887
6888	temp = gen_rtx_MEM (FUNCTION_MODE, temp);
6889	return temp;
6890      }
6891
6892    case SSA_NAME:
6893      return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
6894				 NULL);
6895
6896    case PARM_DECL:
6897    case VAR_DECL:
6898      /* If a static var's type was incomplete when the decl was written,
6899	 but the type is complete now, lay out the decl now.  */
6900      if (DECL_SIZE (exp) == 0
6901	  && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
6902	  && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
6903	layout_decl (exp, 0);
6904
6905      /* ... fall through ...  */
6906
6907    case FUNCTION_DECL:
6908    case RESULT_DECL:
6909      decl_rtl = DECL_RTL (exp);
6910      gcc_assert (decl_rtl);
6911
6912      /* Ensure variable marked as used even if it doesn't go through
6913	 a parser.  If it hasn't be used yet, write out an external
6914	 definition.  */
6915      if (! TREE_USED (exp))
6916	{
6917	  assemble_external (exp);
6918	  TREE_USED (exp) = 1;
6919	}
6920
6921      /* Show we haven't gotten RTL for this yet.  */
6922      temp = 0;
6923
6924      /* Variables inherited from containing functions should have
6925	 been lowered by this point.  */
6926      context = decl_function_context (exp);
6927      gcc_assert (!context
6928		  || context == current_function_decl
6929		  || TREE_STATIC (exp)
6930		  /* ??? C++ creates functions that are not TREE_STATIC.  */
6931		  || TREE_CODE (exp) == FUNCTION_DECL);
6932
6933      /* This is the case of an array whose size is to be determined
6934	 from its initializer, while the initializer is still being parsed.
6935	 See expand_decl.  */
6936
6937      if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
6938	temp = validize_mem (decl_rtl);
6939
6940      /* If DECL_RTL is memory, we are in the normal case and either
6941	 the address is not valid or it is not a register and -fforce-addr
6942	 is specified, get the address into a register.  */
6943
6944      else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
6945	{
6946	  if (alt_rtl)
6947	    *alt_rtl = decl_rtl;
6948	  decl_rtl = use_anchored_address (decl_rtl);
6949	  if (modifier != EXPAND_CONST_ADDRESS
6950	      && modifier != EXPAND_SUM
6951	      && (!memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0))
6952		  || (flag_force_addr && !REG_P (XEXP (decl_rtl, 0)))))
6953	    temp = replace_equiv_address (decl_rtl,
6954					  copy_rtx (XEXP (decl_rtl, 0)));
6955	}
6956
6957      /* If we got something, return it.  But first, set the alignment
6958	 if the address is a register.  */
6959      if (temp != 0)
6960	{
6961	  if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
6962	    mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
6963
6964	  return temp;
6965	}
6966
6967      /* If the mode of DECL_RTL does not match that of the decl, it
6968	 must be a promoted value.  We return a SUBREG of the wanted mode,
6969	 but mark it so that we know that it was already extended.  */
6970
6971      if (REG_P (decl_rtl)
6972	  && GET_MODE (decl_rtl) != DECL_MODE (exp))
6973	{
6974	  enum machine_mode pmode;
6975
6976	  /* Get the signedness used for this variable.  Ensure we get the
6977	     same mode we got when the variable was declared.  */
6978	  pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
6979				(TREE_CODE (exp) == RESULT_DECL
6980				 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
6981	  gcc_assert (GET_MODE (decl_rtl) == pmode);
6982
6983	  temp = gen_lowpart_SUBREG (mode, decl_rtl);
6984	  SUBREG_PROMOTED_VAR_P (temp) = 1;
6985	  SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
6986	  return temp;
6987	}
6988
6989      return decl_rtl;
6990
6991    case INTEGER_CST:
6992      temp = immed_double_const (TREE_INT_CST_LOW (exp),
6993				 TREE_INT_CST_HIGH (exp), mode);
6994
6995      /* ??? If overflow is set, fold will have done an incomplete job,
6996	 which can result in (plus xx (const_int 0)), which can get
6997	 simplified by validate_replace_rtx during virtual register
6998	 instantiation, which can result in unrecognizable insns.
6999	 Avoid this by forcing all overflows into registers.  */
7000      if (TREE_CONSTANT_OVERFLOW (exp)
7001	  && modifier != EXPAND_INITIALIZER)
7002	temp = force_reg (mode, temp);
7003
7004      return temp;
7005
7006    case VECTOR_CST:
7007      {
7008	tree tmp = NULL_TREE;
7009	if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
7010	    || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
7011	  return const_vector_from_tree (exp);
7012	if (GET_MODE_CLASS (mode) == MODE_INT)
7013	  {
7014	    tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
7015	    if (type_for_mode)
7016	      tmp = fold_unary (VIEW_CONVERT_EXPR, type_for_mode, exp);
7017	  }
7018	if (!tmp)
7019	  tmp = build_constructor_from_list (type,
7020					     TREE_VECTOR_CST_ELTS (exp));
7021	return expand_expr (tmp, ignore ? const0_rtx : target,
7022			    tmode, modifier);
7023      }
7024
7025    case CONST_DECL:
7026      return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
7027
7028    case REAL_CST:
7029      /* If optimized, generate immediate CONST_DOUBLE
7030	 which will be turned into memory by reload if necessary.
7031
7032	 We used to force a register so that loop.c could see it.  But
7033	 this does not allow gen_* patterns to perform optimizations with
7034	 the constants.  It also produces two insns in cases like "x = 1.0;".
7035	 On most machines, floating-point constants are not permitted in
7036	 many insns, so we'd end up copying it to a register in any case.
7037
7038	 Now, we do the copying in expand_binop, if appropriate.  */
7039      return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
7040					   TYPE_MODE (TREE_TYPE (exp)));
7041
7042    case COMPLEX_CST:
7043      /* Handle evaluating a complex constant in a CONCAT target.  */
7044      if (original_target && GET_CODE (original_target) == CONCAT)
7045	{
7046	  enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
7047	  rtx rtarg, itarg;
7048
7049	  rtarg = XEXP (original_target, 0);
7050	  itarg = XEXP (original_target, 1);
7051
7052	  /* Move the real and imaginary parts separately.  */
7053	  op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0);
7054	  op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0);
7055
7056	  if (op0 != rtarg)
7057	    emit_move_insn (rtarg, op0);
7058	  if (op1 != itarg)
7059	    emit_move_insn (itarg, op1);
7060
7061	  return original_target;
7062	}
7063
7064      /* ... fall through ...  */
7065
7066    case STRING_CST:
7067      temp = expand_expr_constant (exp, 1, modifier);
7068
7069      /* temp contains a constant address.
7070	 On RISC machines where a constant address isn't valid,
7071	 make some insns to get that address into a register.  */
7072      if (modifier != EXPAND_CONST_ADDRESS
7073	  && modifier != EXPAND_INITIALIZER
7074	  && modifier != EXPAND_SUM
7075	  && (! memory_address_p (mode, XEXP (temp, 0))
7076	      || flag_force_addr))
7077	return replace_equiv_address (temp,
7078				      copy_rtx (XEXP (temp, 0)));
7079      return temp;
7080
7081    case SAVE_EXPR:
7082      {
7083	tree val = TREE_OPERAND (exp, 0);
7084	rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
7085
7086	if (!SAVE_EXPR_RESOLVED_P (exp))
7087	  {
7088	    /* We can indeed still hit this case, typically via builtin
7089	       expanders calling save_expr immediately before expanding
7090	       something.  Assume this means that we only have to deal
7091	       with non-BLKmode values.  */
7092	    gcc_assert (GET_MODE (ret) != BLKmode);
7093
7094	    val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
7095	    DECL_ARTIFICIAL (val) = 1;
7096	    DECL_IGNORED_P (val) = 1;
7097	    TREE_OPERAND (exp, 0) = val;
7098	    SAVE_EXPR_RESOLVED_P (exp) = 1;
7099
7100	    if (!CONSTANT_P (ret))
7101	      ret = copy_to_reg (ret);
7102	    SET_DECL_RTL (val, ret);
7103	  }
7104
7105        return ret;
7106      }
7107
7108    case GOTO_EXPR:
7109      if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
7110	expand_goto (TREE_OPERAND (exp, 0));
7111      else
7112	expand_computed_goto (TREE_OPERAND (exp, 0));
7113      return const0_rtx;
7114
7115    case CONSTRUCTOR:
7116      /* If we don't need the result, just ensure we evaluate any
7117	 subexpressions.  */
7118      if (ignore)
7119	{
7120	  unsigned HOST_WIDE_INT idx;
7121	  tree value;
7122
7123	  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7124	    expand_expr (value, const0_rtx, VOIDmode, 0);
7125
7126	  return const0_rtx;
7127	}
7128
7129      /* Try to avoid creating a temporary at all.  This is possible
7130	 if all of the initializer is zero.
7131	 FIXME: try to handle all [0..255] initializers we can handle
7132	 with memset.  */
7133      else if (TREE_STATIC (exp)
7134	       && !TREE_ADDRESSABLE (exp)
7135	       && target != 0 && mode == BLKmode
7136	       && all_zeros_p (exp))
7137	{
7138	  clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7139	  return target;
7140	}
7141
7142      /* All elts simple constants => refer to a constant in memory.  But
7143	 if this is a non-BLKmode mode, let it store a field at a time
7144	 since that should make a CONST_INT or CONST_DOUBLE when we
7145	 fold.  Likewise, if we have a target we can use, it is best to
7146	 store directly into the target unless the type is large enough
7147	 that memcpy will be used.  If we are making an initializer and
7148	 all operands are constant, put it in memory as well.
7149
7150	FIXME: Avoid trying to fill vector constructors piece-meal.
7151	Output them with output_constant_def below unless we're sure
7152	they're zeros.  This should go away when vector initializers
7153	are treated like VECTOR_CST instead of arrays.
7154      */
7155      else if ((TREE_STATIC (exp)
7156		&& ((mode == BLKmode
7157		     && ! (target != 0 && safe_from_p (target, exp, 1)))
7158		    || TREE_ADDRESSABLE (exp)
7159		    || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7160			&& (! MOVE_BY_PIECES_P
7161			    (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7162			     TYPE_ALIGN (type)))
7163			&& ! mostly_zeros_p (exp))))
7164	       || ((modifier == EXPAND_INITIALIZER
7165		    || modifier == EXPAND_CONST_ADDRESS)
7166		   && TREE_CONSTANT (exp)))
7167	{
7168	  rtx constructor = expand_expr_constant (exp, 1, modifier);
7169
7170	  if (modifier != EXPAND_CONST_ADDRESS
7171	      && modifier != EXPAND_INITIALIZER
7172	      && modifier != EXPAND_SUM)
7173	    constructor = validize_mem (constructor);
7174
7175	  return constructor;
7176	}
7177      else
7178	{
7179	  /* Handle calls that pass values in multiple non-contiguous
7180	     locations.  The Irix 6 ABI has examples of this.  */
7181	  if (target == 0 || ! safe_from_p (target, exp, 1)
7182	      || GET_CODE (target) == PARALLEL
7183	      || modifier == EXPAND_STACK_PARM)
7184	    target
7185	      = assign_temp (build_qualified_type (type,
7186						   (TYPE_QUALS (type)
7187						    | (TREE_READONLY (exp)
7188						       * TYPE_QUAL_CONST))),
7189			     0, TREE_ADDRESSABLE (exp), 1);
7190
7191	  store_constructor (exp, target, 0, int_expr_size (exp));
7192	  return target;
7193	}
7194
7195    case MISALIGNED_INDIRECT_REF:
7196    case ALIGN_INDIRECT_REF:
7197    case INDIRECT_REF:
7198      {
7199	tree exp1 = TREE_OPERAND (exp, 0);
7200
7201	if (modifier != EXPAND_WRITE)
7202	  {
7203	    tree t;
7204
7205	    t = fold_read_from_constant_string (exp);
7206	    if (t)
7207	      return expand_expr (t, target, tmode, modifier);
7208	  }
7209
7210	op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
7211	op0 = memory_address (mode, op0);
7212
7213	if (code == ALIGN_INDIRECT_REF)
7214	  {
7215	    int align = TYPE_ALIGN_UNIT (type);
7216	    op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
7217	    op0 = memory_address (mode, op0);
7218	  }
7219
7220	temp = gen_rtx_MEM (mode, op0);
7221
7222	set_mem_attributes (temp, exp, 0);
7223
7224	/* Resolve the misalignment now, so that we don't have to remember
7225	   to resolve it later.  Of course, this only works for reads.  */
7226	/* ??? When we get around to supporting writes, we'll have to handle
7227	   this in store_expr directly.  The vectorizer isn't generating
7228	   those yet, however.  */
7229	if (code == MISALIGNED_INDIRECT_REF)
7230	  {
7231	    int icode;
7232	    rtx reg, insn;
7233
7234	    gcc_assert (modifier == EXPAND_NORMAL
7235			|| modifier == EXPAND_STACK_PARM);
7236
7237	    /* The vectorizer should have already checked the mode.  */
7238	    icode = movmisalign_optab->handlers[mode].insn_code;
7239	    gcc_assert (icode != CODE_FOR_nothing);
7240
7241	    /* We've already validated the memory, and we're creating a
7242	       new pseudo destination.  The predicates really can't fail.  */
7243	    reg = gen_reg_rtx (mode);
7244
7245	    /* Nor can the insn generator.  */
7246	    insn = GEN_FCN (icode) (reg, temp);
7247	    emit_insn (insn);
7248
7249	    return reg;
7250	  }
7251
7252	return temp;
7253      }
7254
7255    case TARGET_MEM_REF:
7256      {
7257	struct mem_address addr;
7258
7259	get_address_description (exp, &addr);
7260	op0 = addr_for_mem_ref (&addr, true);
7261	op0 = memory_address (mode, op0);
7262	temp = gen_rtx_MEM (mode, op0);
7263	set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
7264      }
7265      return temp;
7266
7267    case ARRAY_REF:
7268
7269      {
7270	tree array = TREE_OPERAND (exp, 0);
7271	tree index = TREE_OPERAND (exp, 1);
7272
7273	/* Fold an expression like: "foo"[2].
7274	   This is not done in fold so it won't happen inside &.
7275	   Don't fold if this is for wide characters since it's too
7276	   difficult to do correctly and this is a very rare case.  */
7277
7278	if (modifier != EXPAND_CONST_ADDRESS
7279	    && modifier != EXPAND_INITIALIZER
7280	    && modifier != EXPAND_MEMORY)
7281	  {
7282	    tree t = fold_read_from_constant_string (exp);
7283
7284	    if (t)
7285	      return expand_expr (t, target, tmode, modifier);
7286	  }
7287
7288	/* If this is a constant index into a constant array,
7289	   just get the value from the array.  Handle both the cases when
7290	   we have an explicit constructor and when our operand is a variable
7291	   that was declared const.  */
7292
7293	if (modifier != EXPAND_CONST_ADDRESS
7294	    && modifier != EXPAND_INITIALIZER
7295	    && modifier != EXPAND_MEMORY
7296	    && TREE_CODE (array) == CONSTRUCTOR
7297	    && ! TREE_SIDE_EFFECTS (array)
7298	    && TREE_CODE (index) == INTEGER_CST)
7299	  {
7300	    unsigned HOST_WIDE_INT ix;
7301	    tree field, value;
7302
7303	    FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
7304				      field, value)
7305	      if (tree_int_cst_equal (field, index))
7306		{
7307		  if (!TREE_SIDE_EFFECTS (value))
7308		    return expand_expr (fold (value), target, tmode, modifier);
7309		  break;
7310		}
7311	  }
7312
7313	else if (optimize >= 1
7314		 && modifier != EXPAND_CONST_ADDRESS
7315		 && modifier != EXPAND_INITIALIZER
7316		 && modifier != EXPAND_MEMORY
7317		 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
7318		 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
7319		 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
7320		 && targetm.binds_local_p (array))
7321	  {
7322	    if (TREE_CODE (index) == INTEGER_CST)
7323	      {
7324		tree init = DECL_INITIAL (array);
7325
7326		if (TREE_CODE (init) == CONSTRUCTOR)
7327		  {
7328		    unsigned HOST_WIDE_INT ix;
7329		    tree field, value;
7330
7331		    FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
7332					      field, value)
7333		      if (tree_int_cst_equal (field, index))
7334			{
7335			  if (!TREE_SIDE_EFFECTS (value))
7336			    return expand_expr (fold (value), target, tmode,
7337						modifier);
7338			  break;
7339			}
7340		  }
7341		else if(TREE_CODE (init) == STRING_CST)
7342		  {
7343		    tree index1 = index;
7344		    tree low_bound = array_ref_low_bound (exp);
7345		    index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
7346
7347		    /* Optimize the special-case of a zero lower bound.
7348
7349		       We convert the low_bound to sizetype to avoid some problems
7350		       with constant folding.  (E.g. suppose the lower bound is 1,
7351		       and its mode is QI.  Without the conversion,l (ARRAY
7352		       +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7353		       +INDEX), which becomes (ARRAY+255+INDEX).  Opps!)  */
7354
7355		    if (! integer_zerop (low_bound))
7356		      index1 = size_diffop (index1, fold_convert (sizetype,
7357								  low_bound));
7358
7359		    if (0 > compare_tree_int (index1,
7360					      TREE_STRING_LENGTH (init)))
7361		      {
7362			tree type = TREE_TYPE (TREE_TYPE (init));
7363			enum machine_mode mode = TYPE_MODE (type);
7364
7365			if (GET_MODE_CLASS (mode) == MODE_INT
7366			    && GET_MODE_SIZE (mode) == 1)
7367			  return gen_int_mode (TREE_STRING_POINTER (init)
7368					       [TREE_INT_CST_LOW (index1)],
7369					       mode);
7370		      }
7371		  }
7372	      }
7373	  }
7374      }
7375      goto normal_inner_ref;
7376
7377    case COMPONENT_REF:
7378      /* If the operand is a CONSTRUCTOR, we can just extract the
7379	 appropriate field if it is present.  */
7380      if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
7381	{
7382	  unsigned HOST_WIDE_INT idx;
7383	  tree field, value;
7384
7385	  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
7386				    idx, field, value)
7387	    if (field == TREE_OPERAND (exp, 1)
7388		/* We can normally use the value of the field in the
7389		   CONSTRUCTOR.  However, if this is a bitfield in
7390		   an integral mode that we can fit in a HOST_WIDE_INT,
7391		   we must mask only the number of bits in the bitfield,
7392		   since this is done implicitly by the constructor.  If
7393		   the bitfield does not meet either of those conditions,
7394		   we can't do this optimization.  */
7395		&& (! DECL_BIT_FIELD (field)
7396		    || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
7397			&& (GET_MODE_BITSIZE (DECL_MODE (field))
7398			    <= HOST_BITS_PER_WIDE_INT))))
7399	      {
7400		if (DECL_BIT_FIELD (field)
7401		    && modifier == EXPAND_STACK_PARM)
7402		  target = 0;
7403		op0 = expand_expr (value, target, tmode, modifier);
7404		if (DECL_BIT_FIELD (field))
7405		  {
7406		    HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
7407		    enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
7408
7409		    if (TYPE_UNSIGNED (TREE_TYPE (field)))
7410		      {
7411			op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
7412			op0 = expand_and (imode, op0, op1, target);
7413		      }
7414		    else
7415		      {
7416			tree count
7417			  = build_int_cst (NULL_TREE,
7418					   GET_MODE_BITSIZE (imode) - bitsize);
7419
7420			op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
7421					    target, 0);
7422			op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
7423					    target, 0);
7424		      }
7425		  }
7426
7427		return op0;
7428	      }
7429	}
7430      goto normal_inner_ref;
7431
7432    case BIT_FIELD_REF:
7433    case ARRAY_RANGE_REF:
7434    normal_inner_ref:
7435      {
7436	enum machine_mode mode1;
7437	HOST_WIDE_INT bitsize, bitpos;
7438	tree offset;
7439	int volatilep = 0;
7440	tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7441					&mode1, &unsignedp, &volatilep, true);
7442	rtx orig_op0;
7443
7444	/* If we got back the original object, something is wrong.  Perhaps
7445	   we are evaluating an expression too early.  In any event, don't
7446	   infinitely recurse.  */
7447	gcc_assert (tem != exp);
7448
7449	/* If TEM's type is a union of variable size, pass TARGET to the inner
7450	   computation, since it will need a temporary and TARGET is known
7451	   to have to do.  This occurs in unchecked conversion in Ada.  */
7452
7453	orig_op0 = op0
7454	  = expand_expr (tem,
7455			 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
7456			  && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
7457			      != INTEGER_CST)
7458			  && modifier != EXPAND_STACK_PARM
7459			  ? target : NULL_RTX),
7460			 VOIDmode,
7461			 (modifier == EXPAND_INITIALIZER
7462			  || modifier == EXPAND_CONST_ADDRESS
7463			  || modifier == EXPAND_STACK_PARM)
7464			 ? modifier : EXPAND_NORMAL);
7465
7466	/* If this is a constant, put it into a register if it is a legitimate
7467	   constant, OFFSET is 0, and we won't try to extract outside the
7468	   register (in case we were passed a partially uninitialized object
7469	   or a view_conversion to a larger size).  Force the constant to
7470	   memory otherwise.  */
7471	if (CONSTANT_P (op0))
7472	  {
7473	    enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
7474	    if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
7475		&& offset == 0
7476		&& bitpos + bitsize <= GET_MODE_BITSIZE (mode))
7477	      op0 = force_reg (mode, op0);
7478	    else
7479	      op0 = validize_mem (force_const_mem (mode, op0));
7480	  }
7481
7482	/* Otherwise, if this object not in memory and we either have an
7483	   offset, a BLKmode result, or a reference outside the object, put it
7484	   there.  Such cases can occur in Ada if we have unchecked conversion
7485	   of an expression from a scalar type to an array or record type or
7486	   for an ARRAY_RANGE_REF whose type is BLKmode.  */
7487	else if (!MEM_P (op0)
7488		 && (offset != 0
7489		     || (bitpos + bitsize > GET_MODE_BITSIZE (GET_MODE (op0)))
7490		     || (code == ARRAY_RANGE_REF && mode == BLKmode)))
7491	  {
7492	    tree nt = build_qualified_type (TREE_TYPE (tem),
7493					    (TYPE_QUALS (TREE_TYPE (tem))
7494					     | TYPE_QUAL_CONST));
7495	    rtx memloc = assign_temp (nt, 1, 1, 1);
7496
7497	    emit_move_insn (memloc, op0);
7498	    op0 = memloc;
7499	  }
7500
7501	if (offset != 0)
7502	  {
7503	    rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7504					  EXPAND_SUM);
7505
7506	    gcc_assert (MEM_P (op0));
7507
7508#ifdef POINTERS_EXTEND_UNSIGNED
7509	    if (GET_MODE (offset_rtx) != Pmode)
7510	      offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7511#else
7512	    if (GET_MODE (offset_rtx) != ptr_mode)
7513	      offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7514#endif
7515
7516	    if (GET_MODE (op0) == BLKmode
7517		/* A constant address in OP0 can have VOIDmode, we must
7518		   not try to call force_reg in that case.  */
7519		&& GET_MODE (XEXP (op0, 0)) != VOIDmode
7520		&& bitsize != 0
7521		&& (bitpos % bitsize) == 0
7522		&& (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7523		&& MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7524	      {
7525		op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7526		bitpos = 0;
7527	      }
7528
7529	    op0 = offset_address (op0, offset_rtx,
7530				  highest_pow2_factor (offset));
7531	  }
7532
7533	/* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7534	   record its alignment as BIGGEST_ALIGNMENT.  */
7535	if (MEM_P (op0) && bitpos == 0 && offset != 0
7536	    && is_aligning_offset (offset, tem))
7537	  set_mem_align (op0, BIGGEST_ALIGNMENT);
7538
7539	/* Don't forget about volatility even if this is a bitfield.  */
7540	if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7541	  {
7542	    if (op0 == orig_op0)
7543	      op0 = copy_rtx (op0);
7544
7545	    MEM_VOLATILE_P (op0) = 1;
7546	  }
7547
7548	/* The following code doesn't handle CONCAT.
7549	   Assume only bitpos == 0 can be used for CONCAT, due to
7550	   one element arrays having the same mode as its element.  */
7551	if (GET_CODE (op0) == CONCAT)
7552	  {
7553	    gcc_assert (bitpos == 0
7554			&& bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7555	    return op0;
7556	  }
7557
7558	/* In cases where an aligned union has an unaligned object
7559	   as a field, we might be extracting a BLKmode value from
7560	   an integer-mode (e.g., SImode) object.  Handle this case
7561	   by doing the extract into an object as wide as the field
7562	   (which we know to be the width of a basic mode), then
7563	   storing into memory, and changing the mode to BLKmode.  */
7564	if (mode1 == VOIDmode
7565	    || REG_P (op0) || GET_CODE (op0) == SUBREG
7566	    || (mode1 != BLKmode && ! direct_load[(int) mode1]
7567		&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7568		&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7569		&& modifier != EXPAND_CONST_ADDRESS
7570		&& modifier != EXPAND_INITIALIZER)
7571	    /* If the field isn't aligned enough to fetch as a memref,
7572	       fetch it as a bit field.  */
7573	    || (mode1 != BLKmode
7574		&& (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7575		      || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7576		      || (MEM_P (op0)
7577			  && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7578			      || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7579		     && ((modifier == EXPAND_CONST_ADDRESS
7580			  || modifier == EXPAND_INITIALIZER)
7581			 ? STRICT_ALIGNMENT
7582			 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7583		    || (bitpos % BITS_PER_UNIT != 0)))
7584	    /* If the type and the field are a constant size and the
7585	       size of the type isn't the same size as the bitfield,
7586	       we must use bitfield operations.  */
7587	    || (bitsize >= 0
7588		&& TYPE_SIZE (TREE_TYPE (exp))
7589		&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7590		&& 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7591					  bitsize)))
7592	  {
7593	    enum machine_mode ext_mode = mode;
7594
7595	    if (ext_mode == BLKmode
7596		&& ! (target != 0 && MEM_P (op0)
7597		      && MEM_P (target)
7598		      && bitpos % BITS_PER_UNIT == 0))
7599	      ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7600
7601	    if (ext_mode == BLKmode)
7602	      {
7603		if (target == 0)
7604		  target = assign_temp (type, 0, 1, 1);
7605
7606		if (bitsize == 0)
7607		  return target;
7608
7609		/* In this case, BITPOS must start at a byte boundary and
7610		   TARGET, if specified, must be a MEM.  */
7611		gcc_assert (MEM_P (op0)
7612			    && (!target || MEM_P (target))
7613			    && !(bitpos % BITS_PER_UNIT));
7614
7615		emit_block_move (target,
7616				 adjust_address (op0, VOIDmode,
7617						 bitpos / BITS_PER_UNIT),
7618				 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7619					  / BITS_PER_UNIT),
7620				 (modifier == EXPAND_STACK_PARM
7621				  ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7622
7623		return target;
7624	      }
7625
7626	    op0 = validize_mem (op0);
7627
7628	    if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7629	      mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7630
7631	    op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7632				     (modifier == EXPAND_STACK_PARM
7633				      ? NULL_RTX : target),
7634				     ext_mode, ext_mode);
7635
7636	    /* If the result is a record type and BITSIZE is narrower than
7637	       the mode of OP0, an integral mode, and this is a big endian
7638	       machine, we must put the field into the high-order bits.  */
7639	    if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7640		&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7641		&& bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7642	      op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7643				  size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7644					    - bitsize),
7645				  op0, 1);
7646
7647	    /* If the result type is BLKmode, store the data into a temporary
7648	       of the appropriate type, but with the mode corresponding to the
7649	       mode for the data we have (op0's mode).  It's tempting to make
7650	       this a constant type, since we know it's only being stored once,
7651	       but that can cause problems if we are taking the address of this
7652	       COMPONENT_REF because the MEM of any reference via that address
7653	       will have flags corresponding to the type, which will not
7654	       necessarily be constant.  */
7655	    if (mode == BLKmode)
7656	      {
7657		rtx new
7658		  = assign_stack_temp_for_type
7659		    (ext_mode, GET_MODE_BITSIZE (ext_mode), 0, type);
7660
7661		emit_move_insn (new, op0);
7662		op0 = copy_rtx (new);
7663		PUT_MODE (op0, BLKmode);
7664		set_mem_attributes (op0, exp, 1);
7665	      }
7666
7667	    return op0;
7668	  }
7669
7670	/* If the result is BLKmode, use that to access the object
7671	   now as well.  */
7672	if (mode == BLKmode)
7673	  mode1 = BLKmode;
7674
7675	/* Get a reference to just this component.  */
7676	if (modifier == EXPAND_CONST_ADDRESS
7677	    || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7678	  op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
7679	else
7680	  op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7681
7682	if (op0 == orig_op0)
7683	  op0 = copy_rtx (op0);
7684
7685	set_mem_attributes (op0, exp, 0);
7686	if (REG_P (XEXP (op0, 0)))
7687	  mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7688
7689	MEM_VOLATILE_P (op0) |= volatilep;
7690	if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
7691	    || modifier == EXPAND_CONST_ADDRESS
7692	    || modifier == EXPAND_INITIALIZER)
7693	  return op0;
7694	else if (target == 0)
7695	  target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7696
7697	convert_move (target, op0, unsignedp);
7698	return target;
7699      }
7700
7701    case OBJ_TYPE_REF:
7702      return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
7703
7704    case CALL_EXPR:
7705      /* Check for a built-in function.  */
7706      if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7707	  && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7708	      == FUNCTION_DECL)
7709	  && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7710	{
7711	  if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7712	      == BUILT_IN_FRONTEND)
7713	    return lang_hooks.expand_expr (exp, original_target,
7714					   tmode, modifier,
7715					   alt_rtl);
7716	  else
7717	    return expand_builtin (exp, target, subtarget, tmode, ignore);
7718	}
7719
7720      return expand_call (exp, target, ignore);
7721
7722    case NON_LVALUE_EXPR:
7723    case NOP_EXPR:
7724    case CONVERT_EXPR:
7725      if (TREE_OPERAND (exp, 0) == error_mark_node)
7726	return const0_rtx;
7727
7728      if (TREE_CODE (type) == UNION_TYPE)
7729	{
7730	  tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
7731
7732	  /* If both input and output are BLKmode, this conversion isn't doing
7733	     anything except possibly changing memory attribute.  */
7734	  if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7735	    {
7736	      rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
7737					modifier);
7738
7739	      result = copy_rtx (result);
7740	      set_mem_attributes (result, exp, 0);
7741	      return result;
7742	    }
7743
7744	  if (target == 0)
7745	    {
7746	      if (TYPE_MODE (type) != BLKmode)
7747		target = gen_reg_rtx (TYPE_MODE (type));
7748	      else
7749		target = assign_temp (type, 0, 1, 1);
7750	    }
7751
7752	  if (MEM_P (target))
7753	    /* Store data into beginning of memory target.  */
7754	    store_expr (TREE_OPERAND (exp, 0),
7755			adjust_address (target, TYPE_MODE (valtype), 0),
7756			modifier == EXPAND_STACK_PARM);
7757
7758	  else
7759	    {
7760	      gcc_assert (REG_P (target));
7761
7762	      /* Store this field into a union of the proper type.  */
7763	      store_field (target,
7764			   MIN ((int_size_in_bytes (TREE_TYPE
7765						    (TREE_OPERAND (exp, 0)))
7766				 * BITS_PER_UNIT),
7767				(HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7768			   0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
7769			   type, 0);
7770	    }
7771
7772	  /* Return the entire union.  */
7773	  return target;
7774	}
7775
7776      if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
7777	{
7778	  op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
7779			     modifier);
7780
7781	  /* If the signedness of the conversion differs and OP0 is
7782	     a promoted SUBREG, clear that indication since we now
7783	     have to do the proper extension.  */
7784	  if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
7785	      && GET_CODE (op0) == SUBREG)
7786	    SUBREG_PROMOTED_VAR_P (op0) = 0;
7787
7788	  return REDUCE_BIT_FIELD (op0);
7789	}
7790
7791      op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode,
7792			 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7793      if (GET_MODE (op0) == mode)
7794	;
7795
7796      /* If OP0 is a constant, just convert it into the proper mode.  */
7797      else if (CONSTANT_P (op0))
7798	{
7799	  tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7800	  enum machine_mode inner_mode = TYPE_MODE (inner_type);
7801
7802	  if (modifier == EXPAND_INITIALIZER)
7803	    op0 = simplify_gen_subreg (mode, op0, inner_mode,
7804				       subreg_lowpart_offset (mode,
7805							      inner_mode));
7806	  else
7807	    op0=  convert_modes (mode, inner_mode, op0,
7808				 TYPE_UNSIGNED (inner_type));
7809	}
7810
7811      else if (modifier == EXPAND_INITIALIZER)
7812	op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7813
7814      else if (target == 0)
7815	op0 = convert_to_mode (mode, op0,
7816			       TYPE_UNSIGNED (TREE_TYPE
7817					      (TREE_OPERAND (exp, 0))));
7818      else
7819	{
7820	  convert_move (target, op0,
7821			TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7822	  op0 = target;
7823	}
7824
7825      return REDUCE_BIT_FIELD (op0);
7826
7827    case VIEW_CONVERT_EXPR:
7828      op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7829
7830      /* If the input and output modes are both the same, we are done.  */
7831      if (TYPE_MODE (type) == GET_MODE (op0))
7832	;
7833      /* If neither mode is BLKmode, and both modes are the same size
7834	 then we can use gen_lowpart.  */
7835      else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
7836	       && GET_MODE_SIZE (TYPE_MODE (type))
7837		   == GET_MODE_SIZE (GET_MODE (op0)))
7838	{
7839	  if (GET_CODE (op0) == SUBREG)
7840	    op0 = force_reg (GET_MODE (op0), op0);
7841	  op0 = gen_lowpart (TYPE_MODE (type), op0);
7842	}
7843      /* If both modes are integral, then we can convert from one to the
7844	 other.  */
7845      else if (SCALAR_INT_MODE_P (GET_MODE (op0))
7846	       && SCALAR_INT_MODE_P (TYPE_MODE (type)))
7847	op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
7848			     TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7849      /* As a last resort, spill op0 to memory, and reload it in a
7850	 different mode.  */
7851      else if (!MEM_P (op0))
7852	{
7853	  /* If the operand is not a MEM, force it into memory.  Since we
7854	     are going to be changing the mode of the MEM, don't call
7855	     force_const_mem for constants because we don't allow pool
7856	     constants to change mode.  */
7857	  tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7858
7859	  gcc_assert (!TREE_ADDRESSABLE (exp));
7860
7861	  if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
7862	    target
7863	      = assign_stack_temp_for_type
7864		(TYPE_MODE (inner_type),
7865		 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
7866
7867	  emit_move_insn (target, op0);
7868	  op0 = target;
7869	}
7870
7871      /* At this point, OP0 is in the correct mode.  If the output type is such
7872	 that the operand is known to be aligned, indicate that it is.
7873	 Otherwise, we need only be concerned about alignment for non-BLKmode
7874	 results.  */
7875      if (MEM_P (op0))
7876	{
7877	  op0 = copy_rtx (op0);
7878
7879	  if (TYPE_ALIGN_OK (type))
7880	    set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
7881	  else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
7882		   && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
7883	    {
7884	      tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7885	      HOST_WIDE_INT temp_size
7886		= MAX (int_size_in_bytes (inner_type),
7887		       (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
7888	      rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
7889						    temp_size, 0, type);
7890	      rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
7891
7892	      gcc_assert (!TREE_ADDRESSABLE (exp));
7893
7894	      if (GET_MODE (op0) == BLKmode)
7895		emit_block_move (new_with_op0_mode, op0,
7896				 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
7897				 (modifier == EXPAND_STACK_PARM
7898				  ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7899	      else
7900		emit_move_insn (new_with_op0_mode, op0);
7901
7902	      op0 = new;
7903	    }
7904
7905	  op0 = adjust_address (op0, TYPE_MODE (type), 0);
7906	}
7907
7908      return op0;
7909
7910    case PLUS_EXPR:
7911      /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7912	 something else, make sure we add the register to the constant and
7913	 then to the other thing.  This case can occur during strength
7914	 reduction and doing it this way will produce better code if the
7915	 frame pointer or argument pointer is eliminated.
7916
7917	 fold-const.c will ensure that the constant is always in the inner
7918	 PLUS_EXPR, so the only case we need to do anything about is if
7919	 sp, ap, or fp is our second argument, in which case we must swap
7920	 the innermost first argument and our second argument.  */
7921
7922      if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
7923	  && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
7924	  && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
7925	  && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
7926	      || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
7927	      || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
7928	{
7929	  tree t = TREE_OPERAND (exp, 1);
7930
7931	  TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7932	  TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
7933	}
7934
7935      /* If the result is to be ptr_mode and we are adding an integer to
7936	 something, we might be forming a constant.  So try to use
7937	 plus_constant.  If it produces a sum and we can't accept it,
7938	 use force_operand.  This allows P = &ARR[const] to generate
7939	 efficient code on machines where a SYMBOL_REF is not a valid
7940	 address.
7941
7942	 If this is an EXPAND_SUM call, always return the sum.  */
7943      if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7944	  || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7945	{
7946	  if (modifier == EXPAND_STACK_PARM)
7947	    target = 0;
7948	  if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
7949	      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7950	      && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
7951	    {
7952	      rtx constant_part;
7953
7954	      op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
7955				 EXPAND_SUM);
7956	      /* Use immed_double_const to ensure that the constant is
7957		 truncated according to the mode of OP1, then sign extended
7958		 to a HOST_WIDE_INT.  Using the constant directly can result
7959		 in non-canonical RTL in a 64x32 cross compile.  */
7960	      constant_part
7961		= immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
7962				      (HOST_WIDE_INT) 0,
7963				      TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
7964	      op1 = plus_constant (op1, INTVAL (constant_part));
7965	      if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7966		op1 = force_operand (op1, target);
7967	      return REDUCE_BIT_FIELD (op1);
7968	    }
7969
7970	  else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7971		   && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7972		   && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
7973	    {
7974	      rtx constant_part;
7975
7976	      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7977				 (modifier == EXPAND_INITIALIZER
7978				 ? EXPAND_INITIALIZER : EXPAND_SUM));
7979	      if (! CONSTANT_P (op0))
7980		{
7981		  op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7982				     VOIDmode, modifier);
7983		  /* Return a PLUS if modifier says it's OK.  */
7984		  if (modifier == EXPAND_SUM
7985		      || modifier == EXPAND_INITIALIZER)
7986		    return simplify_gen_binary (PLUS, mode, op0, op1);
7987		  goto binop2;
7988		}
7989	      /* Use immed_double_const to ensure that the constant is
7990		 truncated according to the mode of OP1, then sign extended
7991		 to a HOST_WIDE_INT.  Using the constant directly can result
7992		 in non-canonical RTL in a 64x32 cross compile.  */
7993	      constant_part
7994		= immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
7995				      (HOST_WIDE_INT) 0,
7996				      TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
7997	      op0 = plus_constant (op0, INTVAL (constant_part));
7998	      if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7999		op0 = force_operand (op0, target);
8000	      return REDUCE_BIT_FIELD (op0);
8001	    }
8002	}
8003
8004      /* No sense saving up arithmetic to be done
8005	 if it's all in the wrong mode to form part of an address.
8006	 And force_operand won't know whether to sign-extend or
8007	 zero-extend.  */
8008      if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8009	  || mode != ptr_mode)
8010	{
8011	  expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8012			   subtarget, &op0, &op1, 0);
8013	  if (op0 == const0_rtx)
8014	    return op1;
8015	  if (op1 == const0_rtx)
8016	    return op0;
8017	  goto binop2;
8018	}
8019
8020      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8021		       subtarget, &op0, &op1, modifier);
8022      return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8023
8024    case MINUS_EXPR:
8025      /* For initializers, we are allowed to return a MINUS of two
8026	 symbolic constants.  Here we handle all cases when both operands
8027	 are constant.  */
8028      /* Handle difference of two symbolic constants,
8029	 for the sake of an initializer.  */
8030      if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8031	  && really_constant_p (TREE_OPERAND (exp, 0))
8032	  && really_constant_p (TREE_OPERAND (exp, 1)))
8033	{
8034	  expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8035			   NULL_RTX, &op0, &op1, modifier);
8036
8037	  /* If the last operand is a CONST_INT, use plus_constant of
8038	     the negated constant.  Else make the MINUS.  */
8039	  if (GET_CODE (op1) == CONST_INT)
8040	    return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
8041	  else
8042	    return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8043	}
8044
8045      /* No sense saving up arithmetic to be done
8046	 if it's all in the wrong mode to form part of an address.
8047	 And force_operand won't know whether to sign-extend or
8048	 zero-extend.  */
8049      if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8050	  || mode != ptr_mode)
8051	goto binop;
8052
8053      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8054		       subtarget, &op0, &op1, modifier);
8055
8056      /* Convert A - const to A + (-const).  */
8057      if (GET_CODE (op1) == CONST_INT)
8058	{
8059	  op1 = negate_rtx (mode, op1);
8060	  return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8061	}
8062
8063      goto binop2;
8064
8065    case MULT_EXPR:
8066      /* If first operand is constant, swap them.
8067	 Thus the following special case checks need only
8068	 check the second operand.  */
8069      if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
8070	{
8071	  tree t1 = TREE_OPERAND (exp, 0);
8072	  TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
8073	  TREE_OPERAND (exp, 1) = t1;
8074	}
8075
8076      /* Attempt to return something suitable for generating an
8077	 indexed address, for machines that support that.  */
8078
8079      if (modifier == EXPAND_SUM && mode == ptr_mode
8080	  && host_integerp (TREE_OPERAND (exp, 1), 0))
8081	{
8082	  tree exp1 = TREE_OPERAND (exp, 1);
8083
8084	  op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8085			     EXPAND_SUM);
8086
8087	  if (!REG_P (op0))
8088	    op0 = force_operand (op0, NULL_RTX);
8089	  if (!REG_P (op0))
8090	    op0 = copy_to_mode_reg (mode, op0);
8091
8092	  return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8093			       gen_int_mode (tree_low_cst (exp1, 0),
8094					     TYPE_MODE (TREE_TYPE (exp1)))));
8095	}
8096
8097      if (modifier == EXPAND_STACK_PARM)
8098	target = 0;
8099
8100      /* Check for multiplying things that have been extended
8101	 from a narrower type.  If this machine supports multiplying
8102	 in that narrower type with a result in the desired type,
8103	 do it that way, and avoid the explicit type-conversion.  */
8104
8105      subexp0 = TREE_OPERAND (exp, 0);
8106      subexp1 = TREE_OPERAND (exp, 1);
8107      /* First, check if we have a multiplication of one signed and one
8108	 unsigned operand.  */
8109      if (TREE_CODE (subexp0) == NOP_EXPR
8110	  && TREE_CODE (subexp1) == NOP_EXPR
8111	  && TREE_CODE (type) == INTEGER_TYPE
8112	  && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8113	      < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8114	  && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8115	      == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
8116	  && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8117	      != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
8118	{
8119	  enum machine_mode innermode
8120	    = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
8121	  this_optab = usmul_widen_optab;
8122	  if (mode == GET_MODE_WIDER_MODE (innermode))
8123	    {
8124	      if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
8125		{
8126		  if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
8127		    expand_operands (TREE_OPERAND (subexp0, 0),
8128				     TREE_OPERAND (subexp1, 0),
8129				     NULL_RTX, &op0, &op1, 0);
8130		  else
8131		    expand_operands (TREE_OPERAND (subexp0, 0),
8132				     TREE_OPERAND (subexp1, 0),
8133				     NULL_RTX, &op1, &op0, 0);
8134
8135		  goto binop3;
8136		}
8137	    }
8138	}
8139      /* Check for a multiplication with matching signedness.  */
8140      else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
8141	  && TREE_CODE (type) == INTEGER_TYPE
8142	  && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8143	      < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8144	  && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8145	       && int_fits_type_p (TREE_OPERAND (exp, 1),
8146				   TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8147	       /* Don't use a widening multiply if a shift will do.  */
8148	       && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8149		    > HOST_BITS_PER_WIDE_INT)
8150		   || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
8151	      ||
8152	      (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
8153	       && (TYPE_PRECISION (TREE_TYPE
8154				   (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8155		   == TYPE_PRECISION (TREE_TYPE
8156				      (TREE_OPERAND
8157				       (TREE_OPERAND (exp, 0), 0))))
8158	       /* If both operands are extended, they must either both
8159		  be zero-extended or both be sign-extended.  */
8160	       && (TYPE_UNSIGNED (TREE_TYPE
8161				  (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8162		   == TYPE_UNSIGNED (TREE_TYPE
8163				     (TREE_OPERAND
8164				      (TREE_OPERAND (exp, 0), 0)))))))
8165	{
8166	  tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8167	  enum machine_mode innermode = TYPE_MODE (op0type);
8168	  bool zextend_p = TYPE_UNSIGNED (op0type);
8169	  optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8170	  this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8171
8172	  if (mode == GET_MODE_2XWIDER_MODE (innermode))
8173	    {
8174	      if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
8175		{
8176		  if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8177		    expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8178				     TREE_OPERAND (exp, 1),
8179				     NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8180		  else
8181		    expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8182				     TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
8183				     NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8184		  goto binop3;
8185		}
8186	      else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
8187		       && innermode == word_mode)
8188		{
8189		  rtx htem, hipart;
8190		  op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8191		  if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8192		    op1 = convert_modes (innermode, mode,
8193					 expand_normal (TREE_OPERAND (exp, 1)),
8194					 unsignedp);
8195		  else
8196		    op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
8197		  temp = expand_binop (mode, other_optab, op0, op1, target,
8198				       unsignedp, OPTAB_LIB_WIDEN);
8199		  hipart = gen_highpart (innermode, temp);
8200		  htem = expand_mult_highpart_adjust (innermode, hipart,
8201						      op0, op1, hipart,
8202						      zextend_p);
8203		  if (htem != hipart)
8204		    emit_move_insn (hipart, htem);
8205		  return REDUCE_BIT_FIELD (temp);
8206		}
8207	    }
8208	}
8209      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8210		       subtarget, &op0, &op1, 0);
8211      return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8212
8213    case TRUNC_DIV_EXPR:
8214    case FLOOR_DIV_EXPR:
8215    case CEIL_DIV_EXPR:
8216    case ROUND_DIV_EXPR:
8217    case EXACT_DIV_EXPR:
8218      if (modifier == EXPAND_STACK_PARM)
8219	target = 0;
8220      /* Possible optimization: compute the dividend with EXPAND_SUM
8221	 then if the divisor is constant can optimize the case
8222	 where some terms of the dividend have coeffs divisible by it.  */
8223      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8224		       subtarget, &op0, &op1, 0);
8225      return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8226
8227    case RDIV_EXPR:
8228      goto binop;
8229
8230    case TRUNC_MOD_EXPR:
8231    case FLOOR_MOD_EXPR:
8232    case CEIL_MOD_EXPR:
8233    case ROUND_MOD_EXPR:
8234      if (modifier == EXPAND_STACK_PARM)
8235	target = 0;
8236      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8237		       subtarget, &op0, &op1, 0);
8238      return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8239
8240    case FIX_ROUND_EXPR:
8241    case FIX_FLOOR_EXPR:
8242    case FIX_CEIL_EXPR:
8243      gcc_unreachable ();			/* Not used for C.  */
8244
8245    case FIX_TRUNC_EXPR:
8246      op0 = expand_normal (TREE_OPERAND (exp, 0));
8247      if (target == 0 || modifier == EXPAND_STACK_PARM)
8248	target = gen_reg_rtx (mode);
8249      expand_fix (target, op0, unsignedp);
8250      return target;
8251
8252    case FLOAT_EXPR:
8253      op0 = expand_normal (TREE_OPERAND (exp, 0));
8254      if (target == 0 || modifier == EXPAND_STACK_PARM)
8255	target = gen_reg_rtx (mode);
8256      /* expand_float can't figure out what to do if FROM has VOIDmode.
8257	 So give it the correct mode.  With -O, cse will optimize this.  */
8258      if (GET_MODE (op0) == VOIDmode)
8259	op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8260				op0);
8261      expand_float (target, op0,
8262		    TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8263      return target;
8264
8265    case NEGATE_EXPR:
8266      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8267      if (modifier == EXPAND_STACK_PARM)
8268	target = 0;
8269      temp = expand_unop (mode,
8270      			  optab_for_tree_code (NEGATE_EXPR, type),
8271			  op0, target, 0);
8272      gcc_assert (temp);
8273      return REDUCE_BIT_FIELD (temp);
8274
8275    case ABS_EXPR:
8276      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8277      if (modifier == EXPAND_STACK_PARM)
8278	target = 0;
8279
8280      /* ABS_EXPR is not valid for complex arguments.  */
8281      gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8282		  && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8283
8284      /* Unsigned abs is simply the operand.  Testing here means we don't
8285	 risk generating incorrect code below.  */
8286      if (TYPE_UNSIGNED (type))
8287	return op0;
8288
8289      return expand_abs (mode, op0, target, unsignedp,
8290			 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
8291
8292    case MAX_EXPR:
8293    case MIN_EXPR:
8294      target = original_target;
8295      if (target == 0
8296	  || modifier == EXPAND_STACK_PARM
8297	  || (MEM_P (target) && MEM_VOLATILE_P (target))
8298	  || GET_MODE (target) != mode
8299	  || (REG_P (target)
8300	      && REGNO (target) < FIRST_PSEUDO_REGISTER))
8301	target = gen_reg_rtx (mode);
8302      expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8303		       target, &op0, &op1, 0);
8304
8305      /* First try to do it with a special MIN or MAX instruction.
8306	 If that does not win, use a conditional jump to select the proper
8307	 value.  */
8308      this_optab = optab_for_tree_code (code, type);
8309      temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8310			   OPTAB_WIDEN);
8311      if (temp != 0)
8312	return temp;
8313
8314      /* At this point, a MEM target is no longer useful; we will get better
8315	 code without it.  */
8316
8317      if (! REG_P (target))
8318	target = gen_reg_rtx (mode);
8319
8320      /* If op1 was placed in target, swap op0 and op1.  */
8321      if (target != op0 && target == op1)
8322	{
8323	  temp = op0;
8324	  op0 = op1;
8325	  op1 = temp;
8326	}
8327
8328      /* We generate better code and avoid problems with op1 mentioning
8329	 target by forcing op1 into a pseudo if it isn't a constant.  */
8330      if (! CONSTANT_P (op1))
8331	op1 = force_reg (mode, op1);
8332
8333      {
8334	enum rtx_code comparison_code;
8335	rtx cmpop1 = op1;
8336
8337	if (code == MAX_EXPR)
8338	  comparison_code = unsignedp ? GEU : GE;
8339	else
8340	  comparison_code = unsignedp ? LEU : LE;
8341
8342	/* Canonicalize to comparisons against 0.  */
8343	if (op1 == const1_rtx)
8344	  {
8345	    /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8346	       or (a != 0 ? a : 1) for unsigned.
8347	       For MIN we are safe converting (a <= 1 ? a : 1)
8348	       into (a <= 0 ? a : 1)  */
8349	    cmpop1 = const0_rtx;
8350	    if (code == MAX_EXPR)
8351	      comparison_code = unsignedp ? NE : GT;
8352	  }
8353	if (op1 == constm1_rtx && !unsignedp)
8354	  {
8355	    /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8356	       and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8357	    cmpop1 = const0_rtx;
8358	    if (code == MIN_EXPR)
8359	      comparison_code = LT;
8360	  }
8361#ifdef HAVE_conditional_move
8362	/* Use a conditional move if possible.  */
8363	if (can_conditionally_move_p (mode))
8364	  {
8365	    rtx insn;
8366
8367	    /* ??? Same problem as in expmed.c: emit_conditional_move
8368	       forces a stack adjustment via compare_from_rtx, and we
8369	       lose the stack adjustment if the sequence we are about
8370	       to create is discarded.  */
8371	    do_pending_stack_adjust ();
8372
8373	    start_sequence ();
8374
8375	    /* Try to emit the conditional move.  */
8376	    insn = emit_conditional_move (target, comparison_code,
8377					  op0, cmpop1, mode,
8378					  op0, op1, mode,
8379					  unsignedp);
8380
8381	    /* If we could do the conditional move, emit the sequence,
8382	       and return.  */
8383	    if (insn)
8384	      {
8385		rtx seq = get_insns ();
8386		end_sequence ();
8387		emit_insn (seq);
8388		return target;
8389	      }
8390
8391	    /* Otherwise discard the sequence and fall back to code with
8392	       branches.  */
8393	    end_sequence ();
8394	  }
8395#endif
8396	if (target != op0)
8397	  emit_move_insn (target, op0);
8398
8399	temp = gen_label_rtx ();
8400	do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8401				 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
8402      }
8403      emit_move_insn (target, op1);
8404      emit_label (temp);
8405      return target;
8406
8407    case BIT_NOT_EXPR:
8408      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8409      if (modifier == EXPAND_STACK_PARM)
8410	target = 0;
8411      temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8412      gcc_assert (temp);
8413      return temp;
8414
8415      /* ??? Can optimize bitwise operations with one arg constant.
8416	 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8417	 and (a bitwise1 b) bitwise2 b (etc)
8418	 but that is probably not worth while.  */
8419
8420      /* BIT_AND_EXPR is for bitwise anding.  TRUTH_AND_EXPR is for anding two
8421	 boolean values when we want in all cases to compute both of them.  In
8422	 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8423	 as actual zero-or-1 values and then bitwise anding.  In cases where
8424	 there cannot be any side effects, better code would be made by
8425	 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8426	 how to recognize those cases.  */
8427
8428    case TRUTH_AND_EXPR:
8429      code = BIT_AND_EXPR;
8430    case BIT_AND_EXPR:
8431      goto binop;
8432
8433    case TRUTH_OR_EXPR:
8434      code = BIT_IOR_EXPR;
8435    case BIT_IOR_EXPR:
8436      goto binop;
8437
8438    case TRUTH_XOR_EXPR:
8439      code = BIT_XOR_EXPR;
8440    case BIT_XOR_EXPR:
8441      goto binop;
8442
8443    case LSHIFT_EXPR:
8444    case RSHIFT_EXPR:
8445    case LROTATE_EXPR:
8446    case RROTATE_EXPR:
8447      if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8448	subtarget = 0;
8449      if (modifier == EXPAND_STACK_PARM)
8450	target = 0;
8451      op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8452      return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
8453			   unsignedp);
8454
8455      /* Could determine the answer when only additive constants differ.  Also,
8456	 the addition of one can be handled by changing the condition.  */
8457    case LT_EXPR:
8458    case LE_EXPR:
8459    case GT_EXPR:
8460    case GE_EXPR:
8461    case EQ_EXPR:
8462    case NE_EXPR:
8463    case UNORDERED_EXPR:
8464    case ORDERED_EXPR:
8465    case UNLT_EXPR:
8466    case UNLE_EXPR:
8467    case UNGT_EXPR:
8468    case UNGE_EXPR:
8469    case UNEQ_EXPR:
8470    case LTGT_EXPR:
8471      temp = do_store_flag (exp,
8472			    modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8473			    tmode != VOIDmode ? tmode : mode, 0);
8474      if (temp != 0)
8475	return temp;
8476
8477      /* For foo != 0, load foo, and if it is nonzero load 1 instead.  */
8478      if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
8479	  && original_target
8480	  && REG_P (original_target)
8481	  && (GET_MODE (original_target)
8482	      == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
8483	{
8484	  temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
8485			      VOIDmode, 0);
8486
8487	  /* If temp is constant, we can just compute the result.  */
8488	  if (GET_CODE (temp) == CONST_INT)
8489	    {
8490	      if (INTVAL (temp) != 0)
8491	        emit_move_insn (target, const1_rtx);
8492	      else
8493	        emit_move_insn (target, const0_rtx);
8494
8495	      return target;
8496	    }
8497
8498	  if (temp != original_target)
8499	    {
8500	      enum machine_mode mode1 = GET_MODE (temp);
8501	      if (mode1 == VOIDmode)
8502		mode1 = tmode != VOIDmode ? tmode : mode;
8503
8504	      temp = copy_to_mode_reg (mode1, temp);
8505	    }
8506
8507	  op1 = gen_label_rtx ();
8508	  emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
8509				   GET_MODE (temp), unsignedp, op1);
8510	  emit_move_insn (temp, const1_rtx);
8511	  emit_label (op1);
8512	  return temp;
8513	}
8514
8515      /* If no set-flag instruction, must generate a conditional store
8516	 into a temporary variable.  Drop through and handle this
8517	 like && and ||.  */
8518
8519      if (! ignore
8520	  && (target == 0
8521	      || modifier == EXPAND_STACK_PARM
8522	      || ! safe_from_p (target, exp, 1)
8523	      /* Make sure we don't have a hard reg (such as function's return
8524		 value) live across basic blocks, if not optimizing.  */
8525	      || (!optimize && REG_P (target)
8526		  && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8527	target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8528
8529      if (target)
8530	emit_move_insn (target, const0_rtx);
8531
8532      op1 = gen_label_rtx ();
8533      jumpifnot (exp, op1);
8534
8535      if (target)
8536	emit_move_insn (target, const1_rtx);
8537
8538      emit_label (op1);
8539      return ignore ? const0_rtx : target;
8540
8541    case TRUTH_NOT_EXPR:
8542      if (modifier == EXPAND_STACK_PARM)
8543	target = 0;
8544      op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
8545      /* The parser is careful to generate TRUTH_NOT_EXPR
8546	 only with operands that are always zero or one.  */
8547      temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8548			   target, 1, OPTAB_LIB_WIDEN);
8549      gcc_assert (temp);
8550      return temp;
8551
8552    case STATEMENT_LIST:
8553      {
8554	tree_stmt_iterator iter;
8555
8556	gcc_assert (ignore);
8557
8558	for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
8559	  expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
8560      }
8561      return const0_rtx;
8562
8563    case COND_EXPR:
8564      /* A COND_EXPR with its type being VOID_TYPE represents a
8565	 conditional jump and is handled in
8566	 expand_gimple_cond_expr.  */
8567      gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
8568
8569        /* Note that COND_EXPRs whose type is a structure or union
8570  	 are required to be constructed to contain assignments of
8571  	 a temporary variable, so that we can evaluate them here
8572  	 for side effect only.  If type is void, we must do likewise.  */
8573
8574        gcc_assert (!TREE_ADDRESSABLE (type)
8575		    && !ignore
8576		    && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
8577		    && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
8578
8579       /* If we are not to produce a result, we have no target.  Otherwise,
8580 	 if a target was specified use it; it will not be used as an
8581 	 intermediate target unless it is safe.  If no target, use a
8582 	 temporary.  */
8583
8584       if (modifier != EXPAND_STACK_PARM
8585 	  && original_target
8586 	  && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
8587 	  && GET_MODE (original_target) == mode
8588#ifdef HAVE_conditional_move
8589 	  && (! can_conditionally_move_p (mode)
8590 	      || REG_P (original_target))
8591#endif
8592 	  && !MEM_P (original_target))
8593 	temp = original_target;
8594       else
8595 	temp = assign_temp (type, 0, 0, 1);
8596
8597       do_pending_stack_adjust ();
8598       NO_DEFER_POP;
8599       op0 = gen_label_rtx ();
8600       op1 = gen_label_rtx ();
8601       jumpifnot (TREE_OPERAND (exp, 0), op0);
8602       store_expr (TREE_OPERAND (exp, 1), temp,
8603 		  modifier == EXPAND_STACK_PARM);
8604
8605       emit_jump_insn (gen_jump (op1));
8606       emit_barrier ();
8607       emit_label (op0);
8608       store_expr (TREE_OPERAND (exp, 2), temp,
8609 		  modifier == EXPAND_STACK_PARM);
8610
8611       emit_label (op1);
8612       OK_DEFER_POP;
8613       return temp;
8614
8615    case VEC_COND_EXPR:
8616	target = expand_vec_cond_expr (exp, target);
8617	return target;
8618
8619    case MODIFY_EXPR:
8620      {
8621	tree lhs = TREE_OPERAND (exp, 0);
8622	tree rhs = TREE_OPERAND (exp, 1);
8623
8624	gcc_assert (ignore);
8625
8626	/* Check for |= or &= of a bitfield of size one into another bitfield
8627	   of size 1.  In this case, (unless we need the result of the
8628	   assignment) we can do this more efficiently with a
8629	   test followed by an assignment, if necessary.
8630
8631	   ??? At this point, we can't get a BIT_FIELD_REF here.  But if
8632	   things change so we do, this code should be enhanced to
8633	   support it.  */
8634	if (TREE_CODE (lhs) == COMPONENT_REF
8635	    && (TREE_CODE (rhs) == BIT_IOR_EXPR
8636		|| TREE_CODE (rhs) == BIT_AND_EXPR)
8637	    && TREE_OPERAND (rhs, 0) == lhs
8638	    && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
8639	    && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
8640	    && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
8641	  {
8642	    rtx label = gen_label_rtx ();
8643	    int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
8644	    do_jump (TREE_OPERAND (rhs, 1),
8645		     value ? label : 0,
8646		     value ? 0 : label);
8647	    expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value));
8648	    do_pending_stack_adjust ();
8649	    emit_label (label);
8650	    return const0_rtx;
8651	  }
8652
8653	expand_assignment (lhs, rhs);
8654
8655	return const0_rtx;
8656      }
8657
8658    case RETURN_EXPR:
8659      if (!TREE_OPERAND (exp, 0))
8660	expand_null_return ();
8661      else
8662	expand_return (TREE_OPERAND (exp, 0));
8663      return const0_rtx;
8664
8665    case ADDR_EXPR:
8666      return expand_expr_addr_expr (exp, target, tmode, modifier);
8667
8668    case COMPLEX_EXPR:
8669      /* Get the rtx code of the operands.  */
8670      op0 = expand_normal (TREE_OPERAND (exp, 0));
8671      op1 = expand_normal (TREE_OPERAND (exp, 1));
8672
8673      if (!target)
8674	target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
8675
8676      /* Move the real (op0) and imaginary (op1) parts to their location.  */
8677      write_complex_part (target, op0, false);
8678      write_complex_part (target, op1, true);
8679
8680      return target;
8681
8682    case REALPART_EXPR:
8683      op0 = expand_normal (TREE_OPERAND (exp, 0));
8684      return read_complex_part (op0, false);
8685
8686    case IMAGPART_EXPR:
8687      op0 = expand_normal (TREE_OPERAND (exp, 0));
8688      return read_complex_part (op0, true);
8689
8690    case RESX_EXPR:
8691      expand_resx_expr (exp);
8692      return const0_rtx;
8693
8694    case TRY_CATCH_EXPR:
8695    case CATCH_EXPR:
8696    case EH_FILTER_EXPR:
8697    case TRY_FINALLY_EXPR:
8698      /* Lowered by tree-eh.c.  */
8699      gcc_unreachable ();
8700
8701    case WITH_CLEANUP_EXPR:
8702    case CLEANUP_POINT_EXPR:
8703    case TARGET_EXPR:
8704    case CASE_LABEL_EXPR:
8705    case VA_ARG_EXPR:
8706    case BIND_EXPR:
8707    case INIT_EXPR:
8708    case CONJ_EXPR:
8709    case COMPOUND_EXPR:
8710    case PREINCREMENT_EXPR:
8711    case PREDECREMENT_EXPR:
8712    case POSTINCREMENT_EXPR:
8713    case POSTDECREMENT_EXPR:
8714    case LOOP_EXPR:
8715    case EXIT_EXPR:
8716    case TRUTH_ANDIF_EXPR:
8717    case TRUTH_ORIF_EXPR:
8718      /* Lowered by gimplify.c.  */
8719      gcc_unreachable ();
8720
8721    case EXC_PTR_EXPR:
8722      return get_exception_pointer (cfun);
8723
8724    case FILTER_EXPR:
8725      return get_exception_filter (cfun);
8726
8727    case FDESC_EXPR:
8728      /* Function descriptors are not valid except for as
8729	 initialization constants, and should not be expanded.  */
8730      gcc_unreachable ();
8731
8732    case SWITCH_EXPR:
8733      expand_case (exp);
8734      return const0_rtx;
8735
8736    case LABEL_EXPR:
8737      expand_label (TREE_OPERAND (exp, 0));
8738      return const0_rtx;
8739
8740    case ASM_EXPR:
8741      expand_asm_expr (exp);
8742      return const0_rtx;
8743
8744    case WITH_SIZE_EXPR:
8745      /* WITH_SIZE_EXPR expands to its first argument.  The caller should
8746	 have pulled out the size to use in whatever context it needed.  */
8747      return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
8748			       modifier, alt_rtl);
8749
8750    case REALIGN_LOAD_EXPR:
8751      {
8752        tree oprnd0 = TREE_OPERAND (exp, 0);
8753        tree oprnd1 = TREE_OPERAND (exp, 1);
8754        tree oprnd2 = TREE_OPERAND (exp, 2);
8755        rtx op2;
8756
8757        this_optab = optab_for_tree_code (code, type);
8758        expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8759        op2 = expand_normal (oprnd2);
8760        temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8761				  target, unsignedp);
8762        gcc_assert (temp);
8763        return temp;
8764      }
8765
8766    case DOT_PROD_EXPR:
8767      {
8768	tree oprnd0 = TREE_OPERAND (exp, 0);
8769	tree oprnd1 = TREE_OPERAND (exp, 1);
8770	tree oprnd2 = TREE_OPERAND (exp, 2);
8771	rtx op2;
8772
8773	expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8774	op2 = expand_normal (oprnd2);
8775	target = expand_widen_pattern_expr (exp, op0, op1, op2,
8776					    target, unsignedp);
8777	return target;
8778      }
8779
8780    case WIDEN_SUM_EXPR:
8781      {
8782        tree oprnd0 = TREE_OPERAND (exp, 0);
8783        tree oprnd1 = TREE_OPERAND (exp, 1);
8784
8785        expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
8786        target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
8787                                            target, unsignedp);
8788        return target;
8789      }
8790
8791    case REDUC_MAX_EXPR:
8792    case REDUC_MIN_EXPR:
8793    case REDUC_PLUS_EXPR:
8794      {
8795        op0 = expand_normal (TREE_OPERAND (exp, 0));
8796        this_optab = optab_for_tree_code (code, type);
8797        temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8798        gcc_assert (temp);
8799        return temp;
8800      }
8801
8802    case VEC_LSHIFT_EXPR:
8803    case VEC_RSHIFT_EXPR:
8804      {
8805	target = expand_vec_shift_expr (exp, target);
8806	return target;
8807      }
8808
8809    default:
8810      return lang_hooks.expand_expr (exp, original_target, tmode,
8811				     modifier, alt_rtl);
8812    }
8813
8814  /* Here to do an ordinary binary operator.  */
8815 binop:
8816  expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8817		   subtarget, &op0, &op1, 0);
8818 binop2:
8819  this_optab = optab_for_tree_code (code, type);
8820 binop3:
8821  if (modifier == EXPAND_STACK_PARM)
8822    target = 0;
8823  temp = expand_binop (mode, this_optab, op0, op1, target,
8824		       unsignedp, OPTAB_LIB_WIDEN);
8825  gcc_assert (temp);
8826  return REDUCE_BIT_FIELD (temp);
8827}
8828#undef REDUCE_BIT_FIELD
8829
8830/* Subroutine of above: reduce EXP to the precision of TYPE (in the
8831   signedness of TYPE), possibly returning the result in TARGET.  */
8832static rtx
8833reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
8834{
8835  HOST_WIDE_INT prec = TYPE_PRECISION (type);
8836  if (target && GET_MODE (target) != GET_MODE (exp))
8837    target = 0;
8838  /* For constant values, reduce using build_int_cst_type. */
8839  if (GET_CODE (exp) == CONST_INT)
8840    {
8841      HOST_WIDE_INT value = INTVAL (exp);
8842      tree t = build_int_cst_type (type, value);
8843      return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
8844    }
8845  else if (TYPE_UNSIGNED (type))
8846    {
8847      rtx mask;
8848      if (prec < HOST_BITS_PER_WIDE_INT)
8849	mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
8850				   GET_MODE (exp));
8851      else
8852	mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
8853				   ((unsigned HOST_WIDE_INT) 1
8854				    << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
8855				   GET_MODE (exp));
8856      return expand_and (GET_MODE (exp), exp, mask, target);
8857    }
8858  else
8859    {
8860      tree count = build_int_cst (NULL_TREE,
8861				  GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
8862      exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8863      return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8864    }
8865}
8866
8867/* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8868   when applied to the address of EXP produces an address known to be
8869   aligned more than BIGGEST_ALIGNMENT.  */
8870
8871static int
8872is_aligning_offset (tree offset, tree exp)
8873{
8874  /* Strip off any conversions.  */
8875  while (TREE_CODE (offset) == NON_LVALUE_EXPR
8876	 || TREE_CODE (offset) == NOP_EXPR
8877	 || TREE_CODE (offset) == CONVERT_EXPR)
8878    offset = TREE_OPERAND (offset, 0);
8879
8880  /* We must now have a BIT_AND_EXPR with a constant that is one less than
8881     power of 2 and which is larger than BIGGEST_ALIGNMENT.  */
8882  if (TREE_CODE (offset) != BIT_AND_EXPR
8883      || !host_integerp (TREE_OPERAND (offset, 1), 1)
8884      || compare_tree_int (TREE_OPERAND (offset, 1),
8885			   BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
8886      || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
8887    return 0;
8888
8889  /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8890     It must be NEGATE_EXPR.  Then strip any more conversions.  */
8891  offset = TREE_OPERAND (offset, 0);
8892  while (TREE_CODE (offset) == NON_LVALUE_EXPR
8893	 || TREE_CODE (offset) == NOP_EXPR
8894	 || TREE_CODE (offset) == CONVERT_EXPR)
8895    offset = TREE_OPERAND (offset, 0);
8896
8897  if (TREE_CODE (offset) != NEGATE_EXPR)
8898    return 0;
8899
8900  offset = TREE_OPERAND (offset, 0);
8901  while (TREE_CODE (offset) == NON_LVALUE_EXPR
8902	 || TREE_CODE (offset) == NOP_EXPR
8903	 || TREE_CODE (offset) == CONVERT_EXPR)
8904    offset = TREE_OPERAND (offset, 0);
8905
8906  /* This must now be the address of EXP.  */
8907  return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
8908}
8909
8910/* Return the tree node if an ARG corresponds to a string constant or zero
8911   if it doesn't.  If we return nonzero, set *PTR_OFFSET to the offset
8912   in bytes within the string that ARG is accessing.  The type of the
8913   offset will be `sizetype'.  */
8914
8915tree
8916string_constant (tree arg, tree *ptr_offset)
8917{
8918  tree array, offset;
8919  STRIP_NOPS (arg);
8920
8921  if (TREE_CODE (arg) == ADDR_EXPR)
8922    {
8923      if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
8924	{
8925	  *ptr_offset = size_zero_node;
8926	  return TREE_OPERAND (arg, 0);
8927	}
8928      else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
8929	{
8930	  array = TREE_OPERAND (arg, 0);
8931	  offset = size_zero_node;
8932	}
8933      else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
8934	{
8935	  array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
8936	  offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
8937	  if (TREE_CODE (array) != STRING_CST
8938	      && TREE_CODE (array) != VAR_DECL)
8939	    return 0;
8940	}
8941      else
8942	return 0;
8943    }
8944  else if (TREE_CODE (arg) == PLUS_EXPR)
8945    {
8946      tree arg0 = TREE_OPERAND (arg, 0);
8947      tree arg1 = TREE_OPERAND (arg, 1);
8948
8949      STRIP_NOPS (arg0);
8950      STRIP_NOPS (arg1);
8951
8952      if (TREE_CODE (arg0) == ADDR_EXPR
8953	  && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
8954	      || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
8955	{
8956	  array = TREE_OPERAND (arg0, 0);
8957	  offset = arg1;
8958	}
8959      else if (TREE_CODE (arg1) == ADDR_EXPR
8960	       && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
8961		   || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
8962	{
8963	  array = TREE_OPERAND (arg1, 0);
8964	  offset = arg0;
8965	}
8966      else
8967	return 0;
8968    }
8969  else
8970    return 0;
8971
8972  if (TREE_CODE (array) == STRING_CST)
8973    {
8974      *ptr_offset = fold_convert (sizetype, offset);
8975      return array;
8976    }
8977  else if (TREE_CODE (array) == VAR_DECL)
8978    {
8979      int length;
8980
8981      /* Variables initialized to string literals can be handled too.  */
8982      if (DECL_INITIAL (array) == NULL_TREE
8983	  || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
8984	return 0;
8985
8986      /* If they are read-only, non-volatile and bind locally.  */
8987      if (! TREE_READONLY (array)
8988	  || TREE_SIDE_EFFECTS (array)
8989	  || ! targetm.binds_local_p (array))
8990	return 0;
8991
8992      /* Avoid const char foo[4] = "abcde";  */
8993      if (DECL_SIZE_UNIT (array) == NULL_TREE
8994	  || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
8995	  || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
8996	  || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
8997	return 0;
8998
8999      /* If variable is bigger than the string literal, OFFSET must be constant
9000	 and inside of the bounds of the string literal.  */
9001      offset = fold_convert (sizetype, offset);
9002      if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9003	  && (! host_integerp (offset, 1)
9004	      || compare_tree_int (offset, length) >= 0))
9005	return 0;
9006
9007      *ptr_offset = offset;
9008      return DECL_INITIAL (array);
9009    }
9010
9011  return 0;
9012}
9013
9014/* Generate code to calculate EXP using a store-flag instruction
9015   and return an rtx for the result.  EXP is either a comparison
9016   or a TRUTH_NOT_EXPR whose operand is a comparison.
9017
9018   If TARGET is nonzero, store the result there if convenient.
9019
9020   If ONLY_CHEAP is nonzero, only do this if it is likely to be very
9021   cheap.
9022
9023   Return zero if there is no suitable set-flag instruction
9024   available on this machine.
9025
9026   Once expand_expr has been called on the arguments of the comparison,
9027   we are committed to doing the store flag, since it is not safe to
9028   re-evaluate the expression.  We emit the store-flag insn by calling
9029   emit_store_flag, but only expand the arguments if we have a reason
9030   to believe that emit_store_flag will be successful.  If we think that
9031   it will, but it isn't, we have to simulate the store-flag with a
9032   set/jump/set sequence.  */
9033
9034static rtx
9035do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
9036{
9037  enum rtx_code code;
9038  tree arg0, arg1, type;
9039  tree tem;
9040  enum machine_mode operand_mode;
9041  int invert = 0;
9042  int unsignedp;
9043  rtx op0, op1;
9044  enum insn_code icode;
9045  rtx subtarget = target;
9046  rtx result, label;
9047
9048  /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
9049     result at the end.  We can't simply invert the test since it would
9050     have already been inverted if it were valid.  This case occurs for
9051     some floating-point comparisons.  */
9052
9053  if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
9054    invert = 1, exp = TREE_OPERAND (exp, 0);
9055
9056  arg0 = TREE_OPERAND (exp, 0);
9057  arg1 = TREE_OPERAND (exp, 1);
9058
9059  /* Don't crash if the comparison was erroneous.  */
9060  if (arg0 == error_mark_node || arg1 == error_mark_node)
9061    return const0_rtx;
9062
9063  type = TREE_TYPE (arg0);
9064  operand_mode = TYPE_MODE (type);
9065  unsignedp = TYPE_UNSIGNED (type);
9066
9067  /* We won't bother with BLKmode store-flag operations because it would mean
9068     passing a lot of information to emit_store_flag.  */
9069  if (operand_mode == BLKmode)
9070    return 0;
9071
9072  /* We won't bother with store-flag operations involving function pointers
9073     when function pointers must be canonicalized before comparisons.  */
9074#ifdef HAVE_canonicalize_funcptr_for_compare
9075  if (HAVE_canonicalize_funcptr_for_compare
9076      && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
9077	   && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
9078	       == FUNCTION_TYPE))
9079	  || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
9080	      && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
9081		  == FUNCTION_TYPE))))
9082    return 0;
9083#endif
9084
9085  STRIP_NOPS (arg0);
9086  STRIP_NOPS (arg1);
9087
9088  /* Get the rtx comparison code to use.  We know that EXP is a comparison
9089     operation of some type.  Some comparisons against 1 and -1 can be
9090     converted to comparisons with zero.  Do so here so that the tests
9091     below will be aware that we have a comparison with zero.   These
9092     tests will not catch constants in the first operand, but constants
9093     are rarely passed as the first operand.  */
9094
9095  switch (TREE_CODE (exp))
9096    {
9097    case EQ_EXPR:
9098      code = EQ;
9099      break;
9100    case NE_EXPR:
9101      code = NE;
9102      break;
9103    case LT_EXPR:
9104      if (integer_onep (arg1))
9105	arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9106      else
9107	code = unsignedp ? LTU : LT;
9108      break;
9109    case LE_EXPR:
9110      if (! unsignedp && integer_all_onesp (arg1))
9111	arg1 = integer_zero_node, code = LT;
9112      else
9113	code = unsignedp ? LEU : LE;
9114      break;
9115    case GT_EXPR:
9116      if (! unsignedp && integer_all_onesp (arg1))
9117	arg1 = integer_zero_node, code = GE;
9118      else
9119	code = unsignedp ? GTU : GT;
9120      break;
9121    case GE_EXPR:
9122      if (integer_onep (arg1))
9123	arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9124      else
9125	code = unsignedp ? GEU : GE;
9126      break;
9127
9128    case UNORDERED_EXPR:
9129      code = UNORDERED;
9130      break;
9131    case ORDERED_EXPR:
9132      code = ORDERED;
9133      break;
9134    case UNLT_EXPR:
9135      code = UNLT;
9136      break;
9137    case UNLE_EXPR:
9138      code = UNLE;
9139      break;
9140    case UNGT_EXPR:
9141      code = UNGT;
9142      break;
9143    case UNGE_EXPR:
9144      code = UNGE;
9145      break;
9146    case UNEQ_EXPR:
9147      code = UNEQ;
9148      break;
9149    case LTGT_EXPR:
9150      code = LTGT;
9151      break;
9152
9153    default:
9154      gcc_unreachable ();
9155    }
9156
9157  /* Put a constant second.  */
9158  if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
9159    {
9160      tem = arg0; arg0 = arg1; arg1 = tem;
9161      code = swap_condition (code);
9162    }
9163
9164  /* If this is an equality or inequality test of a single bit, we can
9165     do this by shifting the bit being tested to the low-order bit and
9166     masking the result with the constant 1.  If the condition was EQ,
9167     we xor it with 1.  This does not require an scc insn and is faster
9168     than an scc insn even if we have it.
9169
9170     The code to make this transformation was moved into fold_single_bit_test,
9171     so we just call into the folder and expand its result.  */
9172
9173  if ((code == NE || code == EQ)
9174      && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9175      && integer_pow2p (TREE_OPERAND (arg0, 1)))
9176    {
9177      tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
9178      return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
9179						arg0, arg1, type),
9180			  target, VOIDmode, EXPAND_NORMAL);
9181    }
9182
9183  /* Now see if we are likely to be able to do this.  Return if not.  */
9184  if (! can_compare_p (code, operand_mode, ccp_store_flag))
9185    return 0;
9186
9187  icode = setcc_gen_code[(int) code];
9188  if (icode == CODE_FOR_nothing
9189      || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
9190    {
9191      /* We can only do this if it is one of the special cases that
9192	 can be handled without an scc insn.  */
9193      if ((code == LT && integer_zerop (arg1))
9194	  || (! only_cheap && code == GE && integer_zerop (arg1)))
9195	;
9196      else if (! only_cheap && (code == NE || code == EQ)
9197	       && TREE_CODE (type) != REAL_TYPE
9198	       && ((abs_optab->handlers[(int) operand_mode].insn_code
9199		    != CODE_FOR_nothing)
9200		   || (ffs_optab->handlers[(int) operand_mode].insn_code
9201		       != CODE_FOR_nothing)))
9202	;
9203      else
9204	return 0;
9205    }
9206
9207  if (! get_subtarget (target)
9208      || GET_MODE (subtarget) != operand_mode)
9209    subtarget = 0;
9210
9211  expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
9212
9213  if (target == 0)
9214    target = gen_reg_rtx (mode);
9215
9216  result = emit_store_flag (target, code, op0, op1,
9217			    operand_mode, unsignedp, 1);
9218
9219  if (result)
9220    {
9221      if (invert)
9222	result = expand_binop (mode, xor_optab, result, const1_rtx,
9223			       result, 0, OPTAB_LIB_WIDEN);
9224      return result;
9225    }
9226
9227  /* If this failed, we have to do this with set/compare/jump/set code.  */
9228  if (!REG_P (target)
9229      || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
9230    target = gen_reg_rtx (GET_MODE (target));
9231
9232  emit_move_insn (target, invert ? const0_rtx : const1_rtx);
9233  result = compare_from_rtx (op0, op1, code, unsignedp,
9234			     operand_mode, NULL_RTX);
9235  if (GET_CODE (result) == CONST_INT)
9236    return (((result == const0_rtx && ! invert)
9237	     || (result != const0_rtx && invert))
9238	    ? const0_rtx : const1_rtx);
9239
9240  /* The code of RESULT may not match CODE if compare_from_rtx
9241     decided to swap its operands and reverse the original code.
9242
9243     We know that compare_from_rtx returns either a CONST_INT or
9244     a new comparison code, so it is safe to just extract the
9245     code from RESULT.  */
9246  code = GET_CODE (result);
9247
9248  label = gen_label_rtx ();
9249  gcc_assert (bcc_gen_fctn[(int) code]);
9250
9251  emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
9252  emit_move_insn (target, invert ? const1_rtx : const0_rtx);
9253  emit_label (label);
9254
9255  return target;
9256}
9257
9258
9259/* Stubs in case we haven't got a casesi insn.  */
9260#ifndef HAVE_casesi
9261# define HAVE_casesi 0
9262# define gen_casesi(a, b, c, d, e) (0)
9263# define CODE_FOR_casesi CODE_FOR_nothing
9264#endif
9265
9266/* If the machine does not have a case insn that compares the bounds,
9267   this means extra overhead for dispatch tables, which raises the
9268   threshold for using them.  */
9269#ifndef CASE_VALUES_THRESHOLD
9270#define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9271#endif /* CASE_VALUES_THRESHOLD */
9272
9273unsigned int
9274case_values_threshold (void)
9275{
9276  return CASE_VALUES_THRESHOLD;
9277}
9278
9279/* Attempt to generate a casesi instruction.  Returns 1 if successful,
9280   0 otherwise (i.e. if there is no casesi instruction).  */
9281int
9282try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9283	    rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
9284{
9285  enum machine_mode index_mode = SImode;
9286  int index_bits = GET_MODE_BITSIZE (index_mode);
9287  rtx op1, op2, index;
9288  enum machine_mode op_mode;
9289
9290  if (! HAVE_casesi)
9291    return 0;
9292
9293  /* Convert the index to SImode.  */
9294  if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9295    {
9296      enum machine_mode omode = TYPE_MODE (index_type);
9297      rtx rangertx = expand_normal (range);
9298
9299      /* We must handle the endpoints in the original mode.  */
9300      index_expr = build2 (MINUS_EXPR, index_type,
9301			   index_expr, minval);
9302      minval = integer_zero_node;
9303      index = expand_normal (index_expr);
9304      emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9305			       omode, 1, default_label);
9306      /* Now we can safely truncate.  */
9307      index = convert_to_mode (index_mode, index, 0);
9308    }
9309  else
9310    {
9311      if (TYPE_MODE (index_type) != index_mode)
9312	{
9313	  index_type = lang_hooks.types.type_for_size (index_bits, 0);
9314	  index_expr = fold_convert (index_type, index_expr);
9315	}
9316
9317      index = expand_normal (index_expr);
9318    }
9319
9320  do_pending_stack_adjust ();
9321
9322  op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
9323  if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
9324      (index, op_mode))
9325    index = copy_to_mode_reg (op_mode, index);
9326
9327  op1 = expand_normal (minval);
9328
9329  op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
9330  op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
9331		       op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
9332  if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
9333      (op1, op_mode))
9334    op1 = copy_to_mode_reg (op_mode, op1);
9335
9336  op2 = expand_normal (range);
9337
9338  op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
9339  op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
9340		       op2, TYPE_UNSIGNED (TREE_TYPE (range)));
9341  if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
9342      (op2, op_mode))
9343    op2 = copy_to_mode_reg (op_mode, op2);
9344
9345  emit_jump_insn (gen_casesi (index, op1, op2,
9346			      table_label, default_label));
9347  return 1;
9348}
9349
9350/* Attempt to generate a tablejump instruction; same concept.  */
9351#ifndef HAVE_tablejump
9352#define HAVE_tablejump 0
9353#define gen_tablejump(x, y) (0)
9354#endif
9355
9356/* Subroutine of the next function.
9357
9358   INDEX is the value being switched on, with the lowest value
9359   in the table already subtracted.
9360   MODE is its expected mode (needed if INDEX is constant).
9361   RANGE is the length of the jump table.
9362   TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9363
9364   DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9365   index value is out of range.  */
9366
9367static void
9368do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
9369	      rtx default_label)
9370{
9371  rtx temp, vector;
9372
9373  if (INTVAL (range) > cfun->max_jumptable_ents)
9374    cfun->max_jumptable_ents = INTVAL (range);
9375
9376  /* Do an unsigned comparison (in the proper mode) between the index
9377     expression and the value which represents the length of the range.
9378     Since we just finished subtracting the lower bound of the range
9379     from the index expression, this comparison allows us to simultaneously
9380     check that the original index expression value is both greater than
9381     or equal to the minimum value of the range and less than or equal to
9382     the maximum value of the range.  */
9383
9384  emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
9385			   default_label);
9386
9387  /* If index is in range, it must fit in Pmode.
9388     Convert to Pmode so we can index with it.  */
9389  if (mode != Pmode)
9390    index = convert_to_mode (Pmode, index, 1);
9391
9392  /* Don't let a MEM slip through, because then INDEX that comes
9393     out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
9394     and break_out_memory_refs will go to work on it and mess it up.  */
9395#ifdef PIC_CASE_VECTOR_ADDRESS
9396  if (flag_pic && !REG_P (index))
9397    index = copy_to_mode_reg (Pmode, index);
9398#endif
9399
9400  /* If flag_force_addr were to affect this address
9401     it could interfere with the tricky assumptions made
9402     about addresses that contain label-refs,
9403     which may be valid only very near the tablejump itself.  */
9404  /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9405     GET_MODE_SIZE, because this indicates how large insns are.  The other
9406     uses should all be Pmode, because they are addresses.  This code
9407     could fail if addresses and insns are not the same size.  */
9408  index = gen_rtx_PLUS (Pmode,
9409			gen_rtx_MULT (Pmode, index,
9410				      GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
9411			gen_rtx_LABEL_REF (Pmode, table_label));
9412#ifdef PIC_CASE_VECTOR_ADDRESS
9413  if (flag_pic)
9414    index = PIC_CASE_VECTOR_ADDRESS (index);
9415  else
9416#endif
9417    index = memory_address_noforce (CASE_VECTOR_MODE, index);
9418  temp = gen_reg_rtx (CASE_VECTOR_MODE);
9419  vector = gen_const_mem (CASE_VECTOR_MODE, index);
9420  convert_move (temp, vector, 0);
9421
9422  emit_jump_insn (gen_tablejump (temp, table_label));
9423
9424  /* If we are generating PIC code or if the table is PC-relative, the
9425     table and JUMP_INSN must be adjacent, so don't output a BARRIER.  */
9426  if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
9427    emit_barrier ();
9428}
9429
9430int
9431try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
9432	       rtx table_label, rtx default_label)
9433{
9434  rtx index;
9435
9436  if (! HAVE_tablejump)
9437    return 0;
9438
9439  index_expr = fold_build2 (MINUS_EXPR, index_type,
9440			    fold_convert (index_type, index_expr),
9441			    fold_convert (index_type, minval));
9442  index = expand_normal (index_expr);
9443  do_pending_stack_adjust ();
9444
9445  do_tablejump (index, TYPE_MODE (index_type),
9446		convert_modes (TYPE_MODE (index_type),
9447			       TYPE_MODE (TREE_TYPE (range)),
9448			       expand_normal (range),
9449			       TYPE_UNSIGNED (TREE_TYPE (range))),
9450		table_label, default_label);
9451  return 1;
9452}
9453
9454/* Nonzero if the mode is a valid vector mode for this architecture.
9455   This returns nonzero even if there is no hardware support for the
9456   vector mode, but we can emulate with narrower modes.  */
9457
9458int
9459vector_mode_valid_p (enum machine_mode mode)
9460{
9461  enum mode_class class = GET_MODE_CLASS (mode);
9462  enum machine_mode innermode;
9463
9464  /* Doh!  What's going on?  */
9465  if (class != MODE_VECTOR_INT
9466      && class != MODE_VECTOR_FLOAT)
9467    return 0;
9468
9469  /* Hardware support.  Woo hoo!  */
9470  if (targetm.vector_mode_supported_p (mode))
9471    return 1;
9472
9473  innermode = GET_MODE_INNER (mode);
9474
9475  /* We should probably return 1 if requesting V4DI and we have no DI,
9476     but we have V2DI, but this is probably very unlikely.  */
9477
9478  /* If we have support for the inner mode, we can safely emulate it.
9479     We may not have V2DI, but me can emulate with a pair of DIs.  */
9480  return targetm.scalar_mode_supported_p (innermode);
9481}
9482
9483/* Return a CONST_VECTOR rtx for a VECTOR_CST tree.  */
9484static rtx
9485const_vector_from_tree (tree exp)
9486{
9487  rtvec v;
9488  int units, i;
9489  tree link, elt;
9490  enum machine_mode inner, mode;
9491
9492  mode = TYPE_MODE (TREE_TYPE (exp));
9493
9494  if (initializer_zerop (exp))
9495    return CONST0_RTX (mode);
9496
9497  units = GET_MODE_NUNITS (mode);
9498  inner = GET_MODE_INNER (mode);
9499
9500  v = rtvec_alloc (units);
9501
9502  link = TREE_VECTOR_CST_ELTS (exp);
9503  for (i = 0; link; link = TREE_CHAIN (link), ++i)
9504    {
9505      elt = TREE_VALUE (link);
9506
9507      if (TREE_CODE (elt) == REAL_CST)
9508	RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
9509							 inner);
9510      else
9511	RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
9512					       TREE_INT_CST_HIGH (elt),
9513					       inner);
9514    }
9515
9516  /* Initialize remaining elements to 0.  */
9517  for (; i < units; ++i)
9518    RTVEC_ELT (v, i) = CONST0_RTX (inner);
9519
9520  return gen_rtx_CONST_VECTOR (mode, v);
9521}
9522#include "gt-expr.h"
9523