dwarf2out.c revision 260395
1251652Sgjb/* Output Dwarf2 format symbol table information from GCC.
2251652Sgjb   Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3325899Sgjb   2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4251652Sgjb   Contributed by Gary Funck (gary@intrepid.com).
5251652Sgjb   Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6251652Sgjb   Extensively modified by Jason Merrill (jason@cygnus.com).
7251652Sgjb
8262761SgjbThis file is part of GCC.
9262761Sgjb
10262761SgjbGCC is free software; you can redistribute it and/or modify it under
11251652Sgjbthe terms of the GNU General Public License as published by the Free
12251652SgjbSoftware Foundation; either version 2, or (at your option) any later
13251652Sgjbversion.
14251652Sgjb
15251652SgjbGCC is distributed in the hope that it will be useful, but WITHOUT ANY
16251652SgjbWARRANTY; without even the implied warranty of MERCHANTABILITY or
17251652SgjbFITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18251652Sgjbfor more details.
19251652Sgjb
20251652SgjbYou should have received a copy of the GNU General Public License
21251652Sgjbalong with GCC; see the file COPYING.  If not, write to the Free
22251652SgjbSoftware Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23251652Sgjb02110-1301, USA.  */
24251652Sgjb
25251652Sgjb/* TODO: Emit .debug_line header even when there are no functions, since
26251652Sgjb	   the file numbers are used by .debug_info.  Alternately, leave
27251652Sgjb	   out locations for types and decls.
28251652Sgjb	 Avoid talking about ctors and op= for PODs.
29251652Sgjb	 Factor out common prologue sequences into multiple CIEs.  */
30251652Sgjb
31251652Sgjb/* The first part of this file deals with the DWARF 2 frame unwind
32251652Sgjb   information, which is also used by the GCC efficient exception handling
33251652Sgjb   mechanism.  The second part, controlled only by an #ifdef
34251652Sgjb   DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35251652Sgjb   information.  */
36251652Sgjb
37251652Sgjb#include "config.h"
38251652Sgjb#include "system.h"
39283161Sgjb#include "coretypes.h"
40251652Sgjb#include "tm.h"
41283161Sgjb#include "tree.h"
42251652Sgjb#include "version.h"
43283161Sgjb#include "flags.h"
44283161Sgjb#include "real.h"
45283161Sgjb#include "rtl.h"
46283161Sgjb#include "hard-reg-set.h"
47262761Sgjb#include "regs.h"
48283161Sgjb#include "insn-config.h"
49283161Sgjb#include "reload.h"
50283161Sgjb#include "function.h"
51283161Sgjb#include "output.h"
52251652Sgjb#include "expr.h"
53283161Sgjb#include "libfuncs.h"
54283161Sgjb#include "except.h"
55283161Sgjb#include "dwarf2.h"
56283161Sgjb#include "dwarf2out.h"
57283161Sgjb#include "dwarf2asm.h"
58283161Sgjb#include "toplev.h"
59283161Sgjb#include "varray.h"
60264106Sgjb#include "ggc.h"
61283161Sgjb#include "md5.h"
62283161Sgjb#include "tm_p.h"
63283161Sgjb#include "diagnostic.h"
64283161Sgjb#include "debug.h"
65283161Sgjb#include "target.h"
66283161Sgjb#include "langhooks.h"
67283161Sgjb#include "hashtab.h"
68283161Sgjb#include "cgraph.h"
69252846Sgjb#include "input.h"
70283161Sgjb
71283161Sgjb#ifdef DWARF2_DEBUGGING_INFO
72283161Sgjbstatic void dwarf2out_source_line (unsigned int, const char *);
73283161Sgjb#endif
74283161Sgjb
75283161Sgjb/* DWARF2 Abbreviation Glossary:
76251652Sgjb   CFA = Canonical Frame Address
77283161Sgjb	   a fixed address on the stack which identifies a call frame.
78283161Sgjb	   We define it to be the value of SP just before the call insn.
79262761Sgjb	   The CFA register and offset, which may change during the course
80283161Sgjb	   of the function, are used to calculate its value at runtime.
81283161Sgjb   CFI = Call Frame Instruction
82283161Sgjb	   an instruction for the DWARF2 abstract machine
83251652Sgjb   CIE = Common Information Entry
84283161Sgjb	   information describing information common to one or more FDEs
85283161Sgjb   DIE = Debugging Information Entry
86283161Sgjb   FDE = Frame Description Entry
87283161Sgjb	   information describing the stack call frame, in particular,
88283161Sgjb	   how to restore registers
89251652Sgjb
90283161Sgjb   DW_CFA_... = DWARF2 CFA call frame instruction
91283161Sgjb   DW_TAG_... = DWARF2 DIE tag */
92283161Sgjb
93283161Sgjb#ifndef DWARF2_FRAME_INFO
94251652Sgjb# ifdef DWARF2_DEBUGGING_INFO
95283161Sgjb#  define DWARF2_FRAME_INFO \
96259151Sgjb  (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97283161Sgjb# else
98283161Sgjb#  define DWARF2_FRAME_INFO 0
99273080Sgjb# endif
100283161Sgjb#endif
101283161Sgjb
102283161Sgjb/* Map register numbers held in the call frame info that gcc has
103283161Sgjb   collected using DWARF_FRAME_REGNUM to those that should be output in
104278985Sgjb   .debug_frame and .eh_frame.  */
105283161Sgjb#ifndef DWARF2_FRAME_REG_OUT
106283161Sgjb#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107283161Sgjb#endif
108251652Sgjb
109283161Sgjb/* Decide whether we want to emit frame unwind information for the current
110283161Sgjb   translation unit.  */
111283161Sgjb
112283161Sgjbint
113283161Sgjbdwarf2out_do_frame (void)
114283161Sgjb{
115283161Sgjb  /* We want to emit correct CFA location expressions or lists, so we
116283161Sgjb     have to return true if we're going to output debug info, even if
117283161Sgjb     we're not going to output frame or unwind info.  */
118283161Sgjb  return (write_symbols == DWARF2_DEBUG
119283161Sgjb	  || write_symbols == VMS_AND_DWARF2_DEBUG
120283161Sgjb	  || DWARF2_FRAME_INFO
121283161Sgjb#ifdef DWARF2_UNWIND_INFO
122283161Sgjb	  || (DWARF2_UNWIND_INFO
123283161Sgjb	      && (flag_unwind_tables
124283161Sgjb		  || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
125283161Sgjb#endif
126283161Sgjb	  );
127283161Sgjb}
128283161Sgjb
129283161Sgjb/* The size of the target's pointer type.  */
130283161Sgjb#ifndef PTR_SIZE
131283161Sgjb#define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132283161Sgjb#endif
133283161Sgjb
134283161Sgjb/* Array of RTXes referenced by the debugging information, which therefore
135283161Sgjb   must be kept around forever.  */
136251652Sgjbstatic GTY(()) VEC(rtx,gc) *used_rtx_array;
137251652Sgjb
138283161Sgjb/* A pointer to the base of a list of incomplete types which might be
139283161Sgjb   completed at some later time.  incomplete_types_list needs to be a
140283161Sgjb   VEC(tree,gc) because we want to tell the garbage collector about
141283161Sgjb   it.  */
142264106Sgjbstatic GTY(()) VEC(tree,gc) *incomplete_types;
143283161Sgjb
144283161Sgjb/* A pointer to the base of a table of references to declaration
145283161Sgjb   scopes.  This table is a display which tracks the nesting
146283161Sgjb   of declaration scopes at the current scope and containing
147283161Sgjb   scopes.  This table is used to find the proper place to
148325899Sgjb   define type declaration DIE's.  */
149325899Sgjbstatic GTY(()) VEC(tree,gc) *decl_scope_table;
150283161Sgjb
151283161Sgjb/* Pointers to various DWARF2 sections.  */
152325899Sgjbstatic GTY(()) section *debug_info_section;
153283161Sgjbstatic GTY(()) section *debug_abbrev_section;
154283161Sgjbstatic GTY(()) section *debug_aranges_section;
155262761Sgjbstatic GTY(()) section *debug_macinfo_section;
156283161Sgjbstatic GTY(()) section *debug_line_section;
157283161Sgjbstatic GTY(()) section *debug_loc_section;
158283161Sgjbstatic GTY(()) section *debug_pubnames_section;
159283161Sgjbstatic GTY(()) section *debug_pubtypes_section;
160283161Sgjbstatic GTY(()) section *debug_str_section;
161283161Sgjbstatic GTY(()) section *debug_ranges_section;
162283161Sgjbstatic GTY(()) section *debug_frame_section;
163283161Sgjb
164283161Sgjb/* How to start an assembler comment.  */
165283161Sgjb#ifndef ASM_COMMENT_START
166283161Sgjb#define ASM_COMMENT_START ";#"
167283161Sgjb#endif
168283161Sgjb
169283161Sgjbtypedef struct dw_cfi_struct *dw_cfi_ref;
170283161Sgjbtypedef struct dw_fde_struct *dw_fde_ref;
171283161Sgjbtypedef union  dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
172283161Sgjb
173283161Sgjb/* Call frames are described using a sequence of Call Frame
174283161Sgjb   Information instructions.  The register number, offset
175283161Sgjb   and address fields are provided as possible operands;
176283161Sgjb   their use is selected by the opcode field.  */
177283161Sgjb
178283161Sgjbenum dw_cfi_oprnd_type {
179283161Sgjb  dw_cfi_oprnd_unused,
180283161Sgjb  dw_cfi_oprnd_reg_num,
181283161Sgjb  dw_cfi_oprnd_offset,
182283161Sgjb  dw_cfi_oprnd_addr,
183283161Sgjb  dw_cfi_oprnd_loc
184283161Sgjb};
185283161Sgjb
186283161Sgjbtypedef union dw_cfi_oprnd_struct GTY(())
187283161Sgjb{
188283161Sgjb  unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
189283161Sgjb  HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
190283161Sgjb  const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
191283161Sgjb  struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
192264106Sgjb}
193264106Sgjbdw_cfi_oprnd;
194264106Sgjb
195283161Sgjbtypedef struct dw_cfi_struct GTY(())
196283161Sgjb{
197283161Sgjb  dw_cfi_ref dw_cfi_next;
198283161Sgjb  enum dwarf_call_frame_info dw_cfi_opc;
199252846Sgjb  dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
200283161Sgjb    dw_cfi_oprnd1;
201283161Sgjb  dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
202283161Sgjb    dw_cfi_oprnd2;
203283161Sgjb}
204283161Sgjbdw_cfi_node;
205283161Sgjb
206283161Sgjb/* This is how we define the location of the CFA. We use to handle it
207283161Sgjb   as REG + OFFSET all the time,  but now it can be more complex.
208283161Sgjb   It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
209283161Sgjb   Instead of passing around REG and OFFSET, we pass a copy
210283161Sgjb   of this structure.  */
211283161Sgjbtypedef struct cfa_loc GTY(())
212283161Sgjb{
213252846Sgjb  HOST_WIDE_INT offset;
214283161Sgjb  HOST_WIDE_INT base_offset;
215283161Sgjb  unsigned int reg;
216251652Sgjb  int indirect;            /* 1 if CFA is accessed via a dereference.  */
217283161Sgjb} dw_cfa_location;
218283161Sgjb
219283161Sgjb/* All call frame descriptions (FDE's) in the GCC generated DWARF
220283161Sgjb   refer to a single Common Information Entry (CIE), defined at
221251652Sgjb   the beginning of the .debug_frame section.  This use of a single
222283161Sgjb   CIE obviates the need to keep track of multiple CIE's
223283161Sgjb   in the DWARF generation routines below.  */
224283161Sgjb
225283161Sgjbtypedef struct dw_fde_struct GTY(())
226283161Sgjb{
227283161Sgjb  tree decl;
228283161Sgjb  const char *dw_fde_begin;
229283161Sgjb  const char *dw_fde_current_label;
230283161Sgjb  const char *dw_fde_end;
231251652Sgjb  const char *dw_fde_hot_section_label;
232283161Sgjb  const char *dw_fde_hot_section_end_label;
233283161Sgjb  const char *dw_fde_unlikely_section_label;
234283161Sgjb  const char *dw_fde_unlikely_section_end_label;
235283161Sgjb  bool dw_fde_switched_sections;
236283161Sgjb  dw_cfi_ref dw_fde_cfi;
237283161Sgjb  unsigned funcdef_number;
238283161Sgjb  unsigned all_throwers_are_sibcalls : 1;
239283161Sgjb  unsigned nothrow : 1;
240251652Sgjb  unsigned uses_eh_lsda : 1;
241283161Sgjb}
242283161Sgjbdw_fde_node;
243251652Sgjb
244283161Sgjb/* Maximum size (in bytes) of an artificially generated label.  */
245283161Sgjb#define MAX_ARTIFICIAL_LABEL_BYTES	30
246283161Sgjb
247283161Sgjb/* The size of addresses as they appear in the Dwarf 2 data.
248283161Sgjb   Some architectures use word addresses to refer to code locations,
249326014Sgjb   but Dwarf 2 info always uses byte addresses.  On such machines,
250326014Sgjb   Dwarf 2 addresses need to be larger than the architecture's
251283161Sgjb   pointers.  */
252283161Sgjb#ifndef DWARF2_ADDR_SIZE
253283161Sgjb#define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
254251652Sgjb#endif
255283161Sgjb
256283161Sgjb/* The size in bytes of a DWARF field indicating an offset or length
257283161Sgjb   relative to a debug info section, specified to be 4 bytes in the
258283161Sgjb   DWARF-2 specification.  The SGI/MIPS ABI defines it to be the same
259283161Sgjb   as PTR_SIZE.  */
260283161Sgjb
261283161Sgjb#ifndef DWARF_OFFSET_SIZE
262283161Sgjb#define DWARF_OFFSET_SIZE 4
263283161Sgjb#endif
264283161Sgjb
265251652Sgjb/* According to the (draft) DWARF 3 specification, the initial length
266283161Sgjb   should either be 4 or 12 bytes.  When it's 12 bytes, the first 4
267283161Sgjb   bytes are 0xffffffff, followed by the length stored in the next 8
268283161Sgjb   bytes.
269283161Sgjb
270283161Sgjb   However, the SGI/MIPS ABI uses an initial length which is equal to
271283161Sgjb   DWARF_OFFSET_SIZE.  It is defined (elsewhere) accordingly.  */
272283161Sgjb
273283161Sgjb#ifndef DWARF_INITIAL_LENGTH_SIZE
274283161Sgjb#define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
275283161Sgjb#endif
276283161Sgjb
277283161Sgjb#define DWARF_VERSION 2
278283161Sgjb
279293859Sgjb/* Round SIZE up to the nearest BOUNDARY.  */
280283161Sgjb#define DWARF_ROUND(SIZE,BOUNDARY) \
281283161Sgjb  ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
282283161Sgjb
283251652Sgjb/* Offsets recorded in opcodes are a multiple of this alignment factor.  */
284283161Sgjb#ifndef DWARF_CIE_DATA_ALIGNMENT
285304014Sgjb#ifdef STACK_GROWS_DOWNWARD
286304014Sgjb#define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
287304014Sgjb#else
288304014Sgjb#define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
289304014Sgjb#endif
290304014Sgjb#endif
291283161Sgjb
292283161Sgjb/* CIE identifier.  */
293304014Sgjb#if HOST_BITS_PER_WIDE_INT >= 64
294283161Sgjb#define DWARF_CIE_ID \
295283161Sgjb  (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
296260071Sgjb#else
297283161Sgjb#define DWARF_CIE_ID DW_CIE_ID
298283161Sgjb#endif
299283161Sgjb
300283161Sgjb/* A pointer to the base of a table that contains frame description
301283161Sgjb   information for each routine.  */
302283161Sgjbstatic GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
303283161Sgjb
304283161Sgjb/* Number of elements currently allocated for fde_table.  */
305283161Sgjbstatic GTY(()) unsigned fde_table_allocated;
306283161Sgjb
307283161Sgjb/* Number of elements in fde_table currently in use.  */
308283161Sgjbstatic GTY(()) unsigned fde_table_in_use;
309283161Sgjb
310283161Sgjb/* Size (in elements) of increments by which we may expand the
311283161Sgjb   fde_table.  */
312264106Sgjb#define FDE_TABLE_INCREMENT 256
313283161Sgjb
314283161Sgjb/* A list of call frame insns for the CIE.  */
315264106Sgjbstatic GTY(()) dw_cfi_ref cie_cfi_head;
316283161Sgjb
317283161Sgjb#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
318257776Sgjb/* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
319283161Sgjb   attribute that accelerates the lookup of the FDE associated
320283161Sgjb   with the subprogram.  This variable holds the table index of the FDE
321283161Sgjb   associated with the current function (body) definition.  */
322288435Sgjbstatic unsigned current_funcdef_fde;
323288435Sgjb#endif
324288435Sgjb
325288435Sgjbstruct indirect_string_node GTY(())
326288435Sgjb{
327288435Sgjb  const char *str;
328288435Sgjb  unsigned int refcount;
329288435Sgjb  unsigned int form;
330288435Sgjb  char *label;
331288435Sgjb};
332288435Sgjb
333288435Sgjbstatic GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
334283161Sgjb
335283161Sgjbstatic GTY(()) int dw2_string_counter;
336283161Sgjbstatic GTY(()) unsigned long dwarf2out_cfi_label_num;
337283161Sgjb
338283161Sgjb#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
339283161Sgjb
340283161Sgjb/* Forward declarations for functions defined in this file.  */
341283161Sgjb
342283161Sgjbstatic char *stripattributes (const char *);
343283161Sgjbstatic const char *dwarf_cfi_name (unsigned);
344325899Sgjbstatic dw_cfi_ref new_cfi (void);
345325899Sgjbstatic void add_cfi (dw_cfi_ref *, dw_cfi_ref);
346283161Sgjbstatic void add_fde_cfi (const char *, dw_cfi_ref);
347283161Sgjbstatic void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
348325899Sgjbstatic void lookup_cfa (dw_cfa_location *);
349325899Sgjbstatic void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
350325899Sgjbstatic void initial_return_save (rtx);
351325899Sgjbstatic HOST_WIDE_INT stack_adjust_offset (rtx);
352325899Sgjbstatic void output_cfi (dw_cfi_ref, dw_fde_ref, int);
353325899Sgjbstatic void output_call_frame_info (int);
354325899Sgjbstatic void dwarf2out_stack_adjust (rtx, bool);
355325899Sgjbstatic void flush_queued_reg_saves (void);
356325899Sgjbstatic bool clobbers_queued_reg_save (rtx);
357283161Sgjbstatic void dwarf2out_frame_debug_expr (rtx, const char *);
358283161Sgjb
359283161Sgjb/* Support for complex CFA locations.  */
360283161Sgjbstatic void output_cfa_loc (dw_cfi_ref);
361283161Sgjbstatic void get_cfa_from_loc_descr (dw_cfa_location *,
362283161Sgjb				    struct dw_loc_descr_struct *);
363283161Sgjbstatic struct dw_loc_descr_struct *build_cfa_loc
364283161Sgjb  (dw_cfa_location *, HOST_WIDE_INT);
365283161Sgjbstatic void def_cfa_1 (const char *, dw_cfa_location *);
366283161Sgjb
367283161Sgjb/* How to start an assembler comment.  */
368283161Sgjb#ifndef ASM_COMMENT_START
369283161Sgjb#define ASM_COMMENT_START ";#"
370283161Sgjb#endif
371283161Sgjb
372283161Sgjb/* Data and reference forms for relocatable data.  */
373283161Sgjb#define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
374283161Sgjb#define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
375283161Sgjb
376283161Sgjb#ifndef DEBUG_FRAME_SECTION
377283161Sgjb#define DEBUG_FRAME_SECTION	".debug_frame"
378283161Sgjb#endif
379289555Sgjb
380289555Sgjb#ifndef FUNC_BEGIN_LABEL
381283161Sgjb#define FUNC_BEGIN_LABEL	"LFB"
382283161Sgjb#endif
383252101Sgjb
384283161Sgjb#ifndef FUNC_END_LABEL
385325899Sgjb#define FUNC_END_LABEL		"LFE"
386283161Sgjb#endif
387283161Sgjb
388283161Sgjb#ifndef FRAME_BEGIN_LABEL
389283161Sgjb#define FRAME_BEGIN_LABEL	"Lframe"
390283161Sgjb#endif
391283161Sgjb#define CIE_AFTER_SIZE_LABEL	"LSCIE"
392283161Sgjb#define CIE_END_LABEL		"LECIE"
393283161Sgjb#define FDE_LABEL		"LSFDE"
394322818Sgjb#define FDE_AFTER_SIZE_LABEL	"LASFDE"
395283161Sgjb#define FDE_END_LABEL		"LEFDE"
396283161Sgjb#define LINE_NUMBER_BEGIN_LABEL	"LSLT"
397283161Sgjb#define LINE_NUMBER_END_LABEL	"LELT"
398283161Sgjb#define LN_PROLOG_AS_LABEL	"LASLTP"
399283161Sgjb#define LN_PROLOG_END_LABEL	"LELTP"
400283161Sgjb#define DIE_LABEL_PREFIX	"DW"
401283161Sgjb
402283161Sgjb/* The DWARF 2 CFA column which tracks the return address.  Normally this
403283161Sgjb   is the column for PC, or the first column after all of the hard
404283161Sgjb   registers.  */
405283161Sgjb#ifndef DWARF_FRAME_RETURN_COLUMN
406283161Sgjb#ifdef PC_REGNUM
407283161Sgjb#define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (PC_REGNUM)
408283161Sgjb#else
409283161Sgjb#define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGISTERS
410283161Sgjb#endif
411283161Sgjb#endif
412283161Sgjb
413283161Sgjb/* The mapping from gcc register number to DWARF 2 CFA column number.  By
414283161Sgjb   default, we just provide columns for all registers.  */
415283161Sgjb#ifndef DWARF_FRAME_REGNUM
416283161Sgjb#define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
417283161Sgjb#endif
418283161Sgjb
419283161Sgjb/* Hook used by __throw.  */
420283161Sgjb
421rtx
422expand_builtin_dwarf_sp_column (void)
423{
424  unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
425  return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
426}
427
428/* Return a pointer to a copy of the section string name S with all
429   attributes stripped off, and an asterisk prepended (for assemble_name).  */
430
431static inline char *
432stripattributes (const char *s)
433{
434  char *stripped = XNEWVEC (char, strlen (s) + 2);
435  char *p = stripped;
436
437  *p++ = '*';
438
439  while (*s && *s != ',')
440    *p++ = *s++;
441
442  *p = '\0';
443  return stripped;
444}
445
446/* Generate code to initialize the register size table.  */
447
448void
449expand_builtin_init_dwarf_reg_sizes (tree address)
450{
451  unsigned int i;
452  enum machine_mode mode = TYPE_MODE (char_type_node);
453  rtx addr = expand_normal (address);
454  rtx mem = gen_rtx_MEM (BLKmode, addr);
455  bool wrote_return_column = false;
456
457  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
458    {
459      int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
460
461      if (rnum < DWARF_FRAME_REGISTERS)
462	{
463	  HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
464	  enum machine_mode save_mode = reg_raw_mode[i];
465	  HOST_WIDE_INT size;
466
467	  if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
468	    save_mode = choose_hard_reg_mode (i, 1, true);
469	  if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
470	    {
471	      if (save_mode == VOIDmode)
472		continue;
473	      wrote_return_column = true;
474	    }
475	  size = GET_MODE_SIZE (save_mode);
476	  if (offset < 0)
477	    continue;
478
479	  emit_move_insn (adjust_address (mem, mode, offset),
480			  gen_int_mode (size, mode));
481	}
482    }
483
484#ifdef DWARF_ALT_FRAME_RETURN_COLUMN
485  gcc_assert (wrote_return_column);
486  i = DWARF_ALT_FRAME_RETURN_COLUMN;
487  wrote_return_column = false;
488#else
489  i = DWARF_FRAME_RETURN_COLUMN;
490#endif
491
492  if (! wrote_return_column)
493    {
494      enum machine_mode save_mode = Pmode;
495      HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
496      HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
497      emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
498    }
499}
500
501/* Convert a DWARF call frame info. operation to its string name */
502
503static const char *
504dwarf_cfi_name (unsigned int cfi_opc)
505{
506  switch (cfi_opc)
507    {
508    case DW_CFA_advance_loc:
509      return "DW_CFA_advance_loc";
510    case DW_CFA_offset:
511      return "DW_CFA_offset";
512    case DW_CFA_restore:
513      return "DW_CFA_restore";
514    case DW_CFA_nop:
515      return "DW_CFA_nop";
516    case DW_CFA_set_loc:
517      return "DW_CFA_set_loc";
518    case DW_CFA_advance_loc1:
519      return "DW_CFA_advance_loc1";
520    case DW_CFA_advance_loc2:
521      return "DW_CFA_advance_loc2";
522    case DW_CFA_advance_loc4:
523      return "DW_CFA_advance_loc4";
524    case DW_CFA_offset_extended:
525      return "DW_CFA_offset_extended";
526    case DW_CFA_restore_extended:
527      return "DW_CFA_restore_extended";
528    case DW_CFA_undefined:
529      return "DW_CFA_undefined";
530    case DW_CFA_same_value:
531      return "DW_CFA_same_value";
532    case DW_CFA_register:
533      return "DW_CFA_register";
534    case DW_CFA_remember_state:
535      return "DW_CFA_remember_state";
536    case DW_CFA_restore_state:
537      return "DW_CFA_restore_state";
538    case DW_CFA_def_cfa:
539      return "DW_CFA_def_cfa";
540    case DW_CFA_def_cfa_register:
541      return "DW_CFA_def_cfa_register";
542    case DW_CFA_def_cfa_offset:
543      return "DW_CFA_def_cfa_offset";
544
545    /* DWARF 3 */
546    case DW_CFA_def_cfa_expression:
547      return "DW_CFA_def_cfa_expression";
548    case DW_CFA_expression:
549      return "DW_CFA_expression";
550    case DW_CFA_offset_extended_sf:
551      return "DW_CFA_offset_extended_sf";
552    case DW_CFA_def_cfa_sf:
553      return "DW_CFA_def_cfa_sf";
554    case DW_CFA_def_cfa_offset_sf:
555      return "DW_CFA_def_cfa_offset_sf";
556
557    /* SGI/MIPS specific */
558    case DW_CFA_MIPS_advance_loc8:
559      return "DW_CFA_MIPS_advance_loc8";
560
561    /* GNU extensions */
562    case DW_CFA_GNU_window_save:
563      return "DW_CFA_GNU_window_save";
564    case DW_CFA_GNU_args_size:
565      return "DW_CFA_GNU_args_size";
566    case DW_CFA_GNU_negative_offset_extended:
567      return "DW_CFA_GNU_negative_offset_extended";
568
569    default:
570      return "DW_CFA_<unknown>";
571    }
572}
573
574/* Return a pointer to a newly allocated Call Frame Instruction.  */
575
576static inline dw_cfi_ref
577new_cfi (void)
578{
579  dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
580
581  cfi->dw_cfi_next = NULL;
582  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
583  cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
584
585  return cfi;
586}
587
588/* Add a Call Frame Instruction to list of instructions.  */
589
590static inline void
591add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
592{
593  dw_cfi_ref *p;
594
595  /* Find the end of the chain.  */
596  for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
597    ;
598
599  *p = cfi;
600}
601
602/* Generate a new label for the CFI info to refer to.  */
603
604char *
605dwarf2out_cfi_label (void)
606{
607  static char label[20];
608
609  ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
610  ASM_OUTPUT_LABEL (asm_out_file, label);
611  return label;
612}
613
614/* Add CFI to the current fde at the PC value indicated by LABEL if specified,
615   or to the CIE if LABEL is NULL.  */
616
617static void
618add_fde_cfi (const char *label, dw_cfi_ref cfi)
619{
620  if (label)
621    {
622      dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
623
624      if (*label == 0)
625	label = dwarf2out_cfi_label ();
626
627      if (fde->dw_fde_current_label == NULL
628	  || strcmp (label, fde->dw_fde_current_label) != 0)
629	{
630	  dw_cfi_ref xcfi;
631
632	  label = xstrdup (label);
633
634	  /* Set the location counter to the new label.  */
635	  xcfi = new_cfi ();
636	  /* If we have a current label, advance from there, otherwise
637	     set the location directly using set_loc.  */
638	  xcfi->dw_cfi_opc = fde->dw_fde_current_label
639			     ? DW_CFA_advance_loc4
640			     : DW_CFA_set_loc;
641	  xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
642	  add_cfi (&fde->dw_fde_cfi, xcfi);
643
644	  fde->dw_fde_current_label = label;
645	}
646
647      add_cfi (&fde->dw_fde_cfi, cfi);
648    }
649
650  else
651    add_cfi (&cie_cfi_head, cfi);
652}
653
654/* Subroutine of lookup_cfa.  */
655
656static void
657lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
658{
659  switch (cfi->dw_cfi_opc)
660    {
661    case DW_CFA_def_cfa_offset:
662      loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
663      break;
664    case DW_CFA_def_cfa_offset_sf:
665      loc->offset
666	= cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
667      break;
668    case DW_CFA_def_cfa_register:
669      loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
670      break;
671    case DW_CFA_def_cfa:
672      loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
673      loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
674      break;
675    case DW_CFA_def_cfa_sf:
676      loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
677      loc->offset
678	= cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
679      break;
680    case DW_CFA_def_cfa_expression:
681      get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
682      break;
683    default:
684      break;
685    }
686}
687
688/* Find the previous value for the CFA.  */
689
690static void
691lookup_cfa (dw_cfa_location *loc)
692{
693  dw_cfi_ref cfi;
694
695  loc->reg = INVALID_REGNUM;
696  loc->offset = 0;
697  loc->indirect = 0;
698  loc->base_offset = 0;
699
700  for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
701    lookup_cfa_1 (cfi, loc);
702
703  if (fde_table_in_use)
704    {
705      dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
706      for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
707	lookup_cfa_1 (cfi, loc);
708    }
709}
710
711/* The current rule for calculating the DWARF2 canonical frame address.  */
712static dw_cfa_location cfa;
713
714/* The register used for saving registers to the stack, and its offset
715   from the CFA.  */
716static dw_cfa_location cfa_store;
717
718/* The running total of the size of arguments pushed onto the stack.  */
719static HOST_WIDE_INT args_size;
720
721/* The last args_size we actually output.  */
722static HOST_WIDE_INT old_args_size;
723
724/* Entry point to update the canonical frame address (CFA).
725   LABEL is passed to add_fde_cfi.  The value of CFA is now to be
726   calculated from REG+OFFSET.  */
727
728void
729dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
730{
731  dw_cfa_location loc;
732  loc.indirect = 0;
733  loc.base_offset = 0;
734  loc.reg = reg;
735  loc.offset = offset;
736  def_cfa_1 (label, &loc);
737}
738
739/* Determine if two dw_cfa_location structures define the same data.  */
740
741static bool
742cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
743{
744  return (loc1->reg == loc2->reg
745	  && loc1->offset == loc2->offset
746	  && loc1->indirect == loc2->indirect
747	  && (loc1->indirect == 0
748	      || loc1->base_offset == loc2->base_offset));
749}
750
751/* This routine does the actual work.  The CFA is now calculated from
752   the dw_cfa_location structure.  */
753
754static void
755def_cfa_1 (const char *label, dw_cfa_location *loc_p)
756{
757  dw_cfi_ref cfi;
758  dw_cfa_location old_cfa, loc;
759
760  cfa = *loc_p;
761  loc = *loc_p;
762
763  if (cfa_store.reg == loc.reg && loc.indirect == 0)
764    cfa_store.offset = loc.offset;
765
766  loc.reg = DWARF_FRAME_REGNUM (loc.reg);
767  lookup_cfa (&old_cfa);
768
769  /* If nothing changed, no need to issue any call frame instructions.  */
770  if (cfa_equal_p (&loc, &old_cfa))
771    return;
772
773  cfi = new_cfi ();
774
775  if (loc.reg == old_cfa.reg && !loc.indirect)
776    {
777      /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
778	 the CFA register did not change but the offset did.  */
779      if (loc.offset < 0)
780	{
781	  HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
782	  gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
783
784	  cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
785	  cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
786	}
787      else
788	{
789	  cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
790	  cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
791	}
792    }
793
794#ifndef MIPS_DEBUGGING_INFO  /* SGI dbx thinks this means no offset.  */
795  else if (loc.offset == old_cfa.offset
796	   && old_cfa.reg != INVALID_REGNUM
797	   && !loc.indirect)
798    {
799      /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
800	 indicating the CFA register has changed to <register> but the
801	 offset has not changed.  */
802      cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
803      cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
804    }
805#endif
806
807  else if (loc.indirect == 0)
808    {
809      /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
810	 indicating the CFA register has changed to <register> with
811	 the specified offset.  */
812      if (loc.offset < 0)
813	{
814	  HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
815	  gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
816
817	  cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
818	  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
819	  cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
820	}
821      else
822	{
823	  cfi->dw_cfi_opc = DW_CFA_def_cfa;
824	  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
825	  cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
826	}
827    }
828  else
829    {
830      /* Construct a DW_CFA_def_cfa_expression instruction to
831	 calculate the CFA using a full location expression since no
832	 register-offset pair is available.  */
833      struct dw_loc_descr_struct *loc_list;
834
835      cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
836      loc_list = build_cfa_loc (&loc, 0);
837      cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
838    }
839
840  add_fde_cfi (label, cfi);
841}
842
843/* Add the CFI for saving a register.  REG is the CFA column number.
844   LABEL is passed to add_fde_cfi.
845   If SREG is -1, the register is saved at OFFSET from the CFA;
846   otherwise it is saved in SREG.  */
847
848static void
849reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
850{
851  dw_cfi_ref cfi = new_cfi ();
852
853  cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
854
855  if (sreg == INVALID_REGNUM)
856    {
857      if (reg & ~0x3f)
858	/* The register number won't fit in 6 bits, so we have to use
859	   the long form.  */
860	cfi->dw_cfi_opc = DW_CFA_offset_extended;
861      else
862	cfi->dw_cfi_opc = DW_CFA_offset;
863
864#ifdef ENABLE_CHECKING
865      {
866	/* If we get an offset that is not a multiple of
867	   DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
868	   definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
869	   description.  */
870	HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
871
872	gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
873      }
874#endif
875      offset /= DWARF_CIE_DATA_ALIGNMENT;
876      if (offset < 0)
877	cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
878
879      cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
880    }
881  else if (sreg == reg)
882    cfi->dw_cfi_opc = DW_CFA_same_value;
883  else
884    {
885      cfi->dw_cfi_opc = DW_CFA_register;
886      cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
887    }
888
889  add_fde_cfi (label, cfi);
890}
891
892/* Add the CFI for saving a register window.  LABEL is passed to reg_save.
893   This CFI tells the unwinder that it needs to restore the window registers
894   from the previous frame's window save area.
895
896   ??? Perhaps we should note in the CIE where windows are saved (instead of
897   assuming 0(cfa)) and what registers are in the window.  */
898
899void
900dwarf2out_window_save (const char *label)
901{
902  dw_cfi_ref cfi = new_cfi ();
903
904  cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
905  add_fde_cfi (label, cfi);
906}
907
908/* Add a CFI to update the running total of the size of arguments
909   pushed onto the stack.  */
910
911void
912dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
913{
914  dw_cfi_ref cfi;
915
916  if (size == old_args_size)
917    return;
918
919  old_args_size = size;
920
921  cfi = new_cfi ();
922  cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
923  cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
924  add_fde_cfi (label, cfi);
925}
926
927/* Entry point for saving a register to the stack.  REG is the GCC register
928   number.  LABEL and OFFSET are passed to reg_save.  */
929
930void
931dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
932{
933  reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
934}
935
936/* Entry point for saving the return address in the stack.
937   LABEL and OFFSET are passed to reg_save.  */
938
939void
940dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
941{
942  reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
943}
944
945/* Entry point for saving the return address in a register.
946   LABEL and SREG are passed to reg_save.  */
947
948void
949dwarf2out_return_reg (const char *label, unsigned int sreg)
950{
951  reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
952}
953
954/* Record the initial position of the return address.  RTL is
955   INCOMING_RETURN_ADDR_RTX.  */
956
957static void
958initial_return_save (rtx rtl)
959{
960  unsigned int reg = INVALID_REGNUM;
961  HOST_WIDE_INT offset = 0;
962
963  switch (GET_CODE (rtl))
964    {
965    case REG:
966      /* RA is in a register.  */
967      reg = DWARF_FRAME_REGNUM (REGNO (rtl));
968      break;
969
970    case MEM:
971      /* RA is on the stack.  */
972      rtl = XEXP (rtl, 0);
973      switch (GET_CODE (rtl))
974	{
975	case REG:
976	  gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
977	  offset = 0;
978	  break;
979
980	case PLUS:
981	  gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
982	  offset = INTVAL (XEXP (rtl, 1));
983	  break;
984
985	case MINUS:
986	  gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
987	  offset = -INTVAL (XEXP (rtl, 1));
988	  break;
989
990	default:
991	  gcc_unreachable ();
992	}
993
994      break;
995
996    case PLUS:
997      /* The return address is at some offset from any value we can
998	 actually load.  For instance, on the SPARC it is in %i7+8. Just
999	 ignore the offset for now; it doesn't matter for unwinding frames.  */
1000      gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1001      initial_return_save (XEXP (rtl, 0));
1002      return;
1003
1004    default:
1005      gcc_unreachable ();
1006    }
1007
1008  if (reg != DWARF_FRAME_RETURN_COLUMN)
1009    reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1010}
1011
1012/* Given a SET, calculate the amount of stack adjustment it
1013   contains.  */
1014
1015static HOST_WIDE_INT
1016stack_adjust_offset (rtx pattern)
1017{
1018  rtx src = SET_SRC (pattern);
1019  rtx dest = SET_DEST (pattern);
1020  HOST_WIDE_INT offset = 0;
1021  enum rtx_code code;
1022
1023  if (dest == stack_pointer_rtx)
1024    {
1025      /* (set (reg sp) (plus (reg sp) (const_int))) */
1026      code = GET_CODE (src);
1027      if (! (code == PLUS || code == MINUS)
1028	  || XEXP (src, 0) != stack_pointer_rtx
1029	  || GET_CODE (XEXP (src, 1)) != CONST_INT)
1030	return 0;
1031
1032      offset = INTVAL (XEXP (src, 1));
1033      if (code == PLUS)
1034	offset = -offset;
1035    }
1036  else if (MEM_P (dest))
1037    {
1038      /* (set (mem (pre_dec (reg sp))) (foo)) */
1039      src = XEXP (dest, 0);
1040      code = GET_CODE (src);
1041
1042      switch (code)
1043	{
1044	case PRE_MODIFY:
1045	case POST_MODIFY:
1046	  if (XEXP (src, 0) == stack_pointer_rtx)
1047	    {
1048	      rtx val = XEXP (XEXP (src, 1), 1);
1049	      /* We handle only adjustments by constant amount.  */
1050	      gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1051			  && GET_CODE (val) == CONST_INT);
1052	      offset = -INTVAL (val);
1053	      break;
1054	    }
1055	  return 0;
1056
1057	case PRE_DEC:
1058	case POST_DEC:
1059	  if (XEXP (src, 0) == stack_pointer_rtx)
1060	    {
1061	      offset = GET_MODE_SIZE (GET_MODE (dest));
1062	      break;
1063	    }
1064	  return 0;
1065
1066	case PRE_INC:
1067	case POST_INC:
1068	  if (XEXP (src, 0) == stack_pointer_rtx)
1069	    {
1070	      offset = -GET_MODE_SIZE (GET_MODE (dest));
1071	      break;
1072	    }
1073	  return 0;
1074
1075	default:
1076	  return 0;
1077	}
1078    }
1079  else
1080    return 0;
1081
1082  return offset;
1083}
1084
1085/* Check INSN to see if it looks like a push or a stack adjustment, and
1086   make a note of it if it does.  EH uses this information to find out how
1087   much extra space it needs to pop off the stack.  */
1088
1089static void
1090dwarf2out_stack_adjust (rtx insn, bool after_p)
1091{
1092  HOST_WIDE_INT offset;
1093  const char *label;
1094  int i;
1095
1096  /* Don't handle epilogues at all.  Certainly it would be wrong to do so
1097     with this function.  Proper support would require all frame-related
1098     insns to be marked, and to be able to handle saving state around
1099     epilogues textually in the middle of the function.  */
1100  if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1101    return;
1102
1103  /* If only calls can throw, and we have a frame pointer,
1104     save up adjustments until we see the CALL_INSN.  */
1105  if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1106    {
1107      if (CALL_P (insn) && !after_p)
1108	{
1109	  /* Extract the size of the args from the CALL rtx itself.  */
1110	  insn = PATTERN (insn);
1111	  if (GET_CODE (insn) == PARALLEL)
1112	    insn = XVECEXP (insn, 0, 0);
1113	  if (GET_CODE (insn) == SET)
1114	    insn = SET_SRC (insn);
1115	  gcc_assert (GET_CODE (insn) == CALL);
1116	  dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1117	}
1118      return;
1119    }
1120
1121  if (CALL_P (insn) && !after_p)
1122    {
1123      if (!flag_asynchronous_unwind_tables)
1124	dwarf2out_args_size ("", args_size);
1125      return;
1126    }
1127  else if (BARRIER_P (insn))
1128    {
1129      /* When we see a BARRIER, we know to reset args_size to 0.  Usually
1130	 the compiler will have already emitted a stack adjustment, but
1131	 doesn't bother for calls to noreturn functions.  */
1132#ifdef STACK_GROWS_DOWNWARD
1133      offset = -args_size;
1134#else
1135      offset = args_size;
1136#endif
1137    }
1138  else if (GET_CODE (PATTERN (insn)) == SET)
1139    offset = stack_adjust_offset (PATTERN (insn));
1140  else if (GET_CODE (PATTERN (insn)) == PARALLEL
1141	   || GET_CODE (PATTERN (insn)) == SEQUENCE)
1142    {
1143      /* There may be stack adjustments inside compound insns.  Search
1144	 for them.  */
1145      for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1146	if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1147	  offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1148    }
1149  else
1150    return;
1151
1152  if (offset == 0)
1153    return;
1154
1155  if (cfa.reg == STACK_POINTER_REGNUM)
1156    cfa.offset += offset;
1157
1158#ifndef STACK_GROWS_DOWNWARD
1159  offset = -offset;
1160#endif
1161
1162  args_size += offset;
1163  if (args_size < 0)
1164    args_size = 0;
1165
1166  label = dwarf2out_cfi_label ();
1167  def_cfa_1 (label, &cfa);
1168  if (flag_asynchronous_unwind_tables)
1169    dwarf2out_args_size (label, args_size);
1170}
1171
1172#endif
1173
1174/* We delay emitting a register save until either (a) we reach the end
1175   of the prologue or (b) the register is clobbered.  This clusters
1176   register saves so that there are fewer pc advances.  */
1177
1178struct queued_reg_save GTY(())
1179{
1180  struct queued_reg_save *next;
1181  rtx reg;
1182  HOST_WIDE_INT cfa_offset;
1183  rtx saved_reg;
1184};
1185
1186static GTY(()) struct queued_reg_save *queued_reg_saves;
1187
1188/* The caller's ORIG_REG is saved in SAVED_IN_REG.  */
1189struct reg_saved_in_data GTY(()) {
1190  rtx orig_reg;
1191  rtx saved_in_reg;
1192};
1193
1194/* A list of registers saved in other registers.
1195   The list intentionally has a small maximum capacity of 4; if your
1196   port needs more than that, you might consider implementing a
1197   more efficient data structure.  */
1198static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1199static GTY(()) size_t num_regs_saved_in_regs;
1200
1201#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1202static const char *last_reg_save_label;
1203
1204/* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1205   SREG, or if SREG is NULL then it is saved at OFFSET to the CFA.  */
1206
1207static void
1208queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1209{
1210  struct queued_reg_save *q;
1211
1212  /* Duplicates waste space, but it's also necessary to remove them
1213     for correctness, since the queue gets output in reverse
1214     order.  */
1215  for (q = queued_reg_saves; q != NULL; q = q->next)
1216    if (REGNO (q->reg) == REGNO (reg))
1217      break;
1218
1219  if (q == NULL)
1220    {
1221      q = ggc_alloc (sizeof (*q));
1222      q->next = queued_reg_saves;
1223      queued_reg_saves = q;
1224    }
1225
1226  q->reg = reg;
1227  q->cfa_offset = offset;
1228  q->saved_reg = sreg;
1229
1230  last_reg_save_label = label;
1231}
1232
1233/* Output all the entries in QUEUED_REG_SAVES.  */
1234
1235static void
1236flush_queued_reg_saves (void)
1237{
1238  struct queued_reg_save *q;
1239
1240  for (q = queued_reg_saves; q; q = q->next)
1241    {
1242      size_t i;
1243      unsigned int reg, sreg;
1244
1245      for (i = 0; i < num_regs_saved_in_regs; i++)
1246	if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1247	  break;
1248      if (q->saved_reg && i == num_regs_saved_in_regs)
1249	{
1250	  gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1251	  num_regs_saved_in_regs++;
1252	}
1253      if (i != num_regs_saved_in_regs)
1254	{
1255	  regs_saved_in_regs[i].orig_reg = q->reg;
1256	  regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1257	}
1258
1259      reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1260      if (q->saved_reg)
1261	sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1262      else
1263	sreg = INVALID_REGNUM;
1264      reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1265    }
1266
1267  queued_reg_saves = NULL;
1268  last_reg_save_label = NULL;
1269}
1270
1271/* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1272   location for?  Or, does it clobber a register which we've previously
1273   said that some other register is saved in, and for which we now
1274   have a new location for?  */
1275
1276static bool
1277clobbers_queued_reg_save (rtx insn)
1278{
1279  struct queued_reg_save *q;
1280
1281  for (q = queued_reg_saves; q; q = q->next)
1282    {
1283      size_t i;
1284      if (modified_in_p (q->reg, insn))
1285	return true;
1286      for (i = 0; i < num_regs_saved_in_regs; i++)
1287	if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1288	    && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1289	  return true;
1290    }
1291
1292  return false;
1293}
1294
1295/* Entry point for saving the first register into the second.  */
1296
1297void
1298dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1299{
1300  size_t i;
1301  unsigned int regno, sregno;
1302
1303  for (i = 0; i < num_regs_saved_in_regs; i++)
1304    if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1305      break;
1306  if (i == num_regs_saved_in_regs)
1307    {
1308      gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1309      num_regs_saved_in_regs++;
1310    }
1311  regs_saved_in_regs[i].orig_reg = reg;
1312  regs_saved_in_regs[i].saved_in_reg = sreg;
1313
1314  regno = DWARF_FRAME_REGNUM (REGNO (reg));
1315  sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1316  reg_save (label, regno, sregno, 0);
1317}
1318
1319/* What register, if any, is currently saved in REG?  */
1320
1321static rtx
1322reg_saved_in (rtx reg)
1323{
1324  unsigned int regn = REGNO (reg);
1325  size_t i;
1326  struct queued_reg_save *q;
1327
1328  for (q = queued_reg_saves; q; q = q->next)
1329    if (q->saved_reg && regn == REGNO (q->saved_reg))
1330      return q->reg;
1331
1332  for (i = 0; i < num_regs_saved_in_regs; i++)
1333    if (regs_saved_in_regs[i].saved_in_reg
1334	&& regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1335      return regs_saved_in_regs[i].orig_reg;
1336
1337  return NULL_RTX;
1338}
1339
1340
1341/* A temporary register holding an integral value used in adjusting SP
1342   or setting up the store_reg.  The "offset" field holds the integer
1343   value, not an offset.  */
1344static dw_cfa_location cfa_temp;
1345
1346/* Record call frame debugging information for an expression EXPR,
1347   which either sets SP or FP (adjusting how we calculate the frame
1348   address) or saves a register to the stack or another register.
1349   LABEL indicates the address of EXPR.
1350
1351   This function encodes a state machine mapping rtxes to actions on
1352   cfa, cfa_store, and cfa_temp.reg.  We describe these rules so
1353   users need not read the source code.
1354
1355  The High-Level Picture
1356
1357  Changes in the register we use to calculate the CFA: Currently we
1358  assume that if you copy the CFA register into another register, we
1359  should take the other one as the new CFA register; this seems to
1360  work pretty well.  If it's wrong for some target, it's simple
1361  enough not to set RTX_FRAME_RELATED_P on the insn in question.
1362
1363  Changes in the register we use for saving registers to the stack:
1364  This is usually SP, but not always.  Again, we deduce that if you
1365  copy SP into another register (and SP is not the CFA register),
1366  then the new register is the one we will be using for register
1367  saves.  This also seems to work.
1368
1369  Register saves: There's not much guesswork about this one; if
1370  RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1371  register save, and the register used to calculate the destination
1372  had better be the one we think we're using for this purpose.
1373  It's also assumed that a copy from a call-saved register to another
1374  register is saving that register if RTX_FRAME_RELATED_P is set on
1375  that instruction.  If the copy is from a call-saved register to
1376  the *same* register, that means that the register is now the same
1377  value as in the caller.
1378
1379  Except: If the register being saved is the CFA register, and the
1380  offset is nonzero, we are saving the CFA, so we assume we have to
1381  use DW_CFA_def_cfa_expression.  If the offset is 0, we assume that
1382  the intent is to save the value of SP from the previous frame.
1383
1384  In addition, if a register has previously been saved to a different
1385  register,
1386
1387  Invariants / Summaries of Rules
1388
1389  cfa	       current rule for calculating the CFA.  It usually
1390	       consists of a register and an offset.
1391  cfa_store    register used by prologue code to save things to the stack
1392	       cfa_store.offset is the offset from the value of
1393	       cfa_store.reg to the actual CFA
1394  cfa_temp     register holding an integral value.  cfa_temp.offset
1395	       stores the value, which will be used to adjust the
1396	       stack pointer.  cfa_temp is also used like cfa_store,
1397	       to track stores to the stack via fp or a temp reg.
1398
1399  Rules  1- 4: Setting a register's value to cfa.reg or an expression
1400	       with cfa.reg as the first operand changes the cfa.reg and its
1401	       cfa.offset.  Rule 1 and 4 also set cfa_temp.reg and
1402	       cfa_temp.offset.
1403
1404  Rules  6- 9: Set a non-cfa.reg register value to a constant or an
1405	       expression yielding a constant.  This sets cfa_temp.reg
1406	       and cfa_temp.offset.
1407
1408  Rule 5:      Create a new register cfa_store used to save items to the
1409	       stack.
1410
1411  Rules 10-14: Save a register to the stack.  Define offset as the
1412	       difference of the original location and cfa_store's
1413	       location (or cfa_temp's location if cfa_temp is used).
1414
1415  The Rules
1416
1417  "{a,b}" indicates a choice of a xor b.
1418  "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1419
1420  Rule 1:
1421  (set <reg1> <reg2>:cfa.reg)
1422  effects: cfa.reg = <reg1>
1423	   cfa.offset unchanged
1424	   cfa_temp.reg = <reg1>
1425	   cfa_temp.offset = cfa.offset
1426
1427  Rule 2:
1428  (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1429			      {<const_int>,<reg>:cfa_temp.reg}))
1430  effects: cfa.reg = sp if fp used
1431	   cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1432	   cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1433	     if cfa_store.reg==sp
1434
1435  Rule 3:
1436  (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1437  effects: cfa.reg = fp
1438	   cfa_offset += +/- <const_int>
1439
1440  Rule 4:
1441  (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1442  constraints: <reg1> != fp
1443	       <reg1> != sp
1444  effects: cfa.reg = <reg1>
1445	   cfa_temp.reg = <reg1>
1446	   cfa_temp.offset = cfa.offset
1447
1448  Rule 5:
1449  (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1450  constraints: <reg1> != fp
1451	       <reg1> != sp
1452  effects: cfa_store.reg = <reg1>
1453	   cfa_store.offset = cfa.offset - cfa_temp.offset
1454
1455  Rule 6:
1456  (set <reg> <const_int>)
1457  effects: cfa_temp.reg = <reg>
1458	   cfa_temp.offset = <const_int>
1459
1460  Rule 7:
1461  (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1462  effects: cfa_temp.reg = <reg1>
1463	   cfa_temp.offset |= <const_int>
1464
1465  Rule 8:
1466  (set <reg> (high <exp>))
1467  effects: none
1468
1469  Rule 9:
1470  (set <reg> (lo_sum <exp> <const_int>))
1471  effects: cfa_temp.reg = <reg>
1472	   cfa_temp.offset = <const_int>
1473
1474  Rule 10:
1475  (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1476  effects: cfa_store.offset -= <const_int>
1477	   cfa.offset = cfa_store.offset if cfa.reg == sp
1478	   cfa.reg = sp
1479	   cfa.base_offset = -cfa_store.offset
1480
1481  Rule 11:
1482  (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1483  effects: cfa_store.offset += -/+ mode_size(mem)
1484	   cfa.offset = cfa_store.offset if cfa.reg == sp
1485	   cfa.reg = sp
1486	   cfa.base_offset = -cfa_store.offset
1487
1488  Rule 12:
1489  (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1490
1491       <reg2>)
1492  effects: cfa.reg = <reg1>
1493	   cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1494
1495  Rule 13:
1496  (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1497  effects: cfa.reg = <reg1>
1498	   cfa.base_offset = -{cfa_store,cfa_temp}.offset
1499
1500  Rule 14:
1501  (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1502  effects: cfa.reg = <reg1>
1503	   cfa.base_offset = -cfa_temp.offset
1504	   cfa_temp.offset -= mode_size(mem)
1505
1506  Rule 15:
1507  (set <reg> {unspec, unspec_volatile})
1508  effects: target-dependent  */
1509
1510static void
1511dwarf2out_frame_debug_expr (rtx expr, const char *label)
1512{
1513  rtx src, dest;
1514  HOST_WIDE_INT offset;
1515
1516  /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1517     the PARALLEL independently. The first element is always processed if
1518     it is a SET. This is for backward compatibility.   Other elements
1519     are processed only if they are SETs and the RTX_FRAME_RELATED_P
1520     flag is set in them.  */
1521  if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1522    {
1523      int par_index;
1524      int limit = XVECLEN (expr, 0);
1525
1526      for (par_index = 0; par_index < limit; par_index++)
1527	if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1528	    && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1529		|| par_index == 0))
1530	  dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1531
1532      return;
1533    }
1534
1535  gcc_assert (GET_CODE (expr) == SET);
1536
1537  src = SET_SRC (expr);
1538  dest = SET_DEST (expr);
1539
1540  if (REG_P (src))
1541    {
1542      rtx rsi = reg_saved_in (src);
1543      if (rsi)
1544	src = rsi;
1545    }
1546
1547  switch (GET_CODE (dest))
1548    {
1549    case REG:
1550      switch (GET_CODE (src))
1551	{
1552	  /* Setting FP from SP.  */
1553	case REG:
1554	  if (cfa.reg == (unsigned) REGNO (src))
1555	    {
1556	      /* Rule 1 */
1557	      /* Update the CFA rule wrt SP or FP.  Make sure src is
1558		 relative to the current CFA register.
1559
1560		 We used to require that dest be either SP or FP, but the
1561		 ARM copies SP to a temporary register, and from there to
1562		 FP.  So we just rely on the backends to only set
1563		 RTX_FRAME_RELATED_P on appropriate insns.  */
1564	      cfa.reg = REGNO (dest);
1565	      cfa_temp.reg = cfa.reg;
1566	      cfa_temp.offset = cfa.offset;
1567	    }
1568	  else
1569	    {
1570	      /* Saving a register in a register.  */
1571	      gcc_assert (!fixed_regs [REGNO (dest)]
1572			  /* For the SPARC and its register window.  */
1573			  || (DWARF_FRAME_REGNUM (REGNO (src))
1574			      == DWARF_FRAME_RETURN_COLUMN));
1575	      queue_reg_save (label, src, dest, 0);
1576	    }
1577	  break;
1578
1579	case PLUS:
1580	case MINUS:
1581	case LO_SUM:
1582	  if (dest == stack_pointer_rtx)
1583	    {
1584	      /* Rule 2 */
1585	      /* Adjusting SP.  */
1586	      switch (GET_CODE (XEXP (src, 1)))
1587		{
1588		case CONST_INT:
1589		  offset = INTVAL (XEXP (src, 1));
1590		  break;
1591		case REG:
1592		  gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1593			      == cfa_temp.reg);
1594		  offset = cfa_temp.offset;
1595		  break;
1596		default:
1597		  gcc_unreachable ();
1598		}
1599
1600	      if (XEXP (src, 0) == hard_frame_pointer_rtx)
1601		{
1602		  /* Restoring SP from FP in the epilogue.  */
1603		  gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1604		  cfa.reg = STACK_POINTER_REGNUM;
1605		}
1606	      else if (GET_CODE (src) == LO_SUM)
1607		/* Assume we've set the source reg of the LO_SUM from sp.  */
1608		;
1609	      else
1610		gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1611
1612	      if (GET_CODE (src) != MINUS)
1613		offset = -offset;
1614	      if (cfa.reg == STACK_POINTER_REGNUM)
1615		cfa.offset += offset;
1616	      if (cfa_store.reg == STACK_POINTER_REGNUM)
1617		cfa_store.offset += offset;
1618	    }
1619	  else if (dest == hard_frame_pointer_rtx)
1620	    {
1621	      /* Rule 3 */
1622	      /* Either setting the FP from an offset of the SP,
1623		 or adjusting the FP */
1624	      gcc_assert (frame_pointer_needed);
1625
1626	      gcc_assert (REG_P (XEXP (src, 0))
1627			  && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1628			  && GET_CODE (XEXP (src, 1)) == CONST_INT);
1629	      offset = INTVAL (XEXP (src, 1));
1630	      if (GET_CODE (src) != MINUS)
1631		offset = -offset;
1632	      cfa.offset += offset;
1633	      cfa.reg = HARD_FRAME_POINTER_REGNUM;
1634	    }
1635	  else
1636	    {
1637	      gcc_assert (GET_CODE (src) != MINUS);
1638
1639	      /* Rule 4 */
1640	      if (REG_P (XEXP (src, 0))
1641		  && REGNO (XEXP (src, 0)) == cfa.reg
1642		  && GET_CODE (XEXP (src, 1)) == CONST_INT)
1643		{
1644		  /* Setting a temporary CFA register that will be copied
1645		     into the FP later on.  */
1646		  offset = - INTVAL (XEXP (src, 1));
1647		  cfa.offset += offset;
1648		  cfa.reg = REGNO (dest);
1649		  /* Or used to save regs to the stack.  */
1650		  cfa_temp.reg = cfa.reg;
1651		  cfa_temp.offset = cfa.offset;
1652		}
1653
1654	      /* Rule 5 */
1655	      else if (REG_P (XEXP (src, 0))
1656		       && REGNO (XEXP (src, 0)) == cfa_temp.reg
1657		       && XEXP (src, 1) == stack_pointer_rtx)
1658		{
1659		  /* Setting a scratch register that we will use instead
1660		     of SP for saving registers to the stack.  */
1661		  gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1662		  cfa_store.reg = REGNO (dest);
1663		  cfa_store.offset = cfa.offset - cfa_temp.offset;
1664		}
1665
1666	      /* Rule 9 */
1667	      else if (GET_CODE (src) == LO_SUM
1668		       && GET_CODE (XEXP (src, 1)) == CONST_INT)
1669		{
1670		  cfa_temp.reg = REGNO (dest);
1671		  cfa_temp.offset = INTVAL (XEXP (src, 1));
1672		}
1673	      else
1674		gcc_unreachable ();
1675	    }
1676	  break;
1677
1678	  /* Rule 6 */
1679	case CONST_INT:
1680	  cfa_temp.reg = REGNO (dest);
1681	  cfa_temp.offset = INTVAL (src);
1682	  break;
1683
1684	  /* Rule 7 */
1685	case IOR:
1686	  gcc_assert (REG_P (XEXP (src, 0))
1687		      && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1688		      && GET_CODE (XEXP (src, 1)) == CONST_INT);
1689
1690	  if ((unsigned) REGNO (dest) != cfa_temp.reg)
1691	    cfa_temp.reg = REGNO (dest);
1692	  cfa_temp.offset |= INTVAL (XEXP (src, 1));
1693	  break;
1694
1695	  /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1696	     which will fill in all of the bits.  */
1697	  /* Rule 8 */
1698	case HIGH:
1699	  break;
1700
1701	  /* Rule 15 */
1702	case UNSPEC:
1703	case UNSPEC_VOLATILE:
1704	  gcc_assert (targetm.dwarf_handle_frame_unspec);
1705	  targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1706	  return;
1707
1708	default:
1709	  gcc_unreachable ();
1710	}
1711
1712      def_cfa_1 (label, &cfa);
1713      break;
1714
1715    case MEM:
1716      gcc_assert (REG_P (src));
1717
1718      /* Saving a register to the stack.  Make sure dest is relative to the
1719	 CFA register.  */
1720      switch (GET_CODE (XEXP (dest, 0)))
1721	{
1722	  /* Rule 10 */
1723	  /* With a push.  */
1724	case PRE_MODIFY:
1725	  /* We can't handle variable size modifications.  */
1726	  gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1727		      == CONST_INT);
1728	  offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1729
1730	  gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1731		      && cfa_store.reg == STACK_POINTER_REGNUM);
1732
1733	  cfa_store.offset += offset;
1734	  if (cfa.reg == STACK_POINTER_REGNUM)
1735	    cfa.offset = cfa_store.offset;
1736
1737	  offset = -cfa_store.offset;
1738	  break;
1739
1740	  /* Rule 11 */
1741	case PRE_INC:
1742	case PRE_DEC:
1743	  offset = GET_MODE_SIZE (GET_MODE (dest));
1744	  if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1745	    offset = -offset;
1746
1747	  gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1748		      && cfa_store.reg == STACK_POINTER_REGNUM);
1749
1750	  cfa_store.offset += offset;
1751	  if (cfa.reg == STACK_POINTER_REGNUM)
1752	    cfa.offset = cfa_store.offset;
1753
1754	  offset = -cfa_store.offset;
1755	  break;
1756
1757	  /* Rule 12 */
1758	  /* With an offset.  */
1759	case PLUS:
1760	case MINUS:
1761	case LO_SUM:
1762	  {
1763	    int regno;
1764
1765	    gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1766			&& REG_P (XEXP (XEXP (dest, 0), 0)));
1767	    offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1768	    if (GET_CODE (XEXP (dest, 0)) == MINUS)
1769	      offset = -offset;
1770
1771	    regno = REGNO (XEXP (XEXP (dest, 0), 0));
1772
1773	    if (cfa_store.reg == (unsigned) regno)
1774	      offset -= cfa_store.offset;
1775	    else
1776	      {
1777		gcc_assert (cfa_temp.reg == (unsigned) regno);
1778		offset -= cfa_temp.offset;
1779	      }
1780	  }
1781	  break;
1782
1783	  /* Rule 13 */
1784	  /* Without an offset.  */
1785	case REG:
1786	  {
1787	    int regno = REGNO (XEXP (dest, 0));
1788
1789	    if (cfa_store.reg == (unsigned) regno)
1790	      offset = -cfa_store.offset;
1791	    else
1792	      {
1793		gcc_assert (cfa_temp.reg == (unsigned) regno);
1794		offset = -cfa_temp.offset;
1795	      }
1796	  }
1797	  break;
1798
1799	  /* Rule 14 */
1800	case POST_INC:
1801	  gcc_assert (cfa_temp.reg
1802		      == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1803	  offset = -cfa_temp.offset;
1804	  cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1805	  break;
1806
1807	default:
1808	  gcc_unreachable ();
1809	}
1810
1811      if (REGNO (src) != STACK_POINTER_REGNUM
1812	  && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1813	  && (unsigned) REGNO (src) == cfa.reg)
1814	{
1815	  /* We're storing the current CFA reg into the stack.  */
1816
1817	  if (cfa.offset == 0)
1818	    {
1819	      /* If the source register is exactly the CFA, assume
1820		 we're saving SP like any other register; this happens
1821		 on the ARM.  */
1822	      def_cfa_1 (label, &cfa);
1823	      queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1824	      break;
1825	    }
1826	  else
1827	    {
1828	      /* Otherwise, we'll need to look in the stack to
1829		 calculate the CFA.  */
1830	      rtx x = XEXP (dest, 0);
1831
1832	      if (!REG_P (x))
1833		x = XEXP (x, 0);
1834	      gcc_assert (REG_P (x));
1835
1836	      cfa.reg = REGNO (x);
1837	      cfa.base_offset = offset;
1838	      cfa.indirect = 1;
1839	      def_cfa_1 (label, &cfa);
1840	      break;
1841	    }
1842	}
1843
1844      def_cfa_1 (label, &cfa);
1845      queue_reg_save (label, src, NULL_RTX, offset);
1846      break;
1847
1848    default:
1849      gcc_unreachable ();
1850    }
1851}
1852
1853/* Record call frame debugging information for INSN, which either
1854   sets SP or FP (adjusting how we calculate the frame address) or saves a
1855   register to the stack.  If INSN is NULL_RTX, initialize our state.
1856
1857   If AFTER_P is false, we're being called before the insn is emitted,
1858   otherwise after.  Call instructions get invoked twice.  */
1859
1860void
1861dwarf2out_frame_debug (rtx insn, bool after_p)
1862{
1863  const char *label;
1864  rtx src;
1865
1866  if (insn == NULL_RTX)
1867    {
1868      size_t i;
1869
1870      /* Flush any queued register saves.  */
1871      flush_queued_reg_saves ();
1872
1873      /* Set up state for generating call frame debug info.  */
1874      lookup_cfa (&cfa);
1875      gcc_assert (cfa.reg
1876		  == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1877
1878      cfa.reg = STACK_POINTER_REGNUM;
1879      cfa_store = cfa;
1880      cfa_temp.reg = -1;
1881      cfa_temp.offset = 0;
1882
1883      for (i = 0; i < num_regs_saved_in_regs; i++)
1884	{
1885	  regs_saved_in_regs[i].orig_reg = NULL_RTX;
1886	  regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1887	}
1888      num_regs_saved_in_regs = 0;
1889      return;
1890    }
1891
1892  if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1893    flush_queued_reg_saves ();
1894
1895  if (! RTX_FRAME_RELATED_P (insn))
1896    {
1897      if (!ACCUMULATE_OUTGOING_ARGS)
1898	dwarf2out_stack_adjust (insn, after_p);
1899      return;
1900    }
1901
1902  label = dwarf2out_cfi_label ();
1903  src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1904  if (src)
1905    insn = XEXP (src, 0);
1906  else
1907    insn = PATTERN (insn);
1908
1909  dwarf2out_frame_debug_expr (insn, label);
1910}
1911
1912#endif
1913
1914/* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used.  */
1915static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1916 (enum dwarf_call_frame_info cfi);
1917
1918static enum dw_cfi_oprnd_type
1919dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1920{
1921  switch (cfi)
1922    {
1923    case DW_CFA_nop:
1924    case DW_CFA_GNU_window_save:
1925      return dw_cfi_oprnd_unused;
1926
1927    case DW_CFA_set_loc:
1928    case DW_CFA_advance_loc1:
1929    case DW_CFA_advance_loc2:
1930    case DW_CFA_advance_loc4:
1931    case DW_CFA_MIPS_advance_loc8:
1932      return dw_cfi_oprnd_addr;
1933
1934    case DW_CFA_offset:
1935    case DW_CFA_offset_extended:
1936    case DW_CFA_def_cfa:
1937    case DW_CFA_offset_extended_sf:
1938    case DW_CFA_def_cfa_sf:
1939    case DW_CFA_restore_extended:
1940    case DW_CFA_undefined:
1941    case DW_CFA_same_value:
1942    case DW_CFA_def_cfa_register:
1943    case DW_CFA_register:
1944      return dw_cfi_oprnd_reg_num;
1945
1946    case DW_CFA_def_cfa_offset:
1947    case DW_CFA_GNU_args_size:
1948    case DW_CFA_def_cfa_offset_sf:
1949      return dw_cfi_oprnd_offset;
1950
1951    case DW_CFA_def_cfa_expression:
1952    case DW_CFA_expression:
1953      return dw_cfi_oprnd_loc;
1954
1955    default:
1956      gcc_unreachable ();
1957    }
1958}
1959
1960/* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used.  */
1961static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1962 (enum dwarf_call_frame_info cfi);
1963
1964static enum dw_cfi_oprnd_type
1965dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1966{
1967  switch (cfi)
1968    {
1969    case DW_CFA_def_cfa:
1970    case DW_CFA_def_cfa_sf:
1971    case DW_CFA_offset:
1972    case DW_CFA_offset_extended_sf:
1973    case DW_CFA_offset_extended:
1974      return dw_cfi_oprnd_offset;
1975
1976    case DW_CFA_register:
1977      return dw_cfi_oprnd_reg_num;
1978
1979    default:
1980      return dw_cfi_oprnd_unused;
1981    }
1982}
1983
1984#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1985
1986/* Switch to eh_frame_section.  If we don't have an eh_frame_section,
1987   switch to the data section instead, and write out a synthetic label
1988   for collect2.  */
1989
1990static void
1991switch_to_eh_frame_section (void)
1992{
1993  tree label;
1994
1995#ifdef EH_FRAME_SECTION_NAME
1996  if (eh_frame_section == 0)
1997    {
1998      int flags;
1999
2000      if (EH_TABLES_CAN_BE_READ_ONLY)
2001	{
2002	  int fde_encoding;
2003	  int per_encoding;
2004	  int lsda_encoding;
2005
2006	  fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2007						       /*global=*/0);
2008	  per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2009						       /*global=*/1);
2010	  lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2011							/*global=*/0);
2012	  flags = ((! flag_pic
2013		    || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2014			&& (fde_encoding & 0x70) != DW_EH_PE_aligned
2015			&& (per_encoding & 0x70) != DW_EH_PE_absptr
2016			&& (per_encoding & 0x70) != DW_EH_PE_aligned
2017			&& (lsda_encoding & 0x70) != DW_EH_PE_absptr
2018			&& (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2019		   ? 0 : SECTION_WRITE);
2020	}
2021      else
2022	flags = SECTION_WRITE;
2023      eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2024    }
2025#endif
2026
2027  if (eh_frame_section)
2028    switch_to_section (eh_frame_section);
2029  else
2030    {
2031      /* We have no special eh_frame section.  Put the information in
2032	 the data section and emit special labels to guide collect2.  */
2033      switch_to_section (data_section);
2034      label = get_file_function_name ("F");
2035      ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2036      targetm.asm_out.globalize_label (asm_out_file,
2037				       IDENTIFIER_POINTER (label));
2038      ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2039    }
2040}
2041
2042/* Output a Call Frame Information opcode and its operand(s).  */
2043
2044static void
2045output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2046{
2047  unsigned long r;
2048  if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2049    dw2_asm_output_data (1, (cfi->dw_cfi_opc
2050			     | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2051			 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2052			 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2053  else if (cfi->dw_cfi_opc == DW_CFA_offset)
2054    {
2055      r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2056      dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2057			   "DW_CFA_offset, column 0x%lx", r);
2058      dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2059    }
2060  else if (cfi->dw_cfi_opc == DW_CFA_restore)
2061    {
2062      r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2063      dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2064			   "DW_CFA_restore, column 0x%lx", r);
2065    }
2066  else
2067    {
2068      dw2_asm_output_data (1, cfi->dw_cfi_opc,
2069			   "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2070
2071      switch (cfi->dw_cfi_opc)
2072	{
2073	case DW_CFA_set_loc:
2074	  if (for_eh)
2075	    dw2_asm_output_encoded_addr_rtx (
2076		ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2077		gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2078		false, NULL);
2079	  else
2080	    dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2081				 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2082	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2083	  break;
2084
2085	case DW_CFA_advance_loc1:
2086	  dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2087				fde->dw_fde_current_label, NULL);
2088	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2089	  break;
2090
2091	case DW_CFA_advance_loc2:
2092	  dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2093				fde->dw_fde_current_label, NULL);
2094	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2095	  break;
2096
2097	case DW_CFA_advance_loc4:
2098	  dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2099				fde->dw_fde_current_label, NULL);
2100	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2101	  break;
2102
2103	case DW_CFA_MIPS_advance_loc8:
2104	  dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2105				fde->dw_fde_current_label, NULL);
2106	  fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2107	  break;
2108
2109	case DW_CFA_offset_extended:
2110	case DW_CFA_def_cfa:
2111	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2112	  dw2_asm_output_data_uleb128 (r, NULL);
2113	  dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2114	  break;
2115
2116	case DW_CFA_offset_extended_sf:
2117	case DW_CFA_def_cfa_sf:
2118	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2119	  dw2_asm_output_data_uleb128 (r, NULL);
2120	  dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2121	  break;
2122
2123	case DW_CFA_restore_extended:
2124	case DW_CFA_undefined:
2125	case DW_CFA_same_value:
2126	case DW_CFA_def_cfa_register:
2127	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2128	  dw2_asm_output_data_uleb128 (r, NULL);
2129	  break;
2130
2131	case DW_CFA_register:
2132	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2133	  dw2_asm_output_data_uleb128 (r, NULL);
2134	  r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2135	  dw2_asm_output_data_uleb128 (r, NULL);
2136	  break;
2137
2138	case DW_CFA_def_cfa_offset:
2139	case DW_CFA_GNU_args_size:
2140	  dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2141	  break;
2142
2143	case DW_CFA_def_cfa_offset_sf:
2144	  dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2145	  break;
2146
2147	case DW_CFA_GNU_window_save:
2148	  break;
2149
2150	case DW_CFA_def_cfa_expression:
2151	case DW_CFA_expression:
2152	  output_cfa_loc (cfi);
2153	  break;
2154
2155	case DW_CFA_GNU_negative_offset_extended:
2156	  /* Obsoleted by DW_CFA_offset_extended_sf.  */
2157	  gcc_unreachable ();
2158
2159	default:
2160	  break;
2161	}
2162    }
2163}
2164
2165/* Output the call frame information used to record information
2166   that relates to calculating the frame pointer, and records the
2167   location of saved registers.  */
2168
2169static void
2170output_call_frame_info (int for_eh)
2171{
2172  unsigned int i;
2173  dw_fde_ref fde;
2174  dw_cfi_ref cfi;
2175  char l1[20], l2[20], section_start_label[20];
2176  bool any_lsda_needed = false;
2177  char augmentation[6];
2178  int augmentation_size;
2179  int fde_encoding = DW_EH_PE_absptr;
2180  int per_encoding = DW_EH_PE_absptr;
2181  int lsda_encoding = DW_EH_PE_absptr;
2182  int return_reg;
2183
2184  /* Don't emit a CIE if there won't be any FDEs.  */
2185  if (fde_table_in_use == 0)
2186    return;
2187
2188  /* If we make FDEs linkonce, we may have to emit an empty label for
2189     an FDE that wouldn't otherwise be emitted.  We want to avoid
2190     having an FDE kept around when the function it refers to is
2191     discarded.  Example where this matters: a primary function
2192     template in C++ requires EH information, but an explicit
2193     specialization doesn't.  */
2194  if (TARGET_USES_WEAK_UNWIND_INFO
2195      && ! flag_asynchronous_unwind_tables
2196      && for_eh)
2197    for (i = 0; i < fde_table_in_use; i++)
2198      if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2199          && !fde_table[i].uses_eh_lsda
2200	  && ! DECL_WEAK (fde_table[i].decl))
2201	targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2202				      for_eh, /* empty */ 1);
2203
2204  /* If we don't have any functions we'll want to unwind out of, don't
2205     emit any EH unwind information.  Note that if exceptions aren't
2206     enabled, we won't have collected nothrow information, and if we
2207     asked for asynchronous tables, we always want this info.  */
2208  if (for_eh)
2209    {
2210      bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2211
2212      for (i = 0; i < fde_table_in_use; i++)
2213	if (fde_table[i].uses_eh_lsda)
2214	  any_eh_needed = any_lsda_needed = true;
2215        else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2216	  any_eh_needed = true;
2217	else if (! fde_table[i].nothrow
2218		 && ! fde_table[i].all_throwers_are_sibcalls)
2219	  any_eh_needed = true;
2220
2221      if (! any_eh_needed)
2222	return;
2223    }
2224
2225  /* We're going to be generating comments, so turn on app.  */
2226  if (flag_debug_asm)
2227    app_enable ();
2228
2229  if (for_eh)
2230    switch_to_eh_frame_section ();
2231  else
2232    {
2233      if (!debug_frame_section)
2234	debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2235					   SECTION_DEBUG, NULL);
2236      switch_to_section (debug_frame_section);
2237    }
2238
2239  ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2240  ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2241
2242  /* Output the CIE.  */
2243  ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2244  ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2245  if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2246    dw2_asm_output_data (4, 0xffffffff,
2247      "Initial length escape value indicating 64-bit DWARF extension");
2248  dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2249			"Length of Common Information Entry");
2250  ASM_OUTPUT_LABEL (asm_out_file, l1);
2251
2252  /* Now that the CIE pointer is PC-relative for EH,
2253     use 0 to identify the CIE.  */
2254  dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2255		       (for_eh ? 0 : DWARF_CIE_ID),
2256		       "CIE Identifier Tag");
2257
2258  dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2259
2260  augmentation[0] = 0;
2261  augmentation_size = 0;
2262  if (for_eh)
2263    {
2264      char *p;
2265
2266      /* Augmentation:
2267	 z	Indicates that a uleb128 is present to size the
2268		augmentation section.
2269	 L	Indicates the encoding (and thus presence) of
2270		an LSDA pointer in the FDE augmentation.
2271	 R	Indicates a non-default pointer encoding for
2272		FDE code pointers.
2273	 P	Indicates the presence of an encoding + language
2274		personality routine in the CIE augmentation.  */
2275
2276      fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2277      per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2278      lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2279
2280      p = augmentation + 1;
2281      if (eh_personality_libfunc)
2282	{
2283	  *p++ = 'P';
2284	  augmentation_size += 1 + size_of_encoded_value (per_encoding);
2285	}
2286      if (any_lsda_needed)
2287	{
2288	  *p++ = 'L';
2289	  augmentation_size += 1;
2290	}
2291      if (fde_encoding != DW_EH_PE_absptr)
2292	{
2293	  *p++ = 'R';
2294	  augmentation_size += 1;
2295	}
2296      if (p > augmentation + 1)
2297	{
2298	  augmentation[0] = 'z';
2299	  *p = '\0';
2300	}
2301
2302      /* Ug.  Some platforms can't do unaligned dynamic relocations at all.  */
2303      if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2304	{
2305	  int offset = (  4		/* Length */
2306			+ 4		/* CIE Id */
2307			+ 1		/* CIE version */
2308			+ strlen (augmentation) + 1	/* Augmentation */
2309			+ size_of_uleb128 (1)		/* Code alignment */
2310			+ size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2311			+ 1		/* RA column */
2312			+ 1		/* Augmentation size */
2313			+ 1		/* Personality encoding */ );
2314	  int pad = -offset & (PTR_SIZE - 1);
2315
2316	  augmentation_size += pad;
2317
2318	  /* Augmentations should be small, so there's scarce need to
2319	     iterate for a solution.  Die if we exceed one uleb128 byte.  */
2320	  gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2321	}
2322    }
2323
2324  dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2325  dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2326  dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2327			       "CIE Data Alignment Factor");
2328
2329  return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2330  if (DW_CIE_VERSION == 1)
2331    dw2_asm_output_data (1, return_reg, "CIE RA Column");
2332  else
2333    dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2334
2335  if (augmentation[0])
2336    {
2337      dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2338      if (eh_personality_libfunc)
2339	{
2340	  dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2341			       eh_data_format_name (per_encoding));
2342	  dw2_asm_output_encoded_addr_rtx (per_encoding,
2343					   eh_personality_libfunc,
2344					   true, NULL);
2345	}
2346
2347      if (any_lsda_needed)
2348	dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2349			     eh_data_format_name (lsda_encoding));
2350
2351      if (fde_encoding != DW_EH_PE_absptr)
2352	dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2353			     eh_data_format_name (fde_encoding));
2354    }
2355
2356  for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2357    output_cfi (cfi, NULL, for_eh);
2358
2359  /* Pad the CIE out to an address sized boundary.  */
2360  ASM_OUTPUT_ALIGN (asm_out_file,
2361		    floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2362  ASM_OUTPUT_LABEL (asm_out_file, l2);
2363
2364  /* Loop through all of the FDE's.  */
2365  for (i = 0; i < fde_table_in_use; i++)
2366    {
2367      fde = &fde_table[i];
2368
2369      /* Don't emit EH unwind info for leaf functions that don't need it.  */
2370      if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2371	  && (fde->nothrow || fde->all_throwers_are_sibcalls)
2372	  && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2373	  && !fde->uses_eh_lsda)
2374	continue;
2375
2376      targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2377      targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2378      ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2379      ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2380      if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2381	dw2_asm_output_data (4, 0xffffffff,
2382			     "Initial length escape value indicating 64-bit DWARF extension");
2383      dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2384			    "FDE Length");
2385      ASM_OUTPUT_LABEL (asm_out_file, l1);
2386
2387      if (for_eh)
2388	dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2389      else
2390	dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2391			       debug_frame_section, "FDE CIE offset");
2392
2393      if (for_eh)
2394	{
2395	  rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2396	  SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2397	  dw2_asm_output_encoded_addr_rtx (fde_encoding,
2398					   sym_ref,
2399					   false,
2400					   "FDE initial location");
2401	  if (fde->dw_fde_switched_sections)
2402	    {
2403	      rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2404				      fde->dw_fde_unlikely_section_label);
2405	      rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2406				      fde->dw_fde_hot_section_label);
2407	      SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2408	      SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2409	      dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2410					       "FDE initial location");
2411	      dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2412				    fde->dw_fde_hot_section_end_label,
2413				    fde->dw_fde_hot_section_label,
2414				    "FDE address range");
2415	      dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2416					       "FDE initial location");
2417	      dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2418				    fde->dw_fde_unlikely_section_end_label,
2419				    fde->dw_fde_unlikely_section_label,
2420				    "FDE address range");
2421	    }
2422	  else
2423	    dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2424				  fde->dw_fde_end, fde->dw_fde_begin,
2425				  "FDE address range");
2426	}
2427      else
2428	{
2429	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2430			       "FDE initial location");
2431	  if (fde->dw_fde_switched_sections)
2432	    {
2433	      dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2434				   fde->dw_fde_hot_section_label,
2435				   "FDE initial location");
2436	      dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2437				    fde->dw_fde_hot_section_end_label,
2438				    fde->dw_fde_hot_section_label,
2439				    "FDE address range");
2440	      dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2441				   fde->dw_fde_unlikely_section_label,
2442				   "FDE initial location");
2443	      dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2444				    fde->dw_fde_unlikely_section_end_label,
2445				    fde->dw_fde_unlikely_section_label,
2446				    "FDE address range");
2447	    }
2448	  else
2449	    dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2450				  fde->dw_fde_end, fde->dw_fde_begin,
2451				  "FDE address range");
2452	}
2453
2454      if (augmentation[0])
2455	{
2456	  if (any_lsda_needed)
2457	    {
2458	      int size = size_of_encoded_value (lsda_encoding);
2459
2460	      if (lsda_encoding == DW_EH_PE_aligned)
2461		{
2462		  int offset = (  4		/* Length */
2463				+ 4		/* CIE offset */
2464				+ 2 * size_of_encoded_value (fde_encoding)
2465				+ 1		/* Augmentation size */ );
2466		  int pad = -offset & (PTR_SIZE - 1);
2467
2468		  size += pad;
2469		  gcc_assert (size_of_uleb128 (size) == 1);
2470		}
2471
2472	      dw2_asm_output_data_uleb128 (size, "Augmentation size");
2473
2474	      if (fde->uses_eh_lsda)
2475		{
2476		  ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2477					       fde->funcdef_number);
2478		  dw2_asm_output_encoded_addr_rtx (
2479			lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2480			false, "Language Specific Data Area");
2481		}
2482	      else
2483		{
2484		  if (lsda_encoding == DW_EH_PE_aligned)
2485		    ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2486		  dw2_asm_output_data
2487		    (size_of_encoded_value (lsda_encoding), 0,
2488		     "Language Specific Data Area (none)");
2489		}
2490	    }
2491	  else
2492	    dw2_asm_output_data_uleb128 (0, "Augmentation size");
2493	}
2494
2495      /* Loop through the Call Frame Instructions associated with
2496	 this FDE.  */
2497      fde->dw_fde_current_label = fde->dw_fde_begin;
2498      for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2499	output_cfi (cfi, fde, for_eh);
2500
2501      /* Pad the FDE out to an address sized boundary.  */
2502      ASM_OUTPUT_ALIGN (asm_out_file,
2503			floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2504      ASM_OUTPUT_LABEL (asm_out_file, l2);
2505    }
2506
2507  if (for_eh && targetm.terminate_dw2_eh_frame_info)
2508    dw2_asm_output_data (4, 0, "End of Table");
2509#ifdef MIPS_DEBUGGING_INFO
2510  /* Work around Irix 6 assembler bug whereby labels at the end of a section
2511     get a value of 0.  Putting .align 0 after the label fixes it.  */
2512  ASM_OUTPUT_ALIGN (asm_out_file, 0);
2513#endif
2514
2515  /* Turn off app to make assembly quicker.  */
2516  if (flag_debug_asm)
2517    app_disable ();
2518}
2519
2520/* Output a marker (i.e. a label) for the beginning of a function, before
2521   the prologue.  */
2522
2523void
2524dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2525			  const char *file ATTRIBUTE_UNUSED)
2526{
2527  char label[MAX_ARTIFICIAL_LABEL_BYTES];
2528  char * dup_label;
2529  dw_fde_ref fde;
2530
2531  current_function_func_begin_label = NULL;
2532
2533#ifdef TARGET_UNWIND_INFO
2534  /* ??? current_function_func_begin_label is also used by except.c
2535     for call-site information.  We must emit this label if it might
2536     be used.  */
2537  if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2538      && ! dwarf2out_do_frame ())
2539    return;
2540#else
2541  if (! dwarf2out_do_frame ())
2542    return;
2543#endif
2544
2545  switch_to_section (function_section (current_function_decl));
2546  ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2547			       current_function_funcdef_no);
2548  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2549			  current_function_funcdef_no);
2550  dup_label = xstrdup (label);
2551  current_function_func_begin_label = dup_label;
2552
2553#ifdef TARGET_UNWIND_INFO
2554  /* We can elide the fde allocation if we're not emitting debug info.  */
2555  if (! dwarf2out_do_frame ())
2556    return;
2557#endif
2558
2559  /* Expand the fde table if necessary.  */
2560  if (fde_table_in_use == fde_table_allocated)
2561    {
2562      fde_table_allocated += FDE_TABLE_INCREMENT;
2563      fde_table = ggc_realloc (fde_table,
2564			       fde_table_allocated * sizeof (dw_fde_node));
2565      memset (fde_table + fde_table_in_use, 0,
2566	      FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2567    }
2568
2569  /* Record the FDE associated with this function.  */
2570  current_funcdef_fde = fde_table_in_use;
2571
2572  /* Add the new FDE at the end of the fde_table.  */
2573  fde = &fde_table[fde_table_in_use++];
2574  fde->decl = current_function_decl;
2575  fde->dw_fde_begin = dup_label;
2576  fde->dw_fde_current_label = dup_label;
2577  fde->dw_fde_hot_section_label = NULL;
2578  fde->dw_fde_hot_section_end_label = NULL;
2579  fde->dw_fde_unlikely_section_label = NULL;
2580  fde->dw_fde_unlikely_section_end_label = NULL;
2581  fde->dw_fde_switched_sections = false;
2582  fde->dw_fde_end = NULL;
2583  fde->dw_fde_cfi = NULL;
2584  fde->funcdef_number = current_function_funcdef_no;
2585  fde->nothrow = TREE_NOTHROW (current_function_decl);
2586  fde->uses_eh_lsda = cfun->uses_eh_lsda;
2587  fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2588
2589  args_size = old_args_size = 0;
2590
2591  /* We only want to output line number information for the genuine dwarf2
2592     prologue case, not the eh frame case.  */
2593#ifdef DWARF2_DEBUGGING_INFO
2594  if (file)
2595    dwarf2out_source_line (line, file);
2596#endif
2597}
2598
2599/* Output a marker (i.e. a label) for the absolute end of the generated code
2600   for a function definition.  This gets called *after* the epilogue code has
2601   been generated.  */
2602
2603void
2604dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2605			const char *file ATTRIBUTE_UNUSED)
2606{
2607  dw_fde_ref fde;
2608  char label[MAX_ARTIFICIAL_LABEL_BYTES];
2609
2610  /* Output a label to mark the endpoint of the code generated for this
2611     function.  */
2612  ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2613			       current_function_funcdef_no);
2614  ASM_OUTPUT_LABEL (asm_out_file, label);
2615  fde = &fde_table[fde_table_in_use - 1];
2616  fde->dw_fde_end = xstrdup (label);
2617}
2618
2619void
2620dwarf2out_frame_init (void)
2621{
2622  /* Allocate the initial hunk of the fde_table.  */
2623  fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2624  fde_table_allocated = FDE_TABLE_INCREMENT;
2625  fde_table_in_use = 0;
2626
2627  /* Generate the CFA instructions common to all FDE's.  Do it now for the
2628     sake of lookup_cfa.  */
2629
2630  /* On entry, the Canonical Frame Address is at SP.  */
2631  dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2632
2633#ifdef DWARF2_UNWIND_INFO
2634  if (DWARF2_UNWIND_INFO)
2635    initial_return_save (INCOMING_RETURN_ADDR_RTX);
2636#endif
2637}
2638
2639void
2640dwarf2out_frame_finish (void)
2641{
2642  /* Output call frame information.  */
2643  if (DWARF2_FRAME_INFO)
2644    output_call_frame_info (0);
2645
2646#ifndef TARGET_UNWIND_INFO
2647  /* Output another copy for the unwinder.  */
2648  if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2649    output_call_frame_info (1);
2650#endif
2651}
2652#endif
2653
2654/* And now, the subset of the debugging information support code necessary
2655   for emitting location expressions.  */
2656
2657/* Data about a single source file.  */
2658struct dwarf_file_data GTY(())
2659{
2660  const char * filename;
2661  int emitted_number;
2662};
2663
2664/* We need some way to distinguish DW_OP_addr with a direct symbol
2665   relocation from DW_OP_addr with a dtp-relative symbol relocation.  */
2666#define INTERNAL_DW_OP_tls_addr		(0x100 + DW_OP_addr)
2667
2668
2669typedef struct dw_val_struct *dw_val_ref;
2670typedef struct die_struct *dw_die_ref;
2671typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2672typedef struct dw_loc_list_struct *dw_loc_list_ref;
2673
2674/* Each DIE may have a series of attribute/value pairs.  Values
2675   can take on several forms.  The forms that are used in this
2676   implementation are listed below.  */
2677
2678enum dw_val_class
2679{
2680  dw_val_class_addr,
2681  dw_val_class_offset,
2682  dw_val_class_loc,
2683  dw_val_class_loc_list,
2684  dw_val_class_range_list,
2685  dw_val_class_const,
2686  dw_val_class_unsigned_const,
2687  dw_val_class_long_long,
2688  dw_val_class_vec,
2689  dw_val_class_flag,
2690  dw_val_class_die_ref,
2691  dw_val_class_fde_ref,
2692  dw_val_class_lbl_id,
2693  dw_val_class_lineptr,
2694  dw_val_class_str,
2695  dw_val_class_macptr,
2696  dw_val_class_file
2697};
2698
2699/* Describe a double word constant value.  */
2700/* ??? Every instance of long_long in the code really means CONST_DOUBLE.  */
2701
2702typedef struct dw_long_long_struct GTY(())
2703{
2704  unsigned long hi;
2705  unsigned long low;
2706}
2707dw_long_long_const;
2708
2709/* Describe a floating point constant value, or a vector constant value.  */
2710
2711typedef struct dw_vec_struct GTY(())
2712{
2713  unsigned char * GTY((length ("%h.length"))) array;
2714  unsigned length;
2715  unsigned elt_size;
2716}
2717dw_vec_const;
2718
2719/* The dw_val_node describes an attribute's value, as it is
2720   represented internally.  */
2721
2722typedef struct dw_val_struct GTY(())
2723{
2724  enum dw_val_class val_class;
2725  union dw_val_struct_union
2726    {
2727      rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2728      unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2729      dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2730      dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2731      HOST_WIDE_INT GTY ((default)) val_int;
2732      unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2733      dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2734      dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2735      struct dw_val_die_union
2736	{
2737	  dw_die_ref die;
2738	  int external;
2739	} GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2740      unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2741      struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2742      char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2743      unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2744      struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2745    }
2746  GTY ((desc ("%1.val_class"))) v;
2747}
2748dw_val_node;
2749
2750/* Locations in memory are described using a sequence of stack machine
2751   operations.  */
2752
2753typedef struct dw_loc_descr_struct GTY(())
2754{
2755  dw_loc_descr_ref dw_loc_next;
2756  enum dwarf_location_atom dw_loc_opc;
2757  dw_val_node dw_loc_oprnd1;
2758  dw_val_node dw_loc_oprnd2;
2759  int dw_loc_addr;
2760}
2761dw_loc_descr_node;
2762
2763/* Location lists are ranges + location descriptions for that range,
2764   so you can track variables that are in different places over
2765   their entire life.  */
2766typedef struct dw_loc_list_struct GTY(())
2767{
2768  dw_loc_list_ref dw_loc_next;
2769  const char *begin; /* Label for begin address of range */
2770  const char *end;  /* Label for end address of range */
2771  char *ll_symbol; /* Label for beginning of location list.
2772		      Only on head of list */
2773  const char *section; /* Section this loclist is relative to */
2774  dw_loc_descr_ref expr;
2775} dw_loc_list_node;
2776
2777#if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2778
2779static const char *dwarf_stack_op_name (unsigned);
2780static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2781				       unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2782static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2783static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2784static unsigned long size_of_locs (dw_loc_descr_ref);
2785static void output_loc_operands (dw_loc_descr_ref);
2786static void output_loc_sequence (dw_loc_descr_ref);
2787
2788/* Convert a DWARF stack opcode into its string name.  */
2789
2790static const char *
2791dwarf_stack_op_name (unsigned int op)
2792{
2793  switch (op)
2794    {
2795    case DW_OP_addr:
2796    case INTERNAL_DW_OP_tls_addr:
2797      return "DW_OP_addr";
2798    case DW_OP_deref:
2799      return "DW_OP_deref";
2800    case DW_OP_const1u:
2801      return "DW_OP_const1u";
2802    case DW_OP_const1s:
2803      return "DW_OP_const1s";
2804    case DW_OP_const2u:
2805      return "DW_OP_const2u";
2806    case DW_OP_const2s:
2807      return "DW_OP_const2s";
2808    case DW_OP_const4u:
2809      return "DW_OP_const4u";
2810    case DW_OP_const4s:
2811      return "DW_OP_const4s";
2812    case DW_OP_const8u:
2813      return "DW_OP_const8u";
2814    case DW_OP_const8s:
2815      return "DW_OP_const8s";
2816    case DW_OP_constu:
2817      return "DW_OP_constu";
2818    case DW_OP_consts:
2819      return "DW_OP_consts";
2820    case DW_OP_dup:
2821      return "DW_OP_dup";
2822    case DW_OP_drop:
2823      return "DW_OP_drop";
2824    case DW_OP_over:
2825      return "DW_OP_over";
2826    case DW_OP_pick:
2827      return "DW_OP_pick";
2828    case DW_OP_swap:
2829      return "DW_OP_swap";
2830    case DW_OP_rot:
2831      return "DW_OP_rot";
2832    case DW_OP_xderef:
2833      return "DW_OP_xderef";
2834    case DW_OP_abs:
2835      return "DW_OP_abs";
2836    case DW_OP_and:
2837      return "DW_OP_and";
2838    case DW_OP_div:
2839      return "DW_OP_div";
2840    case DW_OP_minus:
2841      return "DW_OP_minus";
2842    case DW_OP_mod:
2843      return "DW_OP_mod";
2844    case DW_OP_mul:
2845      return "DW_OP_mul";
2846    case DW_OP_neg:
2847      return "DW_OP_neg";
2848    case DW_OP_not:
2849      return "DW_OP_not";
2850    case DW_OP_or:
2851      return "DW_OP_or";
2852    case DW_OP_plus:
2853      return "DW_OP_plus";
2854    case DW_OP_plus_uconst:
2855      return "DW_OP_plus_uconst";
2856    case DW_OP_shl:
2857      return "DW_OP_shl";
2858    case DW_OP_shr:
2859      return "DW_OP_shr";
2860    case DW_OP_shra:
2861      return "DW_OP_shra";
2862    case DW_OP_xor:
2863      return "DW_OP_xor";
2864    case DW_OP_bra:
2865      return "DW_OP_bra";
2866    case DW_OP_eq:
2867      return "DW_OP_eq";
2868    case DW_OP_ge:
2869      return "DW_OP_ge";
2870    case DW_OP_gt:
2871      return "DW_OP_gt";
2872    case DW_OP_le:
2873      return "DW_OP_le";
2874    case DW_OP_lt:
2875      return "DW_OP_lt";
2876    case DW_OP_ne:
2877      return "DW_OP_ne";
2878    case DW_OP_skip:
2879      return "DW_OP_skip";
2880    case DW_OP_lit0:
2881      return "DW_OP_lit0";
2882    case DW_OP_lit1:
2883      return "DW_OP_lit1";
2884    case DW_OP_lit2:
2885      return "DW_OP_lit2";
2886    case DW_OP_lit3:
2887      return "DW_OP_lit3";
2888    case DW_OP_lit4:
2889      return "DW_OP_lit4";
2890    case DW_OP_lit5:
2891      return "DW_OP_lit5";
2892    case DW_OP_lit6:
2893      return "DW_OP_lit6";
2894    case DW_OP_lit7:
2895      return "DW_OP_lit7";
2896    case DW_OP_lit8:
2897      return "DW_OP_lit8";
2898    case DW_OP_lit9:
2899      return "DW_OP_lit9";
2900    case DW_OP_lit10:
2901      return "DW_OP_lit10";
2902    case DW_OP_lit11:
2903      return "DW_OP_lit11";
2904    case DW_OP_lit12:
2905      return "DW_OP_lit12";
2906    case DW_OP_lit13:
2907      return "DW_OP_lit13";
2908    case DW_OP_lit14:
2909      return "DW_OP_lit14";
2910    case DW_OP_lit15:
2911      return "DW_OP_lit15";
2912    case DW_OP_lit16:
2913      return "DW_OP_lit16";
2914    case DW_OP_lit17:
2915      return "DW_OP_lit17";
2916    case DW_OP_lit18:
2917      return "DW_OP_lit18";
2918    case DW_OP_lit19:
2919      return "DW_OP_lit19";
2920    case DW_OP_lit20:
2921      return "DW_OP_lit20";
2922    case DW_OP_lit21:
2923      return "DW_OP_lit21";
2924    case DW_OP_lit22:
2925      return "DW_OP_lit22";
2926    case DW_OP_lit23:
2927      return "DW_OP_lit23";
2928    case DW_OP_lit24:
2929      return "DW_OP_lit24";
2930    case DW_OP_lit25:
2931      return "DW_OP_lit25";
2932    case DW_OP_lit26:
2933      return "DW_OP_lit26";
2934    case DW_OP_lit27:
2935      return "DW_OP_lit27";
2936    case DW_OP_lit28:
2937      return "DW_OP_lit28";
2938    case DW_OP_lit29:
2939      return "DW_OP_lit29";
2940    case DW_OP_lit30:
2941      return "DW_OP_lit30";
2942    case DW_OP_lit31:
2943      return "DW_OP_lit31";
2944    case DW_OP_reg0:
2945      return "DW_OP_reg0";
2946    case DW_OP_reg1:
2947      return "DW_OP_reg1";
2948    case DW_OP_reg2:
2949      return "DW_OP_reg2";
2950    case DW_OP_reg3:
2951      return "DW_OP_reg3";
2952    case DW_OP_reg4:
2953      return "DW_OP_reg4";
2954    case DW_OP_reg5:
2955      return "DW_OP_reg5";
2956    case DW_OP_reg6:
2957      return "DW_OP_reg6";
2958    case DW_OP_reg7:
2959      return "DW_OP_reg7";
2960    case DW_OP_reg8:
2961      return "DW_OP_reg8";
2962    case DW_OP_reg9:
2963      return "DW_OP_reg9";
2964    case DW_OP_reg10:
2965      return "DW_OP_reg10";
2966    case DW_OP_reg11:
2967      return "DW_OP_reg11";
2968    case DW_OP_reg12:
2969      return "DW_OP_reg12";
2970    case DW_OP_reg13:
2971      return "DW_OP_reg13";
2972    case DW_OP_reg14:
2973      return "DW_OP_reg14";
2974    case DW_OP_reg15:
2975      return "DW_OP_reg15";
2976    case DW_OP_reg16:
2977      return "DW_OP_reg16";
2978    case DW_OP_reg17:
2979      return "DW_OP_reg17";
2980    case DW_OP_reg18:
2981      return "DW_OP_reg18";
2982    case DW_OP_reg19:
2983      return "DW_OP_reg19";
2984    case DW_OP_reg20:
2985      return "DW_OP_reg20";
2986    case DW_OP_reg21:
2987      return "DW_OP_reg21";
2988    case DW_OP_reg22:
2989      return "DW_OP_reg22";
2990    case DW_OP_reg23:
2991      return "DW_OP_reg23";
2992    case DW_OP_reg24:
2993      return "DW_OP_reg24";
2994    case DW_OP_reg25:
2995      return "DW_OP_reg25";
2996    case DW_OP_reg26:
2997      return "DW_OP_reg26";
2998    case DW_OP_reg27:
2999      return "DW_OP_reg27";
3000    case DW_OP_reg28:
3001      return "DW_OP_reg28";
3002    case DW_OP_reg29:
3003      return "DW_OP_reg29";
3004    case DW_OP_reg30:
3005      return "DW_OP_reg30";
3006    case DW_OP_reg31:
3007      return "DW_OP_reg31";
3008    case DW_OP_breg0:
3009      return "DW_OP_breg0";
3010    case DW_OP_breg1:
3011      return "DW_OP_breg1";
3012    case DW_OP_breg2:
3013      return "DW_OP_breg2";
3014    case DW_OP_breg3:
3015      return "DW_OP_breg3";
3016    case DW_OP_breg4:
3017      return "DW_OP_breg4";
3018    case DW_OP_breg5:
3019      return "DW_OP_breg5";
3020    case DW_OP_breg6:
3021      return "DW_OP_breg6";
3022    case DW_OP_breg7:
3023      return "DW_OP_breg7";
3024    case DW_OP_breg8:
3025      return "DW_OP_breg8";
3026    case DW_OP_breg9:
3027      return "DW_OP_breg9";
3028    case DW_OP_breg10:
3029      return "DW_OP_breg10";
3030    case DW_OP_breg11:
3031      return "DW_OP_breg11";
3032    case DW_OP_breg12:
3033      return "DW_OP_breg12";
3034    case DW_OP_breg13:
3035      return "DW_OP_breg13";
3036    case DW_OP_breg14:
3037      return "DW_OP_breg14";
3038    case DW_OP_breg15:
3039      return "DW_OP_breg15";
3040    case DW_OP_breg16:
3041      return "DW_OP_breg16";
3042    case DW_OP_breg17:
3043      return "DW_OP_breg17";
3044    case DW_OP_breg18:
3045      return "DW_OP_breg18";
3046    case DW_OP_breg19:
3047      return "DW_OP_breg19";
3048    case DW_OP_breg20:
3049      return "DW_OP_breg20";
3050    case DW_OP_breg21:
3051      return "DW_OP_breg21";
3052    case DW_OP_breg22:
3053      return "DW_OP_breg22";
3054    case DW_OP_breg23:
3055      return "DW_OP_breg23";
3056    case DW_OP_breg24:
3057      return "DW_OP_breg24";
3058    case DW_OP_breg25:
3059      return "DW_OP_breg25";
3060    case DW_OP_breg26:
3061      return "DW_OP_breg26";
3062    case DW_OP_breg27:
3063      return "DW_OP_breg27";
3064    case DW_OP_breg28:
3065      return "DW_OP_breg28";
3066    case DW_OP_breg29:
3067      return "DW_OP_breg29";
3068    case DW_OP_breg30:
3069      return "DW_OP_breg30";
3070    case DW_OP_breg31:
3071      return "DW_OP_breg31";
3072    case DW_OP_regx:
3073      return "DW_OP_regx";
3074    case DW_OP_fbreg:
3075      return "DW_OP_fbreg";
3076    case DW_OP_bregx:
3077      return "DW_OP_bregx";
3078    case DW_OP_piece:
3079      return "DW_OP_piece";
3080    case DW_OP_deref_size:
3081      return "DW_OP_deref_size";
3082    case DW_OP_xderef_size:
3083      return "DW_OP_xderef_size";
3084    case DW_OP_nop:
3085      return "DW_OP_nop";
3086    case DW_OP_push_object_address:
3087      return "DW_OP_push_object_address";
3088    case DW_OP_call2:
3089      return "DW_OP_call2";
3090    case DW_OP_call4:
3091      return "DW_OP_call4";
3092    case DW_OP_call_ref:
3093      return "DW_OP_call_ref";
3094    case DW_OP_GNU_push_tls_address:
3095      return "DW_OP_GNU_push_tls_address";
3096    default:
3097      return "OP_<unknown>";
3098    }
3099}
3100
3101/* Return a pointer to a newly allocated location description.  Location
3102   descriptions are simple expression terms that can be strung
3103   together to form more complicated location (address) descriptions.  */
3104
3105static inline dw_loc_descr_ref
3106new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3107	       unsigned HOST_WIDE_INT oprnd2)
3108{
3109  dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3110
3111  descr->dw_loc_opc = op;
3112  descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3113  descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3114  descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3115  descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3116
3117  return descr;
3118}
3119
3120/* Add a location description term to a location description expression.  */
3121
3122static inline void
3123add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3124{
3125  dw_loc_descr_ref *d;
3126
3127  /* Find the end of the chain.  */
3128  for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3129    ;
3130
3131  *d = descr;
3132}
3133
3134/* Return the size of a location descriptor.  */
3135
3136static unsigned long
3137size_of_loc_descr (dw_loc_descr_ref loc)
3138{
3139  unsigned long size = 1;
3140
3141  switch (loc->dw_loc_opc)
3142    {
3143    case DW_OP_addr:
3144    case INTERNAL_DW_OP_tls_addr:
3145      size += DWARF2_ADDR_SIZE;
3146      break;
3147    case DW_OP_const1u:
3148    case DW_OP_const1s:
3149      size += 1;
3150      break;
3151    case DW_OP_const2u:
3152    case DW_OP_const2s:
3153      size += 2;
3154      break;
3155    case DW_OP_const4u:
3156    case DW_OP_const4s:
3157      size += 4;
3158      break;
3159    case DW_OP_const8u:
3160    case DW_OP_const8s:
3161      size += 8;
3162      break;
3163    case DW_OP_constu:
3164      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3165      break;
3166    case DW_OP_consts:
3167      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3168      break;
3169    case DW_OP_pick:
3170      size += 1;
3171      break;
3172    case DW_OP_plus_uconst:
3173      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3174      break;
3175    case DW_OP_skip:
3176    case DW_OP_bra:
3177      size += 2;
3178      break;
3179    case DW_OP_breg0:
3180    case DW_OP_breg1:
3181    case DW_OP_breg2:
3182    case DW_OP_breg3:
3183    case DW_OP_breg4:
3184    case DW_OP_breg5:
3185    case DW_OP_breg6:
3186    case DW_OP_breg7:
3187    case DW_OP_breg8:
3188    case DW_OP_breg9:
3189    case DW_OP_breg10:
3190    case DW_OP_breg11:
3191    case DW_OP_breg12:
3192    case DW_OP_breg13:
3193    case DW_OP_breg14:
3194    case DW_OP_breg15:
3195    case DW_OP_breg16:
3196    case DW_OP_breg17:
3197    case DW_OP_breg18:
3198    case DW_OP_breg19:
3199    case DW_OP_breg20:
3200    case DW_OP_breg21:
3201    case DW_OP_breg22:
3202    case DW_OP_breg23:
3203    case DW_OP_breg24:
3204    case DW_OP_breg25:
3205    case DW_OP_breg26:
3206    case DW_OP_breg27:
3207    case DW_OP_breg28:
3208    case DW_OP_breg29:
3209    case DW_OP_breg30:
3210    case DW_OP_breg31:
3211      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3212      break;
3213    case DW_OP_regx:
3214      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3215      break;
3216    case DW_OP_fbreg:
3217      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3218      break;
3219    case DW_OP_bregx:
3220      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3221      size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3222      break;
3223    case DW_OP_piece:
3224      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3225      break;
3226    case DW_OP_deref_size:
3227    case DW_OP_xderef_size:
3228      size += 1;
3229      break;
3230    case DW_OP_call2:
3231      size += 2;
3232      break;
3233    case DW_OP_call4:
3234      size += 4;
3235      break;
3236    case DW_OP_call_ref:
3237      size += DWARF2_ADDR_SIZE;
3238      break;
3239    default:
3240      break;
3241    }
3242
3243  return size;
3244}
3245
3246/* Return the size of a series of location descriptors.  */
3247
3248static unsigned long
3249size_of_locs (dw_loc_descr_ref loc)
3250{
3251  dw_loc_descr_ref l;
3252  unsigned long size;
3253
3254  /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3255     field, to avoid writing to a PCH file.  */
3256  for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3257    {
3258      if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3259	break;
3260      size += size_of_loc_descr (l);
3261    }
3262  if (! l)
3263    return size;
3264
3265  for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3266    {
3267      l->dw_loc_addr = size;
3268      size += size_of_loc_descr (l);
3269    }
3270
3271  return size;
3272}
3273
3274/* Output location description stack opcode's operands (if any).  */
3275
3276static void
3277output_loc_operands (dw_loc_descr_ref loc)
3278{
3279  dw_val_ref val1 = &loc->dw_loc_oprnd1;
3280  dw_val_ref val2 = &loc->dw_loc_oprnd2;
3281
3282  switch (loc->dw_loc_opc)
3283    {
3284#ifdef DWARF2_DEBUGGING_INFO
3285    case DW_OP_addr:
3286      dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3287      break;
3288    case DW_OP_const2u:
3289    case DW_OP_const2s:
3290      dw2_asm_output_data (2, val1->v.val_int, NULL);
3291      break;
3292    case DW_OP_const4u:
3293    case DW_OP_const4s:
3294      dw2_asm_output_data (4, val1->v.val_int, NULL);
3295      break;
3296    case DW_OP_const8u:
3297    case DW_OP_const8s:
3298      gcc_assert (HOST_BITS_PER_LONG >= 64);
3299      dw2_asm_output_data (8, val1->v.val_int, NULL);
3300      break;
3301    case DW_OP_skip:
3302    case DW_OP_bra:
3303      {
3304	int offset;
3305
3306	gcc_assert (val1->val_class == dw_val_class_loc);
3307	offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3308
3309	dw2_asm_output_data (2, offset, NULL);
3310      }
3311      break;
3312#else
3313    case DW_OP_addr:
3314    case DW_OP_const2u:
3315    case DW_OP_const2s:
3316    case DW_OP_const4u:
3317    case DW_OP_const4s:
3318    case DW_OP_const8u:
3319    case DW_OP_const8s:
3320    case DW_OP_skip:
3321    case DW_OP_bra:
3322      /* We currently don't make any attempt to make sure these are
3323	 aligned properly like we do for the main unwind info, so
3324	 don't support emitting things larger than a byte if we're
3325	 only doing unwinding.  */
3326      gcc_unreachable ();
3327#endif
3328    case DW_OP_const1u:
3329    case DW_OP_const1s:
3330      dw2_asm_output_data (1, val1->v.val_int, NULL);
3331      break;
3332    case DW_OP_constu:
3333      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3334      break;
3335    case DW_OP_consts:
3336      dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3337      break;
3338    case DW_OP_pick:
3339      dw2_asm_output_data (1, val1->v.val_int, NULL);
3340      break;
3341    case DW_OP_plus_uconst:
3342      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3343      break;
3344    case DW_OP_breg0:
3345    case DW_OP_breg1:
3346    case DW_OP_breg2:
3347    case DW_OP_breg3:
3348    case DW_OP_breg4:
3349    case DW_OP_breg5:
3350    case DW_OP_breg6:
3351    case DW_OP_breg7:
3352    case DW_OP_breg8:
3353    case DW_OP_breg9:
3354    case DW_OP_breg10:
3355    case DW_OP_breg11:
3356    case DW_OP_breg12:
3357    case DW_OP_breg13:
3358    case DW_OP_breg14:
3359    case DW_OP_breg15:
3360    case DW_OP_breg16:
3361    case DW_OP_breg17:
3362    case DW_OP_breg18:
3363    case DW_OP_breg19:
3364    case DW_OP_breg20:
3365    case DW_OP_breg21:
3366    case DW_OP_breg22:
3367    case DW_OP_breg23:
3368    case DW_OP_breg24:
3369    case DW_OP_breg25:
3370    case DW_OP_breg26:
3371    case DW_OP_breg27:
3372    case DW_OP_breg28:
3373    case DW_OP_breg29:
3374    case DW_OP_breg30:
3375    case DW_OP_breg31:
3376      dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3377      break;
3378    case DW_OP_regx:
3379      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3380      break;
3381    case DW_OP_fbreg:
3382      dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3383      break;
3384    case DW_OP_bregx:
3385      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3386      dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3387      break;
3388    case DW_OP_piece:
3389      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3390      break;
3391    case DW_OP_deref_size:
3392    case DW_OP_xderef_size:
3393      dw2_asm_output_data (1, val1->v.val_int, NULL);
3394      break;
3395
3396    case INTERNAL_DW_OP_tls_addr:
3397      if (targetm.asm_out.output_dwarf_dtprel)
3398	{
3399	  targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3400					       DWARF2_ADDR_SIZE,
3401					       val1->v.val_addr);
3402	  fputc ('\n', asm_out_file);
3403	}
3404      else
3405	gcc_unreachable ();
3406      break;
3407
3408    default:
3409      /* Other codes have no operands.  */
3410      break;
3411    }
3412}
3413
3414/* Output a sequence of location operations.  */
3415
3416static void
3417output_loc_sequence (dw_loc_descr_ref loc)
3418{
3419  for (; loc != NULL; loc = loc->dw_loc_next)
3420    {
3421      /* Output the opcode.  */
3422      dw2_asm_output_data (1, loc->dw_loc_opc,
3423			   "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3424
3425      /* Output the operand(s) (if any).  */
3426      output_loc_operands (loc);
3427    }
3428}
3429
3430/* This routine will generate the correct assembly data for a location
3431   description based on a cfi entry with a complex address.  */
3432
3433static void
3434output_cfa_loc (dw_cfi_ref cfi)
3435{
3436  dw_loc_descr_ref loc;
3437  unsigned long size;
3438
3439  /* Output the size of the block.  */
3440  loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3441  size = size_of_locs (loc);
3442  dw2_asm_output_data_uleb128 (size, NULL);
3443
3444  /* Now output the operations themselves.  */
3445  output_loc_sequence (loc);
3446}
3447
3448/* This function builds a dwarf location descriptor sequence from a
3449   dw_cfa_location, adding the given OFFSET to the result of the
3450   expression.  */
3451
3452static struct dw_loc_descr_struct *
3453build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3454{
3455  struct dw_loc_descr_struct *head, *tmp;
3456
3457  offset += cfa->offset;
3458
3459  if (cfa->indirect)
3460    {
3461      if (cfa->base_offset)
3462	{
3463	  if (cfa->reg <= 31)
3464	    head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3465	  else
3466	    head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3467	}
3468      else if (cfa->reg <= 31)
3469	head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3470      else
3471	head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3472
3473      head->dw_loc_oprnd1.val_class = dw_val_class_const;
3474      tmp = new_loc_descr (DW_OP_deref, 0, 0);
3475      add_loc_descr (&head, tmp);
3476      if (offset != 0)
3477	{
3478	  tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3479	  add_loc_descr (&head, tmp);
3480	}
3481    }
3482  else
3483    {
3484      if (offset == 0)
3485	if (cfa->reg <= 31)
3486	  head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3487	else
3488	  head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3489      else if (cfa->reg <= 31)
3490	head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3491      else
3492	head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3493    }
3494
3495  return head;
3496}
3497
3498/* This function fills in aa dw_cfa_location structure from a dwarf location
3499   descriptor sequence.  */
3500
3501static void
3502get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3503{
3504  struct dw_loc_descr_struct *ptr;
3505  cfa->offset = 0;
3506  cfa->base_offset = 0;
3507  cfa->indirect = 0;
3508  cfa->reg = -1;
3509
3510  for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3511    {
3512      enum dwarf_location_atom op = ptr->dw_loc_opc;
3513
3514      switch (op)
3515	{
3516	case DW_OP_reg0:
3517	case DW_OP_reg1:
3518	case DW_OP_reg2:
3519	case DW_OP_reg3:
3520	case DW_OP_reg4:
3521	case DW_OP_reg5:
3522	case DW_OP_reg6:
3523	case DW_OP_reg7:
3524	case DW_OP_reg8:
3525	case DW_OP_reg9:
3526	case DW_OP_reg10:
3527	case DW_OP_reg11:
3528	case DW_OP_reg12:
3529	case DW_OP_reg13:
3530	case DW_OP_reg14:
3531	case DW_OP_reg15:
3532	case DW_OP_reg16:
3533	case DW_OP_reg17:
3534	case DW_OP_reg18:
3535	case DW_OP_reg19:
3536	case DW_OP_reg20:
3537	case DW_OP_reg21:
3538	case DW_OP_reg22:
3539	case DW_OP_reg23:
3540	case DW_OP_reg24:
3541	case DW_OP_reg25:
3542	case DW_OP_reg26:
3543	case DW_OP_reg27:
3544	case DW_OP_reg28:
3545	case DW_OP_reg29:
3546	case DW_OP_reg30:
3547	case DW_OP_reg31:
3548	  cfa->reg = op - DW_OP_reg0;
3549	  break;
3550	case DW_OP_regx:
3551	  cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3552	  break;
3553	case DW_OP_breg0:
3554	case DW_OP_breg1:
3555	case DW_OP_breg2:
3556	case DW_OP_breg3:
3557	case DW_OP_breg4:
3558	case DW_OP_breg5:
3559	case DW_OP_breg6:
3560	case DW_OP_breg7:
3561	case DW_OP_breg8:
3562	case DW_OP_breg9:
3563	case DW_OP_breg10:
3564	case DW_OP_breg11:
3565	case DW_OP_breg12:
3566	case DW_OP_breg13:
3567	case DW_OP_breg14:
3568	case DW_OP_breg15:
3569	case DW_OP_breg16:
3570	case DW_OP_breg17:
3571	case DW_OP_breg18:
3572	case DW_OP_breg19:
3573	case DW_OP_breg20:
3574	case DW_OP_breg21:
3575	case DW_OP_breg22:
3576	case DW_OP_breg23:
3577	case DW_OP_breg24:
3578	case DW_OP_breg25:
3579	case DW_OP_breg26:
3580	case DW_OP_breg27:
3581	case DW_OP_breg28:
3582	case DW_OP_breg29:
3583	case DW_OP_breg30:
3584	case DW_OP_breg31:
3585	  cfa->reg = op - DW_OP_breg0;
3586	  cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3587	  break;
3588	case DW_OP_bregx:
3589	  cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3590	  cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3591	  break;
3592	case DW_OP_deref:
3593	  cfa->indirect = 1;
3594	  break;
3595	case DW_OP_plus_uconst:
3596	  cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3597	  break;
3598	default:
3599	  internal_error ("DW_LOC_OP %s not implemented",
3600			  dwarf_stack_op_name (ptr->dw_loc_opc));
3601	}
3602    }
3603}
3604#endif /* .debug_frame support */
3605
3606/* And now, the support for symbolic debugging information.  */
3607#ifdef DWARF2_DEBUGGING_INFO
3608
3609/* .debug_str support.  */
3610static int output_indirect_string (void **, void *);
3611
3612static void dwarf2out_init (const char *);
3613static void dwarf2out_finish (const char *);
3614static void dwarf2out_define (unsigned int, const char *);
3615static void dwarf2out_undef (unsigned int, const char *);
3616static void dwarf2out_start_source_file (unsigned, const char *);
3617static void dwarf2out_end_source_file (unsigned);
3618static void dwarf2out_begin_block (unsigned, unsigned);
3619static void dwarf2out_end_block (unsigned, unsigned);
3620static bool dwarf2out_ignore_block (tree);
3621static void dwarf2out_global_decl (tree);
3622static void dwarf2out_type_decl (tree, int);
3623static void dwarf2out_imported_module_or_decl (tree, tree);
3624static void dwarf2out_abstract_function (tree);
3625static void dwarf2out_var_location (rtx);
3626static void dwarf2out_begin_function (tree);
3627static void dwarf2out_switch_text_section (void);
3628
3629/* The debug hooks structure.  */
3630
3631const struct gcc_debug_hooks dwarf2_debug_hooks =
3632{
3633  dwarf2out_init,
3634  dwarf2out_finish,
3635  dwarf2out_define,
3636  dwarf2out_undef,
3637  dwarf2out_start_source_file,
3638  dwarf2out_end_source_file,
3639  dwarf2out_begin_block,
3640  dwarf2out_end_block,
3641  dwarf2out_ignore_block,
3642  dwarf2out_source_line,
3643  dwarf2out_begin_prologue,
3644  debug_nothing_int_charstar,	/* end_prologue */
3645  dwarf2out_end_epilogue,
3646  dwarf2out_begin_function,
3647  debug_nothing_int,		/* end_function */
3648  dwarf2out_decl,		/* function_decl */
3649  dwarf2out_global_decl,
3650  dwarf2out_type_decl,		/* type_decl */
3651  dwarf2out_imported_module_or_decl,
3652  debug_nothing_tree,		/* deferred_inline_function */
3653  /* The DWARF 2 backend tries to reduce debugging bloat by not
3654     emitting the abstract description of inline functions until
3655     something tries to reference them.  */
3656  dwarf2out_abstract_function,	/* outlining_inline_function */
3657  debug_nothing_rtx,		/* label */
3658  debug_nothing_int,		/* handle_pch */
3659  dwarf2out_var_location,
3660  dwarf2out_switch_text_section,
3661  1                             /* start_end_main_source_file */
3662};
3663#endif
3664
3665/* NOTE: In the comments in this file, many references are made to
3666   "Debugging Information Entries".  This term is abbreviated as `DIE'
3667   throughout the remainder of this file.  */
3668
3669/* An internal representation of the DWARF output is built, and then
3670   walked to generate the DWARF debugging info.  The walk of the internal
3671   representation is done after the entire program has been compiled.
3672   The types below are used to describe the internal representation.  */
3673
3674/* Various DIE's use offsets relative to the beginning of the
3675   .debug_info section to refer to each other.  */
3676
3677typedef long int dw_offset;
3678
3679/* Define typedefs here to avoid circular dependencies.  */
3680
3681typedef struct dw_attr_struct *dw_attr_ref;
3682typedef struct dw_line_info_struct *dw_line_info_ref;
3683typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3684typedef struct pubname_struct *pubname_ref;
3685typedef struct dw_ranges_struct *dw_ranges_ref;
3686
3687/* Each entry in the line_info_table maintains the file and
3688   line number associated with the label generated for that
3689   entry.  The label gives the PC value associated with
3690   the line number entry.  */
3691
3692typedef struct dw_line_info_struct GTY(())
3693{
3694  unsigned long dw_file_num;
3695  unsigned long dw_line_num;
3696}
3697dw_line_info_entry;
3698
3699/* Line information for functions in separate sections; each one gets its
3700   own sequence.  */
3701typedef struct dw_separate_line_info_struct GTY(())
3702{
3703  unsigned long dw_file_num;
3704  unsigned long dw_line_num;
3705  unsigned long function;
3706}
3707dw_separate_line_info_entry;
3708
3709/* Each DIE attribute has a field specifying the attribute kind,
3710   a link to the next attribute in the chain, and an attribute value.
3711   Attributes are typically linked below the DIE they modify.  */
3712
3713typedef struct dw_attr_struct GTY(())
3714{
3715  enum dwarf_attribute dw_attr;
3716  dw_val_node dw_attr_val;
3717}
3718dw_attr_node;
3719
3720DEF_VEC_O(dw_attr_node);
3721DEF_VEC_ALLOC_O(dw_attr_node,gc);
3722
3723/* The Debugging Information Entry (DIE) structure.  DIEs form a tree.
3724   The children of each node form a circular list linked by
3725   die_sib.  die_child points to the node *before* the "first" child node.  */
3726
3727typedef struct die_struct GTY(())
3728{
3729  enum dwarf_tag die_tag;
3730  char *die_symbol;
3731  VEC(dw_attr_node,gc) * die_attr;
3732  dw_die_ref die_parent;
3733  dw_die_ref die_child;
3734  dw_die_ref die_sib;
3735  dw_die_ref die_definition; /* ref from a specification to its definition */
3736  dw_offset die_offset;
3737  unsigned long die_abbrev;
3738  int die_mark;
3739  /* Die is used and must not be pruned as unused.  */
3740  int die_perennial_p;
3741  unsigned int decl_id;
3742}
3743die_node;
3744
3745/* Evaluate 'expr' while 'c' is set to each child of DIE in order.  */
3746#define FOR_EACH_CHILD(die, c, expr) do {	\
3747  c = die->die_child;				\
3748  if (c) do {					\
3749    c = c->die_sib;				\
3750    expr;					\
3751  } while (c != die->die_child);		\
3752} while (0)
3753
3754/* The pubname structure */
3755
3756typedef struct pubname_struct GTY(())
3757{
3758  dw_die_ref die;
3759  char *name;
3760}
3761pubname_entry;
3762
3763DEF_VEC_O(pubname_entry);
3764DEF_VEC_ALLOC_O(pubname_entry, gc);
3765
3766struct dw_ranges_struct GTY(())
3767{
3768  int block_num;
3769};
3770
3771/* The limbo die list structure.  */
3772typedef struct limbo_die_struct GTY(())
3773{
3774  dw_die_ref die;
3775  tree created_for;
3776  struct limbo_die_struct *next;
3777}
3778limbo_die_node;
3779
3780/* How to start an assembler comment.  */
3781#ifndef ASM_COMMENT_START
3782#define ASM_COMMENT_START ";#"
3783#endif
3784
3785/* Define a macro which returns nonzero for a TYPE_DECL which was
3786   implicitly generated for a tagged type.
3787
3788   Note that unlike the gcc front end (which generates a NULL named
3789   TYPE_DECL node for each complete tagged type, each array type, and
3790   each function type node created) the g++ front end generates a
3791   _named_ TYPE_DECL node for each tagged type node created.
3792   These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3793   generate a DW_TAG_typedef DIE for them.  */
3794
3795#define TYPE_DECL_IS_STUB(decl)				\
3796  (DECL_NAME (decl) == NULL_TREE			\
3797   || (DECL_ARTIFICIAL (decl)				\
3798       && is_tagged_type (TREE_TYPE (decl))		\
3799       && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl)))	\
3800	   /* This is necessary for stub decls that	\
3801	      appear in nested inline functions.  */	\
3802	   || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE	\
3803	       && (decl_ultimate_origin (decl)		\
3804		   == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3805
3806/* Information concerning the compilation unit's programming
3807   language, and compiler version.  */
3808
3809/* Fixed size portion of the DWARF compilation unit header.  */
3810#define DWARF_COMPILE_UNIT_HEADER_SIZE \
3811  (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3812
3813/* Fixed size portion of public names info.  */
3814#define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3815
3816/* Fixed size portion of the address range info.  */
3817#define DWARF_ARANGES_HEADER_SIZE					\
3818  (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4,	\
3819                DWARF2_ADDR_SIZE * 2)					\
3820   - DWARF_INITIAL_LENGTH_SIZE)
3821
3822/* Size of padding portion in the address range info.  It must be
3823   aligned to twice the pointer size.  */
3824#define DWARF_ARANGES_PAD_SIZE \
3825  (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3826                DWARF2_ADDR_SIZE * 2) \
3827   - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3828
3829/* Use assembler line directives if available.  */
3830#ifndef DWARF2_ASM_LINE_DEBUG_INFO
3831#ifdef HAVE_AS_DWARF2_DEBUG_LINE
3832#define DWARF2_ASM_LINE_DEBUG_INFO 1
3833#else
3834#define DWARF2_ASM_LINE_DEBUG_INFO 0
3835#endif
3836#endif
3837
3838/* Minimum line offset in a special line info. opcode.
3839   This value was chosen to give a reasonable range of values.  */
3840#define DWARF_LINE_BASE  -10
3841
3842/* First special line opcode - leave room for the standard opcodes.  */
3843#define DWARF_LINE_OPCODE_BASE  10
3844
3845/* Range of line offsets in a special line info. opcode.  */
3846#define DWARF_LINE_RANGE  (254-DWARF_LINE_OPCODE_BASE+1)
3847
3848/* Flag that indicates the initial value of the is_stmt_start flag.
3849   In the present implementation, we do not mark any lines as
3850   the beginning of a source statement, because that information
3851   is not made available by the GCC front-end.  */
3852#define	DWARF_LINE_DEFAULT_IS_STMT_START 1
3853
3854#ifdef DWARF2_DEBUGGING_INFO
3855/* This location is used by calc_die_sizes() to keep track
3856   the offset of each DIE within the .debug_info section.  */
3857static unsigned long next_die_offset;
3858#endif
3859
3860/* Record the root of the DIE's built for the current compilation unit.  */
3861static GTY(()) dw_die_ref comp_unit_die;
3862
3863/* A list of DIEs with a NULL parent waiting to be relocated.  */
3864static GTY(()) limbo_die_node *limbo_die_list;
3865
3866/* Filenames referenced by this compilation unit.  */
3867static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3868
3869/* A hash table of references to DIE's that describe declarations.
3870   The key is a DECL_UID() which is a unique number identifying each decl.  */
3871static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3872
3873/* Node of the variable location list.  */
3874struct var_loc_node GTY ((chain_next ("%h.next")))
3875{
3876  rtx GTY (()) var_loc_note;
3877  const char * GTY (()) label;
3878  const char * GTY (()) section_label;
3879  struct var_loc_node * GTY (()) next;
3880};
3881
3882/* Variable location list.  */
3883struct var_loc_list_def GTY (())
3884{
3885  struct var_loc_node * GTY (()) first;
3886
3887  /* Do not mark the last element of the chained list because
3888     it is marked through the chain.  */
3889  struct var_loc_node * GTY ((skip ("%h"))) last;
3890
3891  /* DECL_UID of the variable decl.  */
3892  unsigned int decl_id;
3893};
3894typedef struct var_loc_list_def var_loc_list;
3895
3896
3897/* Table of decl location linked lists.  */
3898static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3899
3900/* A pointer to the base of a list of references to DIE's that
3901   are uniquely identified by their tag, presence/absence of
3902   children DIE's, and list of attribute/value pairs.  */
3903static GTY((length ("abbrev_die_table_allocated")))
3904  dw_die_ref *abbrev_die_table;
3905
3906/* Number of elements currently allocated for abbrev_die_table.  */
3907static GTY(()) unsigned abbrev_die_table_allocated;
3908
3909/* Number of elements in type_die_table currently in use.  */
3910static GTY(()) unsigned abbrev_die_table_in_use;
3911
3912/* Size (in elements) of increments by which we may expand the
3913   abbrev_die_table.  */
3914#define ABBREV_DIE_TABLE_INCREMENT 256
3915
3916/* A pointer to the base of a table that contains line information
3917   for each source code line in .text in the compilation unit.  */
3918static GTY((length ("line_info_table_allocated")))
3919     dw_line_info_ref line_info_table;
3920
3921/* Number of elements currently allocated for line_info_table.  */
3922static GTY(()) unsigned line_info_table_allocated;
3923
3924/* Number of elements in line_info_table currently in use.  */
3925static GTY(()) unsigned line_info_table_in_use;
3926
3927/* True if the compilation unit places functions in more than one section.  */
3928static GTY(()) bool have_multiple_function_sections = false;
3929
3930/* A pointer to the base of a table that contains line information
3931   for each source code line outside of .text in the compilation unit.  */
3932static GTY ((length ("separate_line_info_table_allocated")))
3933     dw_separate_line_info_ref separate_line_info_table;
3934
3935/* Number of elements currently allocated for separate_line_info_table.  */
3936static GTY(()) unsigned separate_line_info_table_allocated;
3937
3938/* Number of elements in separate_line_info_table currently in use.  */
3939static GTY(()) unsigned separate_line_info_table_in_use;
3940
3941/* Size (in elements) of increments by which we may expand the
3942   line_info_table.  */
3943#define LINE_INFO_TABLE_INCREMENT 1024
3944
3945/* A pointer to the base of a table that contains a list of publicly
3946   accessible names.  */
3947static GTY (()) VEC (pubname_entry, gc) *  pubname_table;
3948
3949/* A pointer to the base of a table that contains a list of publicly
3950   accessible types.  */
3951static GTY (()) VEC (pubname_entry, gc) * pubtype_table;
3952
3953/* Array of dies for which we should generate .debug_arange info.  */
3954static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3955
3956/* Number of elements currently allocated for arange_table.  */
3957static GTY(()) unsigned arange_table_allocated;
3958
3959/* Number of elements in arange_table currently in use.  */
3960static GTY(()) unsigned arange_table_in_use;
3961
3962/* Size (in elements) of increments by which we may expand the
3963   arange_table.  */
3964#define ARANGE_TABLE_INCREMENT 64
3965
3966/* Array of dies for which we should generate .debug_ranges info.  */
3967static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3968
3969/* Number of elements currently allocated for ranges_table.  */
3970static GTY(()) unsigned ranges_table_allocated;
3971
3972/* Number of elements in ranges_table currently in use.  */
3973static GTY(()) unsigned ranges_table_in_use;
3974
3975/* Size (in elements) of increments by which we may expand the
3976   ranges_table.  */
3977#define RANGES_TABLE_INCREMENT 64
3978
3979/* Whether we have location lists that need outputting */
3980static GTY(()) bool have_location_lists;
3981
3982/* Unique label counter.  */
3983static GTY(()) unsigned int loclabel_num;
3984
3985#ifdef DWARF2_DEBUGGING_INFO
3986/* Record whether the function being analyzed contains inlined functions.  */
3987static int current_function_has_inlines;
3988#endif
3989#if 0 && defined (MIPS_DEBUGGING_INFO)
3990static int comp_unit_has_inlines;
3991#endif
3992
3993/* The last file entry emitted by maybe_emit_file().  */
3994static GTY(()) struct dwarf_file_data * last_emitted_file;
3995
3996/* Number of internal labels generated by gen_internal_sym().  */
3997static GTY(()) int label_num;
3998
3999/* Cached result of previous call to lookup_filename.  */
4000static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4001
4002#ifdef DWARF2_DEBUGGING_INFO
4003
4004/* Offset from the "steady-state frame pointer" to the frame base,
4005   within the current function.  */
4006static HOST_WIDE_INT frame_pointer_fb_offset;
4007
4008/* Forward declarations for functions defined in this file.  */
4009
4010static int is_pseudo_reg (rtx);
4011static tree type_main_variant (tree);
4012static int is_tagged_type (tree);
4013static const char *dwarf_tag_name (unsigned);
4014static const char *dwarf_attr_name (unsigned);
4015static const char *dwarf_form_name (unsigned);
4016static tree decl_ultimate_origin (tree);
4017static tree block_ultimate_origin (tree);
4018static tree decl_class_context (tree);
4019static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4020static inline enum dw_val_class AT_class (dw_attr_ref);
4021static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4022static inline unsigned AT_flag (dw_attr_ref);
4023static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4024static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4025static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4026static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4027static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4028			      unsigned long);
4029static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4030			       unsigned int, unsigned char *);
4031static hashval_t debug_str_do_hash (const void *);
4032static int debug_str_eq (const void *, const void *);
4033static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4034static inline const char *AT_string (dw_attr_ref);
4035static int AT_string_form (dw_attr_ref);
4036static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4037static void add_AT_specification (dw_die_ref, dw_die_ref);
4038static inline dw_die_ref AT_ref (dw_attr_ref);
4039static inline int AT_ref_external (dw_attr_ref);
4040static inline void set_AT_ref_external (dw_attr_ref, int);
4041static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4042static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4043static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4044static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4045			     dw_loc_list_ref);
4046static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4047static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4048static inline rtx AT_addr (dw_attr_ref);
4049static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4050static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4051static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4052static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4053			   unsigned HOST_WIDE_INT);
4054static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4055			       unsigned long);
4056static inline const char *AT_lbl (dw_attr_ref);
4057static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4058static const char *get_AT_low_pc (dw_die_ref);
4059static const char *get_AT_hi_pc (dw_die_ref);
4060static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4061static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4062static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4063static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4064static bool is_c_family (void);
4065static bool is_cxx (void);
4066static bool is_java (void);
4067static bool is_fortran (void);
4068static bool is_ada (void);
4069static void remove_AT (dw_die_ref, enum dwarf_attribute);
4070static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4071static void add_child_die (dw_die_ref, dw_die_ref);
4072static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4073static dw_die_ref lookup_type_die (tree);
4074static void equate_type_number_to_die (tree, dw_die_ref);
4075static hashval_t decl_die_table_hash (const void *);
4076static int decl_die_table_eq (const void *, const void *);
4077static dw_die_ref lookup_decl_die (tree);
4078static hashval_t decl_loc_table_hash (const void *);
4079static int decl_loc_table_eq (const void *, const void *);
4080static var_loc_list *lookup_decl_loc (tree);
4081static void equate_decl_number_to_die (tree, dw_die_ref);
4082static void add_var_loc_to_decl (tree, struct var_loc_node *);
4083static void print_spaces (FILE *);
4084static void print_die (dw_die_ref, FILE *);
4085static void print_dwarf_line_table (FILE *);
4086static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4087static dw_die_ref pop_compile_unit (dw_die_ref);
4088static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4089static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4090static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4091static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4092static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4093static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4094static int same_die_p (dw_die_ref, dw_die_ref, int *);
4095static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4096static void compute_section_prefix (dw_die_ref);
4097static int is_type_die (dw_die_ref);
4098static int is_comdat_die (dw_die_ref);
4099static int is_symbol_die (dw_die_ref);
4100static void assign_symbol_names (dw_die_ref);
4101static void break_out_includes (dw_die_ref);
4102static hashval_t htab_cu_hash (const void *);
4103static int htab_cu_eq (const void *, const void *);
4104static void htab_cu_del (void *);
4105static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4106static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4107static void add_sibling_attributes (dw_die_ref);
4108static void build_abbrev_table (dw_die_ref);
4109static void output_location_lists (dw_die_ref);
4110static int constant_size (long unsigned);
4111static unsigned long size_of_die (dw_die_ref);
4112static void calc_die_sizes (dw_die_ref);
4113static void mark_dies (dw_die_ref);
4114static void unmark_dies (dw_die_ref);
4115static void unmark_all_dies (dw_die_ref);
4116static unsigned long size_of_pubnames (VEC (pubname_entry,gc) *);
4117static unsigned long size_of_aranges (void);
4118static enum dwarf_form value_format (dw_attr_ref);
4119static void output_value_format (dw_attr_ref);
4120static void output_abbrev_section (void);
4121static void output_die_symbol (dw_die_ref);
4122static void output_die (dw_die_ref);
4123static void output_compilation_unit_header (void);
4124static void output_comp_unit (dw_die_ref, int);
4125static const char *dwarf2_name (tree, int);
4126static void add_pubname (tree, dw_die_ref);
4127static void add_pubtype (tree, dw_die_ref);
4128static void output_pubnames (VEC (pubname_entry,gc) *);
4129static void add_arange (tree, dw_die_ref);
4130static void output_aranges (void);
4131static unsigned int add_ranges (tree);
4132static void output_ranges (void);
4133static void output_line_info (void);
4134static void output_file_names (void);
4135static dw_die_ref base_type_die (tree);
4136static tree root_type (tree);
4137static int is_base_type (tree);
4138static bool is_subrange_type (tree);
4139static dw_die_ref subrange_type_die (tree, dw_die_ref);
4140static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4141static int type_is_enum (tree);
4142static unsigned int dbx_reg_number (rtx);
4143static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4144static dw_loc_descr_ref reg_loc_descriptor (rtx);
4145static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4146static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4147static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4148static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4149static int is_based_loc (rtx);
4150static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4151static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4152static dw_loc_descr_ref loc_descriptor (rtx);
4153static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4154static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4155static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4156static tree field_type (tree);
4157static unsigned int simple_type_align_in_bits (tree);
4158static unsigned int simple_decl_align_in_bits (tree);
4159static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4160static HOST_WIDE_INT field_byte_offset (tree);
4161static void add_AT_location_description	(dw_die_ref, enum dwarf_attribute,
4162					 dw_loc_descr_ref);
4163static void add_data_member_location_attribute (dw_die_ref, tree);
4164static void add_const_value_attribute (dw_die_ref, rtx);
4165static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4166static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4167static void insert_float (rtx, unsigned char *);
4168static rtx rtl_for_decl_location (tree);
4169static void add_location_or_const_value_attribute (dw_die_ref, tree,
4170						   enum dwarf_attribute);
4171static void tree_add_const_value_attribute (dw_die_ref, tree);
4172static void add_name_attribute (dw_die_ref, const char *);
4173static void add_comp_dir_attribute (dw_die_ref);
4174static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4175static void add_subscript_info (dw_die_ref, tree);
4176static void add_byte_size_attribute (dw_die_ref, tree);
4177static void add_bit_offset_attribute (dw_die_ref, tree);
4178static void add_bit_size_attribute (dw_die_ref, tree);
4179static void add_prototyped_attribute (dw_die_ref, tree);
4180static void add_abstract_origin_attribute (dw_die_ref, tree);
4181static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4182static void add_src_coords_attributes (dw_die_ref, tree);
4183static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4184static void push_decl_scope (tree);
4185static void pop_decl_scope (void);
4186static dw_die_ref scope_die_for (tree, dw_die_ref);
4187static inline int local_scope_p (dw_die_ref);
4188static inline int class_or_namespace_scope_p (dw_die_ref);
4189static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4190static void add_calling_convention_attribute (dw_die_ref, tree);
4191static const char *type_tag (tree);
4192static tree member_declared_type (tree);
4193#if 0
4194static const char *decl_start_label (tree);
4195#endif
4196static void gen_array_type_die (tree, dw_die_ref);
4197#if 0
4198static void gen_entry_point_die (tree, dw_die_ref);
4199#endif
4200static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4201static void gen_inlined_structure_type_die (tree, dw_die_ref);
4202static void gen_inlined_union_type_die (tree, dw_die_ref);
4203static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4204static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4205static void gen_unspecified_parameters_die (tree, dw_die_ref);
4206static void gen_formal_types_die (tree, dw_die_ref);
4207static void gen_subprogram_die (tree, dw_die_ref);
4208static void gen_variable_die (tree, dw_die_ref);
4209static void gen_label_die (tree, dw_die_ref);
4210static void gen_lexical_block_die (tree, dw_die_ref, int);
4211static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4212static void gen_field_die (tree, dw_die_ref);
4213static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4214static dw_die_ref gen_compile_unit_die (const char *);
4215static void gen_inheritance_die (tree, tree, dw_die_ref);
4216static void gen_member_die (tree, dw_die_ref);
4217static void gen_struct_or_union_type_die (tree, dw_die_ref,
4218						enum debug_info_usage);
4219static void gen_subroutine_type_die (tree, dw_die_ref);
4220static void gen_typedef_die (tree, dw_die_ref);
4221static void gen_type_die (tree, dw_die_ref);
4222static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4223static void gen_block_die (tree, dw_die_ref, int);
4224static void decls_for_scope (tree, dw_die_ref, int);
4225static int is_redundant_typedef (tree);
4226static void gen_namespace_die (tree);
4227static void gen_decl_die (tree, dw_die_ref);
4228static dw_die_ref force_decl_die (tree);
4229static dw_die_ref force_type_die (tree);
4230static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4231static void declare_in_namespace (tree, dw_die_ref);
4232static struct dwarf_file_data * lookup_filename (const char *);
4233static void retry_incomplete_types (void);
4234static void gen_type_die_for_member (tree, tree, dw_die_ref);
4235static void splice_child_die (dw_die_ref, dw_die_ref);
4236static int file_info_cmp (const void *, const void *);
4237static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4238				     const char *, const char *, unsigned);
4239static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4240				       const char *, const char *,
4241				       const char *);
4242static void output_loc_list (dw_loc_list_ref);
4243static char *gen_internal_sym (const char *);
4244
4245static void prune_unmark_dies (dw_die_ref);
4246static void prune_unused_types_mark (dw_die_ref, int);
4247static void prune_unused_types_walk (dw_die_ref);
4248static void prune_unused_types_walk_attribs (dw_die_ref);
4249static void prune_unused_types_prune (dw_die_ref);
4250static void prune_unused_types (void);
4251static int maybe_emit_file (struct dwarf_file_data *fd);
4252
4253/* Section names used to hold DWARF debugging information.  */
4254#ifndef DEBUG_INFO_SECTION
4255#define DEBUG_INFO_SECTION	".debug_info"
4256#endif
4257#ifndef DEBUG_ABBREV_SECTION
4258#define DEBUG_ABBREV_SECTION	".debug_abbrev"
4259#endif
4260#ifndef DEBUG_ARANGES_SECTION
4261#define DEBUG_ARANGES_SECTION	".debug_aranges"
4262#endif
4263#ifndef DEBUG_MACINFO_SECTION
4264#define DEBUG_MACINFO_SECTION	".debug_macinfo"
4265#endif
4266#ifndef DEBUG_LINE_SECTION
4267#define DEBUG_LINE_SECTION	".debug_line"
4268#endif
4269#ifndef DEBUG_LOC_SECTION
4270#define DEBUG_LOC_SECTION	".debug_loc"
4271#endif
4272#ifndef DEBUG_PUBNAMES_SECTION
4273#define DEBUG_PUBNAMES_SECTION	".debug_pubnames"
4274#endif
4275#ifndef DEBUG_STR_SECTION
4276#define DEBUG_STR_SECTION	".debug_str"
4277#endif
4278#ifndef DEBUG_RANGES_SECTION
4279#define DEBUG_RANGES_SECTION	".debug_ranges"
4280#endif
4281
4282/* Standard ELF section names for compiled code and data.  */
4283#ifndef TEXT_SECTION_NAME
4284#define TEXT_SECTION_NAME	".text"
4285#endif
4286
4287/* Section flags for .debug_str section.  */
4288#define DEBUG_STR_SECTION_FLAGS \
4289  (HAVE_GAS_SHF_MERGE && flag_merge_constants			\
4290   ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1	\
4291   : SECTION_DEBUG)
4292
4293/* Labels we insert at beginning sections we can reference instead of
4294   the section names themselves.  */
4295
4296#ifndef TEXT_SECTION_LABEL
4297#define TEXT_SECTION_LABEL		"Ltext"
4298#endif
4299#ifndef COLD_TEXT_SECTION_LABEL
4300#define COLD_TEXT_SECTION_LABEL         "Ltext_cold"
4301#endif
4302#ifndef DEBUG_LINE_SECTION_LABEL
4303#define DEBUG_LINE_SECTION_LABEL	"Ldebug_line"
4304#endif
4305#ifndef DEBUG_INFO_SECTION_LABEL
4306#define DEBUG_INFO_SECTION_LABEL	"Ldebug_info"
4307#endif
4308#ifndef DEBUG_ABBREV_SECTION_LABEL
4309#define DEBUG_ABBREV_SECTION_LABEL	"Ldebug_abbrev"
4310#endif
4311#ifndef DEBUG_LOC_SECTION_LABEL
4312#define DEBUG_LOC_SECTION_LABEL		"Ldebug_loc"
4313#endif
4314#ifndef DEBUG_RANGES_SECTION_LABEL
4315#define DEBUG_RANGES_SECTION_LABEL	"Ldebug_ranges"
4316#endif
4317#ifndef DEBUG_MACINFO_SECTION_LABEL
4318#define DEBUG_MACINFO_SECTION_LABEL     "Ldebug_macinfo"
4319#endif
4320
4321/* Definitions of defaults for formats and names of various special
4322   (artificial) labels which may be generated within this file (when the -g
4323   options is used and DWARF2_DEBUGGING_INFO is in effect.
4324   If necessary, these may be overridden from within the tm.h file, but
4325   typically, overriding these defaults is unnecessary.  */
4326
4327static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4328static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4329static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4330static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4331static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4332static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4333static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4334static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4335static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4336static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4337
4338#ifndef TEXT_END_LABEL
4339#define TEXT_END_LABEL		"Letext"
4340#endif
4341#ifndef COLD_END_LABEL
4342#define COLD_END_LABEL          "Letext_cold"
4343#endif
4344#ifndef BLOCK_BEGIN_LABEL
4345#define BLOCK_BEGIN_LABEL	"LBB"
4346#endif
4347#ifndef BLOCK_END_LABEL
4348#define BLOCK_END_LABEL		"LBE"
4349#endif
4350#ifndef LINE_CODE_LABEL
4351#define LINE_CODE_LABEL		"LM"
4352#endif
4353#ifndef SEPARATE_LINE_CODE_LABEL
4354#define SEPARATE_LINE_CODE_LABEL	"LSM"
4355#endif
4356
4357/* We allow a language front-end to designate a function that is to be
4358   called to "demangle" any name before it is put into a DIE.  */
4359
4360static const char *(*demangle_name_func) (const char *);
4361
4362void
4363dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4364{
4365  demangle_name_func = func;
4366}
4367
4368/* Test if rtl node points to a pseudo register.  */
4369
4370static inline int
4371is_pseudo_reg (rtx rtl)
4372{
4373  return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4374	  || (GET_CODE (rtl) == SUBREG
4375	      && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4376}
4377
4378/* Return a reference to a type, with its const and volatile qualifiers
4379   removed.  */
4380
4381static inline tree
4382type_main_variant (tree type)
4383{
4384  type = TYPE_MAIN_VARIANT (type);
4385
4386  /* ??? There really should be only one main variant among any group of
4387     variants of a given type (and all of the MAIN_VARIANT values for all
4388     members of the group should point to that one type) but sometimes the C
4389     front-end messes this up for array types, so we work around that bug
4390     here.  */
4391  if (TREE_CODE (type) == ARRAY_TYPE)
4392    while (type != TYPE_MAIN_VARIANT (type))
4393      type = TYPE_MAIN_VARIANT (type);
4394
4395  return type;
4396}
4397
4398/* Return nonzero if the given type node represents a tagged type.  */
4399
4400static inline int
4401is_tagged_type (tree type)
4402{
4403  enum tree_code code = TREE_CODE (type);
4404
4405  return (code == RECORD_TYPE || code == UNION_TYPE
4406	  || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4407}
4408
4409/* Convert a DIE tag into its string name.  */
4410
4411static const char *
4412dwarf_tag_name (unsigned int tag)
4413{
4414  switch (tag)
4415    {
4416    case DW_TAG_padding:
4417      return "DW_TAG_padding";
4418    case DW_TAG_array_type:
4419      return "DW_TAG_array_type";
4420    case DW_TAG_class_type:
4421      return "DW_TAG_class_type";
4422    case DW_TAG_entry_point:
4423      return "DW_TAG_entry_point";
4424    case DW_TAG_enumeration_type:
4425      return "DW_TAG_enumeration_type";
4426    case DW_TAG_formal_parameter:
4427      return "DW_TAG_formal_parameter";
4428    case DW_TAG_imported_declaration:
4429      return "DW_TAG_imported_declaration";
4430    case DW_TAG_label:
4431      return "DW_TAG_label";
4432    case DW_TAG_lexical_block:
4433      return "DW_TAG_lexical_block";
4434    case DW_TAG_member:
4435      return "DW_TAG_member";
4436    case DW_TAG_pointer_type:
4437      return "DW_TAG_pointer_type";
4438    case DW_TAG_reference_type:
4439      return "DW_TAG_reference_type";
4440    case DW_TAG_compile_unit:
4441      return "DW_TAG_compile_unit";
4442    case DW_TAG_string_type:
4443      return "DW_TAG_string_type";
4444    case DW_TAG_structure_type:
4445      return "DW_TAG_structure_type";
4446    case DW_TAG_subroutine_type:
4447      return "DW_TAG_subroutine_type";
4448    case DW_TAG_typedef:
4449      return "DW_TAG_typedef";
4450    case DW_TAG_union_type:
4451      return "DW_TAG_union_type";
4452    case DW_TAG_unspecified_parameters:
4453      return "DW_TAG_unspecified_parameters";
4454    case DW_TAG_variant:
4455      return "DW_TAG_variant";
4456    case DW_TAG_common_block:
4457      return "DW_TAG_common_block";
4458    case DW_TAG_common_inclusion:
4459      return "DW_TAG_common_inclusion";
4460    case DW_TAG_inheritance:
4461      return "DW_TAG_inheritance";
4462    case DW_TAG_inlined_subroutine:
4463      return "DW_TAG_inlined_subroutine";
4464    case DW_TAG_module:
4465      return "DW_TAG_module";
4466    case DW_TAG_ptr_to_member_type:
4467      return "DW_TAG_ptr_to_member_type";
4468    case DW_TAG_set_type:
4469      return "DW_TAG_set_type";
4470    case DW_TAG_subrange_type:
4471      return "DW_TAG_subrange_type";
4472    case DW_TAG_with_stmt:
4473      return "DW_TAG_with_stmt";
4474    case DW_TAG_access_declaration:
4475      return "DW_TAG_access_declaration";
4476    case DW_TAG_base_type:
4477      return "DW_TAG_base_type";
4478    case DW_TAG_catch_block:
4479      return "DW_TAG_catch_block";
4480    case DW_TAG_const_type:
4481      return "DW_TAG_const_type";
4482    case DW_TAG_constant:
4483      return "DW_TAG_constant";
4484    case DW_TAG_enumerator:
4485      return "DW_TAG_enumerator";
4486    case DW_TAG_file_type:
4487      return "DW_TAG_file_type";
4488    case DW_TAG_friend:
4489      return "DW_TAG_friend";
4490    case DW_TAG_namelist:
4491      return "DW_TAG_namelist";
4492    case DW_TAG_namelist_item:
4493      return "DW_TAG_namelist_item";
4494    case DW_TAG_namespace:
4495      return "DW_TAG_namespace";
4496    case DW_TAG_packed_type:
4497      return "DW_TAG_packed_type";
4498    case DW_TAG_subprogram:
4499      return "DW_TAG_subprogram";
4500    case DW_TAG_template_type_param:
4501      return "DW_TAG_template_type_param";
4502    case DW_TAG_template_value_param:
4503      return "DW_TAG_template_value_param";
4504    case DW_TAG_thrown_type:
4505      return "DW_TAG_thrown_type";
4506    case DW_TAG_try_block:
4507      return "DW_TAG_try_block";
4508    case DW_TAG_variant_part:
4509      return "DW_TAG_variant_part";
4510    case DW_TAG_variable:
4511      return "DW_TAG_variable";
4512    case DW_TAG_volatile_type:
4513      return "DW_TAG_volatile_type";
4514    case DW_TAG_imported_module:
4515      return "DW_TAG_imported_module";
4516    case DW_TAG_MIPS_loop:
4517      return "DW_TAG_MIPS_loop";
4518    case DW_TAG_format_label:
4519      return "DW_TAG_format_label";
4520    case DW_TAG_function_template:
4521      return "DW_TAG_function_template";
4522    case DW_TAG_class_template:
4523      return "DW_TAG_class_template";
4524    case DW_TAG_GNU_BINCL:
4525      return "DW_TAG_GNU_BINCL";
4526    case DW_TAG_GNU_EINCL:
4527      return "DW_TAG_GNU_EINCL";
4528    default:
4529      return "DW_TAG_<unknown>";
4530    }
4531}
4532
4533/* Convert a DWARF attribute code into its string name.  */
4534
4535static const char *
4536dwarf_attr_name (unsigned int attr)
4537{
4538  switch (attr)
4539    {
4540    case DW_AT_sibling:
4541      return "DW_AT_sibling";
4542    case DW_AT_location:
4543      return "DW_AT_location";
4544    case DW_AT_name:
4545      return "DW_AT_name";
4546    case DW_AT_ordering:
4547      return "DW_AT_ordering";
4548    case DW_AT_subscr_data:
4549      return "DW_AT_subscr_data";
4550    case DW_AT_byte_size:
4551      return "DW_AT_byte_size";
4552    case DW_AT_bit_offset:
4553      return "DW_AT_bit_offset";
4554    case DW_AT_bit_size:
4555      return "DW_AT_bit_size";
4556    case DW_AT_element_list:
4557      return "DW_AT_element_list";
4558    case DW_AT_stmt_list:
4559      return "DW_AT_stmt_list";
4560    case DW_AT_low_pc:
4561      return "DW_AT_low_pc";
4562    case DW_AT_high_pc:
4563      return "DW_AT_high_pc";
4564    case DW_AT_language:
4565      return "DW_AT_language";
4566    case DW_AT_member:
4567      return "DW_AT_member";
4568    case DW_AT_discr:
4569      return "DW_AT_discr";
4570    case DW_AT_discr_value:
4571      return "DW_AT_discr_value";
4572    case DW_AT_visibility:
4573      return "DW_AT_visibility";
4574    case DW_AT_import:
4575      return "DW_AT_import";
4576    case DW_AT_string_length:
4577      return "DW_AT_string_length";
4578    case DW_AT_common_reference:
4579      return "DW_AT_common_reference";
4580    case DW_AT_comp_dir:
4581      return "DW_AT_comp_dir";
4582    case DW_AT_const_value:
4583      return "DW_AT_const_value";
4584    case DW_AT_containing_type:
4585      return "DW_AT_containing_type";
4586    case DW_AT_default_value:
4587      return "DW_AT_default_value";
4588    case DW_AT_inline:
4589      return "DW_AT_inline";
4590    case DW_AT_is_optional:
4591      return "DW_AT_is_optional";
4592    case DW_AT_lower_bound:
4593      return "DW_AT_lower_bound";
4594    case DW_AT_producer:
4595      return "DW_AT_producer";
4596    case DW_AT_prototyped:
4597      return "DW_AT_prototyped";
4598    case DW_AT_return_addr:
4599      return "DW_AT_return_addr";
4600    case DW_AT_start_scope:
4601      return "DW_AT_start_scope";
4602    case DW_AT_stride_size:
4603      return "DW_AT_stride_size";
4604    case DW_AT_upper_bound:
4605      return "DW_AT_upper_bound";
4606    case DW_AT_abstract_origin:
4607      return "DW_AT_abstract_origin";
4608    case DW_AT_accessibility:
4609      return "DW_AT_accessibility";
4610    case DW_AT_address_class:
4611      return "DW_AT_address_class";
4612    case DW_AT_artificial:
4613      return "DW_AT_artificial";
4614    case DW_AT_base_types:
4615      return "DW_AT_base_types";
4616    case DW_AT_calling_convention:
4617      return "DW_AT_calling_convention";
4618    case DW_AT_count:
4619      return "DW_AT_count";
4620    case DW_AT_data_member_location:
4621      return "DW_AT_data_member_location";
4622    case DW_AT_decl_column:
4623      return "DW_AT_decl_column";
4624    case DW_AT_decl_file:
4625      return "DW_AT_decl_file";
4626    case DW_AT_decl_line:
4627      return "DW_AT_decl_line";
4628    case DW_AT_declaration:
4629      return "DW_AT_declaration";
4630    case DW_AT_discr_list:
4631      return "DW_AT_discr_list";
4632    case DW_AT_encoding:
4633      return "DW_AT_encoding";
4634    case DW_AT_external:
4635      return "DW_AT_external";
4636    case DW_AT_frame_base:
4637      return "DW_AT_frame_base";
4638    case DW_AT_friend:
4639      return "DW_AT_friend";
4640    case DW_AT_identifier_case:
4641      return "DW_AT_identifier_case";
4642    case DW_AT_macro_info:
4643      return "DW_AT_macro_info";
4644    case DW_AT_namelist_items:
4645      return "DW_AT_namelist_items";
4646    case DW_AT_priority:
4647      return "DW_AT_priority";
4648    case DW_AT_segment:
4649      return "DW_AT_segment";
4650    case DW_AT_specification:
4651      return "DW_AT_specification";
4652    case DW_AT_static_link:
4653      return "DW_AT_static_link";
4654    case DW_AT_type:
4655      return "DW_AT_type";
4656    case DW_AT_use_location:
4657      return "DW_AT_use_location";
4658    case DW_AT_variable_parameter:
4659      return "DW_AT_variable_parameter";
4660    case DW_AT_virtuality:
4661      return "DW_AT_virtuality";
4662    case DW_AT_vtable_elem_location:
4663      return "DW_AT_vtable_elem_location";
4664
4665    case DW_AT_allocated:
4666      return "DW_AT_allocated";
4667    case DW_AT_associated:
4668      return "DW_AT_associated";
4669    case DW_AT_data_location:
4670      return "DW_AT_data_location";
4671    case DW_AT_stride:
4672      return "DW_AT_stride";
4673    case DW_AT_entry_pc:
4674      return "DW_AT_entry_pc";
4675    case DW_AT_use_UTF8:
4676      return "DW_AT_use_UTF8";
4677    case DW_AT_extension:
4678      return "DW_AT_extension";
4679    case DW_AT_ranges:
4680      return "DW_AT_ranges";
4681    case DW_AT_trampoline:
4682      return "DW_AT_trampoline";
4683    case DW_AT_call_column:
4684      return "DW_AT_call_column";
4685    case DW_AT_call_file:
4686      return "DW_AT_call_file";
4687    case DW_AT_call_line:
4688      return "DW_AT_call_line";
4689
4690    case DW_AT_MIPS_fde:
4691      return "DW_AT_MIPS_fde";
4692    case DW_AT_MIPS_loop_begin:
4693      return "DW_AT_MIPS_loop_begin";
4694    case DW_AT_MIPS_tail_loop_begin:
4695      return "DW_AT_MIPS_tail_loop_begin";
4696    case DW_AT_MIPS_epilog_begin:
4697      return "DW_AT_MIPS_epilog_begin";
4698    case DW_AT_MIPS_loop_unroll_factor:
4699      return "DW_AT_MIPS_loop_unroll_factor";
4700    case DW_AT_MIPS_software_pipeline_depth:
4701      return "DW_AT_MIPS_software_pipeline_depth";
4702    case DW_AT_MIPS_linkage_name:
4703      return "DW_AT_MIPS_linkage_name";
4704    case DW_AT_MIPS_stride:
4705      return "DW_AT_MIPS_stride";
4706    case DW_AT_MIPS_abstract_name:
4707      return "DW_AT_MIPS_abstract_name";
4708    case DW_AT_MIPS_clone_origin:
4709      return "DW_AT_MIPS_clone_origin";
4710    case DW_AT_MIPS_has_inlines:
4711      return "DW_AT_MIPS_has_inlines";
4712
4713    case DW_AT_sf_names:
4714      return "DW_AT_sf_names";
4715    case DW_AT_src_info:
4716      return "DW_AT_src_info";
4717    case DW_AT_mac_info:
4718      return "DW_AT_mac_info";
4719    case DW_AT_src_coords:
4720      return "DW_AT_src_coords";
4721    case DW_AT_body_begin:
4722      return "DW_AT_body_begin";
4723    case DW_AT_body_end:
4724      return "DW_AT_body_end";
4725    case DW_AT_GNU_vector:
4726      return "DW_AT_GNU_vector";
4727
4728    case DW_AT_VMS_rtnbeg_pd_address:
4729      return "DW_AT_VMS_rtnbeg_pd_address";
4730
4731    default:
4732      return "DW_AT_<unknown>";
4733    }
4734}
4735
4736/* Convert a DWARF value form code into its string name.  */
4737
4738static const char *
4739dwarf_form_name (unsigned int form)
4740{
4741  switch (form)
4742    {
4743    case DW_FORM_addr:
4744      return "DW_FORM_addr";
4745    case DW_FORM_block2:
4746      return "DW_FORM_block2";
4747    case DW_FORM_block4:
4748      return "DW_FORM_block4";
4749    case DW_FORM_data2:
4750      return "DW_FORM_data2";
4751    case DW_FORM_data4:
4752      return "DW_FORM_data4";
4753    case DW_FORM_data8:
4754      return "DW_FORM_data8";
4755    case DW_FORM_string:
4756      return "DW_FORM_string";
4757    case DW_FORM_block:
4758      return "DW_FORM_block";
4759    case DW_FORM_block1:
4760      return "DW_FORM_block1";
4761    case DW_FORM_data1:
4762      return "DW_FORM_data1";
4763    case DW_FORM_flag:
4764      return "DW_FORM_flag";
4765    case DW_FORM_sdata:
4766      return "DW_FORM_sdata";
4767    case DW_FORM_strp:
4768      return "DW_FORM_strp";
4769    case DW_FORM_udata:
4770      return "DW_FORM_udata";
4771    case DW_FORM_ref_addr:
4772      return "DW_FORM_ref_addr";
4773    case DW_FORM_ref1:
4774      return "DW_FORM_ref1";
4775    case DW_FORM_ref2:
4776      return "DW_FORM_ref2";
4777    case DW_FORM_ref4:
4778      return "DW_FORM_ref4";
4779    case DW_FORM_ref8:
4780      return "DW_FORM_ref8";
4781    case DW_FORM_ref_udata:
4782      return "DW_FORM_ref_udata";
4783    case DW_FORM_indirect:
4784      return "DW_FORM_indirect";
4785    default:
4786      return "DW_FORM_<unknown>";
4787    }
4788}
4789
4790/* Determine the "ultimate origin" of a decl.  The decl may be an inlined
4791   instance of an inlined instance of a decl which is local to an inline
4792   function, so we have to trace all of the way back through the origin chain
4793   to find out what sort of node actually served as the original seed for the
4794   given block.  */
4795
4796static tree
4797decl_ultimate_origin (tree decl)
4798{
4799  if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4800    return NULL_TREE;
4801
4802  /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4803     nodes in the function to point to themselves; ignore that if
4804     we're trying to output the abstract instance of this function.  */
4805  if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4806    return NULL_TREE;
4807
4808  /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4809     most distant ancestor, this should never happen.  */
4810  gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4811
4812  return DECL_ABSTRACT_ORIGIN (decl);
4813}
4814
4815/* Determine the "ultimate origin" of a block.  The block may be an inlined
4816   instance of an inlined instance of a block which is local to an inline
4817   function, so we have to trace all of the way back through the origin chain
4818   to find out what sort of node actually served as the original seed for the
4819   given block.  */
4820
4821static tree
4822block_ultimate_origin (tree block)
4823{
4824  tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4825
4826  /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4827     nodes in the function to point to themselves; ignore that if
4828     we're trying to output the abstract instance of this function.  */
4829  if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4830    return NULL_TREE;
4831
4832  if (immediate_origin == NULL_TREE)
4833    return NULL_TREE;
4834  else
4835    {
4836      tree ret_val;
4837      tree lookahead = immediate_origin;
4838
4839      do
4840	{
4841	  ret_val = lookahead;
4842	  lookahead = (TREE_CODE (ret_val) == BLOCK
4843		       ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4844	}
4845      while (lookahead != NULL && lookahead != ret_val);
4846
4847      /* The block's abstract origin chain may not be the *ultimate* origin of
4848	 the block. It could lead to a DECL that has an abstract origin set.
4849	 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4850	 will give us if it has one).  Note that DECL's abstract origins are
4851	 supposed to be the most distant ancestor (or so decl_ultimate_origin
4852	 claims), so we don't need to loop following the DECL origins.  */
4853      if (DECL_P (ret_val))
4854	return DECL_ORIGIN (ret_val);
4855
4856      return ret_val;
4857    }
4858}
4859
4860/* Get the class to which DECL belongs, if any.  In g++, the DECL_CONTEXT
4861   of a virtual function may refer to a base class, so we check the 'this'
4862   parameter.  */
4863
4864static tree
4865decl_class_context (tree decl)
4866{
4867  tree context = NULL_TREE;
4868
4869  if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4870    context = DECL_CONTEXT (decl);
4871  else
4872    context = TYPE_MAIN_VARIANT
4873      (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4874
4875  if (context && !TYPE_P (context))
4876    context = NULL_TREE;
4877
4878  return context;
4879}
4880
4881/* Add an attribute/value pair to a DIE.  */
4882
4883static inline void
4884add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4885{
4886  /* Maybe this should be an assert?  */
4887  if (die == NULL)
4888    return;
4889
4890  if (die->die_attr == NULL)
4891    die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4892  VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4893}
4894
4895static inline enum dw_val_class
4896AT_class (dw_attr_ref a)
4897{
4898  return a->dw_attr_val.val_class;
4899}
4900
4901/* Add a flag value attribute to a DIE.  */
4902
4903static inline void
4904add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4905{
4906  dw_attr_node attr;
4907
4908  attr.dw_attr = attr_kind;
4909  attr.dw_attr_val.val_class = dw_val_class_flag;
4910  attr.dw_attr_val.v.val_flag = flag;
4911  add_dwarf_attr (die, &attr);
4912}
4913
4914static inline unsigned
4915AT_flag (dw_attr_ref a)
4916{
4917  gcc_assert (a && AT_class (a) == dw_val_class_flag);
4918  return a->dw_attr_val.v.val_flag;
4919}
4920
4921/* Add a signed integer attribute value to a DIE.  */
4922
4923static inline void
4924add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4925{
4926  dw_attr_node attr;
4927
4928  attr.dw_attr = attr_kind;
4929  attr.dw_attr_val.val_class = dw_val_class_const;
4930  attr.dw_attr_val.v.val_int = int_val;
4931  add_dwarf_attr (die, &attr);
4932}
4933
4934static inline HOST_WIDE_INT
4935AT_int (dw_attr_ref a)
4936{
4937  gcc_assert (a && AT_class (a) == dw_val_class_const);
4938  return a->dw_attr_val.v.val_int;
4939}
4940
4941/* Add an unsigned integer attribute value to a DIE.  */
4942
4943static inline void
4944add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4945		 unsigned HOST_WIDE_INT unsigned_val)
4946{
4947  dw_attr_node attr;
4948
4949  attr.dw_attr = attr_kind;
4950  attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4951  attr.dw_attr_val.v.val_unsigned = unsigned_val;
4952  add_dwarf_attr (die, &attr);
4953}
4954
4955static inline unsigned HOST_WIDE_INT
4956AT_unsigned (dw_attr_ref a)
4957{
4958  gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4959  return a->dw_attr_val.v.val_unsigned;
4960}
4961
4962/* Add an unsigned double integer attribute value to a DIE.  */
4963
4964static inline void
4965add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4966		  long unsigned int val_hi, long unsigned int val_low)
4967{
4968  dw_attr_node attr;
4969
4970  attr.dw_attr = attr_kind;
4971  attr.dw_attr_val.val_class = dw_val_class_long_long;
4972  attr.dw_attr_val.v.val_long_long.hi = val_hi;
4973  attr.dw_attr_val.v.val_long_long.low = val_low;
4974  add_dwarf_attr (die, &attr);
4975}
4976
4977/* Add a floating point attribute value to a DIE and return it.  */
4978
4979static inline void
4980add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4981	    unsigned int length, unsigned int elt_size, unsigned char *array)
4982{
4983  dw_attr_node attr;
4984
4985  attr.dw_attr = attr_kind;
4986  attr.dw_attr_val.val_class = dw_val_class_vec;
4987  attr.dw_attr_val.v.val_vec.length = length;
4988  attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4989  attr.dw_attr_val.v.val_vec.array = array;
4990  add_dwarf_attr (die, &attr);
4991}
4992
4993/* Hash and equality functions for debug_str_hash.  */
4994
4995static hashval_t
4996debug_str_do_hash (const void *x)
4997{
4998  return htab_hash_string (((const struct indirect_string_node *)x)->str);
4999}
5000
5001static int
5002debug_str_eq (const void *x1, const void *x2)
5003{
5004  return strcmp ((((const struct indirect_string_node *)x1)->str),
5005		 (const char *)x2) == 0;
5006}
5007
5008/* Add a string attribute value to a DIE.  */
5009
5010static inline void
5011add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5012{
5013  dw_attr_node attr;
5014  struct indirect_string_node *node;
5015  void **slot;
5016
5017  if (! debug_str_hash)
5018    debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5019				      debug_str_eq, NULL);
5020
5021  slot = htab_find_slot_with_hash (debug_str_hash, str,
5022				   htab_hash_string (str), INSERT);
5023  if (*slot == NULL)
5024    *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
5025  node = (struct indirect_string_node *) *slot;
5026  node->str = ggc_strdup (str);
5027  node->refcount++;
5028
5029  attr.dw_attr = attr_kind;
5030  attr.dw_attr_val.val_class = dw_val_class_str;
5031  attr.dw_attr_val.v.val_str = node;
5032  add_dwarf_attr (die, &attr);
5033}
5034
5035static inline const char *
5036AT_string (dw_attr_ref a)
5037{
5038  gcc_assert (a && AT_class (a) == dw_val_class_str);
5039  return a->dw_attr_val.v.val_str->str;
5040}
5041
5042/* Find out whether a string should be output inline in DIE
5043   or out-of-line in .debug_str section.  */
5044
5045static int
5046AT_string_form (dw_attr_ref a)
5047{
5048  struct indirect_string_node *node;
5049  unsigned int len;
5050  char label[32];
5051
5052  gcc_assert (a && AT_class (a) == dw_val_class_str);
5053
5054  node = a->dw_attr_val.v.val_str;
5055  if (node->form)
5056    return node->form;
5057
5058  len = strlen (node->str) + 1;
5059
5060  /* If the string is shorter or equal to the size of the reference, it is
5061     always better to put it inline.  */
5062  if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5063    return node->form = DW_FORM_string;
5064
5065  /* If we cannot expect the linker to merge strings in .debug_str
5066     section, only put it into .debug_str if it is worth even in this
5067     single module.  */
5068  if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5069      && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5070    return node->form = DW_FORM_string;
5071
5072  ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5073  ++dw2_string_counter;
5074  node->label = xstrdup (label);
5075
5076  return node->form = DW_FORM_strp;
5077}
5078
5079/* Add a DIE reference attribute value to a DIE.  */
5080
5081static inline void
5082add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5083{
5084  dw_attr_node attr;
5085
5086  attr.dw_attr = attr_kind;
5087  attr.dw_attr_val.val_class = dw_val_class_die_ref;
5088  attr.dw_attr_val.v.val_die_ref.die = targ_die;
5089  attr.dw_attr_val.v.val_die_ref.external = 0;
5090  add_dwarf_attr (die, &attr);
5091}
5092
5093/* Add an AT_specification attribute to a DIE, and also make the back
5094   pointer from the specification to the definition.  */
5095
5096static inline void
5097add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5098{
5099  add_AT_die_ref (die, DW_AT_specification, targ_die);
5100  gcc_assert (!targ_die->die_definition);
5101  targ_die->die_definition = die;
5102}
5103
5104static inline dw_die_ref
5105AT_ref (dw_attr_ref a)
5106{
5107  gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5108  return a->dw_attr_val.v.val_die_ref.die;
5109}
5110
5111static inline int
5112AT_ref_external (dw_attr_ref a)
5113{
5114  if (a && AT_class (a) == dw_val_class_die_ref)
5115    return a->dw_attr_val.v.val_die_ref.external;
5116
5117  return 0;
5118}
5119
5120static inline void
5121set_AT_ref_external (dw_attr_ref a, int i)
5122{
5123  gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5124  a->dw_attr_val.v.val_die_ref.external = i;
5125}
5126
5127/* Add an FDE reference attribute value to a DIE.  */
5128
5129static inline void
5130add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5131{
5132  dw_attr_node attr;
5133
5134  attr.dw_attr = attr_kind;
5135  attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5136  attr.dw_attr_val.v.val_fde_index = targ_fde;
5137  add_dwarf_attr (die, &attr);
5138}
5139
5140/* Add a location description attribute value to a DIE.  */
5141
5142static inline void
5143add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5144{
5145  dw_attr_node attr;
5146
5147  attr.dw_attr = attr_kind;
5148  attr.dw_attr_val.val_class = dw_val_class_loc;
5149  attr.dw_attr_val.v.val_loc = loc;
5150  add_dwarf_attr (die, &attr);
5151}
5152
5153static inline dw_loc_descr_ref
5154AT_loc (dw_attr_ref a)
5155{
5156  gcc_assert (a && AT_class (a) == dw_val_class_loc);
5157  return a->dw_attr_val.v.val_loc;
5158}
5159
5160static inline void
5161add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5162{
5163  dw_attr_node attr;
5164
5165  attr.dw_attr = attr_kind;
5166  attr.dw_attr_val.val_class = dw_val_class_loc_list;
5167  attr.dw_attr_val.v.val_loc_list = loc_list;
5168  add_dwarf_attr (die, &attr);
5169  have_location_lists = true;
5170}
5171
5172static inline dw_loc_list_ref
5173AT_loc_list (dw_attr_ref a)
5174{
5175  gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5176  return a->dw_attr_val.v.val_loc_list;
5177}
5178
5179/* Add an address constant attribute value to a DIE.  */
5180
5181static inline void
5182add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5183{
5184  dw_attr_node attr;
5185
5186  attr.dw_attr = attr_kind;
5187  attr.dw_attr_val.val_class = dw_val_class_addr;
5188  attr.dw_attr_val.v.val_addr = addr;
5189  add_dwarf_attr (die, &attr);
5190}
5191
5192/* Get the RTX from to an address DIE attribute.  */
5193
5194static inline rtx
5195AT_addr (dw_attr_ref a)
5196{
5197  gcc_assert (a && AT_class (a) == dw_val_class_addr);
5198  return a->dw_attr_val.v.val_addr;
5199}
5200
5201/* Add a file attribute value to a DIE.  */
5202
5203static inline void
5204add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5205	     struct dwarf_file_data *fd)
5206{
5207  dw_attr_node attr;
5208
5209  attr.dw_attr = attr_kind;
5210  attr.dw_attr_val.val_class = dw_val_class_file;
5211  attr.dw_attr_val.v.val_file = fd;
5212  add_dwarf_attr (die, &attr);
5213}
5214
5215/* Get the dwarf_file_data from a file DIE attribute.  */
5216
5217static inline struct dwarf_file_data *
5218AT_file (dw_attr_ref a)
5219{
5220  gcc_assert (a && AT_class (a) == dw_val_class_file);
5221  return a->dw_attr_val.v.val_file;
5222}
5223
5224/* Add a label identifier attribute value to a DIE.  */
5225
5226static inline void
5227add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5228{
5229  dw_attr_node attr;
5230
5231  attr.dw_attr = attr_kind;
5232  attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5233  attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5234  add_dwarf_attr (die, &attr);
5235}
5236
5237/* Add a section offset attribute value to a DIE, an offset into the
5238   debug_line section.  */
5239
5240static inline void
5241add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5242		const char *label)
5243{
5244  dw_attr_node attr;
5245
5246  attr.dw_attr = attr_kind;
5247  attr.dw_attr_val.val_class = dw_val_class_lineptr;
5248  attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5249  add_dwarf_attr (die, &attr);
5250}
5251
5252/* Add a section offset attribute value to a DIE, an offset into the
5253   debug_macinfo section.  */
5254
5255static inline void
5256add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5257	       const char *label)
5258{
5259  dw_attr_node attr;
5260
5261  attr.dw_attr = attr_kind;
5262  attr.dw_attr_val.val_class = dw_val_class_macptr;
5263  attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5264  add_dwarf_attr (die, &attr);
5265}
5266
5267/* Add an offset attribute value to a DIE.  */
5268
5269static inline void
5270add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5271	       unsigned HOST_WIDE_INT offset)
5272{
5273  dw_attr_node attr;
5274
5275  attr.dw_attr = attr_kind;
5276  attr.dw_attr_val.val_class = dw_val_class_offset;
5277  attr.dw_attr_val.v.val_offset = offset;
5278  add_dwarf_attr (die, &attr);
5279}
5280
5281/* Add an range_list attribute value to a DIE.  */
5282
5283static void
5284add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5285		   long unsigned int offset)
5286{
5287  dw_attr_node attr;
5288
5289  attr.dw_attr = attr_kind;
5290  attr.dw_attr_val.val_class = dw_val_class_range_list;
5291  attr.dw_attr_val.v.val_offset = offset;
5292  add_dwarf_attr (die, &attr);
5293}
5294
5295static inline const char *
5296AT_lbl (dw_attr_ref a)
5297{
5298  gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5299		    || AT_class (a) == dw_val_class_lineptr
5300		    || AT_class (a) == dw_val_class_macptr));
5301  return a->dw_attr_val.v.val_lbl_id;
5302}
5303
5304/* Get the attribute of type attr_kind.  */
5305
5306static dw_attr_ref
5307get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5308{
5309  dw_attr_ref a;
5310  unsigned ix;
5311  dw_die_ref spec = NULL;
5312
5313  if (! die)
5314    return NULL;
5315
5316  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5317    if (a->dw_attr == attr_kind)
5318      return a;
5319    else if (a->dw_attr == DW_AT_specification
5320	     || a->dw_attr == DW_AT_abstract_origin)
5321      spec = AT_ref (a);
5322
5323  if (spec)
5324    return get_AT (spec, attr_kind);
5325
5326  return NULL;
5327}
5328
5329/* Return the "low pc" attribute value, typically associated with a subprogram
5330   DIE.  Return null if the "low pc" attribute is either not present, or if it
5331   cannot be represented as an assembler label identifier.  */
5332
5333static inline const char *
5334get_AT_low_pc (dw_die_ref die)
5335{
5336  dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5337
5338  return a ? AT_lbl (a) : NULL;
5339}
5340
5341/* Return the "high pc" attribute value, typically associated with a subprogram
5342   DIE.  Return null if the "high pc" attribute is either not present, or if it
5343   cannot be represented as an assembler label identifier.  */
5344
5345static inline const char *
5346get_AT_hi_pc (dw_die_ref die)
5347{
5348  dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5349
5350  return a ? AT_lbl (a) : NULL;
5351}
5352
5353/* Return the value of the string attribute designated by ATTR_KIND, or
5354   NULL if it is not present.  */
5355
5356static inline const char *
5357get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5358{
5359  dw_attr_ref a = get_AT (die, attr_kind);
5360
5361  return a ? AT_string (a) : NULL;
5362}
5363
5364/* Return the value of the flag attribute designated by ATTR_KIND, or -1
5365   if it is not present.  */
5366
5367static inline int
5368get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5369{
5370  dw_attr_ref a = get_AT (die, attr_kind);
5371
5372  return a ? AT_flag (a) : 0;
5373}
5374
5375/* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5376   if it is not present.  */
5377
5378static inline unsigned
5379get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5380{
5381  dw_attr_ref a = get_AT (die, attr_kind);
5382
5383  return a ? AT_unsigned (a) : 0;
5384}
5385
5386static inline dw_die_ref
5387get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5388{
5389  dw_attr_ref a = get_AT (die, attr_kind);
5390
5391  return a ? AT_ref (a) : NULL;
5392}
5393
5394static inline struct dwarf_file_data *
5395get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5396{
5397  dw_attr_ref a = get_AT (die, attr_kind);
5398
5399  return a ? AT_file (a) : NULL;
5400}
5401
5402/* Return TRUE if the language is C or C++.  */
5403
5404static inline bool
5405is_c_family (void)
5406{
5407  unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5408
5409  return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5410	  || lang == DW_LANG_C99
5411	  || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5412}
5413
5414/* Return TRUE if the language is C++.  */
5415
5416static inline bool
5417is_cxx (void)
5418{
5419  unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5420
5421  return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5422}
5423
5424/* Return TRUE if the language is Fortran.  */
5425
5426static inline bool
5427is_fortran (void)
5428{
5429  unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5430
5431  return (lang == DW_LANG_Fortran77
5432	  || lang == DW_LANG_Fortran90
5433	  || lang == DW_LANG_Fortran95);
5434}
5435
5436/* Return TRUE if the language is Java.  */
5437
5438static inline bool
5439is_java (void)
5440{
5441  unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5442
5443  return lang == DW_LANG_Java;
5444}
5445
5446/* Return TRUE if the language is Ada.  */
5447
5448static inline bool
5449is_ada (void)
5450{
5451  unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5452
5453  return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5454}
5455
5456/* Remove the specified attribute if present.  */
5457
5458static void
5459remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5460{
5461  dw_attr_ref a;
5462  unsigned ix;
5463
5464  if (! die)
5465    return;
5466
5467  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5468    if (a->dw_attr == attr_kind)
5469      {
5470	if (AT_class (a) == dw_val_class_str)
5471	  if (a->dw_attr_val.v.val_str->refcount)
5472	    a->dw_attr_val.v.val_str->refcount--;
5473
5474	/* VEC_ordered_remove should help reduce the number of abbrevs
5475	   that are needed.  */
5476	VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5477	return;
5478      }
5479}
5480
5481/* Remove CHILD from its parent.  PREV must have the property that
5482   PREV->DIE_SIB == CHILD.  Does not alter CHILD.  */
5483
5484static void
5485remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5486{
5487  gcc_assert (child->die_parent == prev->die_parent);
5488  gcc_assert (prev->die_sib == child);
5489  if (prev == child)
5490    {
5491      gcc_assert (child->die_parent->die_child == child);
5492      prev = NULL;
5493    }
5494  else
5495    prev->die_sib = child->die_sib;
5496  if (child->die_parent->die_child == child)
5497    child->die_parent->die_child = prev;
5498}
5499
5500/* Remove child DIE whose die_tag is TAG.  Do nothing if no child
5501   matches TAG.  */
5502
5503static void
5504remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5505{
5506  dw_die_ref c;
5507
5508  c = die->die_child;
5509  if (c) do {
5510    dw_die_ref prev = c;
5511    c = c->die_sib;
5512    while (c->die_tag == tag)
5513      {
5514	remove_child_with_prev (c, prev);
5515	/* Might have removed every child.  */
5516	if (c == c->die_sib)
5517	  return;
5518	c = c->die_sib;
5519      }
5520  } while (c != die->die_child);
5521}
5522
5523/* Add a CHILD_DIE as the last child of DIE.  */
5524
5525static void
5526add_child_die (dw_die_ref die, dw_die_ref child_die)
5527{
5528  /* FIXME this should probably be an assert.  */
5529  if (! die || ! child_die)
5530    return;
5531  gcc_assert (die != child_die);
5532
5533  child_die->die_parent = die;
5534  if (die->die_child)
5535    {
5536      child_die->die_sib = die->die_child->die_sib;
5537      die->die_child->die_sib = child_die;
5538    }
5539  else
5540    child_die->die_sib = child_die;
5541  die->die_child = child_die;
5542}
5543
5544/* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5545   is the specification, to the end of PARENT's list of children.
5546   This is done by removing and re-adding it.  */
5547
5548static void
5549splice_child_die (dw_die_ref parent, dw_die_ref child)
5550{
5551  dw_die_ref p;
5552
5553  /* We want the declaration DIE from inside the class, not the
5554     specification DIE at toplevel.  */
5555  if (child->die_parent != parent)
5556    {
5557      dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5558
5559      if (tmp)
5560	child = tmp;
5561    }
5562
5563  gcc_assert (child->die_parent == parent
5564	      || (child->die_parent
5565		  == get_AT_ref (parent, DW_AT_specification)));
5566
5567  for (p = child->die_parent->die_child; ; p = p->die_sib)
5568    if (p->die_sib == child)
5569      {
5570	remove_child_with_prev (child, p);
5571	break;
5572      }
5573
5574  add_child_die (parent, child);
5575}
5576
5577/* Return a pointer to a newly created DIE node.  */
5578
5579static inline dw_die_ref
5580new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5581{
5582  dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5583
5584  die->die_tag = tag_value;
5585
5586  if (parent_die != NULL)
5587    add_child_die (parent_die, die);
5588  else
5589    {
5590      limbo_die_node *limbo_node;
5591
5592      limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5593      limbo_node->die = die;
5594      limbo_node->created_for = t;
5595      limbo_node->next = limbo_die_list;
5596      limbo_die_list = limbo_node;
5597    }
5598
5599  return die;
5600}
5601
5602/* Return the DIE associated with the given type specifier.  */
5603
5604static inline dw_die_ref
5605lookup_type_die (tree type)
5606{
5607  return TYPE_SYMTAB_DIE (type);
5608}
5609
5610/* Equate a DIE to a given type specifier.  */
5611
5612static inline void
5613equate_type_number_to_die (tree type, dw_die_ref type_die)
5614{
5615  TYPE_SYMTAB_DIE (type) = type_die;
5616}
5617
5618/* Returns a hash value for X (which really is a die_struct).  */
5619
5620static hashval_t
5621decl_die_table_hash (const void *x)
5622{
5623  return (hashval_t) ((const dw_die_ref) x)->decl_id;
5624}
5625
5626/* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y.  */
5627
5628static int
5629decl_die_table_eq (const void *x, const void *y)
5630{
5631  return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5632}
5633
5634/* Return the DIE associated with a given declaration.  */
5635
5636static inline dw_die_ref
5637lookup_decl_die (tree decl)
5638{
5639  return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5640}
5641
5642/* Returns a hash value for X (which really is a var_loc_list).  */
5643
5644static hashval_t
5645decl_loc_table_hash (const void *x)
5646{
5647  return (hashval_t) ((const var_loc_list *) x)->decl_id;
5648}
5649
5650/* Return nonzero if decl_id of var_loc_list X is the same as
5651   UID of decl *Y.  */
5652
5653static int
5654decl_loc_table_eq (const void *x, const void *y)
5655{
5656  return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5657}
5658
5659/* Return the var_loc list associated with a given declaration.  */
5660
5661static inline var_loc_list *
5662lookup_decl_loc (tree decl)
5663{
5664  return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5665}
5666
5667/* Equate a DIE to a particular declaration.  */
5668
5669static void
5670equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5671{
5672  unsigned int decl_id = DECL_UID (decl);
5673  void **slot;
5674
5675  slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5676  *slot = decl_die;
5677  decl_die->decl_id = decl_id;
5678}
5679
5680/* Add a variable location node to the linked list for DECL.  */
5681
5682static void
5683add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5684{
5685  unsigned int decl_id = DECL_UID (decl);
5686  var_loc_list *temp;
5687  void **slot;
5688
5689  slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5690  if (*slot == NULL)
5691    {
5692      temp = ggc_alloc_cleared (sizeof (var_loc_list));
5693      temp->decl_id = decl_id;
5694      *slot = temp;
5695    }
5696  else
5697    temp = *slot;
5698
5699  if (temp->last)
5700    {
5701      /* If the current location is the same as the end of the list,
5702	 we have nothing to do.  */
5703      if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5704			NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5705	{
5706	  /* Add LOC to the end of list and update LAST.  */
5707	  temp->last->next = loc;
5708	  temp->last = loc;
5709	}
5710    }
5711  /* Do not add empty location to the beginning of the list.  */
5712  else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5713    {
5714      temp->first = loc;
5715      temp->last = loc;
5716    }
5717}
5718
5719/* Keep track of the number of spaces used to indent the
5720   output of the debugging routines that print the structure of
5721   the DIE internal representation.  */
5722static int print_indent;
5723
5724/* Indent the line the number of spaces given by print_indent.  */
5725
5726static inline void
5727print_spaces (FILE *outfile)
5728{
5729  fprintf (outfile, "%*s", print_indent, "");
5730}
5731
5732/* Print the information associated with a given DIE, and its children.
5733   This routine is a debugging aid only.  */
5734
5735static void
5736print_die (dw_die_ref die, FILE *outfile)
5737{
5738  dw_attr_ref a;
5739  dw_die_ref c;
5740  unsigned ix;
5741
5742  print_spaces (outfile);
5743  fprintf (outfile, "DIE %4ld: %s\n",
5744	   die->die_offset, dwarf_tag_name (die->die_tag));
5745  print_spaces (outfile);
5746  fprintf (outfile, "  abbrev id: %lu", die->die_abbrev);
5747  fprintf (outfile, " offset: %ld\n", die->die_offset);
5748
5749  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5750    {
5751      print_spaces (outfile);
5752      fprintf (outfile, "  %s: ", dwarf_attr_name (a->dw_attr));
5753
5754      switch (AT_class (a))
5755	{
5756	case dw_val_class_addr:
5757	  fprintf (outfile, "address");
5758	  break;
5759	case dw_val_class_offset:
5760	  fprintf (outfile, "offset");
5761	  break;
5762	case dw_val_class_loc:
5763	  fprintf (outfile, "location descriptor");
5764	  break;
5765	case dw_val_class_loc_list:
5766	  fprintf (outfile, "location list -> label:%s",
5767		   AT_loc_list (a)->ll_symbol);
5768	  break;
5769	case dw_val_class_range_list:
5770	  fprintf (outfile, "range list");
5771	  break;
5772	case dw_val_class_const:
5773	  fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5774	  break;
5775	case dw_val_class_unsigned_const:
5776	  fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5777	  break;
5778	case dw_val_class_long_long:
5779	  fprintf (outfile, "constant (%lu,%lu)",
5780		   a->dw_attr_val.v.val_long_long.hi,
5781		   a->dw_attr_val.v.val_long_long.low);
5782	  break;
5783	case dw_val_class_vec:
5784	  fprintf (outfile, "floating-point or vector constant");
5785	  break;
5786	case dw_val_class_flag:
5787	  fprintf (outfile, "%u", AT_flag (a));
5788	  break;
5789	case dw_val_class_die_ref:
5790	  if (AT_ref (a) != NULL)
5791	    {
5792	      if (AT_ref (a)->die_symbol)
5793		fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5794	      else
5795		fprintf (outfile, "die -> %ld", AT_ref (a)->die_offset);
5796	    }
5797	  else
5798	    fprintf (outfile, "die -> <null>");
5799	  break;
5800	case dw_val_class_lbl_id:
5801	case dw_val_class_lineptr:
5802	case dw_val_class_macptr:
5803	  fprintf (outfile, "label: %s", AT_lbl (a));
5804	  break;
5805	case dw_val_class_str:
5806	  if (AT_string (a) != NULL)
5807	    fprintf (outfile, "\"%s\"", AT_string (a));
5808	  else
5809	    fprintf (outfile, "<null>");
5810	  break;
5811	case dw_val_class_file:
5812	  fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5813		   AT_file (a)->emitted_number);
5814	  break;
5815	default:
5816	  break;
5817	}
5818
5819      fprintf (outfile, "\n");
5820    }
5821
5822  if (die->die_child != NULL)
5823    {
5824      print_indent += 4;
5825      FOR_EACH_CHILD (die, c, print_die (c, outfile));
5826      print_indent -= 4;
5827    }
5828  if (print_indent == 0)
5829    fprintf (outfile, "\n");
5830}
5831
5832/* Print the contents of the source code line number correspondence table.
5833   This routine is a debugging aid only.  */
5834
5835static void
5836print_dwarf_line_table (FILE *outfile)
5837{
5838  unsigned i;
5839  dw_line_info_ref line_info;
5840
5841  fprintf (outfile, "\n\nDWARF source line information\n");
5842  for (i = 1; i < line_info_table_in_use; i++)
5843    {
5844      line_info = &line_info_table[i];
5845      fprintf (outfile, "%5d: %4ld %6ld\n", i,
5846	       line_info->dw_file_num,
5847	       line_info->dw_line_num);
5848    }
5849
5850  fprintf (outfile, "\n\n");
5851}
5852
5853/* Print the information collected for a given DIE.  */
5854
5855void
5856debug_dwarf_die (dw_die_ref die)
5857{
5858  print_die (die, stderr);
5859}
5860
5861/* Print all DWARF information collected for the compilation unit.
5862   This routine is a debugging aid only.  */
5863
5864void
5865debug_dwarf (void)
5866{
5867  print_indent = 0;
5868  print_die (comp_unit_die, stderr);
5869  if (! DWARF2_ASM_LINE_DEBUG_INFO)
5870    print_dwarf_line_table (stderr);
5871}
5872
5873/* Start a new compilation unit DIE for an include file.  OLD_UNIT is the CU
5874   for the enclosing include file, if any.  BINCL_DIE is the DW_TAG_GNU_BINCL
5875   DIE that marks the start of the DIEs for this include file.  */
5876
5877static dw_die_ref
5878push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5879{
5880  const char *filename = get_AT_string (bincl_die, DW_AT_name);
5881  dw_die_ref new_unit = gen_compile_unit_die (filename);
5882
5883  new_unit->die_sib = old_unit;
5884  return new_unit;
5885}
5886
5887/* Close an include-file CU and reopen the enclosing one.  */
5888
5889static dw_die_ref
5890pop_compile_unit (dw_die_ref old_unit)
5891{
5892  dw_die_ref new_unit = old_unit->die_sib;
5893
5894  old_unit->die_sib = NULL;
5895  return new_unit;
5896}
5897
5898#define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5899#define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5900
5901/* Calculate the checksum of a location expression.  */
5902
5903static inline void
5904loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5905{
5906  CHECKSUM (loc->dw_loc_opc);
5907  CHECKSUM (loc->dw_loc_oprnd1);
5908  CHECKSUM (loc->dw_loc_oprnd2);
5909}
5910
5911/* Calculate the checksum of an attribute.  */
5912
5913static void
5914attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5915{
5916  dw_loc_descr_ref loc;
5917  rtx r;
5918
5919  CHECKSUM (at->dw_attr);
5920
5921  /* We don't care that this was compiled with a different compiler
5922     snapshot; if the output is the same, that's what matters.  */
5923  if (at->dw_attr == DW_AT_producer)
5924    return;
5925
5926  switch (AT_class (at))
5927    {
5928    case dw_val_class_const:
5929      CHECKSUM (at->dw_attr_val.v.val_int);
5930      break;
5931    case dw_val_class_unsigned_const:
5932      CHECKSUM (at->dw_attr_val.v.val_unsigned);
5933      break;
5934    case dw_val_class_long_long:
5935      CHECKSUM (at->dw_attr_val.v.val_long_long);
5936      break;
5937    case dw_val_class_vec:
5938      CHECKSUM (at->dw_attr_val.v.val_vec);
5939      break;
5940    case dw_val_class_flag:
5941      CHECKSUM (at->dw_attr_val.v.val_flag);
5942      break;
5943    case dw_val_class_str:
5944      CHECKSUM_STRING (AT_string (at));
5945      break;
5946
5947    case dw_val_class_addr:
5948      r = AT_addr (at);
5949      gcc_assert (GET_CODE (r) == SYMBOL_REF);
5950      CHECKSUM_STRING (XSTR (r, 0));
5951      break;
5952
5953    case dw_val_class_offset:
5954      CHECKSUM (at->dw_attr_val.v.val_offset);
5955      break;
5956
5957    case dw_val_class_loc:
5958      for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5959	loc_checksum (loc, ctx);
5960      break;
5961
5962    case dw_val_class_die_ref:
5963      die_checksum (AT_ref (at), ctx, mark);
5964      break;
5965
5966    case dw_val_class_fde_ref:
5967    case dw_val_class_lbl_id:
5968    case dw_val_class_lineptr:
5969    case dw_val_class_macptr:
5970      break;
5971
5972    case dw_val_class_file:
5973      CHECKSUM_STRING (AT_file (at)->filename);
5974      break;
5975
5976    default:
5977      break;
5978    }
5979}
5980
5981/* Calculate the checksum of a DIE.  */
5982
5983static void
5984die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5985{
5986  dw_die_ref c;
5987  dw_attr_ref a;
5988  unsigned ix;
5989
5990  /* To avoid infinite recursion.  */
5991  if (die->die_mark)
5992    {
5993      CHECKSUM (die->die_mark);
5994      return;
5995    }
5996  die->die_mark = ++(*mark);
5997
5998  CHECKSUM (die->die_tag);
5999
6000  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6001    attr_checksum (a, ctx, mark);
6002
6003  FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6004}
6005
6006#undef CHECKSUM
6007#undef CHECKSUM_STRING
6008
6009/* Do the location expressions look same?  */
6010static inline int
6011same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6012{
6013  return loc1->dw_loc_opc == loc2->dw_loc_opc
6014	 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6015	 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6016}
6017
6018/* Do the values look the same?  */
6019static int
6020same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
6021{
6022  dw_loc_descr_ref loc1, loc2;
6023  rtx r1, r2;
6024
6025  if (v1->val_class != v2->val_class)
6026    return 0;
6027
6028  switch (v1->val_class)
6029    {
6030    case dw_val_class_const:
6031      return v1->v.val_int == v2->v.val_int;
6032    case dw_val_class_unsigned_const:
6033      return v1->v.val_unsigned == v2->v.val_unsigned;
6034    case dw_val_class_long_long:
6035      return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6036	     && v1->v.val_long_long.low == v2->v.val_long_long.low;
6037    case dw_val_class_vec:
6038      if (v1->v.val_vec.length != v2->v.val_vec.length
6039	  || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6040	return 0;
6041      if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6042		  v1->v.val_vec.length * v1->v.val_vec.elt_size))
6043	return 0;
6044      return 1;
6045    case dw_val_class_flag:
6046      return v1->v.val_flag == v2->v.val_flag;
6047    case dw_val_class_str:
6048      return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6049
6050    case dw_val_class_addr:
6051      r1 = v1->v.val_addr;
6052      r2 = v2->v.val_addr;
6053      if (GET_CODE (r1) != GET_CODE (r2))
6054	return 0;
6055      gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6056      return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6057
6058    case dw_val_class_offset:
6059      return v1->v.val_offset == v2->v.val_offset;
6060
6061    case dw_val_class_loc:
6062      for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6063	   loc1 && loc2;
6064	   loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6065	if (!same_loc_p (loc1, loc2, mark))
6066	  return 0;
6067      return !loc1 && !loc2;
6068
6069    case dw_val_class_die_ref:
6070      return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6071
6072    case dw_val_class_fde_ref:
6073    case dw_val_class_lbl_id:
6074    case dw_val_class_lineptr:
6075    case dw_val_class_macptr:
6076      return 1;
6077
6078    case dw_val_class_file:
6079      return v1->v.val_file == v2->v.val_file;
6080
6081    default:
6082      return 1;
6083    }
6084}
6085
6086/* Do the attributes look the same?  */
6087
6088static int
6089same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6090{
6091  if (at1->dw_attr != at2->dw_attr)
6092    return 0;
6093
6094  /* We don't care that this was compiled with a different compiler
6095     snapshot; if the output is the same, that's what matters. */
6096  if (at1->dw_attr == DW_AT_producer)
6097    return 1;
6098
6099  return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6100}
6101
6102/* Do the dies look the same?  */
6103
6104static int
6105same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6106{
6107  dw_die_ref c1, c2;
6108  dw_attr_ref a1;
6109  unsigned ix;
6110
6111  /* To avoid infinite recursion.  */
6112  if (die1->die_mark)
6113    return die1->die_mark == die2->die_mark;
6114  die1->die_mark = die2->die_mark = ++(*mark);
6115
6116  if (die1->die_tag != die2->die_tag)
6117    return 0;
6118
6119  if (VEC_length (dw_attr_node, die1->die_attr)
6120      != VEC_length (dw_attr_node, die2->die_attr))
6121    return 0;
6122
6123  for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6124    if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6125      return 0;
6126
6127  c1 = die1->die_child;
6128  c2 = die2->die_child;
6129  if (! c1)
6130    {
6131      if (c2)
6132	return 0;
6133    }
6134  else
6135    for (;;)
6136      {
6137	if (!same_die_p (c1, c2, mark))
6138	  return 0;
6139	c1 = c1->die_sib;
6140	c2 = c2->die_sib;
6141	if (c1 == die1->die_child)
6142	  {
6143	    if (c2 == die2->die_child)
6144	      break;
6145	    else
6146	      return 0;
6147	  }
6148    }
6149
6150  return 1;
6151}
6152
6153/* Do the dies look the same?  Wrapper around same_die_p.  */
6154
6155static int
6156same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6157{
6158  int mark = 0;
6159  int ret = same_die_p (die1, die2, &mark);
6160
6161  unmark_all_dies (die1);
6162  unmark_all_dies (die2);
6163
6164  return ret;
6165}
6166
6167/* The prefix to attach to symbols on DIEs in the current comdat debug
6168   info section.  */
6169static char *comdat_symbol_id;
6170
6171/* The index of the current symbol within the current comdat CU.  */
6172static unsigned int comdat_symbol_number;
6173
6174/* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6175   children, and set comdat_symbol_id accordingly.  */
6176
6177static void
6178compute_section_prefix (dw_die_ref unit_die)
6179{
6180  const char *die_name = get_AT_string (unit_die, DW_AT_name);
6181  const char *base = die_name ? lbasename (die_name) : "anonymous";
6182  char *name = alloca (strlen (base) + 64);
6183  char *p;
6184  int i, mark;
6185  unsigned char checksum[16];
6186  struct md5_ctx ctx;
6187
6188  /* Compute the checksum of the DIE, then append part of it as hex digits to
6189     the name filename of the unit.  */
6190
6191  md5_init_ctx (&ctx);
6192  mark = 0;
6193  die_checksum (unit_die, &ctx, &mark);
6194  unmark_all_dies (unit_die);
6195  md5_finish_ctx (&ctx, checksum);
6196
6197  sprintf (name, "%s.", base);
6198  clean_symbol_name (name);
6199
6200  p = name + strlen (name);
6201  for (i = 0; i < 4; i++)
6202    {
6203      sprintf (p, "%.2x", checksum[i]);
6204      p += 2;
6205    }
6206
6207  comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6208  comdat_symbol_number = 0;
6209}
6210
6211/* Returns nonzero if DIE represents a type, in the sense of TYPE_P.  */
6212
6213static int
6214is_type_die (dw_die_ref die)
6215{
6216  switch (die->die_tag)
6217    {
6218    case DW_TAG_array_type:
6219    case DW_TAG_class_type:
6220    case DW_TAG_enumeration_type:
6221    case DW_TAG_pointer_type:
6222    case DW_TAG_reference_type:
6223    case DW_TAG_string_type:
6224    case DW_TAG_structure_type:
6225    case DW_TAG_subroutine_type:
6226    case DW_TAG_union_type:
6227    case DW_TAG_ptr_to_member_type:
6228    case DW_TAG_set_type:
6229    case DW_TAG_subrange_type:
6230    case DW_TAG_base_type:
6231    case DW_TAG_const_type:
6232    case DW_TAG_file_type:
6233    case DW_TAG_packed_type:
6234    case DW_TAG_volatile_type:
6235    case DW_TAG_typedef:
6236      return 1;
6237    default:
6238      return 0;
6239    }
6240}
6241
6242/* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6243   Basically, we want to choose the bits that are likely to be shared between
6244   compilations (types) and leave out the bits that are specific to individual
6245   compilations (functions).  */
6246
6247static int
6248is_comdat_die (dw_die_ref c)
6249{
6250  /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6251     we do for stabs.  The advantage is a greater likelihood of sharing between
6252     objects that don't include headers in the same order (and therefore would
6253     put the base types in a different comdat).  jason 8/28/00 */
6254
6255  if (c->die_tag == DW_TAG_base_type)
6256    return 0;
6257
6258  if (c->die_tag == DW_TAG_pointer_type
6259      || c->die_tag == DW_TAG_reference_type
6260      || c->die_tag == DW_TAG_const_type
6261      || c->die_tag == DW_TAG_volatile_type)
6262    {
6263      dw_die_ref t = get_AT_ref (c, DW_AT_type);
6264
6265      return t ? is_comdat_die (t) : 0;
6266    }
6267
6268  return is_type_die (c);
6269}
6270
6271/* Returns 1 iff C is the sort of DIE that might be referred to from another
6272   compilation unit.  */
6273
6274static int
6275is_symbol_die (dw_die_ref c)
6276{
6277  return (is_type_die (c)
6278	  || (get_AT (c, DW_AT_declaration)
6279	      && !get_AT (c, DW_AT_specification))
6280	  || c->die_tag == DW_TAG_namespace);
6281}
6282
6283static char *
6284gen_internal_sym (const char *prefix)
6285{
6286  char buf[256];
6287
6288  ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6289  return xstrdup (buf);
6290}
6291
6292/* Assign symbols to all worthy DIEs under DIE.  */
6293
6294static void
6295assign_symbol_names (dw_die_ref die)
6296{
6297  dw_die_ref c;
6298
6299  if (is_symbol_die (die))
6300    {
6301      if (comdat_symbol_id)
6302	{
6303	  char *p = alloca (strlen (comdat_symbol_id) + 64);
6304
6305	  sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6306		   comdat_symbol_id, comdat_symbol_number++);
6307	  die->die_symbol = xstrdup (p);
6308	}
6309      else
6310	die->die_symbol = gen_internal_sym ("LDIE");
6311    }
6312
6313  FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6314}
6315
6316struct cu_hash_table_entry
6317{
6318  dw_die_ref cu;
6319  unsigned min_comdat_num, max_comdat_num;
6320  struct cu_hash_table_entry *next;
6321};
6322
6323/* Routines to manipulate hash table of CUs.  */
6324static hashval_t
6325htab_cu_hash (const void *of)
6326{
6327  const struct cu_hash_table_entry *entry = of;
6328
6329  return htab_hash_string (entry->cu->die_symbol);
6330}
6331
6332static int
6333htab_cu_eq (const void *of1, const void *of2)
6334{
6335  const struct cu_hash_table_entry *entry1 = of1;
6336  const struct die_struct *entry2 = of2;
6337
6338  return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6339}
6340
6341static void
6342htab_cu_del (void *what)
6343{
6344  struct cu_hash_table_entry *next, *entry = what;
6345
6346  while (entry)
6347    {
6348      next = entry->next;
6349      free (entry);
6350      entry = next;
6351    }
6352}
6353
6354/* Check whether we have already seen this CU and set up SYM_NUM
6355   accordingly.  */
6356static int
6357check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6358{
6359  struct cu_hash_table_entry dummy;
6360  struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6361
6362  dummy.max_comdat_num = 0;
6363
6364  slot = (struct cu_hash_table_entry **)
6365    htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6366	INSERT);
6367  entry = *slot;
6368
6369  for (; entry; last = entry, entry = entry->next)
6370    {
6371      if (same_die_p_wrap (cu, entry->cu))
6372	break;
6373    }
6374
6375  if (entry)
6376    {
6377      *sym_num = entry->min_comdat_num;
6378      return 1;
6379    }
6380
6381  entry = XCNEW (struct cu_hash_table_entry);
6382  entry->cu = cu;
6383  entry->min_comdat_num = *sym_num = last->max_comdat_num;
6384  entry->next = *slot;
6385  *slot = entry;
6386
6387  return 0;
6388}
6389
6390/* Record SYM_NUM to record of CU in HTABLE.  */
6391static void
6392record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6393{
6394  struct cu_hash_table_entry **slot, *entry;
6395
6396  slot = (struct cu_hash_table_entry **)
6397    htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6398	NO_INSERT);
6399  entry = *slot;
6400
6401  entry->max_comdat_num = sym_num;
6402}
6403
6404/* Traverse the DIE (which is always comp_unit_die), and set up
6405   additional compilation units for each of the include files we see
6406   bracketed by BINCL/EINCL.  */
6407
6408static void
6409break_out_includes (dw_die_ref die)
6410{
6411  dw_die_ref c;
6412  dw_die_ref unit = NULL;
6413  limbo_die_node *node, **pnode;
6414  htab_t cu_hash_table;
6415
6416  c = die->die_child;
6417  if (c) do {
6418    dw_die_ref prev = c;
6419    c = c->die_sib;
6420    while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6421	   || (unit && is_comdat_die (c)))
6422      {
6423	dw_die_ref next = c->die_sib;
6424
6425	/* This DIE is for a secondary CU; remove it from the main one.  */
6426	remove_child_with_prev (c, prev);
6427
6428	if (c->die_tag == DW_TAG_GNU_BINCL)
6429	  unit = push_new_compile_unit (unit, c);
6430	else if (c->die_tag == DW_TAG_GNU_EINCL)
6431	  unit = pop_compile_unit (unit);
6432	else
6433	  add_child_die (unit, c);
6434	c = next;
6435	if (c == die->die_child)
6436	  break;
6437      }
6438  } while (c != die->die_child);
6439
6440#if 0
6441  /* We can only use this in debugging, since the frontend doesn't check
6442     to make sure that we leave every include file we enter.  */
6443  gcc_assert (!unit);
6444#endif
6445
6446  assign_symbol_names (die);
6447  cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6448  for (node = limbo_die_list, pnode = &limbo_die_list;
6449       node;
6450       node = node->next)
6451    {
6452      int is_dupl;
6453
6454      compute_section_prefix (node->die);
6455      is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6456			&comdat_symbol_number);
6457      assign_symbol_names (node->die);
6458      if (is_dupl)
6459	*pnode = node->next;
6460      else
6461	{
6462	  pnode = &node->next;
6463	  record_comdat_symbol_number (node->die, cu_hash_table,
6464		comdat_symbol_number);
6465	}
6466    }
6467  htab_delete (cu_hash_table);
6468}
6469
6470/* Traverse the DIE and add a sibling attribute if it may have the
6471   effect of speeding up access to siblings.  To save some space,
6472   avoid generating sibling attributes for DIE's without children.  */
6473
6474static void
6475add_sibling_attributes (dw_die_ref die)
6476{
6477  dw_die_ref c;
6478
6479  if (! die->die_child)
6480    return;
6481
6482  if (die->die_parent && die != die->die_parent->die_child)
6483    add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6484
6485  FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6486}
6487
6488/* Output all location lists for the DIE and its children.  */
6489
6490static void
6491output_location_lists (dw_die_ref die)
6492{
6493  dw_die_ref c;
6494  dw_attr_ref a;
6495  unsigned ix;
6496
6497  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6498    if (AT_class (a) == dw_val_class_loc_list)
6499      output_loc_list (AT_loc_list (a));
6500
6501  FOR_EACH_CHILD (die, c, output_location_lists (c));
6502}
6503
6504/* The format of each DIE (and its attribute value pairs) is encoded in an
6505   abbreviation table.  This routine builds the abbreviation table and assigns
6506   a unique abbreviation id for each abbreviation entry.  The children of each
6507   die are visited recursively.  */
6508
6509static void
6510build_abbrev_table (dw_die_ref die)
6511{
6512  unsigned long abbrev_id;
6513  unsigned int n_alloc;
6514  dw_die_ref c;
6515  dw_attr_ref a;
6516  unsigned ix;
6517
6518  /* Scan the DIE references, and mark as external any that refer to
6519     DIEs from other CUs (i.e. those which are not marked).  */
6520  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6521    if (AT_class (a) == dw_val_class_die_ref
6522	&& AT_ref (a)->die_mark == 0)
6523      {
6524	gcc_assert (AT_ref (a)->die_symbol);
6525
6526	set_AT_ref_external (a, 1);
6527      }
6528
6529  for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6530    {
6531      dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6532      dw_attr_ref die_a, abbrev_a;
6533      unsigned ix;
6534      bool ok = true;
6535
6536      if (abbrev->die_tag != die->die_tag)
6537	continue;
6538      if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6539	continue;
6540
6541      if (VEC_length (dw_attr_node, abbrev->die_attr)
6542	  != VEC_length (dw_attr_node, die->die_attr))
6543	continue;
6544
6545      for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6546	{
6547	  abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6548	  if ((abbrev_a->dw_attr != die_a->dw_attr)
6549	      || (value_format (abbrev_a) != value_format (die_a)))
6550	    {
6551	      ok = false;
6552	      break;
6553	    }
6554	}
6555      if (ok)
6556	break;
6557    }
6558
6559  if (abbrev_id >= abbrev_die_table_in_use)
6560    {
6561      if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6562	{
6563	  n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6564	  abbrev_die_table = ggc_realloc (abbrev_die_table,
6565					  sizeof (dw_die_ref) * n_alloc);
6566
6567	  memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6568		 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6569	  abbrev_die_table_allocated = n_alloc;
6570	}
6571
6572      ++abbrev_die_table_in_use;
6573      abbrev_die_table[abbrev_id] = die;
6574    }
6575
6576  die->die_abbrev = abbrev_id;
6577  FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6578}
6579
6580/* Return the power-of-two number of bytes necessary to represent VALUE.  */
6581
6582static int
6583constant_size (long unsigned int value)
6584{
6585  int log;
6586
6587  if (value == 0)
6588    log = 0;
6589  else
6590    log = floor_log2 (value);
6591
6592  log = log / 8;
6593  log = 1 << (floor_log2 (log) + 1);
6594
6595  return log;
6596}
6597
6598/* Return the size of a DIE as it is represented in the
6599   .debug_info section.  */
6600
6601static unsigned long
6602size_of_die (dw_die_ref die)
6603{
6604  unsigned long size = 0;
6605  dw_attr_ref a;
6606  unsigned ix;
6607
6608  size += size_of_uleb128 (die->die_abbrev);
6609  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6610    {
6611      switch (AT_class (a))
6612	{
6613	case dw_val_class_addr:
6614	  size += DWARF2_ADDR_SIZE;
6615	  break;
6616	case dw_val_class_offset:
6617	  size += DWARF_OFFSET_SIZE;
6618	  break;
6619	case dw_val_class_loc:
6620	  {
6621	    unsigned long lsize = size_of_locs (AT_loc (a));
6622
6623	    /* Block length.  */
6624	    size += constant_size (lsize);
6625	    size += lsize;
6626	  }
6627	  break;
6628	case dw_val_class_loc_list:
6629	  size += DWARF_OFFSET_SIZE;
6630	  break;
6631	case dw_val_class_range_list:
6632	  size += DWARF_OFFSET_SIZE;
6633	  break;
6634	case dw_val_class_const:
6635	  size += size_of_sleb128 (AT_int (a));
6636	  break;
6637	case dw_val_class_unsigned_const:
6638	  size += constant_size (AT_unsigned (a));
6639	  break;
6640	case dw_val_class_long_long:
6641	  size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6642	  break;
6643	case dw_val_class_vec:
6644	  size += 1 + (a->dw_attr_val.v.val_vec.length
6645		       * a->dw_attr_val.v.val_vec.elt_size); /* block */
6646	  break;
6647	case dw_val_class_flag:
6648	  size += 1;
6649	  break;
6650	case dw_val_class_die_ref:
6651	  if (AT_ref_external (a))
6652	    size += DWARF2_ADDR_SIZE;
6653	  else
6654	    size += DWARF_OFFSET_SIZE;
6655	  break;
6656	case dw_val_class_fde_ref:
6657	  size += DWARF_OFFSET_SIZE;
6658	  break;
6659	case dw_val_class_lbl_id:
6660	  size += DWARF2_ADDR_SIZE;
6661	  break;
6662	case dw_val_class_lineptr:
6663	case dw_val_class_macptr:
6664	  size += DWARF_OFFSET_SIZE;
6665	  break;
6666	case dw_val_class_str:
6667	  if (AT_string_form (a) == DW_FORM_strp)
6668	    size += DWARF_OFFSET_SIZE;
6669	  else
6670	    size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6671	  break;
6672	case dw_val_class_file:
6673	  size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6674	  break;
6675	default:
6676	  gcc_unreachable ();
6677	}
6678    }
6679
6680  return size;
6681}
6682
6683/* Size the debugging information associated with a given DIE.  Visits the
6684   DIE's children recursively.  Updates the global variable next_die_offset, on
6685   each time through.  Uses the current value of next_die_offset to update the
6686   die_offset field in each DIE.  */
6687
6688static void
6689calc_die_sizes (dw_die_ref die)
6690{
6691  dw_die_ref c;
6692
6693  die->die_offset = next_die_offset;
6694  next_die_offset += size_of_die (die);
6695
6696  FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6697
6698  if (die->die_child != NULL)
6699    /* Count the null byte used to terminate sibling lists.  */
6700    next_die_offset += 1;
6701}
6702
6703/* Set the marks for a die and its children.  We do this so
6704   that we know whether or not a reference needs to use FORM_ref_addr; only
6705   DIEs in the same CU will be marked.  We used to clear out the offset
6706   and use that as the flag, but ran into ordering problems.  */
6707
6708static void
6709mark_dies (dw_die_ref die)
6710{
6711  dw_die_ref c;
6712
6713  gcc_assert (!die->die_mark);
6714
6715  die->die_mark = 1;
6716  FOR_EACH_CHILD (die, c, mark_dies (c));
6717}
6718
6719/* Clear the marks for a die and its children.  */
6720
6721static void
6722unmark_dies (dw_die_ref die)
6723{
6724  dw_die_ref c;
6725
6726  gcc_assert (die->die_mark);
6727
6728  die->die_mark = 0;
6729  FOR_EACH_CHILD (die, c, unmark_dies (c));
6730}
6731
6732/* Clear the marks for a die, its children and referred dies.  */
6733
6734static void
6735unmark_all_dies (dw_die_ref die)
6736{
6737  dw_die_ref c;
6738  dw_attr_ref a;
6739  unsigned ix;
6740
6741  if (!die->die_mark)
6742    return;
6743  die->die_mark = 0;
6744
6745  FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6746
6747  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6748    if (AT_class (a) == dw_val_class_die_ref)
6749      unmark_all_dies (AT_ref (a));
6750}
6751
6752/* Return the size of the .debug_pubnames or .debug_pubtypes table
6753   generated for the compilation unit.  */
6754
6755static unsigned long
6756size_of_pubnames (VEC (pubname_entry, gc) * names)
6757{
6758  unsigned long size;
6759  unsigned i;
6760  pubname_ref p;
6761
6762  size = DWARF_PUBNAMES_HEADER_SIZE;
6763  for (i = 0; VEC_iterate (pubname_entry, names, i, p); i++)
6764    if (names != pubtype_table
6765	|| p->die->die_offset != 0
6766	|| !flag_eliminate_unused_debug_types)
6767      size += strlen (p->name) + DWARF_OFFSET_SIZE + 1;
6768
6769  size += DWARF_OFFSET_SIZE;
6770  return size;
6771}
6772
6773/* Return the size of the information in the .debug_aranges section.  */
6774
6775static unsigned long
6776size_of_aranges (void)
6777{
6778  unsigned long size;
6779
6780  size = DWARF_ARANGES_HEADER_SIZE;
6781
6782  /* Count the address/length pair for this compilation unit.  */
6783  size += 2 * DWARF2_ADDR_SIZE;
6784  size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6785
6786  /* Count the two zero words used to terminated the address range table.  */
6787  size += 2 * DWARF2_ADDR_SIZE;
6788  return size;
6789}
6790
6791/* Select the encoding of an attribute value.  */
6792
6793static enum dwarf_form
6794value_format (dw_attr_ref a)
6795{
6796  switch (a->dw_attr_val.val_class)
6797    {
6798    case dw_val_class_addr:
6799      return DW_FORM_addr;
6800    case dw_val_class_range_list:
6801    case dw_val_class_offset:
6802    case dw_val_class_loc_list:
6803      switch (DWARF_OFFSET_SIZE)
6804	{
6805	case 4:
6806	  return DW_FORM_data4;
6807	case 8:
6808	  return DW_FORM_data8;
6809	default:
6810	  gcc_unreachable ();
6811	}
6812    case dw_val_class_loc:
6813      switch (constant_size (size_of_locs (AT_loc (a))))
6814	{
6815	case 1:
6816	  return DW_FORM_block1;
6817	case 2:
6818	  return DW_FORM_block2;
6819	default:
6820	  gcc_unreachable ();
6821	}
6822    case dw_val_class_const:
6823      return DW_FORM_sdata;
6824    case dw_val_class_unsigned_const:
6825      switch (constant_size (AT_unsigned (a)))
6826	{
6827	case 1:
6828	  return DW_FORM_data1;
6829	case 2:
6830	  return DW_FORM_data2;
6831	case 4:
6832	  return DW_FORM_data4;
6833	case 8:
6834	  return DW_FORM_data8;
6835	default:
6836	  gcc_unreachable ();
6837	}
6838    case dw_val_class_long_long:
6839      return DW_FORM_block1;
6840    case dw_val_class_vec:
6841      return DW_FORM_block1;
6842    case dw_val_class_flag:
6843      return DW_FORM_flag;
6844    case dw_val_class_die_ref:
6845      if (AT_ref_external (a))
6846	return DW_FORM_ref_addr;
6847      else
6848	return DW_FORM_ref;
6849    case dw_val_class_fde_ref:
6850      return DW_FORM_data;
6851    case dw_val_class_lbl_id:
6852      return DW_FORM_addr;
6853    case dw_val_class_lineptr:
6854    case dw_val_class_macptr:
6855      return DW_FORM_data;
6856    case dw_val_class_str:
6857      return AT_string_form (a);
6858    case dw_val_class_file:
6859      switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
6860	{
6861	case 1:
6862	  return DW_FORM_data1;
6863	case 2:
6864	  return DW_FORM_data2;
6865	case 4:
6866	  return DW_FORM_data4;
6867	default:
6868	  gcc_unreachable ();
6869	}
6870
6871    default:
6872      gcc_unreachable ();
6873    }
6874}
6875
6876/* Output the encoding of an attribute value.  */
6877
6878static void
6879output_value_format (dw_attr_ref a)
6880{
6881  enum dwarf_form form = value_format (a);
6882
6883  dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6884}
6885
6886/* Output the .debug_abbrev section which defines the DIE abbreviation
6887   table.  */
6888
6889static void
6890output_abbrev_section (void)
6891{
6892  unsigned long abbrev_id;
6893
6894  for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6895    {
6896      dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6897      unsigned ix;
6898      dw_attr_ref a_attr;
6899
6900      dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6901      dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6902				   dwarf_tag_name (abbrev->die_tag));
6903
6904      if (abbrev->die_child != NULL)
6905	dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6906      else
6907	dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6908
6909      for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
6910	   ix++)
6911	{
6912	  dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6913				       dwarf_attr_name (a_attr->dw_attr));
6914	  output_value_format (a_attr);
6915	}
6916
6917      dw2_asm_output_data (1, 0, NULL);
6918      dw2_asm_output_data (1, 0, NULL);
6919    }
6920
6921  /* Terminate the table.  */
6922  dw2_asm_output_data (1, 0, NULL);
6923}
6924
6925/* Output a symbol we can use to refer to this DIE from another CU.  */
6926
6927static inline void
6928output_die_symbol (dw_die_ref die)
6929{
6930  char *sym = die->die_symbol;
6931
6932  if (sym == 0)
6933    return;
6934
6935  if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6936    /* We make these global, not weak; if the target doesn't support
6937       .linkonce, it doesn't support combining the sections, so debugging
6938       will break.  */
6939    targetm.asm_out.globalize_label (asm_out_file, sym);
6940
6941  ASM_OUTPUT_LABEL (asm_out_file, sym);
6942}
6943
6944/* Return a new location list, given the begin and end range, and the
6945   expression. gensym tells us whether to generate a new internal symbol for
6946   this location list node, which is done for the head of the list only.  */
6947
6948static inline dw_loc_list_ref
6949new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6950	      const char *section, unsigned int gensym)
6951{
6952  dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6953
6954  retlist->begin = begin;
6955  retlist->end = end;
6956  retlist->expr = expr;
6957  retlist->section = section;
6958  if (gensym)
6959    retlist->ll_symbol = gen_internal_sym ("LLST");
6960
6961  return retlist;
6962}
6963
6964/* Add a location description expression to a location list.  */
6965
6966static inline void
6967add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6968			   const char *begin, const char *end,
6969			   const char *section)
6970{
6971  dw_loc_list_ref *d;
6972
6973  /* Find the end of the chain.  */
6974  for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6975    ;
6976
6977  /* Add a new location list node to the list.  */
6978  *d = new_loc_list (descr, begin, end, section, 0);
6979}
6980
6981static void
6982dwarf2out_switch_text_section (void)
6983{
6984  dw_fde_ref fde;
6985
6986  gcc_assert (cfun);
6987
6988  fde = &fde_table[fde_table_in_use - 1];
6989  fde->dw_fde_switched_sections = true;
6990  fde->dw_fde_hot_section_label = cfun->hot_section_label;
6991  fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6992  fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6993  fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6994  have_multiple_function_sections = true;
6995
6996  /* Reset the current label on switching text sections, so that we
6997     don't attempt to advance_loc4 between labels in different sections.  */
6998  fde->dw_fde_current_label = NULL;
6999}
7000
7001/* Output the location list given to us.  */
7002
7003static void
7004output_loc_list (dw_loc_list_ref list_head)
7005{
7006  dw_loc_list_ref curr = list_head;
7007
7008  ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7009
7010  /* Walk the location list, and output each range + expression.  */
7011  for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7012    {
7013      unsigned long size;
7014      if (!have_multiple_function_sections)
7015	{
7016	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7017				"Location list begin address (%s)",
7018				list_head->ll_symbol);
7019	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7020				"Location list end address (%s)",
7021				list_head->ll_symbol);
7022	}
7023      else
7024	{
7025	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7026			       "Location list begin address (%s)",
7027			       list_head->ll_symbol);
7028	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7029			       "Location list end address (%s)",
7030			       list_head->ll_symbol);
7031	}
7032      size = size_of_locs (curr->expr);
7033
7034      /* Output the block length for this list of location operations.  */
7035      gcc_assert (size <= 0xffff);
7036      dw2_asm_output_data (2, size, "%s", "Location expression size");
7037
7038      output_loc_sequence (curr->expr);
7039    }
7040
7041  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7042		       "Location list terminator begin (%s)",
7043		       list_head->ll_symbol);
7044  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7045		       "Location list terminator end (%s)",
7046		       list_head->ll_symbol);
7047}
7048
7049/* Output the DIE and its attributes.  Called recursively to generate
7050   the definitions of each child DIE.  */
7051
7052static void
7053output_die (dw_die_ref die)
7054{
7055  dw_attr_ref a;
7056  dw_die_ref c;
7057  unsigned long size;
7058  unsigned ix;
7059
7060  /* If someone in another CU might refer to us, set up a symbol for
7061     them to point to.  */
7062  if (die->die_symbol)
7063    output_die_symbol (die);
7064
7065  dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7066			       (unsigned long)die->die_offset,
7067			       dwarf_tag_name (die->die_tag));
7068
7069  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7070    {
7071      const char *name = dwarf_attr_name (a->dw_attr);
7072
7073      switch (AT_class (a))
7074	{
7075	case dw_val_class_addr:
7076	  dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7077	  break;
7078
7079	case dw_val_class_offset:
7080	  dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7081			       "%s", name);
7082	  break;
7083
7084	case dw_val_class_range_list:
7085	  {
7086	    char *p = strchr (ranges_section_label, '\0');
7087
7088	    sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7089		     a->dw_attr_val.v.val_offset);
7090	    dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7091				   debug_ranges_section, "%s", name);
7092	    *p = '\0';
7093	  }
7094	  break;
7095
7096	case dw_val_class_loc:
7097	  size = size_of_locs (AT_loc (a));
7098
7099	  /* Output the block length for this list of location operations.  */
7100	  dw2_asm_output_data (constant_size (size), size, "%s", name);
7101
7102	  output_loc_sequence (AT_loc (a));
7103	  break;
7104
7105	case dw_val_class_const:
7106	  /* ??? It would be slightly more efficient to use a scheme like is
7107	     used for unsigned constants below, but gdb 4.x does not sign
7108	     extend.  Gdb 5.x does sign extend.  */
7109	  dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7110	  break;
7111
7112	case dw_val_class_unsigned_const:
7113	  dw2_asm_output_data (constant_size (AT_unsigned (a)),
7114			       AT_unsigned (a), "%s", name);
7115	  break;
7116
7117	case dw_val_class_long_long:
7118	  {
7119	    unsigned HOST_WIDE_INT first, second;
7120
7121	    dw2_asm_output_data (1,
7122				 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7123				 "%s", name);
7124
7125	    if (WORDS_BIG_ENDIAN)
7126	      {
7127		first = a->dw_attr_val.v.val_long_long.hi;
7128		second = a->dw_attr_val.v.val_long_long.low;
7129	      }
7130	    else
7131	      {
7132		first = a->dw_attr_val.v.val_long_long.low;
7133		second = a->dw_attr_val.v.val_long_long.hi;
7134	      }
7135
7136	    dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7137				 first, "long long constant");
7138	    dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7139				 second, NULL);
7140	  }
7141	  break;
7142
7143	case dw_val_class_vec:
7144	  {
7145	    unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7146	    unsigned int len = a->dw_attr_val.v.val_vec.length;
7147	    unsigned int i;
7148	    unsigned char *p;
7149
7150	    dw2_asm_output_data (1, len * elt_size, "%s", name);
7151	    if (elt_size > sizeof (HOST_WIDE_INT))
7152	      {
7153		elt_size /= 2;
7154		len *= 2;
7155	      }
7156	    for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7157		 i < len;
7158		 i++, p += elt_size)
7159	      dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7160				   "fp or vector constant word %u", i);
7161	    break;
7162	  }
7163
7164	case dw_val_class_flag:
7165	  dw2_asm_output_data (1, AT_flag (a), "%s", name);
7166	  break;
7167
7168	case dw_val_class_loc_list:
7169	  {
7170	    char *sym = AT_loc_list (a)->ll_symbol;
7171
7172	    gcc_assert (sym);
7173	    dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7174				   "%s", name);
7175	  }
7176	  break;
7177
7178	case dw_val_class_die_ref:
7179	  if (AT_ref_external (a))
7180	    {
7181	      char *sym = AT_ref (a)->die_symbol;
7182
7183	      gcc_assert (sym);
7184	      dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7185				     "%s", name);
7186	    }
7187	  else
7188	    {
7189	      gcc_assert (AT_ref (a)->die_offset);
7190	      dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7191				   "%s", name);
7192	    }
7193	  break;
7194
7195	case dw_val_class_fde_ref:
7196	  {
7197	    char l1[20];
7198
7199	    ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7200					 a->dw_attr_val.v.val_fde_index * 2);
7201	    dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7202				   "%s", name);
7203	  }
7204	  break;
7205
7206	case dw_val_class_lbl_id:
7207	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7208	  break;
7209
7210	case dw_val_class_lineptr:
7211	  dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7212				 debug_line_section, "%s", name);
7213	  break;
7214
7215	case dw_val_class_macptr:
7216	  dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7217				 debug_macinfo_section, "%s", name);
7218	  break;
7219
7220	case dw_val_class_str:
7221	  if (AT_string_form (a) == DW_FORM_strp)
7222	    dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7223				   a->dw_attr_val.v.val_str->label,
7224				   debug_str_section,
7225				   "%s: \"%s\"", name, AT_string (a));
7226	  else
7227	    dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7228	  break;
7229
7230	case dw_val_class_file:
7231	  {
7232	    int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7233
7234	    dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7235				 a->dw_attr_val.v.val_file->filename);
7236	    break;
7237	  }
7238
7239	default:
7240	  gcc_unreachable ();
7241	}
7242    }
7243
7244  FOR_EACH_CHILD (die, c, output_die (c));
7245
7246  /* Add null byte to terminate sibling list.  */
7247  if (die->die_child != NULL)
7248    dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7249			 (unsigned long) die->die_offset);
7250}
7251
7252/* Output the compilation unit that appears at the beginning of the
7253   .debug_info section, and precedes the DIE descriptions.  */
7254
7255static void
7256output_compilation_unit_header (void)
7257{
7258  if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7259    dw2_asm_output_data (4, 0xffffffff,
7260      "Initial length escape value indicating 64-bit DWARF extension");
7261  dw2_asm_output_data (DWARF_OFFSET_SIZE,
7262                       next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7263		       "Length of Compilation Unit Info");
7264  dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7265  dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7266			 debug_abbrev_section,
7267			 "Offset Into Abbrev. Section");
7268  dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7269}
7270
7271/* Output the compilation unit DIE and its children.  */
7272
7273static void
7274output_comp_unit (dw_die_ref die, int output_if_empty)
7275{
7276  const char *secname;
7277  char *oldsym, *tmp;
7278
7279  /* Unless we are outputting main CU, we may throw away empty ones.  */
7280  if (!output_if_empty && die->die_child == NULL)
7281    return;
7282
7283  /* Even if there are no children of this DIE, we must output the information
7284     about the compilation unit.  Otherwise, on an empty translation unit, we
7285     will generate a present, but empty, .debug_info section.  IRIX 6.5 `nm'
7286     will then complain when examining the file.  First mark all the DIEs in
7287     this CU so we know which get local refs.  */
7288  mark_dies (die);
7289
7290  build_abbrev_table (die);
7291
7292  /* Initialize the beginning DIE offset - and calculate sizes/offsets.  */
7293  next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7294  calc_die_sizes (die);
7295
7296  oldsym = die->die_symbol;
7297  if (oldsym)
7298    {
7299      tmp = alloca (strlen (oldsym) + 24);
7300
7301      sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7302      secname = tmp;
7303      die->die_symbol = NULL;
7304      switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7305    }
7306  else
7307    switch_to_section (debug_info_section);
7308
7309  /* Output debugging information.  */
7310  output_compilation_unit_header ();
7311  output_die (die);
7312
7313  /* Leave the marks on the main CU, so we can check them in
7314     output_pubnames.  */
7315  if (oldsym)
7316    {
7317      unmark_dies (die);
7318      die->die_symbol = oldsym;
7319    }
7320}
7321
7322/* Return the DWARF2/3 pubname associated with a decl.  */
7323
7324static const char *
7325dwarf2_name (tree decl, int scope)
7326{
7327  return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7328}
7329
7330/* Add a new entry to .debug_pubnames if appropriate.  */
7331
7332static void
7333add_pubname (tree decl, dw_die_ref die)
7334{
7335  pubname_entry e;
7336
7337  if (! TREE_PUBLIC (decl))
7338    return;
7339
7340  e.die = die;
7341  e.name = xstrdup (dwarf2_name (decl, 1));
7342  VEC_safe_push (pubname_entry, gc, pubname_table, &e);
7343}
7344
7345/* Add a new entry to .debug_pubtypes if appropriate.  */
7346
7347static void
7348add_pubtype (tree decl, dw_die_ref die)
7349{
7350  pubname_entry e;
7351
7352  e.name = NULL;
7353  if ((TREE_PUBLIC (decl)
7354       || die->die_parent == comp_unit_die)
7355      && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
7356    {
7357      e.die = die;
7358      if (TYPE_P (decl))
7359	{
7360	  if (TYPE_NAME (decl))
7361	    {
7362	      if (TREE_CODE (TYPE_NAME (decl)) == IDENTIFIER_NODE)
7363		e.name = xstrdup ((const char *) IDENTIFIER_POINTER
7364				                              (TYPE_NAME (decl)));
7365	      else if (TREE_CODE (TYPE_NAME (decl)) == TYPE_DECL
7366		       && DECL_NAME (TYPE_NAME (decl)))
7367		e.name = xstrdup ((const char *) IDENTIFIER_POINTER
7368				                  (DECL_NAME (TYPE_NAME (decl))));
7369             else
7370	       e.name = xstrdup ((const char *) get_AT_string (die, DW_AT_name));
7371	    }
7372	}
7373      else
7374	e.name = xstrdup (dwarf2_name (decl, 1));
7375
7376      /* If we don't have a name for the type, there's no point in adding
7377	 it to the table.  */
7378      if (e.name && e.name[0] != '\0')
7379	VEC_safe_push (pubname_entry, gc, pubtype_table, &e);
7380    }
7381}
7382
7383/* Output the public names table used to speed up access to externally
7384   visible names; or the public types table used to find type definitions.  */
7385
7386static void
7387output_pubnames (VEC (pubname_entry, gc) * names)
7388{
7389  unsigned i;
7390  unsigned long pubnames_length = size_of_pubnames (names);
7391  pubname_ref pub;
7392
7393  if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7394    dw2_asm_output_data (4, 0xffffffff,
7395      "Initial length escape value indicating 64-bit DWARF extension");
7396  if (names == pubname_table)
7397    dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7398			 "Length of Public Names Info");
7399  else
7400    dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7401			 "Length of Public Type Names Info");
7402  dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7403  dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7404			 debug_info_section,
7405			 "Offset of Compilation Unit Info");
7406  dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7407		       "Compilation Unit Length");
7408
7409  for (i = 0; VEC_iterate (pubname_entry, names, i, pub); i++)
7410    {
7411      /* We shouldn't see pubnames for DIEs outside of the main CU.  */
7412      if (names == pubname_table)
7413	gcc_assert (pub->die->die_mark);
7414
7415      if (names != pubtype_table
7416	  || pub->die->die_offset != 0
7417	  || !flag_eliminate_unused_debug_types)
7418	{
7419	  dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7420			       "DIE offset");
7421
7422	  dw2_asm_output_nstring (pub->name, -1, "external name");
7423	}
7424    }
7425
7426  dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7427}
7428
7429/* Add a new entry to .debug_aranges if appropriate.  */
7430
7431static void
7432add_arange (tree decl, dw_die_ref die)
7433{
7434  if (! DECL_SECTION_NAME (decl))
7435    return;
7436
7437  if (arange_table_in_use == arange_table_allocated)
7438    {
7439      arange_table_allocated += ARANGE_TABLE_INCREMENT;
7440      arange_table = ggc_realloc (arange_table,
7441				  (arange_table_allocated
7442				   * sizeof (dw_die_ref)));
7443      memset (arange_table + arange_table_in_use, 0,
7444	      ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7445    }
7446
7447  arange_table[arange_table_in_use++] = die;
7448}
7449
7450/* Output the information that goes into the .debug_aranges table.
7451   Namely, define the beginning and ending address range of the
7452   text section generated for this compilation unit.  */
7453
7454static void
7455output_aranges (void)
7456{
7457  unsigned i;
7458  unsigned long aranges_length = size_of_aranges ();
7459
7460  if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7461    dw2_asm_output_data (4, 0xffffffff,
7462      "Initial length escape value indicating 64-bit DWARF extension");
7463  dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7464		       "Length of Address Ranges Info");
7465  dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7466  dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7467			 debug_info_section,
7468			 "Offset of Compilation Unit Info");
7469  dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7470  dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7471
7472  /* We need to align to twice the pointer size here.  */
7473  if (DWARF_ARANGES_PAD_SIZE)
7474    {
7475      /* Pad using a 2 byte words so that padding is correct for any
7476	 pointer size.  */
7477      dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7478			   2 * DWARF2_ADDR_SIZE);
7479      for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7480	dw2_asm_output_data (2, 0, NULL);
7481    }
7482
7483  dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7484  dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7485			text_section_label, "Length");
7486  if (flag_reorder_blocks_and_partition)
7487    {
7488      dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7489			   "Address");
7490      dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7491			    cold_text_section_label, "Length");
7492    }
7493
7494  for (i = 0; i < arange_table_in_use; i++)
7495    {
7496      dw_die_ref die = arange_table[i];
7497
7498      /* We shouldn't see aranges for DIEs outside of the main CU.  */
7499      gcc_assert (die->die_mark);
7500
7501      if (die->die_tag == DW_TAG_subprogram)
7502	{
7503	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7504			       "Address");
7505	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7506				get_AT_low_pc (die), "Length");
7507	}
7508      else
7509	{
7510	  /* A static variable; extract the symbol from DW_AT_location.
7511	     Note that this code isn't currently hit, as we only emit
7512	     aranges for functions (jason 9/23/99).  */
7513	  dw_attr_ref a = get_AT (die, DW_AT_location);
7514	  dw_loc_descr_ref loc;
7515
7516	  gcc_assert (a && AT_class (a) == dw_val_class_loc);
7517
7518	  loc = AT_loc (a);
7519	  gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7520
7521	  dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7522				   loc->dw_loc_oprnd1.v.val_addr, "Address");
7523	  dw2_asm_output_data (DWARF2_ADDR_SIZE,
7524			       get_AT_unsigned (die, DW_AT_byte_size),
7525			       "Length");
7526	}
7527    }
7528
7529  /* Output the terminator words.  */
7530  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7531  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7532}
7533
7534/* Add a new entry to .debug_ranges.  Return the offset at which it
7535   was placed.  */
7536
7537static unsigned int
7538add_ranges (tree block)
7539{
7540  unsigned int in_use = ranges_table_in_use;
7541
7542  if (in_use == ranges_table_allocated)
7543    {
7544      ranges_table_allocated += RANGES_TABLE_INCREMENT;
7545      ranges_table
7546	= ggc_realloc (ranges_table, (ranges_table_allocated
7547				      * sizeof (struct dw_ranges_struct)));
7548      memset (ranges_table + ranges_table_in_use, 0,
7549	      RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7550    }
7551
7552  ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7553  ranges_table_in_use = in_use + 1;
7554
7555  return in_use * 2 * DWARF2_ADDR_SIZE;
7556}
7557
7558static void
7559output_ranges (void)
7560{
7561  unsigned i;
7562  static const char *const start_fmt = "Offset 0x%x";
7563  const char *fmt = start_fmt;
7564
7565  for (i = 0; i < ranges_table_in_use; i++)
7566    {
7567      int block_num = ranges_table[i].block_num;
7568
7569      if (block_num)
7570	{
7571	  char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7572	  char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7573
7574	  ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7575	  ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7576
7577	  /* If all code is in the text section, then the compilation
7578	     unit base address defaults to DW_AT_low_pc, which is the
7579	     base of the text section.  */
7580	  if (!have_multiple_function_sections)
7581	    {
7582	      dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7583				    text_section_label,
7584				    fmt, i * 2 * DWARF2_ADDR_SIZE);
7585	      dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7586				    text_section_label, NULL);
7587	    }
7588
7589	  /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7590	     compilation unit base address to zero, which allows us to
7591	     use absolute addresses, and not worry about whether the
7592	     target supports cross-section arithmetic.  */
7593	  else
7594	    {
7595	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7596				   fmt, i * 2 * DWARF2_ADDR_SIZE);
7597	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7598	    }
7599
7600	  fmt = NULL;
7601	}
7602      else
7603	{
7604	  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7605	  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7606	  fmt = start_fmt;
7607	}
7608    }
7609}
7610
7611/* Data structure containing information about input files.  */
7612struct file_info
7613{
7614  const char *path;	/* Complete file name.  */
7615  const char *fname;	/* File name part.  */
7616  int length;		/* Length of entire string.  */
7617  struct dwarf_file_data * file_idx;	/* Index in input file table.  */
7618  int dir_idx;		/* Index in directory table.  */
7619};
7620
7621/* Data structure containing information about directories with source
7622   files.  */
7623struct dir_info
7624{
7625  const char *path;	/* Path including directory name.  */
7626  int length;		/* Path length.  */
7627  int prefix;		/* Index of directory entry which is a prefix.  */
7628  int count;		/* Number of files in this directory.  */
7629  int dir_idx;		/* Index of directory used as base.  */
7630};
7631
7632/* Callback function for file_info comparison.  We sort by looking at
7633   the directories in the path.  */
7634
7635static int
7636file_info_cmp (const void *p1, const void *p2)
7637{
7638  const struct file_info *s1 = p1;
7639  const struct file_info *s2 = p2;
7640  unsigned char *cp1;
7641  unsigned char *cp2;
7642
7643  /* Take care of file names without directories.  We need to make sure that
7644     we return consistent values to qsort since some will get confused if
7645     we return the same value when identical operands are passed in opposite
7646     orders.  So if neither has a directory, return 0 and otherwise return
7647     1 or -1 depending on which one has the directory.  */
7648  if ((s1->path == s1->fname || s2->path == s2->fname))
7649    return (s2->path == s2->fname) - (s1->path == s1->fname);
7650
7651  cp1 = (unsigned char *) s1->path;
7652  cp2 = (unsigned char *) s2->path;
7653
7654  while (1)
7655    {
7656      ++cp1;
7657      ++cp2;
7658      /* Reached the end of the first path?  If so, handle like above.  */
7659      if ((cp1 == (unsigned char *) s1->fname)
7660	  || (cp2 == (unsigned char *) s2->fname))
7661	return ((cp2 == (unsigned char *) s2->fname)
7662		- (cp1 == (unsigned char *) s1->fname));
7663
7664      /* Character of current path component the same?  */
7665      else if (*cp1 != *cp2)
7666	return *cp1 - *cp2;
7667    }
7668}
7669
7670struct file_name_acquire_data
7671{
7672  struct file_info *files;
7673  int used_files;
7674  int max_files;
7675};
7676
7677/* Traversal function for the hash table.  */
7678
7679static int
7680file_name_acquire (void ** slot, void *data)
7681{
7682  struct file_name_acquire_data *fnad = data;
7683  struct dwarf_file_data *d = *slot;
7684  struct file_info *fi;
7685  const char *f;
7686
7687  gcc_assert (fnad->max_files >= d->emitted_number);
7688
7689  if (! d->emitted_number)
7690    return 1;
7691
7692  gcc_assert (fnad->max_files != fnad->used_files);
7693
7694  fi = fnad->files + fnad->used_files++;
7695
7696  /* Skip all leading "./".  */
7697  f = d->filename;
7698  while (f[0] == '.' && f[1] == '/')
7699    f += 2;
7700
7701  /* Create a new array entry.  */
7702  fi->path = f;
7703  fi->length = strlen (f);
7704  fi->file_idx = d;
7705
7706  /* Search for the file name part.  */
7707  f = strrchr (f, '/');
7708  fi->fname = f == NULL ? fi->path : f + 1;
7709  return 1;
7710}
7711
7712/* Output the directory table and the file name table.  We try to minimize
7713   the total amount of memory needed.  A heuristic is used to avoid large
7714   slowdowns with many input files.  */
7715
7716static void
7717output_file_names (void)
7718{
7719  struct file_name_acquire_data fnad;
7720  int numfiles;
7721  struct file_info *files;
7722  struct dir_info *dirs;
7723  int *saved;
7724  int *savehere;
7725  int *backmap;
7726  int ndirs;
7727  int idx_offset;
7728  int i;
7729  int idx;
7730
7731  if (!last_emitted_file)
7732    {
7733      dw2_asm_output_data (1, 0, "End directory table");
7734      dw2_asm_output_data (1, 0, "End file name table");
7735      return;
7736    }
7737
7738  numfiles = last_emitted_file->emitted_number;
7739
7740  /* Allocate the various arrays we need.  */
7741  files = alloca (numfiles * sizeof (struct file_info));
7742  dirs = alloca (numfiles * sizeof (struct dir_info));
7743
7744  fnad.files = files;
7745  fnad.used_files = 0;
7746  fnad.max_files = numfiles;
7747  htab_traverse (file_table, file_name_acquire, &fnad);
7748  gcc_assert (fnad.used_files == fnad.max_files);
7749
7750  qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
7751
7752  /* Find all the different directories used.  */
7753  dirs[0].path = files[0].path;
7754  dirs[0].length = files[0].fname - files[0].path;
7755  dirs[0].prefix = -1;
7756  dirs[0].count = 1;
7757  dirs[0].dir_idx = 0;
7758  files[0].dir_idx = 0;
7759  ndirs = 1;
7760
7761  for (i = 1; i < numfiles; i++)
7762    if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7763	&& memcmp (dirs[ndirs - 1].path, files[i].path,
7764		   dirs[ndirs - 1].length) == 0)
7765      {
7766	/* Same directory as last entry.  */
7767	files[i].dir_idx = ndirs - 1;
7768	++dirs[ndirs - 1].count;
7769      }
7770    else
7771      {
7772	int j;
7773
7774	/* This is a new directory.  */
7775	dirs[ndirs].path = files[i].path;
7776	dirs[ndirs].length = files[i].fname - files[i].path;
7777	dirs[ndirs].count = 1;
7778	dirs[ndirs].dir_idx = ndirs;
7779	files[i].dir_idx = ndirs;
7780
7781	/* Search for a prefix.  */
7782	dirs[ndirs].prefix = -1;
7783	for (j = 0; j < ndirs; j++)
7784	  if (dirs[j].length < dirs[ndirs].length
7785	      && dirs[j].length > 1
7786	      && (dirs[ndirs].prefix == -1
7787		  || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7788	      && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7789	    dirs[ndirs].prefix = j;
7790
7791	++ndirs;
7792      }
7793
7794  /* Now to the actual work.  We have to find a subset of the directories which
7795     allow expressing the file name using references to the directory table
7796     with the least amount of characters.  We do not do an exhaustive search
7797     where we would have to check out every combination of every single
7798     possible prefix.  Instead we use a heuristic which provides nearly optimal
7799     results in most cases and never is much off.  */
7800  saved = alloca (ndirs * sizeof (int));
7801  savehere = alloca (ndirs * sizeof (int));
7802
7803  memset (saved, '\0', ndirs * sizeof (saved[0]));
7804  for (i = 0; i < ndirs; i++)
7805    {
7806      int j;
7807      int total;
7808
7809      /* We can always save some space for the current directory.  But this
7810	 does not mean it will be enough to justify adding the directory.  */
7811      savehere[i] = dirs[i].length;
7812      total = (savehere[i] - saved[i]) * dirs[i].count;
7813
7814      for (j = i + 1; j < ndirs; j++)
7815	{
7816	  savehere[j] = 0;
7817	  if (saved[j] < dirs[i].length)
7818	    {
7819	      /* Determine whether the dirs[i] path is a prefix of the
7820		 dirs[j] path.  */
7821	      int k;
7822
7823	      k = dirs[j].prefix;
7824	      while (k != -1 && k != (int) i)
7825		k = dirs[k].prefix;
7826
7827	      if (k == (int) i)
7828		{
7829		  /* Yes it is.  We can possibly save some memory by
7830		     writing the filenames in dirs[j] relative to
7831		     dirs[i].  */
7832		  savehere[j] = dirs[i].length;
7833		  total += (savehere[j] - saved[j]) * dirs[j].count;
7834		}
7835	    }
7836	}
7837
7838      /* Check whether we can save enough to justify adding the dirs[i]
7839	 directory.  */
7840      if (total > dirs[i].length + 1)
7841	{
7842	  /* It's worthwhile adding.  */
7843	  for (j = i; j < ndirs; j++)
7844	    if (savehere[j] > 0)
7845	      {
7846		/* Remember how much we saved for this directory so far.  */
7847		saved[j] = savehere[j];
7848
7849		/* Remember the prefix directory.  */
7850		dirs[j].dir_idx = i;
7851	      }
7852	}
7853    }
7854
7855  /* Emit the directory name table.  */
7856  idx = 1;
7857  idx_offset = dirs[0].length > 0 ? 1 : 0;
7858  for (i = 1 - idx_offset; i < ndirs; i++)
7859    dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7860			    "Directory Entry: 0x%x", i + idx_offset);
7861
7862  dw2_asm_output_data (1, 0, "End directory table");
7863
7864  /* We have to emit them in the order of emitted_number since that's
7865     used in the debug info generation.  To do this efficiently we
7866     generate a back-mapping of the indices first.  */
7867  backmap = alloca (numfiles * sizeof (int));
7868  for (i = 0; i < numfiles; i++)
7869    backmap[files[i].file_idx->emitted_number - 1] = i;
7870
7871  /* Now write all the file names.  */
7872  for (i = 0; i < numfiles; i++)
7873    {
7874      int file_idx = backmap[i];
7875      int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7876
7877      dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7878			      "File Entry: 0x%x", (unsigned) i + 1);
7879
7880      /* Include directory index.  */
7881      dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
7882
7883      /* Modification time.  */
7884      dw2_asm_output_data_uleb128 (0, NULL);
7885
7886      /* File length in bytes.  */
7887      dw2_asm_output_data_uleb128 (0, NULL);
7888    }
7889
7890  dw2_asm_output_data (1, 0, "End file name table");
7891}
7892
7893
7894/* Output the source line number correspondence information.  This
7895   information goes into the .debug_line section.  */
7896
7897static void
7898output_line_info (void)
7899{
7900  char l1[20], l2[20], p1[20], p2[20];
7901  char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7902  char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7903  unsigned opc;
7904  unsigned n_op_args;
7905  unsigned long lt_index;
7906  unsigned long current_line;
7907  long line_offset;
7908  long line_delta;
7909  unsigned long current_file;
7910  unsigned long function;
7911
7912  ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7913  ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7914  ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7915  ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7916
7917  if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7918    dw2_asm_output_data (4, 0xffffffff,
7919      "Initial length escape value indicating 64-bit DWARF extension");
7920  dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7921			"Length of Source Line Info");
7922  ASM_OUTPUT_LABEL (asm_out_file, l1);
7923
7924  dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7925  dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7926  ASM_OUTPUT_LABEL (asm_out_file, p1);
7927
7928  /* Define the architecture-dependent minimum instruction length (in
7929   bytes).  In this implementation of DWARF, this field is used for
7930   information purposes only.  Since GCC generates assembly language,
7931   we have no a priori knowledge of how many instruction bytes are
7932   generated for each source line, and therefore can use only the
7933   DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7934   commands.  Accordingly, we fix this as `1', which is "correct
7935   enough" for all architectures, and don't let the target override.  */
7936  dw2_asm_output_data (1, 1,
7937		       "Minimum Instruction Length");
7938
7939  dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7940		       "Default is_stmt_start flag");
7941  dw2_asm_output_data (1, DWARF_LINE_BASE,
7942		       "Line Base Value (Special Opcodes)");
7943  dw2_asm_output_data (1, DWARF_LINE_RANGE,
7944		       "Line Range Value (Special Opcodes)");
7945  dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7946		       "Special Opcode Base");
7947
7948  for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7949    {
7950      switch (opc)
7951	{
7952	case DW_LNS_advance_pc:
7953	case DW_LNS_advance_line:
7954	case DW_LNS_set_file:
7955	case DW_LNS_set_column:
7956	case DW_LNS_fixed_advance_pc:
7957	  n_op_args = 1;
7958	  break;
7959	default:
7960	  n_op_args = 0;
7961	  break;
7962	}
7963
7964      dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7965			   opc, n_op_args);
7966    }
7967
7968  /* Write out the information about the files we use.  */
7969  output_file_names ();
7970  ASM_OUTPUT_LABEL (asm_out_file, p2);
7971
7972  /* We used to set the address register to the first location in the text
7973     section here, but that didn't accomplish anything since we already
7974     have a line note for the opening brace of the first function.  */
7975
7976  /* Generate the line number to PC correspondence table, encoded as
7977     a series of state machine operations.  */
7978  current_file = 1;
7979  current_line = 1;
7980
7981  if (cfun && in_cold_section_p)
7982    strcpy (prev_line_label, cfun->cold_section_label);
7983  else
7984    strcpy (prev_line_label, text_section_label);
7985  for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7986    {
7987      dw_line_info_ref line_info = &line_info_table[lt_index];
7988
7989#if 0
7990      /* Disable this optimization for now; GDB wants to see two line notes
7991	 at the beginning of a function so it can find the end of the
7992	 prologue.  */
7993
7994      /* Don't emit anything for redundant notes.  Just updating the
7995	 address doesn't accomplish anything, because we already assume
7996	 that anything after the last address is this line.  */
7997      if (line_info->dw_line_num == current_line
7998	  && line_info->dw_file_num == current_file)
7999	continue;
8000#endif
8001
8002      /* Emit debug info for the address of the current line.
8003
8004	 Unfortunately, we have little choice here currently, and must always
8005	 use the most general form.  GCC does not know the address delta
8006	 itself, so we can't use DW_LNS_advance_pc.  Many ports do have length
8007	 attributes which will give an upper bound on the address range.  We
8008	 could perhaps use length attributes to determine when it is safe to
8009	 use DW_LNS_fixed_advance_pc.  */
8010
8011      ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
8012      if (0)
8013	{
8014	  /* This can handle deltas up to 0xffff.  This takes 3 bytes.  */
8015	  dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8016			       "DW_LNS_fixed_advance_pc");
8017	  dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8018	}
8019      else
8020	{
8021	  /* This can handle any delta.  This takes
8022	     4+DWARF2_ADDR_SIZE bytes.  */
8023	  dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8024	  dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8025	  dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8026	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8027	}
8028
8029      strcpy (prev_line_label, line_label);
8030
8031      /* Emit debug info for the source file of the current line, if
8032	 different from the previous line.  */
8033      if (line_info->dw_file_num != current_file)
8034	{
8035	  current_file = line_info->dw_file_num;
8036	  dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8037	  dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8038	}
8039
8040      /* Emit debug info for the current line number, choosing the encoding
8041	 that uses the least amount of space.  */
8042      if (line_info->dw_line_num != current_line)
8043	{
8044	  line_offset = line_info->dw_line_num - current_line;
8045	  line_delta = line_offset - DWARF_LINE_BASE;
8046	  current_line = line_info->dw_line_num;
8047	  if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8048	    /* This can handle deltas from -10 to 234, using the current
8049	       definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.  This
8050	       takes 1 byte.  */
8051	    dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8052				 "line %lu", current_line);
8053	  else
8054	    {
8055	      /* This can handle any delta.  This takes at least 4 bytes,
8056		 depending on the value being encoded.  */
8057	      dw2_asm_output_data (1, DW_LNS_advance_line,
8058				   "advance to line %lu", current_line);
8059	      dw2_asm_output_data_sleb128 (line_offset, NULL);
8060	      dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8061	    }
8062	}
8063      else
8064	/* We still need to start a new row, so output a copy insn.  */
8065	dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8066    }
8067
8068  /* Emit debug info for the address of the end of the function.  */
8069  if (0)
8070    {
8071      dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8072			   "DW_LNS_fixed_advance_pc");
8073      dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8074    }
8075  else
8076    {
8077      dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8078      dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8079      dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8080      dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8081    }
8082
8083  dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8084  dw2_asm_output_data_uleb128 (1, NULL);
8085  dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8086
8087  function = 0;
8088  current_file = 1;
8089  current_line = 1;
8090  for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8091    {
8092      dw_separate_line_info_ref line_info
8093	= &separate_line_info_table[lt_index];
8094
8095#if 0
8096      /* Don't emit anything for redundant notes.  */
8097      if (line_info->dw_line_num == current_line
8098	  && line_info->dw_file_num == current_file
8099	  && line_info->function == function)
8100	goto cont;
8101#endif
8102
8103      /* Emit debug info for the address of the current line.  If this is
8104	 a new function, or the first line of a function, then we need
8105	 to handle it differently.  */
8106      ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8107				   lt_index);
8108      if (function != line_info->function)
8109	{
8110	  function = line_info->function;
8111
8112	  /* Set the address register to the first line in the function.  */
8113	  dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8114	  dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8115	  dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8116	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8117	}
8118      else
8119	{
8120	  /* ??? See the DW_LNS_advance_pc comment above.  */
8121	  if (0)
8122	    {
8123	      dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8124				   "DW_LNS_fixed_advance_pc");
8125	      dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8126	    }
8127	  else
8128	    {
8129	      dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8130	      dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8131	      dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8132	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8133	    }
8134	}
8135
8136      strcpy (prev_line_label, line_label);
8137
8138      /* Emit debug info for the source file of the current line, if
8139	 different from the previous line.  */
8140      if (line_info->dw_file_num != current_file)
8141	{
8142	  current_file = line_info->dw_file_num;
8143	  dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8144	  dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8145	}
8146
8147      /* Emit debug info for the current line number, choosing the encoding
8148	 that uses the least amount of space.  */
8149      if (line_info->dw_line_num != current_line)
8150	{
8151	  line_offset = line_info->dw_line_num - current_line;
8152	  line_delta = line_offset - DWARF_LINE_BASE;
8153	  current_line = line_info->dw_line_num;
8154	  if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8155	    dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8156				 "line %lu", current_line);
8157	  else
8158	    {
8159	      dw2_asm_output_data (1, DW_LNS_advance_line,
8160				   "advance to line %lu", current_line);
8161	      dw2_asm_output_data_sleb128 (line_offset, NULL);
8162	      dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8163	    }
8164	}
8165      else
8166	dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8167
8168#if 0
8169    cont:
8170#endif
8171
8172      lt_index++;
8173
8174      /* If we're done with a function, end its sequence.  */
8175      if (lt_index == separate_line_info_table_in_use
8176	  || separate_line_info_table[lt_index].function != function)
8177	{
8178	  current_file = 1;
8179	  current_line = 1;
8180
8181	  /* Emit debug info for the address of the end of the function.  */
8182	  ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8183	  if (0)
8184	    {
8185	      dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8186				   "DW_LNS_fixed_advance_pc");
8187	      dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8188	    }
8189	  else
8190	    {
8191	      dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8192	      dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8193	      dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8194	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8195	    }
8196
8197	  /* Output the marker for the end of this sequence.  */
8198	  dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8199	  dw2_asm_output_data_uleb128 (1, NULL);
8200	  dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8201	}
8202    }
8203
8204  /* Output the marker for the end of the line number info.  */
8205  ASM_OUTPUT_LABEL (asm_out_file, l2);
8206}
8207
8208/* Given a pointer to a tree node for some base type, return a pointer to
8209   a DIE that describes the given type.
8210
8211   This routine must only be called for GCC type nodes that correspond to
8212   Dwarf base (fundamental) types.  */
8213
8214static dw_die_ref
8215base_type_die (tree type)
8216{
8217  dw_die_ref base_type_result;
8218  enum dwarf_type encoding;
8219
8220  if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8221    return 0;
8222
8223  switch (TREE_CODE (type))
8224    {
8225    case INTEGER_TYPE:
8226      if (TYPE_STRING_FLAG (type))
8227	{
8228	  if (TYPE_UNSIGNED (type))
8229	    encoding = DW_ATE_unsigned_char;
8230	  else
8231	    encoding = DW_ATE_signed_char;
8232	}
8233      else if (TYPE_UNSIGNED (type))
8234	encoding = DW_ATE_unsigned;
8235      else
8236	encoding = DW_ATE_signed;
8237      break;
8238
8239    case REAL_TYPE:
8240      if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8241	encoding = DW_ATE_decimal_float;
8242      else
8243	encoding = DW_ATE_float;
8244      break;
8245
8246      /* Dwarf2 doesn't know anything about complex ints, so use
8247	 a user defined type for it.  */
8248    case COMPLEX_TYPE:
8249      if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8250	encoding = DW_ATE_complex_float;
8251      else
8252	encoding = DW_ATE_lo_user;
8253      break;
8254
8255    case BOOLEAN_TYPE:
8256      /* GNU FORTRAN/Ada/C++ BOOLEAN type.  */
8257      encoding = DW_ATE_boolean;
8258      break;
8259
8260    default:
8261      /* No other TREE_CODEs are Dwarf fundamental types.  */
8262      gcc_unreachable ();
8263    }
8264
8265  base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8266
8267  /* This probably indicates a bug.  */
8268  if (! TYPE_NAME (type))
8269    add_name_attribute (base_type_result, "__unknown__");
8270
8271  add_AT_unsigned (base_type_result, DW_AT_byte_size,
8272		   int_size_in_bytes (type));
8273  add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8274
8275  return base_type_result;
8276}
8277
8278/* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8279   the Dwarf "root" type for the given input type.  The Dwarf "root" type of
8280   a given type is generally the same as the given type, except that if the
8281   given type is a pointer or reference type, then the root type of the given
8282   type is the root type of the "basis" type for the pointer or reference
8283   type.  (This definition of the "root" type is recursive.) Also, the root
8284   type of a `const' qualified type or a `volatile' qualified type is the
8285   root type of the given type without the qualifiers.  */
8286
8287static tree
8288root_type (tree type)
8289{
8290  if (TREE_CODE (type) == ERROR_MARK)
8291    return error_mark_node;
8292
8293  switch (TREE_CODE (type))
8294    {
8295    case ERROR_MARK:
8296      return error_mark_node;
8297
8298    case POINTER_TYPE:
8299    case REFERENCE_TYPE:
8300      return type_main_variant (root_type (TREE_TYPE (type)));
8301
8302    default:
8303      return type_main_variant (type);
8304    }
8305}
8306
8307/* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8308   given input type is a Dwarf "fundamental" type.  Otherwise return null.  */
8309
8310static inline int
8311is_base_type (tree type)
8312{
8313  switch (TREE_CODE (type))
8314    {
8315    case ERROR_MARK:
8316    case VOID_TYPE:
8317    case INTEGER_TYPE:
8318    case REAL_TYPE:
8319    case COMPLEX_TYPE:
8320    case BOOLEAN_TYPE:
8321      return 1;
8322
8323    case ARRAY_TYPE:
8324    case RECORD_TYPE:
8325    case UNION_TYPE:
8326    case QUAL_UNION_TYPE:
8327    case ENUMERAL_TYPE:
8328    case FUNCTION_TYPE:
8329    case METHOD_TYPE:
8330    case POINTER_TYPE:
8331    case REFERENCE_TYPE:
8332    case OFFSET_TYPE:
8333    case LANG_TYPE:
8334    case VECTOR_TYPE:
8335      return 0;
8336
8337    default:
8338      gcc_unreachable ();
8339    }
8340
8341  return 0;
8342}
8343
8344/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8345   node, return the size in bits for the type if it is a constant, or else
8346   return the alignment for the type if the type's size is not constant, or
8347   else return BITS_PER_WORD if the type actually turns out to be an
8348   ERROR_MARK node.  */
8349
8350static inline unsigned HOST_WIDE_INT
8351simple_type_size_in_bits (tree type)
8352{
8353  if (TREE_CODE (type) == ERROR_MARK)
8354    return BITS_PER_WORD;
8355  else if (TYPE_SIZE (type) == NULL_TREE)
8356    return 0;
8357  else if (host_integerp (TYPE_SIZE (type), 1))
8358    return tree_low_cst (TYPE_SIZE (type), 1);
8359  else
8360    return TYPE_ALIGN (type);
8361}
8362
8363/* Return true if the debug information for the given type should be
8364   emitted as a subrange type.  */
8365
8366static inline bool
8367is_subrange_type (tree type)
8368{
8369  tree subtype = TREE_TYPE (type);
8370
8371  /* Subrange types are identified by the fact that they are integer
8372     types, and that they have a subtype which is either an integer type
8373     or an enumeral type.  */
8374
8375  if (TREE_CODE (type) != INTEGER_TYPE
8376      || subtype == NULL_TREE)
8377    return false;
8378
8379  if (TREE_CODE (subtype) != INTEGER_TYPE
8380      && TREE_CODE (subtype) != ENUMERAL_TYPE)
8381    return false;
8382
8383  if (TREE_CODE (type) == TREE_CODE (subtype)
8384      && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8385      && TYPE_MIN_VALUE (type) != NULL
8386      && TYPE_MIN_VALUE (subtype) != NULL
8387      && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8388      && TYPE_MAX_VALUE (type) != NULL
8389      && TYPE_MAX_VALUE (subtype) != NULL
8390      && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8391    {
8392      /* The type and its subtype have the same representation.  If in
8393         addition the two types also have the same name, then the given
8394         type is not a subrange type, but rather a plain base type.  */
8395      /* FIXME: brobecker/2004-03-22:
8396         Sizetype INTEGER_CSTs nodes are canonicalized.  It should
8397         therefore be sufficient to check the TYPE_SIZE node pointers
8398         rather than checking the actual size.  Unfortunately, we have
8399         found some cases, such as in the Ada "integer" type, where
8400         this is not the case.  Until this problem is solved, we need to
8401         keep checking the actual size.  */
8402      tree type_name = TYPE_NAME (type);
8403      tree subtype_name = TYPE_NAME (subtype);
8404
8405      if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8406        type_name = DECL_NAME (type_name);
8407
8408      if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8409        subtype_name = DECL_NAME (subtype_name);
8410
8411      if (type_name == subtype_name)
8412        return false;
8413    }
8414
8415  return true;
8416}
8417
8418/*  Given a pointer to a tree node for a subrange type, return a pointer
8419    to a DIE that describes the given type.  */
8420
8421static dw_die_ref
8422subrange_type_die (tree type, dw_die_ref context_die)
8423{
8424  dw_die_ref subrange_die;
8425  const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8426
8427  if (context_die == NULL)
8428    context_die = comp_unit_die;
8429
8430  subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8431
8432  if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8433    {
8434      /* The size of the subrange type and its base type do not match,
8435         so we need to generate a size attribute for the subrange type.  */
8436      add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8437    }
8438
8439  if (TYPE_MIN_VALUE (type) != NULL)
8440    add_bound_info (subrange_die, DW_AT_lower_bound,
8441                    TYPE_MIN_VALUE (type));
8442  if (TYPE_MAX_VALUE (type) != NULL)
8443    add_bound_info (subrange_die, DW_AT_upper_bound,
8444                    TYPE_MAX_VALUE (type));
8445
8446  return subrange_die;
8447}
8448
8449/* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8450   entry that chains various modifiers in front of the given type.  */
8451
8452static dw_die_ref
8453modified_type_die (tree type, int is_const_type, int is_volatile_type,
8454		   dw_die_ref context_die)
8455{
8456  enum tree_code code = TREE_CODE (type);
8457  dw_die_ref mod_type_die;
8458  dw_die_ref sub_die = NULL;
8459  tree item_type = NULL;
8460  tree qualified_type;
8461  tree name;
8462
8463  if (code == ERROR_MARK)
8464    return NULL;
8465
8466  /* See if we already have the appropriately qualified variant of
8467     this type.  */
8468  qualified_type
8469    = get_qualified_type (type,
8470			  ((is_const_type ? TYPE_QUAL_CONST : 0)
8471			   | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8472
8473  /* If we do, then we can just use its DIE, if it exists.  */
8474  if (qualified_type)
8475    {
8476      mod_type_die = lookup_type_die (qualified_type);
8477      if (mod_type_die)
8478	return mod_type_die;
8479    }
8480
8481  name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8482
8483  /* Handle C typedef types.  */
8484  if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8485    {
8486      tree dtype = TREE_TYPE (name);
8487
8488      if (qualified_type == dtype)
8489	{
8490	  /* For a named type, use the typedef.  */
8491	  gen_type_die (qualified_type, context_die);
8492	  return lookup_type_die (qualified_type);
8493	}
8494      else if (is_const_type < TYPE_READONLY (dtype)
8495	       || is_volatile_type < TYPE_VOLATILE (dtype)
8496	       || (is_const_type <= TYPE_READONLY (dtype)
8497		   && is_volatile_type <= TYPE_VOLATILE (dtype)
8498		   && DECL_ORIGINAL_TYPE (name) != type))
8499	/* cv-unqualified version of named type.  Just use the unnamed
8500	   type to which it refers.  */
8501	return modified_type_die (DECL_ORIGINAL_TYPE (name),
8502				  is_const_type, is_volatile_type,
8503				  context_die);
8504      /* Else cv-qualified version of named type; fall through.  */
8505    }
8506
8507  if (is_const_type)
8508    {
8509      mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8510      sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8511    }
8512  else if (is_volatile_type)
8513    {
8514      mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8515      sub_die = modified_type_die (type, 0, 0, context_die);
8516    }
8517  else if (code == POINTER_TYPE)
8518    {
8519      mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8520      add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8521		       simple_type_size_in_bits (type) / BITS_PER_UNIT);
8522      item_type = TREE_TYPE (type);
8523    }
8524  else if (code == REFERENCE_TYPE)
8525    {
8526      mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8527      add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8528		       simple_type_size_in_bits (type) / BITS_PER_UNIT);
8529      item_type = TREE_TYPE (type);
8530    }
8531  else if (is_subrange_type (type))
8532    {
8533      mod_type_die = subrange_type_die (type, context_die);
8534      item_type = TREE_TYPE (type);
8535    }
8536  else if (is_base_type (type))
8537    mod_type_die = base_type_die (type);
8538  else
8539    {
8540      gen_type_die (type, context_die);
8541
8542      /* We have to get the type_main_variant here (and pass that to the
8543	 `lookup_type_die' routine) because the ..._TYPE node we have
8544	 might simply be a *copy* of some original type node (where the
8545	 copy was created to help us keep track of typedef names) and
8546	 that copy might have a different TYPE_UID from the original
8547	 ..._TYPE node.  */
8548      if (TREE_CODE (type) != VECTOR_TYPE)
8549	return lookup_type_die (type_main_variant (type));
8550      else
8551	/* Vectors have the debugging information in the type,
8552	   not the main variant.  */
8553	return lookup_type_die (type);
8554    }
8555
8556  /* Builtin types don't have a DECL_ORIGINAL_TYPE.  For those,
8557     don't output a DW_TAG_typedef, since there isn't one in the
8558     user's program; just attach a DW_AT_name to the type.  */
8559  if (name
8560      && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8561    {
8562      if (TREE_CODE (name) == TYPE_DECL)
8563	/* Could just call add_name_and_src_coords_attributes here,
8564	   but since this is a builtin type it doesn't have any
8565	   useful source coordinates anyway.  */
8566	name = DECL_NAME (name);
8567      add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8568    }
8569
8570  if (qualified_type)
8571    equate_type_number_to_die (qualified_type, mod_type_die);
8572
8573  if (item_type)
8574    /* We must do this after the equate_type_number_to_die call, in case
8575       this is a recursive type.  This ensures that the modified_type_die
8576       recursion will terminate even if the type is recursive.  Recursive
8577       types are possible in Ada.  */
8578    sub_die = modified_type_die (item_type,
8579				 TYPE_READONLY (item_type),
8580				 TYPE_VOLATILE (item_type),
8581				 context_die);
8582
8583  if (sub_die != NULL)
8584    add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8585
8586  return mod_type_die;
8587}
8588
8589/* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8590   an enumerated type.  */
8591
8592static inline int
8593type_is_enum (tree type)
8594{
8595  return TREE_CODE (type) == ENUMERAL_TYPE;
8596}
8597
8598/* Return the DBX register number described by a given RTL node.  */
8599
8600static unsigned int
8601dbx_reg_number (rtx rtl)
8602{
8603  unsigned regno = REGNO (rtl);
8604
8605  gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8606
8607#ifdef LEAF_REG_REMAP
8608  if (current_function_uses_only_leaf_regs)
8609    {
8610      int leaf_reg = LEAF_REG_REMAP (regno);
8611      if (leaf_reg != -1)
8612	regno = (unsigned) leaf_reg;
8613    }
8614#endif
8615
8616  return DBX_REGISTER_NUMBER (regno);
8617}
8618
8619/* Optionally add a DW_OP_piece term to a location description expression.
8620   DW_OP_piece is only added if the location description expression already
8621   doesn't end with DW_OP_piece.  */
8622
8623static void
8624add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8625{
8626  dw_loc_descr_ref loc;
8627
8628  if (*list_head != NULL)
8629    {
8630      /* Find the end of the chain.  */
8631      for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8632	;
8633
8634      if (loc->dw_loc_opc != DW_OP_piece)
8635	loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8636    }
8637}
8638
8639/* Return a location descriptor that designates a machine register or
8640   zero if there is none.  */
8641
8642static dw_loc_descr_ref
8643reg_loc_descriptor (rtx rtl)
8644{
8645  rtx regs;
8646
8647  if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8648    return 0;
8649
8650  regs = targetm.dwarf_register_span (rtl);
8651
8652  if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8653    return multiple_reg_loc_descriptor (rtl, regs);
8654  else
8655    return one_reg_loc_descriptor (dbx_reg_number (rtl));
8656}
8657
8658/* Return a location descriptor that designates a machine register for
8659   a given hard register number.  */
8660
8661static dw_loc_descr_ref
8662one_reg_loc_descriptor (unsigned int regno)
8663{
8664  if (regno <= 31)
8665    return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8666  else
8667    return new_loc_descr (DW_OP_regx, regno, 0);
8668}
8669
8670/* Given an RTL of a register, return a location descriptor that
8671   designates a value that spans more than one register.  */
8672
8673static dw_loc_descr_ref
8674multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8675{
8676  int nregs, size, i;
8677  unsigned reg;
8678  dw_loc_descr_ref loc_result = NULL;
8679
8680  reg = REGNO (rtl);
8681#ifdef LEAF_REG_REMAP
8682  if (current_function_uses_only_leaf_regs)
8683    {
8684      int leaf_reg = LEAF_REG_REMAP (reg);
8685      if (leaf_reg != -1)
8686	reg = (unsigned) leaf_reg;
8687    }
8688#endif
8689  gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8690  nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8691
8692  /* Simple, contiguous registers.  */
8693  if (regs == NULL_RTX)
8694    {
8695      size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8696
8697      loc_result = NULL;
8698      while (nregs--)
8699	{
8700	  dw_loc_descr_ref t;
8701
8702	  t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8703	  add_loc_descr (&loc_result, t);
8704	  add_loc_descr_op_piece (&loc_result, size);
8705	  ++reg;
8706	}
8707      return loc_result;
8708    }
8709
8710  /* Now onto stupid register sets in non contiguous locations.  */
8711
8712  gcc_assert (GET_CODE (regs) == PARALLEL);
8713
8714  size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8715  loc_result = NULL;
8716
8717  for (i = 0; i < XVECLEN (regs, 0); ++i)
8718    {
8719      dw_loc_descr_ref t;
8720
8721      t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8722      add_loc_descr (&loc_result, t);
8723      size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8724      add_loc_descr_op_piece (&loc_result, size);
8725    }
8726  return loc_result;
8727}
8728
8729/* Return a location descriptor that designates a constant.  */
8730
8731static dw_loc_descr_ref
8732int_loc_descriptor (HOST_WIDE_INT i)
8733{
8734  enum dwarf_location_atom op;
8735
8736  /* Pick the smallest representation of a constant, rather than just
8737     defaulting to the LEB encoding.  */
8738  if (i >= 0)
8739    {
8740      if (i <= 31)
8741	op = DW_OP_lit0 + i;
8742      else if (i <= 0xff)
8743	op = DW_OP_const1u;
8744      else if (i <= 0xffff)
8745	op = DW_OP_const2u;
8746      else if (HOST_BITS_PER_WIDE_INT == 32
8747	       || i <= 0xffffffff)
8748	op = DW_OP_const4u;
8749      else
8750	op = DW_OP_constu;
8751    }
8752  else
8753    {
8754      if (i >= -0x80)
8755	op = DW_OP_const1s;
8756      else if (i >= -0x8000)
8757	op = DW_OP_const2s;
8758      else if (HOST_BITS_PER_WIDE_INT == 32
8759	       || i >= -0x80000000)
8760	op = DW_OP_const4s;
8761      else
8762	op = DW_OP_consts;
8763    }
8764
8765  return new_loc_descr (op, i, 0);
8766}
8767
8768/* Return a location descriptor that designates a base+offset location.  */
8769
8770static dw_loc_descr_ref
8771based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8772{
8773  unsigned int regno;
8774
8775  /* We only use "frame base" when we're sure we're talking about the
8776     post-prologue local stack frame.  We do this by *not* running
8777     register elimination until this point, and recognizing the special
8778     argument pointer and soft frame pointer rtx's.  */
8779  if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8780    {
8781      rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8782
8783      if (elim != reg)
8784	{
8785	  if (GET_CODE (elim) == PLUS)
8786	    {
8787	      offset += INTVAL (XEXP (elim, 1));
8788	      elim = XEXP (elim, 0);
8789	    }
8790	  gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8791		      : stack_pointer_rtx));
8792          offset += frame_pointer_fb_offset;
8793
8794          return new_loc_descr (DW_OP_fbreg, offset, 0);
8795	}
8796    }
8797
8798  regno = dbx_reg_number (reg);
8799  if (regno <= 31)
8800    return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8801  else
8802    return new_loc_descr (DW_OP_bregx, regno, offset);
8803}
8804
8805/* Return true if this RTL expression describes a base+offset calculation.  */
8806
8807static inline int
8808is_based_loc (rtx rtl)
8809{
8810  return (GET_CODE (rtl) == PLUS
8811	  && ((REG_P (XEXP (rtl, 0))
8812	       && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8813	       && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8814}
8815
8816/* The following routine converts the RTL for a variable or parameter
8817   (resident in memory) into an equivalent Dwarf representation of a
8818   mechanism for getting the address of that same variable onto the top of a
8819   hypothetical "address evaluation" stack.
8820
8821   When creating memory location descriptors, we are effectively transforming
8822   the RTL for a memory-resident object into its Dwarf postfix expression
8823   equivalent.  This routine recursively descends an RTL tree, turning
8824   it into Dwarf postfix code as it goes.
8825
8826   MODE is the mode of the memory reference, needed to handle some
8827   autoincrement addressing modes.
8828
8829   CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8830   location list for RTL.
8831
8832   Return 0 if we can't represent the location.  */
8833
8834static dw_loc_descr_ref
8835mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8836{
8837  dw_loc_descr_ref mem_loc_result = NULL;
8838  enum dwarf_location_atom op;
8839
8840  /* Note that for a dynamically sized array, the location we will generate a
8841     description of here will be the lowest numbered location which is
8842     actually within the array.  That's *not* necessarily the same as the
8843     zeroth element of the array.  */
8844
8845  rtl = targetm.delegitimize_address (rtl);
8846
8847  switch (GET_CODE (rtl))
8848    {
8849    case POST_INC:
8850    case POST_DEC:
8851    case POST_MODIFY:
8852      /* POST_INC and POST_DEC can be handled just like a SUBREG.  So we
8853	 just fall into the SUBREG code.  */
8854
8855      /* ... fall through ...  */
8856
8857    case SUBREG:
8858      /* The case of a subreg may arise when we have a local (register)
8859	 variable or a formal (register) parameter which doesn't quite fill
8860	 up an entire register.  For now, just assume that it is
8861	 legitimate to make the Dwarf info refer to the whole register which
8862	 contains the given subreg.  */
8863      rtl = XEXP (rtl, 0);
8864
8865      /* ... fall through ...  */
8866
8867    case REG:
8868      /* Whenever a register number forms a part of the description of the
8869	 method for calculating the (dynamic) address of a memory resident
8870	 object, DWARF rules require the register number be referred to as
8871	 a "base register".  This distinction is not based in any way upon
8872	 what category of register the hardware believes the given register
8873	 belongs to.  This is strictly DWARF terminology we're dealing with
8874	 here. Note that in cases where the location of a memory-resident
8875	 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8876	 OP_CONST (0)) the actual DWARF location descriptor that we generate
8877	 may just be OP_BASEREG (basereg).  This may look deceptively like
8878	 the object in question was allocated to a register (rather than in
8879	 memory) so DWARF consumers need to be aware of the subtle
8880	 distinction between OP_REG and OP_BASEREG.  */
8881      if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8882	mem_loc_result = based_loc_descr (rtl, 0);
8883      break;
8884
8885    case MEM:
8886      mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8887      if (mem_loc_result != 0)
8888	add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8889      break;
8890
8891    case LO_SUM:
8892	 rtl = XEXP (rtl, 1);
8893
8894      /* ... fall through ...  */
8895
8896    case LABEL_REF:
8897      /* Some ports can transform a symbol ref into a label ref, because
8898	 the symbol ref is too far away and has to be dumped into a constant
8899	 pool.  */
8900    case CONST:
8901    case SYMBOL_REF:
8902      /* Alternatively, the symbol in the constant pool might be referenced
8903	 by a different symbol.  */
8904      if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8905	{
8906	  bool marked;
8907	  rtx tmp = get_pool_constant_mark (rtl, &marked);
8908
8909	  if (GET_CODE (tmp) == SYMBOL_REF)
8910	    {
8911	      rtl = tmp;
8912	      if (CONSTANT_POOL_ADDRESS_P (tmp))
8913		get_pool_constant_mark (tmp, &marked);
8914	      else
8915		marked = true;
8916	    }
8917
8918	  /* If all references to this pool constant were optimized away,
8919	     it was not output and thus we can't represent it.
8920	     FIXME: might try to use DW_OP_const_value here, though
8921	     DW_OP_piece complicates it.  */
8922	  if (!marked)
8923	    return 0;
8924	}
8925
8926      mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8927      mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8928      mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8929      VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8930      break;
8931
8932    case PRE_MODIFY:
8933      /* Extract the PLUS expression nested inside and fall into
8934	 PLUS code below.  */
8935      rtl = XEXP (rtl, 1);
8936      goto plus;
8937
8938    case PRE_INC:
8939    case PRE_DEC:
8940      /* Turn these into a PLUS expression and fall into the PLUS code
8941	 below.  */
8942      rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8943			  GEN_INT (GET_CODE (rtl) == PRE_INC
8944				   ? GET_MODE_UNIT_SIZE (mode)
8945				   : -GET_MODE_UNIT_SIZE (mode)));
8946
8947      /* ... fall through ...  */
8948
8949    case PLUS:
8950    plus:
8951      if (is_based_loc (rtl))
8952	mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8953					  INTVAL (XEXP (rtl, 1)));
8954      else
8955	{
8956	  mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8957	  if (mem_loc_result == 0)
8958	    break;
8959
8960	  if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8961	      && INTVAL (XEXP (rtl, 1)) >= 0)
8962	    add_loc_descr (&mem_loc_result,
8963			   new_loc_descr (DW_OP_plus_uconst,
8964					  INTVAL (XEXP (rtl, 1)), 0));
8965	  else
8966	    {
8967	      add_loc_descr (&mem_loc_result,
8968			     mem_loc_descriptor (XEXP (rtl, 1), mode));
8969	      add_loc_descr (&mem_loc_result,
8970			     new_loc_descr (DW_OP_plus, 0, 0));
8971	    }
8972	}
8973      break;
8974
8975    /* If a pseudo-reg is optimized away, it is possible for it to
8976       be replaced with a MEM containing a multiply or shift.  */
8977    case MULT:
8978      op = DW_OP_mul;
8979      goto do_binop;
8980
8981    case ASHIFT:
8982      op = DW_OP_shl;
8983      goto do_binop;
8984
8985    case ASHIFTRT:
8986      op = DW_OP_shra;
8987      goto do_binop;
8988
8989    case LSHIFTRT:
8990      op = DW_OP_shr;
8991      goto do_binop;
8992
8993    do_binop:
8994      {
8995	dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8996	dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8997
8998	if (op0 == 0 || op1 == 0)
8999	  break;
9000
9001	mem_loc_result = op0;
9002	add_loc_descr (&mem_loc_result, op1);
9003	add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
9004	break;
9005      }
9006
9007    case CONST_INT:
9008      mem_loc_result = int_loc_descriptor (INTVAL (rtl));
9009      break;
9010
9011    default:
9012      gcc_unreachable ();
9013    }
9014
9015  return mem_loc_result;
9016}
9017
9018/* Return a descriptor that describes the concatenation of two locations.
9019   This is typically a complex variable.  */
9020
9021static dw_loc_descr_ref
9022concat_loc_descriptor (rtx x0, rtx x1)
9023{
9024  dw_loc_descr_ref cc_loc_result = NULL;
9025  dw_loc_descr_ref x0_ref = loc_descriptor (x0);
9026  dw_loc_descr_ref x1_ref = loc_descriptor (x1);
9027
9028  if (x0_ref == 0 || x1_ref == 0)
9029    return 0;
9030
9031  cc_loc_result = x0_ref;
9032  add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
9033
9034  add_loc_descr (&cc_loc_result, x1_ref);
9035  add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
9036
9037  return cc_loc_result;
9038}
9039
9040/* Output a proper Dwarf location descriptor for a variable or parameter
9041   which is either allocated in a register or in a memory location.  For a
9042   register, we just generate an OP_REG and the register number.  For a
9043   memory location we provide a Dwarf postfix expression describing how to
9044   generate the (dynamic) address of the object onto the address stack.
9045
9046   If we don't know how to describe it, return 0.  */
9047
9048static dw_loc_descr_ref
9049loc_descriptor (rtx rtl)
9050{
9051  dw_loc_descr_ref loc_result = NULL;
9052
9053  switch (GET_CODE (rtl))
9054    {
9055    case SUBREG:
9056      /* The case of a subreg may arise when we have a local (register)
9057	 variable or a formal (register) parameter which doesn't quite fill
9058	 up an entire register.  For now, just assume that it is
9059	 legitimate to make the Dwarf info refer to the whole register which
9060	 contains the given subreg.  */
9061      rtl = SUBREG_REG (rtl);
9062
9063      /* ... fall through ...  */
9064
9065    case REG:
9066      loc_result = reg_loc_descriptor (rtl);
9067      break;
9068
9069    case MEM:
9070      loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
9071      break;
9072
9073    case CONCAT:
9074      loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
9075      break;
9076
9077    case VAR_LOCATION:
9078      /* Single part.  */
9079      if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9080	{
9081	  loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
9082	  break;
9083	}
9084
9085      rtl = XEXP (rtl, 1);
9086      /* FALLTHRU */
9087
9088    case PARALLEL:
9089      {
9090	rtvec par_elems = XVEC (rtl, 0);
9091	int num_elem = GET_NUM_ELEM (par_elems);
9092	enum machine_mode mode;
9093	int i;
9094
9095	/* Create the first one, so we have something to add to.  */
9096	loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9097	mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9098	add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9099	for (i = 1; i < num_elem; i++)
9100	  {
9101	    dw_loc_descr_ref temp;
9102
9103	    temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9104	    add_loc_descr (&loc_result, temp);
9105	    mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9106	    add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9107	  }
9108      }
9109      break;
9110
9111    default:
9112      gcc_unreachable ();
9113    }
9114
9115  return loc_result;
9116}
9117
9118/* Similar, but generate the descriptor from trees instead of rtl.  This comes
9119   up particularly with variable length arrays.  WANT_ADDRESS is 2 if this is
9120   a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9121   top-level invocation, and we require the address of LOC; is 0 if we require
9122   the value of LOC.  */
9123
9124static dw_loc_descr_ref
9125loc_descriptor_from_tree_1 (tree loc, int want_address)
9126{
9127  dw_loc_descr_ref ret, ret1;
9128  int have_address = 0;
9129  enum dwarf_location_atom op;
9130
9131  /* ??? Most of the time we do not take proper care for sign/zero
9132     extending the values properly.  Hopefully this won't be a real
9133     problem...  */
9134
9135  switch (TREE_CODE (loc))
9136    {
9137    case ERROR_MARK:
9138      return 0;
9139
9140    case PLACEHOLDER_EXPR:
9141      /* This case involves extracting fields from an object to determine the
9142	 position of other fields.  We don't try to encode this here.  The
9143	 only user of this is Ada, which encodes the needed information using
9144	 the names of types.  */
9145      return 0;
9146
9147    case CALL_EXPR:
9148      return 0;
9149
9150    case PREINCREMENT_EXPR:
9151    case PREDECREMENT_EXPR:
9152    case POSTINCREMENT_EXPR:
9153    case POSTDECREMENT_EXPR:
9154      /* There are no opcodes for these operations.  */
9155      return 0;
9156
9157    case ADDR_EXPR:
9158      /* If we already want an address, there's nothing we can do.  */
9159      if (want_address)
9160	return 0;
9161
9162      /* Otherwise, process the argument and look for the address.  */
9163      return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9164
9165    case VAR_DECL:
9166      if (DECL_THREAD_LOCAL_P (loc))
9167	{
9168	  rtx rtl;
9169
9170	  /* If this is not defined, we have no way to emit the data.  */
9171	  if (!targetm.asm_out.output_dwarf_dtprel)
9172	    return 0;
9173
9174	  /* The way DW_OP_GNU_push_tls_address is specified, we can only
9175	     look up addresses of objects in the current module.  */
9176	  if (DECL_EXTERNAL (loc))
9177	    return 0;
9178
9179	  rtl = rtl_for_decl_location (loc);
9180	  if (rtl == NULL_RTX)
9181	    return 0;
9182
9183	  if (!MEM_P (rtl))
9184	    return 0;
9185	  rtl = XEXP (rtl, 0);
9186	  if (! CONSTANT_P (rtl))
9187	    return 0;
9188
9189	  ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9190	  ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9191	  ret->dw_loc_oprnd1.v.val_addr = rtl;
9192
9193	  ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9194	  add_loc_descr (&ret, ret1);
9195
9196	  have_address = 1;
9197	  break;
9198	}
9199      /* FALLTHRU */
9200
9201    case PARM_DECL:
9202      if (DECL_HAS_VALUE_EXPR_P (loc))
9203	return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9204					   want_address);
9205      /* FALLTHRU */
9206
9207    case RESULT_DECL:
9208    case FUNCTION_DECL:
9209      {
9210	rtx rtl = rtl_for_decl_location (loc);
9211
9212	if (rtl == NULL_RTX)
9213	  return 0;
9214        else if (GET_CODE (rtl) == CONST_INT)
9215	  {
9216	    HOST_WIDE_INT val = INTVAL (rtl);
9217	    if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9218	      val &= GET_MODE_MASK (DECL_MODE (loc));
9219	    ret = int_loc_descriptor (val);
9220	  }
9221	else if (GET_CODE (rtl) == CONST_STRING)
9222	  return 0;
9223	else if (CONSTANT_P (rtl))
9224	  {
9225	    ret = new_loc_descr (DW_OP_addr, 0, 0);
9226	    ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9227	    ret->dw_loc_oprnd1.v.val_addr = rtl;
9228	  }
9229	else
9230	  {
9231	    enum machine_mode mode;
9232
9233	    /* Certain constructs can only be represented at top-level.  */
9234	    if (want_address == 2)
9235	      return loc_descriptor (rtl);
9236
9237	    mode = GET_MODE (rtl);
9238	    if (MEM_P (rtl))
9239	      {
9240		rtl = XEXP (rtl, 0);
9241		have_address = 1;
9242	      }
9243	    ret = mem_loc_descriptor (rtl, mode);
9244	  }
9245      }
9246      break;
9247
9248    case INDIRECT_REF:
9249      ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9250      have_address = 1;
9251      break;
9252
9253    case COMPOUND_EXPR:
9254      return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9255
9256    case NOP_EXPR:
9257    case CONVERT_EXPR:
9258    case NON_LVALUE_EXPR:
9259    case VIEW_CONVERT_EXPR:
9260    case SAVE_EXPR:
9261    case MODIFY_EXPR:
9262      return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9263
9264    case COMPONENT_REF:
9265    case BIT_FIELD_REF:
9266    case ARRAY_REF:
9267    case ARRAY_RANGE_REF:
9268      {
9269	tree obj, offset;
9270	HOST_WIDE_INT bitsize, bitpos, bytepos;
9271	enum machine_mode mode;
9272	int volatilep;
9273	int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9274
9275	obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9276				   &unsignedp, &volatilep, false);
9277
9278	if (obj == loc)
9279	  return 0;
9280
9281	ret = loc_descriptor_from_tree_1 (obj, 1);
9282	if (ret == 0
9283	    || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9284	  return 0;
9285
9286	if (offset != NULL_TREE)
9287	  {
9288	    /* Variable offset.  */
9289	    add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9290	    add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9291	  }
9292
9293	bytepos = bitpos / BITS_PER_UNIT;
9294	if (bytepos > 0)
9295	  add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9296	else if (bytepos < 0)
9297	  {
9298	    add_loc_descr (&ret, int_loc_descriptor (bytepos));
9299	    add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9300	  }
9301
9302	have_address = 1;
9303	break;
9304      }
9305
9306    case INTEGER_CST:
9307      if (host_integerp (loc, 0))
9308	ret = int_loc_descriptor (tree_low_cst (loc, 0));
9309      else
9310	return 0;
9311      break;
9312
9313    case CONSTRUCTOR:
9314      {
9315	/* Get an RTL for this, if something has been emitted.  */
9316	rtx rtl = lookup_constant_def (loc);
9317	enum machine_mode mode;
9318
9319	if (!rtl || !MEM_P (rtl))
9320	  return 0;
9321	mode = GET_MODE (rtl);
9322	rtl = XEXP (rtl, 0);
9323	ret = mem_loc_descriptor (rtl, mode);
9324	have_address = 1;
9325	break;
9326      }
9327
9328    case TRUTH_AND_EXPR:
9329    case TRUTH_ANDIF_EXPR:
9330    case BIT_AND_EXPR:
9331      op = DW_OP_and;
9332      goto do_binop;
9333
9334    case TRUTH_XOR_EXPR:
9335    case BIT_XOR_EXPR:
9336      op = DW_OP_xor;
9337      goto do_binop;
9338
9339    case TRUTH_OR_EXPR:
9340    case TRUTH_ORIF_EXPR:
9341    case BIT_IOR_EXPR:
9342      op = DW_OP_or;
9343      goto do_binop;
9344
9345    case FLOOR_DIV_EXPR:
9346    case CEIL_DIV_EXPR:
9347    case ROUND_DIV_EXPR:
9348    case TRUNC_DIV_EXPR:
9349      op = DW_OP_div;
9350      goto do_binop;
9351
9352    case MINUS_EXPR:
9353      op = DW_OP_minus;
9354      goto do_binop;
9355
9356    case FLOOR_MOD_EXPR:
9357    case CEIL_MOD_EXPR:
9358    case ROUND_MOD_EXPR:
9359    case TRUNC_MOD_EXPR:
9360      op = DW_OP_mod;
9361      goto do_binop;
9362
9363    case MULT_EXPR:
9364      op = DW_OP_mul;
9365      goto do_binop;
9366
9367    case LSHIFT_EXPR:
9368      op = DW_OP_shl;
9369      goto do_binop;
9370
9371    case RSHIFT_EXPR:
9372      op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9373      goto do_binop;
9374
9375    case PLUS_EXPR:
9376      if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9377	  && host_integerp (TREE_OPERAND (loc, 1), 0))
9378	{
9379	  ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9380	  if (ret == 0)
9381	    return 0;
9382
9383	  add_loc_descr (&ret,
9384			 new_loc_descr (DW_OP_plus_uconst,
9385					tree_low_cst (TREE_OPERAND (loc, 1),
9386						      0),
9387					0));
9388	  break;
9389	}
9390
9391      op = DW_OP_plus;
9392      goto do_binop;
9393
9394    case LE_EXPR:
9395      if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9396	return 0;
9397
9398      op = DW_OP_le;
9399      goto do_binop;
9400
9401    case GE_EXPR:
9402      if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9403	return 0;
9404
9405      op = DW_OP_ge;
9406      goto do_binop;
9407
9408    case LT_EXPR:
9409      if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9410	return 0;
9411
9412      op = DW_OP_lt;
9413      goto do_binop;
9414
9415    case GT_EXPR:
9416      if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9417	return 0;
9418
9419      op = DW_OP_gt;
9420      goto do_binop;
9421
9422    case EQ_EXPR:
9423      op = DW_OP_eq;
9424      goto do_binop;
9425
9426    case NE_EXPR:
9427      op = DW_OP_ne;
9428      goto do_binop;
9429
9430    do_binop:
9431      ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9432      ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9433      if (ret == 0 || ret1 == 0)
9434	return 0;
9435
9436      add_loc_descr (&ret, ret1);
9437      add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9438      break;
9439
9440    case TRUTH_NOT_EXPR:
9441    case BIT_NOT_EXPR:
9442      op = DW_OP_not;
9443      goto do_unop;
9444
9445    case ABS_EXPR:
9446      op = DW_OP_abs;
9447      goto do_unop;
9448
9449    case NEGATE_EXPR:
9450      op = DW_OP_neg;
9451      goto do_unop;
9452
9453    do_unop:
9454      ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9455      if (ret == 0)
9456	return 0;
9457
9458      add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9459      break;
9460
9461    case MIN_EXPR:
9462    case MAX_EXPR:
9463      {
9464        const enum tree_code code =
9465          TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9466
9467        loc = build3 (COND_EXPR, TREE_TYPE (loc),
9468		      build2 (code, integer_type_node,
9469			      TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9470                      TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9471      }
9472
9473      /* ... fall through ...  */
9474
9475    case COND_EXPR:
9476      {
9477	dw_loc_descr_ref lhs
9478	  = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9479	dw_loc_descr_ref rhs
9480	  = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9481	dw_loc_descr_ref bra_node, jump_node, tmp;
9482
9483	ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9484	if (ret == 0 || lhs == 0 || rhs == 0)
9485	  return 0;
9486
9487	bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9488	add_loc_descr (&ret, bra_node);
9489
9490	add_loc_descr (&ret, rhs);
9491	jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9492	add_loc_descr (&ret, jump_node);
9493
9494	add_loc_descr (&ret, lhs);
9495	bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9496	bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9497
9498	/* ??? Need a node to point the skip at.  Use a nop.  */
9499	tmp = new_loc_descr (DW_OP_nop, 0, 0);
9500	add_loc_descr (&ret, tmp);
9501	jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9502	jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9503      }
9504      break;
9505
9506    case FIX_TRUNC_EXPR:
9507    case FIX_CEIL_EXPR:
9508    case FIX_FLOOR_EXPR:
9509    case FIX_ROUND_EXPR:
9510      return 0;
9511
9512    default:
9513      /* Leave front-end specific codes as simply unknown.  This comes
9514	 up, for instance, with the C STMT_EXPR.  */
9515      if ((unsigned int) TREE_CODE (loc)
9516          >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9517	return 0;
9518
9519#ifdef ENABLE_CHECKING
9520      /* Otherwise this is a generic code; we should just lists all of
9521	 these explicitly.  We forgot one.  */
9522      gcc_unreachable ();
9523#else
9524      /* In a release build, we want to degrade gracefully: better to
9525	 generate incomplete debugging information than to crash.  */
9526      return NULL;
9527#endif
9528    }
9529
9530  /* Show if we can't fill the request for an address.  */
9531  if (want_address && !have_address)
9532    return 0;
9533
9534  /* If we've got an address and don't want one, dereference.  */
9535  if (!want_address && have_address && ret)
9536    {
9537      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9538
9539      if (size > DWARF2_ADDR_SIZE || size == -1)
9540	return 0;
9541      else if (size == DWARF2_ADDR_SIZE)
9542	op = DW_OP_deref;
9543      else
9544	op = DW_OP_deref_size;
9545
9546      add_loc_descr (&ret, new_loc_descr (op, size, 0));
9547    }
9548
9549  return ret;
9550}
9551
9552static inline dw_loc_descr_ref
9553loc_descriptor_from_tree (tree loc)
9554{
9555  return loc_descriptor_from_tree_1 (loc, 2);
9556}
9557
9558/* Given a value, round it up to the lowest multiple of `boundary'
9559   which is not less than the value itself.  */
9560
9561static inline HOST_WIDE_INT
9562ceiling (HOST_WIDE_INT value, unsigned int boundary)
9563{
9564  return (((value + boundary - 1) / boundary) * boundary);
9565}
9566
9567/* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9568   pointer to the declared type for the relevant field variable, or return
9569   `integer_type_node' if the given node turns out to be an
9570   ERROR_MARK node.  */
9571
9572static inline tree
9573field_type (tree decl)
9574{
9575  tree type;
9576
9577  if (TREE_CODE (decl) == ERROR_MARK)
9578    return integer_type_node;
9579
9580  type = DECL_BIT_FIELD_TYPE (decl);
9581  if (type == NULL_TREE)
9582    type = TREE_TYPE (decl);
9583
9584  return type;
9585}
9586
9587/* Given a pointer to a tree node, return the alignment in bits for
9588   it, or else return BITS_PER_WORD if the node actually turns out to
9589   be an ERROR_MARK node.  */
9590
9591static inline unsigned
9592simple_type_align_in_bits (tree type)
9593{
9594  return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9595}
9596
9597static inline unsigned
9598simple_decl_align_in_bits (tree decl)
9599{
9600  return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9601}
9602
9603/* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9604   lowest addressed byte of the "containing object" for the given FIELD_DECL,
9605   or return 0 if we are unable to determine what that offset is, either
9606   because the argument turns out to be a pointer to an ERROR_MARK node, or
9607   because the offset is actually variable.  (We can't handle the latter case
9608   just yet).  */
9609
9610static HOST_WIDE_INT
9611field_byte_offset (tree decl)
9612{
9613  unsigned int type_align_in_bits;
9614  unsigned int decl_align_in_bits;
9615  unsigned HOST_WIDE_INT type_size_in_bits;
9616  HOST_WIDE_INT object_offset_in_bits;
9617  tree type;
9618  tree field_size_tree;
9619  HOST_WIDE_INT bitpos_int;
9620  HOST_WIDE_INT deepest_bitpos;
9621  unsigned HOST_WIDE_INT field_size_in_bits;
9622
9623  if (TREE_CODE (decl) == ERROR_MARK)
9624    return 0;
9625
9626  gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9627
9628  type = field_type (decl);
9629  field_size_tree = DECL_SIZE (decl);
9630
9631  /* The size could be unspecified if there was an error, or for
9632     a flexible array member.  */
9633  if (! field_size_tree)
9634    field_size_tree = bitsize_zero_node;
9635
9636  /* We cannot yet cope with fields whose positions are variable, so
9637     for now, when we see such things, we simply return 0.  Someday, we may
9638     be able to handle such cases, but it will be damn difficult.  */
9639  if (! host_integerp (bit_position (decl), 0))
9640    return 0;
9641
9642  bitpos_int = int_bit_position (decl);
9643
9644  /* If we don't know the size of the field, pretend it's a full word.  */
9645  if (host_integerp (field_size_tree, 1))
9646    field_size_in_bits = tree_low_cst (field_size_tree, 1);
9647  else
9648    field_size_in_bits = BITS_PER_WORD;
9649
9650  type_size_in_bits = simple_type_size_in_bits (type);
9651  type_align_in_bits = simple_type_align_in_bits (type);
9652  decl_align_in_bits = simple_decl_align_in_bits (decl);
9653
9654  /* The GCC front-end doesn't make any attempt to keep track of the starting
9655     bit offset (relative to the start of the containing structure type) of the
9656     hypothetical "containing object" for a bit-field.  Thus, when computing
9657     the byte offset value for the start of the "containing object" of a
9658     bit-field, we must deduce this information on our own. This can be rather
9659     tricky to do in some cases.  For example, handling the following structure
9660     type definition when compiling for an i386/i486 target (which only aligns
9661     long long's to 32-bit boundaries) can be very tricky:
9662
9663	 struct S { int field1; long long field2:31; };
9664
9665     Fortunately, there is a simple rule-of-thumb which can be used in such
9666     cases.  When compiling for an i386/i486, GCC will allocate 8 bytes for the
9667     structure shown above.  It decides to do this based upon one simple rule
9668     for bit-field allocation.  GCC allocates each "containing object" for each
9669     bit-field at the first (i.e. lowest addressed) legitimate alignment
9670     boundary (based upon the required minimum alignment for the declared type
9671     of the field) which it can possibly use, subject to the condition that
9672     there is still enough available space remaining in the containing object
9673     (when allocated at the selected point) to fully accommodate all of the
9674     bits of the bit-field itself.
9675
9676     This simple rule makes it obvious why GCC allocates 8 bytes for each
9677     object of the structure type shown above.  When looking for a place to
9678     allocate the "containing object" for `field2', the compiler simply tries
9679     to allocate a 64-bit "containing object" at each successive 32-bit
9680     boundary (starting at zero) until it finds a place to allocate that 64-
9681     bit field such that at least 31 contiguous (and previously unallocated)
9682     bits remain within that selected 64 bit field.  (As it turns out, for the
9683     example above, the compiler finds it is OK to allocate the "containing
9684     object" 64-bit field at bit-offset zero within the structure type.)
9685
9686     Here we attempt to work backwards from the limited set of facts we're
9687     given, and we try to deduce from those facts, where GCC must have believed
9688     that the containing object started (within the structure type). The value
9689     we deduce is then used (by the callers of this routine) to generate
9690     DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9691     and, in the case of DW_AT_location, regular fields as well).  */
9692
9693  /* Figure out the bit-distance from the start of the structure to the
9694     "deepest" bit of the bit-field.  */
9695  deepest_bitpos = bitpos_int + field_size_in_bits;
9696
9697  /* This is the tricky part.  Use some fancy footwork to deduce where the
9698     lowest addressed bit of the containing object must be.  */
9699  object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9700
9701  /* Round up to type_align by default.  This works best for bitfields.  */
9702  object_offset_in_bits += type_align_in_bits - 1;
9703  object_offset_in_bits /= type_align_in_bits;
9704  object_offset_in_bits *= type_align_in_bits;
9705
9706  if (object_offset_in_bits > bitpos_int)
9707    {
9708      /* Sigh, the decl must be packed.  */
9709      object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9710
9711      /* Round up to decl_align instead.  */
9712      object_offset_in_bits += decl_align_in_bits - 1;
9713      object_offset_in_bits /= decl_align_in_bits;
9714      object_offset_in_bits *= decl_align_in_bits;
9715    }
9716
9717  return object_offset_in_bits / BITS_PER_UNIT;
9718}
9719
9720/* The following routines define various Dwarf attributes and any data
9721   associated with them.  */
9722
9723/* Add a location description attribute value to a DIE.
9724
9725   This emits location attributes suitable for whole variables and
9726   whole parameters.  Note that the location attributes for struct fields are
9727   generated by the routine `data_member_location_attribute' below.  */
9728
9729static inline void
9730add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9731			     dw_loc_descr_ref descr)
9732{
9733  if (descr != 0)
9734    add_AT_loc (die, attr_kind, descr);
9735}
9736
9737/* Attach the specialized form of location attribute used for data members of
9738   struct and union types.  In the special case of a FIELD_DECL node which
9739   represents a bit-field, the "offset" part of this special location
9740   descriptor must indicate the distance in bytes from the lowest-addressed
9741   byte of the containing struct or union type to the lowest-addressed byte of
9742   the "containing object" for the bit-field.  (See the `field_byte_offset'
9743   function above).
9744
9745   For any given bit-field, the "containing object" is a hypothetical object
9746   (of some integral or enum type) within which the given bit-field lives.  The
9747   type of this hypothetical "containing object" is always the same as the
9748   declared type of the individual bit-field itself (for GCC anyway... the
9749   DWARF spec doesn't actually mandate this).  Note that it is the size (in
9750   bytes) of the hypothetical "containing object" which will be given in the
9751   DW_AT_byte_size attribute for this bit-field.  (See the
9752   `byte_size_attribute' function below.)  It is also used when calculating the
9753   value of the DW_AT_bit_offset attribute.  (See the `bit_offset_attribute'
9754   function below.)  */
9755
9756static void
9757add_data_member_location_attribute (dw_die_ref die, tree decl)
9758{
9759  HOST_WIDE_INT offset;
9760  dw_loc_descr_ref loc_descr = 0;
9761
9762  if (TREE_CODE (decl) == TREE_BINFO)
9763    {
9764      /* We're working on the TAG_inheritance for a base class.  */
9765      if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9766	{
9767	  /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9768	     aren't at a fixed offset from all (sub)objects of the same
9769	     type.  We need to extract the appropriate offset from our
9770	     vtable.  The following dwarf expression means
9771
9772	       BaseAddr = ObAddr + *((*ObAddr) - Offset)
9773
9774	     This is specific to the V3 ABI, of course.  */
9775
9776	  dw_loc_descr_ref tmp;
9777
9778	  /* Make a copy of the object address.  */
9779	  tmp = new_loc_descr (DW_OP_dup, 0, 0);
9780	  add_loc_descr (&loc_descr, tmp);
9781
9782	  /* Extract the vtable address.  */
9783	  tmp = new_loc_descr (DW_OP_deref, 0, 0);
9784	  add_loc_descr (&loc_descr, tmp);
9785
9786	  /* Calculate the address of the offset.  */
9787	  offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9788	  gcc_assert (offset < 0);
9789
9790	  tmp = int_loc_descriptor (-offset);
9791	  add_loc_descr (&loc_descr, tmp);
9792	  tmp = new_loc_descr (DW_OP_minus, 0, 0);
9793	  add_loc_descr (&loc_descr, tmp);
9794
9795	  /* Extract the offset.  */
9796	  tmp = new_loc_descr (DW_OP_deref, 0, 0);
9797	  add_loc_descr (&loc_descr, tmp);
9798
9799	  /* Add it to the object address.  */
9800	  tmp = new_loc_descr (DW_OP_plus, 0, 0);
9801	  add_loc_descr (&loc_descr, tmp);
9802	}
9803      else
9804	offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9805    }
9806  else
9807    offset = field_byte_offset (decl);
9808
9809  if (! loc_descr)
9810    {
9811      enum dwarf_location_atom op;
9812
9813      /* The DWARF2 standard says that we should assume that the structure
9814	 address is already on the stack, so we can specify a structure field
9815	 address by using DW_OP_plus_uconst.  */
9816
9817#ifdef MIPS_DEBUGGING_INFO
9818      /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9819	 operator correctly.  It works only if we leave the offset on the
9820	 stack.  */
9821      op = DW_OP_constu;
9822#else
9823      op = DW_OP_plus_uconst;
9824#endif
9825
9826      loc_descr = new_loc_descr (op, offset, 0);
9827    }
9828
9829  add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9830}
9831
9832/* Writes integer values to dw_vec_const array.  */
9833
9834static void
9835insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9836{
9837  while (size != 0)
9838    {
9839      *dest++ = val & 0xff;
9840      val >>= 8;
9841      --size;
9842    }
9843}
9844
9845/* Reads integers from dw_vec_const array.  Inverse of insert_int.  */
9846
9847static HOST_WIDE_INT
9848extract_int (const unsigned char *src, unsigned int size)
9849{
9850  HOST_WIDE_INT val = 0;
9851
9852  src += size;
9853  while (size != 0)
9854    {
9855      val <<= 8;
9856      val |= *--src & 0xff;
9857      --size;
9858    }
9859  return val;
9860}
9861
9862/* Writes floating point values to dw_vec_const array.  */
9863
9864static void
9865insert_float (rtx rtl, unsigned char *array)
9866{
9867  REAL_VALUE_TYPE rv;
9868  long val[4];
9869  int i;
9870
9871  REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9872  real_to_target (val, &rv, GET_MODE (rtl));
9873
9874  /* real_to_target puts 32-bit pieces in each long.  Pack them.  */
9875  for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9876    {
9877      insert_int (val[i], 4, array);
9878      array += 4;
9879    }
9880}
9881
9882/* Attach a DW_AT_const_value attribute for a variable or a parameter which
9883   does not have a "location" either in memory or in a register.  These
9884   things can arise in GNU C when a constant is passed as an actual parameter
9885   to an inlined function.  They can also arise in C++ where declared
9886   constants do not necessarily get memory "homes".  */
9887
9888static void
9889add_const_value_attribute (dw_die_ref die, rtx rtl)
9890{
9891  switch (GET_CODE (rtl))
9892    {
9893    case CONST_INT:
9894      {
9895	HOST_WIDE_INT val = INTVAL (rtl);
9896
9897	if (val < 0)
9898	  add_AT_int (die, DW_AT_const_value, val);
9899	else
9900	  add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9901      }
9902      break;
9903
9904    case CONST_DOUBLE:
9905      /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9906	 floating-point constant.  A CONST_DOUBLE is used whenever the
9907	 constant requires more than one word in order to be adequately
9908	 represented.  We output CONST_DOUBLEs as blocks.  */
9909      {
9910	enum machine_mode mode = GET_MODE (rtl);
9911
9912	if (SCALAR_FLOAT_MODE_P (mode))
9913	  {
9914	    unsigned int length = GET_MODE_SIZE (mode);
9915	    unsigned char *array = ggc_alloc (length);
9916
9917	    insert_float (rtl, array);
9918	    add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9919	  }
9920	else
9921	  {
9922	    /* ??? We really should be using HOST_WIDE_INT throughout.  */
9923	    gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9924
9925	    add_AT_long_long (die, DW_AT_const_value,
9926			      CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9927	  }
9928      }
9929      break;
9930
9931    case CONST_VECTOR:
9932      {
9933	enum machine_mode mode = GET_MODE (rtl);
9934	unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9935	unsigned int length = CONST_VECTOR_NUNITS (rtl);
9936	unsigned char *array = ggc_alloc (length * elt_size);
9937	unsigned int i;
9938	unsigned char *p;
9939
9940	switch (GET_MODE_CLASS (mode))
9941	  {
9942	  case MODE_VECTOR_INT:
9943	    for (i = 0, p = array; i < length; i++, p += elt_size)
9944	      {
9945		rtx elt = CONST_VECTOR_ELT (rtl, i);
9946		HOST_WIDE_INT lo, hi;
9947
9948		switch (GET_CODE (elt))
9949		  {
9950		  case CONST_INT:
9951		    lo = INTVAL (elt);
9952		    hi = -(lo < 0);
9953		    break;
9954
9955		  case CONST_DOUBLE:
9956		    lo = CONST_DOUBLE_LOW (elt);
9957		    hi = CONST_DOUBLE_HIGH (elt);
9958		    break;
9959
9960		  default:
9961		    gcc_unreachable ();
9962		  }
9963
9964		if (elt_size <= sizeof (HOST_WIDE_INT))
9965		  insert_int (lo, elt_size, p);
9966		else
9967		  {
9968		    unsigned char *p0 = p;
9969		    unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9970
9971		    gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9972		    if (WORDS_BIG_ENDIAN)
9973		      {
9974			p0 = p1;
9975			p1 = p;
9976		      }
9977		    insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9978		    insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9979		  }
9980	      }
9981	    break;
9982
9983	  case MODE_VECTOR_FLOAT:
9984	    for (i = 0, p = array; i < length; i++, p += elt_size)
9985	      {
9986		rtx elt = CONST_VECTOR_ELT (rtl, i);
9987		insert_float (elt, p);
9988	      }
9989	    break;
9990
9991	  default:
9992	    gcc_unreachable ();
9993	  }
9994
9995	add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9996      }
9997      break;
9998
9999    case CONST_STRING:
10000      add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
10001      break;
10002
10003    case SYMBOL_REF:
10004    case LABEL_REF:
10005    case CONST:
10006      add_AT_addr (die, DW_AT_const_value, rtl);
10007      VEC_safe_push (rtx, gc, used_rtx_array, rtl);
10008      break;
10009
10010    case PLUS:
10011      /* In cases where an inlined instance of an inline function is passed
10012	 the address of an `auto' variable (which is local to the caller) we
10013	 can get a situation where the DECL_RTL of the artificial local
10014	 variable (for the inlining) which acts as a stand-in for the
10015	 corresponding formal parameter (of the inline function) will look
10016	 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).  This is not
10017	 exactly a compile-time constant expression, but it isn't the address
10018	 of the (artificial) local variable either.  Rather, it represents the
10019	 *value* which the artificial local variable always has during its
10020	 lifetime.  We currently have no way to represent such quasi-constant
10021	 values in Dwarf, so for now we just punt and generate nothing.  */
10022      break;
10023
10024    default:
10025      /* No other kinds of rtx should be possible here.  */
10026      gcc_unreachable ();
10027    }
10028
10029}
10030
10031/* Determine whether the evaluation of EXPR references any variables
10032   or functions which aren't otherwise used (and therefore may not be
10033   output).  */
10034static tree
10035reference_to_unused (tree * tp, int * walk_subtrees,
10036		     void * data ATTRIBUTE_UNUSED)
10037{
10038  if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10039    *walk_subtrees = 0;
10040
10041  if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10042      && ! TREE_ASM_WRITTEN (*tp))
10043    return *tp;
10044  else if (!flag_unit_at_a_time)
10045    return NULL_TREE;
10046  else if (!cgraph_global_info_ready
10047	   && (TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == FUNCTION_DECL))
10048    return *tp;
10049  else if (DECL_P (*tp) && TREE_CODE (*tp) == VAR_DECL)
10050    {
10051      struct cgraph_varpool_node *node = cgraph_varpool_node (*tp);
10052      if (!node->needed)
10053	return *tp;
10054    }
10055   else if (DECL_P (*tp) && TREE_CODE (*tp) == FUNCTION_DECL
10056	    && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
10057    {
10058      struct cgraph_node *node = cgraph_node (*tp);
10059      if (!node->output)
10060        return *tp;
10061    }
10062
10063  return NULL_TREE;
10064}
10065
10066/* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10067   for use in a later add_const_value_attribute call.  */
10068
10069static rtx
10070rtl_for_decl_init (tree init, tree type)
10071{
10072  rtx rtl = NULL_RTX;
10073
10074  /* If a variable is initialized with a string constant without embedded
10075     zeros, build CONST_STRING.  */
10076  if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10077    {
10078      tree enttype = TREE_TYPE (type);
10079      tree domain = TYPE_DOMAIN (type);
10080      enum machine_mode mode = TYPE_MODE (enttype);
10081
10082      if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10083	  && domain
10084	  && integer_zerop (TYPE_MIN_VALUE (domain))
10085	  && compare_tree_int (TYPE_MAX_VALUE (domain),
10086			       TREE_STRING_LENGTH (init) - 1) == 0
10087	  && ((size_t) TREE_STRING_LENGTH (init)
10088	      == strlen (TREE_STRING_POINTER (init)) + 1))
10089	rtl = gen_rtx_CONST_STRING (VOIDmode,
10090				    ggc_strdup (TREE_STRING_POINTER (init)));
10091    }
10092  /* Other aggregates, and complex values, could be represented using
10093     CONCAT: FIXME!  */
10094  else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10095    ;
10096  /* Vectors only work if their mode is supported by the target.
10097     FIXME: generic vectors ought to work too.  */
10098  else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10099    ;
10100  /* If the initializer is something that we know will expand into an
10101     immediate RTL constant, expand it now.  We must be careful not to
10102     reference variables which won't be output.  */
10103  else if (initializer_constant_valid_p (init, type)
10104	   && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10105    {
10106      /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
10107	 possible.  */
10108      if (TREE_CODE (type) == VECTOR_TYPE)
10109	switch (TREE_CODE (init))
10110	  {
10111	  case VECTOR_CST:
10112	    break;
10113	  case CONSTRUCTOR:
10114	    if (TREE_CONSTANT (init))
10115	      {
10116		VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (init);
10117		bool constant_p = true;
10118		tree value;
10119		unsigned HOST_WIDE_INT ix;
10120
10121		/* Even when ctor is constant, it might contain non-*_CST
10122		   elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
10123		   belong into VECTOR_CST nodes.  */
10124		FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
10125		  if (!CONSTANT_CLASS_P (value))
10126		    {
10127		      constant_p = false;
10128		      break;
10129		    }
10130
10131		if (constant_p)
10132		  {
10133		    init = build_vector_from_ctor (type, elts);
10134		    break;
10135		  }
10136	      }
10137	    /* FALLTHRU */
10138
10139	  default:
10140	    return NULL;
10141	  }
10142
10143      rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10144
10145      /* If expand_expr returns a MEM, it wasn't immediate.  */
10146      gcc_assert (!rtl || !MEM_P (rtl));
10147    }
10148
10149  return rtl;
10150}
10151
10152/* Generate RTL for the variable DECL to represent its location.  */
10153
10154static rtx
10155rtl_for_decl_location (tree decl)
10156{
10157  rtx rtl;
10158
10159  /* Here we have to decide where we are going to say the parameter "lives"
10160     (as far as the debugger is concerned).  We only have a couple of
10161     choices.  GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10162
10163     DECL_RTL normally indicates where the parameter lives during most of the
10164     activation of the function.  If optimization is enabled however, this
10165     could be either NULL or else a pseudo-reg.  Both of those cases indicate
10166     that the parameter doesn't really live anywhere (as far as the code
10167     generation parts of GCC are concerned) during most of the function's
10168     activation.  That will happen (for example) if the parameter is never
10169     referenced within the function.
10170
10171     We could just generate a location descriptor here for all non-NULL
10172     non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10173     a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10174     where DECL_RTL is NULL or is a pseudo-reg.
10175
10176     Note however that we can only get away with using DECL_INCOMING_RTL as
10177     a backup substitute for DECL_RTL in certain limited cases.  In cases
10178     where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10179     we can be sure that the parameter was passed using the same type as it is
10180     declared to have within the function, and that its DECL_INCOMING_RTL
10181     points us to a place where a value of that type is passed.
10182
10183     In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10184     we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10185     because in these cases DECL_INCOMING_RTL points us to a value of some
10186     type which is *different* from the type of the parameter itself.  Thus,
10187     if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10188     such cases, the debugger would end up (for example) trying to fetch a
10189     `float' from a place which actually contains the first part of a
10190     `double'.  That would lead to really incorrect and confusing
10191     output at debug-time.
10192
10193     So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10194     in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl).  There
10195     are a couple of exceptions however.  On little-endian machines we can
10196     get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10197     not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10198     an integral type that is smaller than TREE_TYPE (decl). These cases arise
10199     when (on a little-endian machine) a non-prototyped function has a
10200     parameter declared to be of type `short' or `char'.  In such cases,
10201     TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10202     be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10203     passed `int' value.  If the debugger then uses that address to fetch
10204     a `short' or a `char' (on a little-endian machine) the result will be
10205     the correct data, so we allow for such exceptional cases below.
10206
10207     Note that our goal here is to describe the place where the given formal
10208     parameter lives during most of the function's activation (i.e. between the
10209     end of the prologue and the start of the epilogue).  We'll do that as best
10210     as we can. Note however that if the given formal parameter is modified
10211     sometime during the execution of the function, then a stack backtrace (at
10212     debug-time) will show the function as having been called with the *new*
10213     value rather than the value which was originally passed in.  This happens
10214     rarely enough that it is not a major problem, but it *is* a problem, and
10215     I'd like to fix it.
10216
10217     A future version of dwarf2out.c may generate two additional attributes for
10218     any given DW_TAG_formal_parameter DIE which will describe the "passed
10219     type" and the "passed location" for the given formal parameter in addition
10220     to the attributes we now generate to indicate the "declared type" and the
10221     "active location" for each parameter.  This additional set of attributes
10222     could be used by debuggers for stack backtraces. Separately, note that
10223     sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10224     This happens (for example) for inlined-instances of inline function formal
10225     parameters which are never referenced.  This really shouldn't be
10226     happening.  All PARM_DECL nodes should get valid non-NULL
10227     DECL_INCOMING_RTL values.  FIXME.  */
10228
10229  /* Use DECL_RTL as the "location" unless we find something better.  */
10230  rtl = DECL_RTL_IF_SET (decl);
10231
10232  /* When generating abstract instances, ignore everything except
10233     constants, symbols living in memory, and symbols living in
10234     fixed registers.  */
10235  if (! reload_completed)
10236    {
10237      if (rtl
10238	  && (CONSTANT_P (rtl)
10239	      || (MEM_P (rtl)
10240	          && CONSTANT_P (XEXP (rtl, 0)))
10241	      || (REG_P (rtl)
10242	          && TREE_CODE (decl) == VAR_DECL
10243		  && TREE_STATIC (decl))))
10244	{
10245	  rtl = targetm.delegitimize_address (rtl);
10246	  return rtl;
10247	}
10248      rtl = NULL_RTX;
10249    }
10250  else if (TREE_CODE (decl) == PARM_DECL)
10251    {
10252      if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10253	{
10254	  tree declared_type = TREE_TYPE (decl);
10255	  tree passed_type = DECL_ARG_TYPE (decl);
10256	  enum machine_mode dmode = TYPE_MODE (declared_type);
10257	  enum machine_mode pmode = TYPE_MODE (passed_type);
10258
10259	  /* This decl represents a formal parameter which was optimized out.
10260	     Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10261	     all cases where (rtl == NULL_RTX) just below.  */
10262	  if (dmode == pmode)
10263	    rtl = DECL_INCOMING_RTL (decl);
10264	  else if (SCALAR_INT_MODE_P (dmode)
10265		   && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10266		   && DECL_INCOMING_RTL (decl))
10267	    {
10268	      rtx inc = DECL_INCOMING_RTL (decl);
10269	      if (REG_P (inc))
10270		rtl = inc;
10271	      else if (MEM_P (inc))
10272		{
10273		  if (BYTES_BIG_ENDIAN)
10274		    rtl = adjust_address_nv (inc, dmode,
10275					     GET_MODE_SIZE (pmode)
10276					     - GET_MODE_SIZE (dmode));
10277		  else
10278		    rtl = inc;
10279		}
10280	    }
10281	}
10282
10283      /* If the parm was passed in registers, but lives on the stack, then
10284	 make a big endian correction if the mode of the type of the
10285	 parameter is not the same as the mode of the rtl.  */
10286      /* ??? This is the same series of checks that are made in dbxout.c before
10287	 we reach the big endian correction code there.  It isn't clear if all
10288	 of these checks are necessary here, but keeping them all is the safe
10289	 thing to do.  */
10290      else if (MEM_P (rtl)
10291	       && XEXP (rtl, 0) != const0_rtx
10292	       && ! CONSTANT_P (XEXP (rtl, 0))
10293	       /* Not passed in memory.  */
10294	       && !MEM_P (DECL_INCOMING_RTL (decl))
10295	       /* Not passed by invisible reference.  */
10296	       && (!REG_P (XEXP (rtl, 0))
10297		   || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10298		   || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10299#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10300		   || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10301#endif
10302		     )
10303	       /* Big endian correction check.  */
10304	       && BYTES_BIG_ENDIAN
10305	       && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10306	       && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10307		   < UNITS_PER_WORD))
10308	{
10309	  int offset = (UNITS_PER_WORD
10310			- GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10311
10312	  rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10313			     plus_constant (XEXP (rtl, 0), offset));
10314	}
10315    }
10316  else if (TREE_CODE (decl) == VAR_DECL
10317	   && rtl
10318	   && MEM_P (rtl)
10319	   && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10320	   && BYTES_BIG_ENDIAN)
10321    {
10322      int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10323      int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10324
10325      /* If a variable is declared "register" yet is smaller than
10326	 a register, then if we store the variable to memory, it
10327	 looks like we're storing a register-sized value, when in
10328	 fact we are not.  We need to adjust the offset of the
10329	 storage location to reflect the actual value's bytes,
10330	 else gdb will not be able to display it.  */
10331      if (rsize > dsize)
10332	rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10333			   plus_constant (XEXP (rtl, 0), rsize-dsize));
10334    }
10335
10336  /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10337     and will have been substituted directly into all expressions that use it.
10338     C does not have such a concept, but C++ and other languages do.  */
10339  if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10340    rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10341
10342  if (rtl)
10343    rtl = targetm.delegitimize_address (rtl);
10344
10345  /* If we don't look past the constant pool, we risk emitting a
10346     reference to a constant pool entry that isn't referenced from
10347     code, and thus is not emitted.  */
10348  if (rtl)
10349    rtl = avoid_constant_pool_reference (rtl);
10350
10351  return rtl;
10352}
10353
10354/* We need to figure out what section we should use as the base for the
10355   address ranges where a given location is valid.
10356   1. If this particular DECL has a section associated with it, use that.
10357   2. If this function has a section associated with it, use that.
10358   3. Otherwise, use the text section.
10359   XXX: If you split a variable across multiple sections, we won't notice.  */
10360
10361static const char *
10362secname_for_decl (tree decl)
10363{
10364  const char *secname;
10365
10366  if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10367    {
10368      tree sectree = DECL_SECTION_NAME (decl);
10369      secname = TREE_STRING_POINTER (sectree);
10370    }
10371  else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10372    {
10373      tree sectree = DECL_SECTION_NAME (current_function_decl);
10374      secname = TREE_STRING_POINTER (sectree);
10375    }
10376  else if (cfun && in_cold_section_p)
10377    secname = cfun->cold_section_label;
10378  else
10379    secname = text_section_label;
10380
10381  return secname;
10382}
10383
10384/* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10385   data attribute for a variable or a parameter.  We generate the
10386   DW_AT_const_value attribute only in those cases where the given variable
10387   or parameter does not have a true "location" either in memory or in a
10388   register.  This can happen (for example) when a constant is passed as an
10389   actual argument in a call to an inline function.  (It's possible that
10390   these things can crop up in other ways also.)  Note that one type of
10391   constant value which can be passed into an inlined function is a constant
10392   pointer.  This can happen for example if an actual argument in an inlined
10393   function call evaluates to a compile-time constant address.  */
10394
10395static void
10396add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10397				       enum dwarf_attribute attr)
10398{
10399  rtx rtl;
10400  dw_loc_descr_ref descr;
10401  var_loc_list *loc_list;
10402  struct var_loc_node *node;
10403  if (TREE_CODE (decl) == ERROR_MARK)
10404    return;
10405
10406  gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10407	      || TREE_CODE (decl) == RESULT_DECL);
10408
10409  /* See if we possibly have multiple locations for this variable.  */
10410  loc_list = lookup_decl_loc (decl);
10411
10412  /* If it truly has multiple locations, the first and last node will
10413     differ.  */
10414  if (loc_list && loc_list->first != loc_list->last)
10415    {
10416      const char *endname, *secname;
10417      dw_loc_list_ref list;
10418      rtx varloc;
10419
10420      /* Now that we know what section we are using for a base,
10421         actually construct the list of locations.
10422	 The first location information is what is passed to the
10423	 function that creates the location list, and the remaining
10424	 locations just get added on to that list.
10425	 Note that we only know the start address for a location
10426	 (IE location changes), so to build the range, we use
10427	 the range [current location start, next location start].
10428	 This means we have to special case the last node, and generate
10429	 a range of [last location start, end of function label].  */
10430
10431      node = loc_list->first;
10432      varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10433      secname = secname_for_decl (decl);
10434
10435      list = new_loc_list (loc_descriptor (varloc),
10436			   node->label, node->next->label, secname, 1);
10437      node = node->next;
10438
10439      for (; node->next; node = node->next)
10440	if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10441	  {
10442	    /* The variable has a location between NODE->LABEL and
10443	       NODE->NEXT->LABEL.  */
10444	    varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10445	    add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10446				       node->label, node->next->label, secname);
10447	  }
10448
10449      /* If the variable has a location at the last label
10450	 it keeps its location until the end of function.  */
10451      if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10452	{
10453	  char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10454
10455	  varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10456	  if (!current_function_decl)
10457	    endname = text_end_label;
10458	  else
10459	    {
10460	      ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10461					   current_function_funcdef_no);
10462	      endname = ggc_strdup (label_id);
10463	    }
10464	  add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10465				     node->label, endname, secname);
10466	}
10467
10468      /* Finally, add the location list to the DIE, and we are done.  */
10469      add_AT_loc_list (die, attr, list);
10470      return;
10471    }
10472
10473  /* Try to get some constant RTL for this decl, and use that as the value of
10474     the location.  */
10475
10476  rtl = rtl_for_decl_location (decl);
10477  if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10478    {
10479      add_const_value_attribute (die, rtl);
10480      return;
10481    }
10482
10483  /* If we have tried to generate the location otherwise, and it
10484     didn't work out (we wouldn't be here if we did), and we have a one entry
10485     location list, try generating a location from that.  */
10486  if (loc_list && loc_list->first)
10487    {
10488      node = loc_list->first;
10489      descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10490      if (descr)
10491	{
10492	  add_AT_location_description (die, attr, descr);
10493	  return;
10494	}
10495    }
10496
10497  /* We couldn't get any rtl, so try directly generating the location
10498     description from the tree.  */
10499  descr = loc_descriptor_from_tree (decl);
10500  if (descr)
10501    {
10502      add_AT_location_description (die, attr, descr);
10503      return;
10504    }
10505  /* None of that worked, so it must not really have a location;
10506     try adding a constant value attribute from the DECL_INITIAL.  */
10507  tree_add_const_value_attribute (die, decl);
10508}
10509
10510/* If we don't have a copy of this variable in memory for some reason (such
10511   as a C++ member constant that doesn't have an out-of-line definition),
10512   we should tell the debugger about the constant value.  */
10513
10514static void
10515tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10516{
10517  tree init = DECL_INITIAL (decl);
10518  tree type = TREE_TYPE (decl);
10519  rtx rtl;
10520
10521  if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10522    /* OK */;
10523  else
10524    return;
10525
10526  rtl = rtl_for_decl_init (init, type);
10527  if (rtl)
10528    add_const_value_attribute (var_die, rtl);
10529}
10530
10531/* Convert the CFI instructions for the current function into a
10532   location list.  This is used for DW_AT_frame_base when we targeting
10533   a dwarf2 consumer that does not support the dwarf3
10534   DW_OP_call_frame_cfa.  OFFSET is a constant to be added to all CFA
10535   expressions.  */
10536
10537static dw_loc_list_ref
10538convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10539{
10540  dw_fde_ref fde;
10541  dw_loc_list_ref list, *list_tail;
10542  dw_cfi_ref cfi;
10543  dw_cfa_location last_cfa, next_cfa;
10544  const char *start_label, *last_label, *section;
10545
10546  fde = &fde_table[fde_table_in_use - 1];
10547
10548  section = secname_for_decl (current_function_decl);
10549  list_tail = &list;
10550  list = NULL;
10551
10552  next_cfa.reg = INVALID_REGNUM;
10553  next_cfa.offset = 0;
10554  next_cfa.indirect = 0;
10555  next_cfa.base_offset = 0;
10556
10557  start_label = fde->dw_fde_begin;
10558
10559  /* ??? Bald assumption that the CIE opcode list does not contain
10560     advance opcodes.  */
10561  for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10562    lookup_cfa_1 (cfi, &next_cfa);
10563
10564  last_cfa = next_cfa;
10565  last_label = start_label;
10566
10567  for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10568    switch (cfi->dw_cfi_opc)
10569      {
10570      case DW_CFA_set_loc:
10571      case DW_CFA_advance_loc1:
10572      case DW_CFA_advance_loc2:
10573      case DW_CFA_advance_loc4:
10574	if (!cfa_equal_p (&last_cfa, &next_cfa))
10575	  {
10576	    *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10577				       start_label, last_label, section,
10578				       list == NULL);
10579
10580	    list_tail = &(*list_tail)->dw_loc_next;
10581	    last_cfa = next_cfa;
10582	    start_label = last_label;
10583	  }
10584	last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10585	break;
10586
10587      case DW_CFA_advance_loc:
10588	/* The encoding is complex enough that we should never emit this.  */
10589      case DW_CFA_remember_state:
10590      case DW_CFA_restore_state:
10591	/* We don't handle these two in this function.  It would be possible
10592	   if it were to be required.  */
10593	gcc_unreachable ();
10594
10595      default:
10596	lookup_cfa_1 (cfi, &next_cfa);
10597	break;
10598      }
10599
10600  if (!cfa_equal_p (&last_cfa, &next_cfa))
10601    {
10602      *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10603				 start_label, last_label, section,
10604				 list == NULL);
10605      list_tail = &(*list_tail)->dw_loc_next;
10606      start_label = last_label;
10607    }
10608  *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10609			     start_label, fde->dw_fde_end, section,
10610			     list == NULL);
10611
10612  return list;
10613}
10614
10615/* Compute a displacement from the "steady-state frame pointer" to the
10616   frame base (often the same as the CFA), and store it in
10617   frame_pointer_fb_offset.  OFFSET is added to the displacement
10618   before the latter is negated.  */
10619
10620static void
10621compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10622{
10623  rtx reg, elim;
10624
10625#ifdef FRAME_POINTER_CFA_OFFSET
10626  reg = frame_pointer_rtx;
10627  offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10628#else
10629  reg = arg_pointer_rtx;
10630  offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10631#endif
10632
10633  elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10634  if (GET_CODE (elim) == PLUS)
10635    {
10636      offset += INTVAL (XEXP (elim, 1));
10637      elim = XEXP (elim, 0);
10638    }
10639  gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10640		       : stack_pointer_rtx));
10641
10642  frame_pointer_fb_offset = -offset;
10643}
10644
10645/* Generate a DW_AT_name attribute given some string value to be included as
10646   the value of the attribute.  */
10647
10648static void
10649add_name_attribute (dw_die_ref die, const char *name_string)
10650{
10651  if (name_string != NULL && *name_string != 0)
10652    {
10653      if (demangle_name_func)
10654	name_string = (*demangle_name_func) (name_string);
10655
10656      add_AT_string (die, DW_AT_name, name_string);
10657    }
10658}
10659
10660/* Generate a DW_AT_comp_dir attribute for DIE.  */
10661
10662static void
10663add_comp_dir_attribute (dw_die_ref die)
10664{
10665  const char *wd = get_src_pwd ();
10666  if (wd != NULL)
10667    add_AT_string (die, DW_AT_comp_dir, wd);
10668}
10669
10670/* Given a tree node describing an array bound (either lower or upper) output
10671   a representation for that bound.  */
10672
10673static void
10674add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10675{
10676  switch (TREE_CODE (bound))
10677    {
10678    case ERROR_MARK:
10679      return;
10680
10681    /* All fixed-bounds are represented by INTEGER_CST nodes.  */
10682    case INTEGER_CST:
10683      if (! host_integerp (bound, 0)
10684	  || (bound_attr == DW_AT_lower_bound
10685	      && (((is_c_family () || is_java ()) &&  integer_zerop (bound))
10686		  || (is_fortran () && integer_onep (bound)))))
10687	/* Use the default.  */
10688	;
10689      else
10690	add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10691      break;
10692
10693    case CONVERT_EXPR:
10694    case NOP_EXPR:
10695    case NON_LVALUE_EXPR:
10696    case VIEW_CONVERT_EXPR:
10697      add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10698      break;
10699
10700    case SAVE_EXPR:
10701      break;
10702
10703    case VAR_DECL:
10704    case PARM_DECL:
10705    case RESULT_DECL:
10706      {
10707	dw_die_ref decl_die = lookup_decl_die (bound);
10708
10709	/* ??? Can this happen, or should the variable have been bound
10710	   first?  Probably it can, since I imagine that we try to create
10711	   the types of parameters in the order in which they exist in
10712	   the list, and won't have created a forward reference to a
10713	   later parameter.  */
10714	if (decl_die != NULL)
10715	  add_AT_die_ref (subrange_die, bound_attr, decl_die);
10716	break;
10717      }
10718
10719    default:
10720      {
10721	/* Otherwise try to create a stack operation procedure to
10722	   evaluate the value of the array bound.  */
10723
10724	dw_die_ref ctx, decl_die;
10725	dw_loc_descr_ref loc;
10726
10727	loc = loc_descriptor_from_tree (bound);
10728	if (loc == NULL)
10729	  break;
10730
10731	if (current_function_decl == 0)
10732	  ctx = comp_unit_die;
10733	else
10734	  ctx = lookup_decl_die (current_function_decl);
10735
10736	decl_die = new_die (DW_TAG_variable, ctx, bound);
10737	add_AT_flag (decl_die, DW_AT_artificial, 1);
10738	add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10739	add_AT_loc (decl_die, DW_AT_location, loc);
10740
10741	add_AT_die_ref (subrange_die, bound_attr, decl_die);
10742	break;
10743      }
10744    }
10745}
10746
10747/* Note that the block of subscript information for an array type also
10748   includes information about the element type of type given array type.  */
10749
10750static void
10751add_subscript_info (dw_die_ref type_die, tree type)
10752{
10753#ifndef MIPS_DEBUGGING_INFO
10754  unsigned dimension_number;
10755#endif
10756  tree lower, upper;
10757  dw_die_ref subrange_die;
10758
10759  /* The GNU compilers represent multidimensional array types as sequences of
10760     one dimensional array types whose element types are themselves array
10761     types.  Here we squish that down, so that each multidimensional array
10762     type gets only one array_type DIE in the Dwarf debugging info. The draft
10763     Dwarf specification say that we are allowed to do this kind of
10764     compression in C (because there is no difference between an array or
10765     arrays and a multidimensional array in C) but for other source languages
10766     (e.g. Ada) we probably shouldn't do this.  */
10767
10768  /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10769     const enum type.  E.g. const enum machine_mode insn_operand_mode[2][10].
10770     We work around this by disabling this feature.  See also
10771     gen_array_type_die.  */
10772#ifndef MIPS_DEBUGGING_INFO
10773  for (dimension_number = 0;
10774       TREE_CODE (type) == ARRAY_TYPE;
10775       type = TREE_TYPE (type), dimension_number++)
10776#endif
10777    {
10778      tree domain = TYPE_DOMAIN (type);
10779
10780      /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10781	 and (in GNU C only) variable bounds.  Handle all three forms
10782	 here.  */
10783      subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10784      if (domain)
10785	{
10786	  /* We have an array type with specified bounds.  */
10787	  lower = TYPE_MIN_VALUE (domain);
10788	  upper = TYPE_MAX_VALUE (domain);
10789
10790	  /* Define the index type.  */
10791	  if (TREE_TYPE (domain))
10792	    {
10793	      /* ??? This is probably an Ada unnamed subrange type.  Ignore the
10794		 TREE_TYPE field.  We can't emit debug info for this
10795		 because it is an unnamed integral type.  */
10796	      if (TREE_CODE (domain) == INTEGER_TYPE
10797		  && TYPE_NAME (domain) == NULL_TREE
10798		  && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10799		  && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10800		;
10801	      else
10802		add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10803				    type_die);
10804	    }
10805
10806	  /* ??? If upper is NULL, the array has unspecified length,
10807	     but it does have a lower bound.  This happens with Fortran
10808	       dimension arr(N:*)
10809	     Since the debugger is definitely going to need to know N
10810	     to produce useful results, go ahead and output the lower
10811	     bound solo, and hope the debugger can cope.  */
10812
10813	  add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10814	  if (upper)
10815	    add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10816	}
10817
10818      /* Otherwise we have an array type with an unspecified length.  The
10819	 DWARF-2 spec does not say how to handle this; let's just leave out the
10820	 bounds.  */
10821    }
10822}
10823
10824static void
10825add_byte_size_attribute (dw_die_ref die, tree tree_node)
10826{
10827  unsigned size;
10828
10829  switch (TREE_CODE (tree_node))
10830    {
10831    case ERROR_MARK:
10832      size = 0;
10833      break;
10834    case ENUMERAL_TYPE:
10835    case RECORD_TYPE:
10836    case UNION_TYPE:
10837    case QUAL_UNION_TYPE:
10838      size = int_size_in_bytes (tree_node);
10839      break;
10840    case FIELD_DECL:
10841      /* For a data member of a struct or union, the DW_AT_byte_size is
10842	 generally given as the number of bytes normally allocated for an
10843	 object of the *declared* type of the member itself.  This is true
10844	 even for bit-fields.  */
10845      size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10846      break;
10847    default:
10848      gcc_unreachable ();
10849    }
10850
10851  /* Note that `size' might be -1 when we get to this point.  If it is, that
10852     indicates that the byte size of the entity in question is variable.  We
10853     have no good way of expressing this fact in Dwarf at the present time.
10854     GCC/35998: Avoid passing negative sizes to Dtrace and gdb.  */
10855  add_AT_unsigned (die, DW_AT_byte_size, (size != (unsigned)-1 ? size : 0));
10856}
10857
10858/* For a FIELD_DECL node which represents a bit-field, output an attribute
10859   which specifies the distance in bits from the highest order bit of the
10860   "containing object" for the bit-field to the highest order bit of the
10861   bit-field itself.
10862
10863   For any given bit-field, the "containing object" is a hypothetical object
10864   (of some integral or enum type) within which the given bit-field lives.  The
10865   type of this hypothetical "containing object" is always the same as the
10866   declared type of the individual bit-field itself.  The determination of the
10867   exact location of the "containing object" for a bit-field is rather
10868   complicated.  It's handled by the `field_byte_offset' function (above).
10869
10870   Note that it is the size (in bytes) of the hypothetical "containing object"
10871   which will be given in the DW_AT_byte_size attribute for this bit-field.
10872   (See `byte_size_attribute' above).  */
10873
10874static inline void
10875add_bit_offset_attribute (dw_die_ref die, tree decl)
10876{
10877  HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10878  tree type = DECL_BIT_FIELD_TYPE (decl);
10879  HOST_WIDE_INT bitpos_int;
10880  HOST_WIDE_INT highest_order_object_bit_offset;
10881  HOST_WIDE_INT highest_order_field_bit_offset;
10882  HOST_WIDE_INT unsigned bit_offset;
10883
10884  /* Must be a field and a bit field.  */
10885  gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10886
10887  /* We can't yet handle bit-fields whose offsets are variable, so if we
10888     encounter such things, just return without generating any attribute
10889     whatsoever.  Likewise for variable or too large size.  */
10890  if (! host_integerp (bit_position (decl), 0)
10891      || ! host_integerp (DECL_SIZE (decl), 1))
10892    return;
10893
10894  bitpos_int = int_bit_position (decl);
10895
10896  /* Note that the bit offset is always the distance (in bits) from the
10897     highest-order bit of the "containing object" to the highest-order bit of
10898     the bit-field itself.  Since the "high-order end" of any object or field
10899     is different on big-endian and little-endian machines, the computation
10900     below must take account of these differences.  */
10901  highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10902  highest_order_field_bit_offset = bitpos_int;
10903
10904  if (! BYTES_BIG_ENDIAN)
10905    {
10906      highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10907      highest_order_object_bit_offset += simple_type_size_in_bits (type);
10908    }
10909
10910  bit_offset
10911    = (! BYTES_BIG_ENDIAN
10912       ? highest_order_object_bit_offset - highest_order_field_bit_offset
10913       : highest_order_field_bit_offset - highest_order_object_bit_offset);
10914
10915  add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10916}
10917
10918/* For a FIELD_DECL node which represents a bit field, output an attribute
10919   which specifies the length in bits of the given field.  */
10920
10921static inline void
10922add_bit_size_attribute (dw_die_ref die, tree decl)
10923{
10924  /* Must be a field and a bit field.  */
10925  gcc_assert (TREE_CODE (decl) == FIELD_DECL
10926	      && DECL_BIT_FIELD_TYPE (decl));
10927
10928  if (host_integerp (DECL_SIZE (decl), 1))
10929    add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10930}
10931
10932/* If the compiled language is ANSI C, then add a 'prototyped'
10933   attribute, if arg types are given for the parameters of a function.  */
10934
10935static inline void
10936add_prototyped_attribute (dw_die_ref die, tree func_type)
10937{
10938  if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10939      && TYPE_ARG_TYPES (func_type) != NULL)
10940    add_AT_flag (die, DW_AT_prototyped, 1);
10941}
10942
10943/* Add an 'abstract_origin' attribute below a given DIE.  The DIE is found
10944   by looking in either the type declaration or object declaration
10945   equate table.  */
10946
10947static inline void
10948add_abstract_origin_attribute (dw_die_ref die, tree origin)
10949{
10950  dw_die_ref origin_die = NULL;
10951
10952  if (TREE_CODE (origin) != FUNCTION_DECL)
10953    {
10954      /* We may have gotten separated from the block for the inlined
10955	 function, if we're in an exception handler or some such; make
10956	 sure that the abstract function has been written out.
10957
10958	 Doing this for nested functions is wrong, however; functions are
10959	 distinct units, and our context might not even be inline.  */
10960      tree fn = origin;
10961
10962      if (TYPE_P (fn))
10963	fn = TYPE_STUB_DECL (fn);
10964
10965      fn = decl_function_context (fn);
10966      if (fn)
10967	dwarf2out_abstract_function (fn);
10968    }
10969
10970  if (DECL_P (origin))
10971    origin_die = lookup_decl_die (origin);
10972  else if (TYPE_P (origin))
10973    origin_die = lookup_type_die (origin);
10974
10975  /* XXX: Functions that are never lowered don't always have correct block
10976     trees (in the case of java, they simply have no block tree, in some other
10977     languages).  For these functions, there is nothing we can really do to
10978     output correct debug info for inlined functions in all cases.  Rather
10979     than die, we'll just produce deficient debug info now, in that we will
10980     have variables without a proper abstract origin.  In the future, when all
10981     functions are lowered, we should re-add a gcc_assert (origin_die)
10982     here.  */
10983
10984  if (origin_die)
10985      add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10986}
10987
10988/* We do not currently support the pure_virtual attribute.  */
10989
10990static inline void
10991add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10992{
10993  if (DECL_VINDEX (func_decl))
10994    {
10995      add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10996
10997      if (host_integerp (DECL_VINDEX (func_decl), 0))
10998	add_AT_loc (die, DW_AT_vtable_elem_location,
10999		    new_loc_descr (DW_OP_constu,
11000				   tree_low_cst (DECL_VINDEX (func_decl), 0),
11001				   0));
11002
11003      /* GNU extension: Record what type this method came from originally.  */
11004      if (debug_info_level > DINFO_LEVEL_TERSE)
11005	add_AT_die_ref (die, DW_AT_containing_type,
11006			lookup_type_die (DECL_CONTEXT (func_decl)));
11007    }
11008}
11009
11010/* Add source coordinate attributes for the given decl.  */
11011
11012static void
11013add_src_coords_attributes (dw_die_ref die, tree decl)
11014{
11015  expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11016
11017  add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
11018  add_AT_unsigned (die, DW_AT_decl_line, s.line);
11019}
11020
11021/* Add a DW_AT_name attribute and source coordinate attribute for the
11022   given decl, but only if it actually has a name.  */
11023
11024static void
11025add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
11026{
11027  tree decl_name;
11028
11029  decl_name = DECL_NAME (decl);
11030  if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
11031    {
11032      add_name_attribute (die, dwarf2_name (decl, 0));
11033      if (! DECL_ARTIFICIAL (decl))
11034	add_src_coords_attributes (die, decl);
11035
11036      if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
11037	  && TREE_PUBLIC (decl)
11038	  && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
11039	  && !DECL_ABSTRACT (decl)
11040	  && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
11041	add_AT_string (die, DW_AT_MIPS_linkage_name,
11042		       IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
11043    }
11044
11045#ifdef VMS_DEBUGGING_INFO
11046  /* Get the function's name, as described by its RTL.  This may be different
11047     from the DECL_NAME name used in the source file.  */
11048  if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
11049    {
11050      add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
11051		   XEXP (DECL_RTL (decl), 0));
11052      VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
11053    }
11054#endif
11055}
11056
11057/* Push a new declaration scope.  */
11058
11059static void
11060push_decl_scope (tree scope)
11061{
11062  VEC_safe_push (tree, gc, decl_scope_table, scope);
11063}
11064
11065/* Pop a declaration scope.  */
11066
11067static inline void
11068pop_decl_scope (void)
11069{
11070  VEC_pop (tree, decl_scope_table);
11071}
11072
11073/* Return the DIE for the scope that immediately contains this type.
11074   Non-named types get global scope.  Named types nested in other
11075   types get their containing scope if it's open, or global scope
11076   otherwise.  All other types (i.e. function-local named types) get
11077   the current active scope.  */
11078
11079static dw_die_ref
11080scope_die_for (tree t, dw_die_ref context_die)
11081{
11082  dw_die_ref scope_die = NULL;
11083  tree containing_scope;
11084  int i;
11085
11086  /* Non-types always go in the current scope.  */
11087  gcc_assert (TYPE_P (t));
11088
11089  containing_scope = TYPE_CONTEXT (t);
11090
11091  /* Use the containing namespace if it was passed in (for a declaration).  */
11092  if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
11093    {
11094      if (context_die == lookup_decl_die (containing_scope))
11095	/* OK */;
11096      else
11097	containing_scope = NULL_TREE;
11098    }
11099
11100  /* Ignore function type "scopes" from the C frontend.  They mean that
11101     a tagged type is local to a parmlist of a function declarator, but
11102     that isn't useful to DWARF.  */
11103  if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11104    containing_scope = NULL_TREE;
11105
11106  if (containing_scope == NULL_TREE)
11107    scope_die = comp_unit_die;
11108  else if (TYPE_P (containing_scope))
11109    {
11110      /* For types, we can just look up the appropriate DIE.  But
11111	 first we check to see if we're in the middle of emitting it
11112	 so we know where the new DIE should go.  */
11113      for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11114	if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11115	  break;
11116
11117      if (i < 0)
11118	{
11119	  gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11120		      || TREE_ASM_WRITTEN (containing_scope));
11121
11122	  /* If none of the current dies are suitable, we get file scope.  */
11123	  scope_die = comp_unit_die;
11124	}
11125      else
11126	scope_die = lookup_type_die (containing_scope);
11127    }
11128  else
11129    scope_die = context_die;
11130
11131  return scope_die;
11132}
11133
11134/* Returns nonzero if CONTEXT_DIE is internal to a function.  */
11135
11136static inline int
11137local_scope_p (dw_die_ref context_die)
11138{
11139  for (; context_die; context_die = context_die->die_parent)
11140    if (context_die->die_tag == DW_TAG_inlined_subroutine
11141	|| context_die->die_tag == DW_TAG_subprogram)
11142      return 1;
11143
11144  return 0;
11145}
11146
11147/* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11148   whether or not to treat a DIE in this context as a declaration.  */
11149
11150static inline int
11151class_or_namespace_scope_p (dw_die_ref context_die)
11152{
11153  return (context_die
11154	  && (context_die->die_tag == DW_TAG_structure_type
11155	      || context_die->die_tag == DW_TAG_union_type
11156	      || context_die->die_tag == DW_TAG_namespace));
11157}
11158
11159/* Many forms of DIEs require a "type description" attribute.  This
11160   routine locates the proper "type descriptor" die for the type given
11161   by 'type', and adds a DW_AT_type attribute below the given die.  */
11162
11163static void
11164add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11165		    int decl_volatile, dw_die_ref context_die)
11166{
11167  enum tree_code code  = TREE_CODE (type);
11168  dw_die_ref type_die  = NULL;
11169
11170  /* ??? If this type is an unnamed subrange type of an integral or
11171     floating-point type, use the inner type.  This is because we have no
11172     support for unnamed types in base_type_die.  This can happen if this is
11173     an Ada subrange type.  Correct solution is emit a subrange type die.  */
11174  if ((code == INTEGER_TYPE || code == REAL_TYPE)
11175      && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11176    type = TREE_TYPE (type), code = TREE_CODE (type);
11177
11178  if (code == ERROR_MARK
11179      /* Handle a special case.  For functions whose return type is void, we
11180	 generate *no* type attribute.  (Note that no object may have type
11181	 `void', so this only applies to function return types).  */
11182      || code == VOID_TYPE)
11183    return;
11184
11185  type_die = modified_type_die (type,
11186				decl_const || TYPE_READONLY (type),
11187				decl_volatile || TYPE_VOLATILE (type),
11188				context_die);
11189
11190  if (type_die != NULL)
11191    add_AT_die_ref (object_die, DW_AT_type, type_die);
11192}
11193
11194/* Given an object die, add the calling convention attribute for the
11195   function call type.  */
11196static void
11197add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11198{
11199  enum dwarf_calling_convention value = DW_CC_normal;
11200
11201  value = targetm.dwarf_calling_convention (type);
11202
11203  /* Only add the attribute if the backend requests it, and
11204     is not DW_CC_normal.  */
11205  if (value && (value != DW_CC_normal))
11206    add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11207}
11208
11209/* Given a tree pointer to a struct, class, union, or enum type node, return
11210   a pointer to the (string) tag name for the given type, or zero if the type
11211   was declared without a tag.  */
11212
11213static const char *
11214type_tag (tree type)
11215{
11216  const char *name = 0;
11217
11218  if (TYPE_NAME (type) != 0)
11219    {
11220      tree t = 0;
11221
11222      /* Find the IDENTIFIER_NODE for the type name.  */
11223      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11224	t = TYPE_NAME (type);
11225
11226      /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11227	 a TYPE_DECL node, regardless of whether or not a `typedef' was
11228	 involved.  */
11229      else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11230	       && ! DECL_IGNORED_P (TYPE_NAME (type)))
11231	t = DECL_NAME (TYPE_NAME (type));
11232
11233      /* Now get the name as a string, or invent one.  */
11234      if (t != 0)
11235	name = IDENTIFIER_POINTER (t);
11236    }
11237
11238  return (name == 0 || *name == '\0') ? 0 : name;
11239}
11240
11241/* Return the type associated with a data member, make a special check
11242   for bit field types.  */
11243
11244static inline tree
11245member_declared_type (tree member)
11246{
11247  return (DECL_BIT_FIELD_TYPE (member)
11248	  ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11249}
11250
11251/* Get the decl's label, as described by its RTL. This may be different
11252   from the DECL_NAME name used in the source file.  */
11253
11254#if 0
11255static const char *
11256decl_start_label (tree decl)
11257{
11258  rtx x;
11259  const char *fnname;
11260
11261  x = DECL_RTL (decl);
11262  gcc_assert (MEM_P (x));
11263
11264  x = XEXP (x, 0);
11265  gcc_assert (GET_CODE (x) == SYMBOL_REF);
11266
11267  fnname = XSTR (x, 0);
11268  return fnname;
11269}
11270#endif
11271
11272/* These routines generate the internal representation of the DIE's for
11273   the compilation unit.  Debugging information is collected by walking
11274   the declaration trees passed in from dwarf2out_decl().  */
11275
11276static void
11277gen_array_type_die (tree type, dw_die_ref context_die)
11278{
11279  dw_die_ref scope_die = scope_die_for (type, context_die);
11280  dw_die_ref array_die;
11281  tree element_type;
11282
11283  /* ??? The SGI dwarf reader fails for array of array of enum types unless
11284     the inner array type comes before the outer array type.  Thus we must
11285     call gen_type_die before we call new_die.  See below also.  */
11286#ifdef MIPS_DEBUGGING_INFO
11287  gen_type_die (TREE_TYPE (type), context_die);
11288#endif
11289
11290  array_die = new_die (DW_TAG_array_type, scope_die, type);
11291  add_name_attribute (array_die, type_tag (type));
11292  equate_type_number_to_die (type, array_die);
11293
11294  if (TREE_CODE (type) == VECTOR_TYPE)
11295    {
11296      /* The frontend feeds us a representation for the vector as a struct
11297	 containing an array.  Pull out the array type.  */
11298      type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11299      add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11300    }
11301
11302#if 0
11303  /* We default the array ordering.  SDB will probably do
11304     the right things even if DW_AT_ordering is not present.  It's not even
11305     an issue until we start to get into multidimensional arrays anyway.  If
11306     SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11307     then we'll have to put the DW_AT_ordering attribute back in.  (But if
11308     and when we find out that we need to put these in, we will only do so
11309     for multidimensional arrays.  */
11310  add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11311#endif
11312
11313#ifdef MIPS_DEBUGGING_INFO
11314  /* The SGI compilers handle arrays of unknown bound by setting
11315     AT_declaration and not emitting any subrange DIEs.  */
11316  if (! TYPE_DOMAIN (type))
11317    add_AT_flag (array_die, DW_AT_declaration, 1);
11318  else
11319#endif
11320    add_subscript_info (array_die, type);
11321
11322  /* Add representation of the type of the elements of this array type.  */
11323  element_type = TREE_TYPE (type);
11324
11325  /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11326     const enum type.  E.g. const enum machine_mode insn_operand_mode[2][10].
11327     We work around this by disabling this feature.  See also
11328     add_subscript_info.  */
11329#ifndef MIPS_DEBUGGING_INFO
11330  while (TREE_CODE (element_type) == ARRAY_TYPE)
11331    element_type = TREE_TYPE (element_type);
11332
11333  gen_type_die (element_type, context_die);
11334#endif
11335
11336  add_type_attribute (array_die, element_type, 0, 0, context_die);
11337
11338  if (get_AT (array_die, DW_AT_name))
11339    add_pubtype (type, array_die);
11340}
11341
11342#if 0
11343static void
11344gen_entry_point_die (tree decl, dw_die_ref context_die)
11345{
11346  tree origin = decl_ultimate_origin (decl);
11347  dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11348
11349  if (origin != NULL)
11350    add_abstract_origin_attribute (decl_die, origin);
11351  else
11352    {
11353      add_name_and_src_coords_attributes (decl_die, decl);
11354      add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11355			  0, 0, context_die);
11356    }
11357
11358  if (DECL_ABSTRACT (decl))
11359    equate_decl_number_to_die (decl, decl_die);
11360  else
11361    add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11362}
11363#endif
11364
11365/* Walk through the list of incomplete types again, trying once more to
11366   emit full debugging info for them.  */
11367
11368static void
11369retry_incomplete_types (void)
11370{
11371  int i;
11372
11373  for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11374    gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11375}
11376
11377/* Generate a DIE to represent an inlined instance of an enumeration type.  */
11378
11379static void
11380gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11381{
11382  dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11383
11384  /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11385     be incomplete and such types are not marked.  */
11386  add_abstract_origin_attribute (type_die, type);
11387}
11388
11389/* Generate a DIE to represent an inlined instance of a structure type.  */
11390
11391static void
11392gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11393{
11394  dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11395
11396  /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11397     be incomplete and such types are not marked.  */
11398  add_abstract_origin_attribute (type_die, type);
11399}
11400
11401/* Generate a DIE to represent an inlined instance of a union type.  */
11402
11403static void
11404gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11405{
11406  dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11407
11408  /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11409     be incomplete and such types are not marked.  */
11410  add_abstract_origin_attribute (type_die, type);
11411}
11412
11413/* Generate a DIE to represent an enumeration type.  Note that these DIEs
11414   include all of the information about the enumeration values also. Each
11415   enumerated type name/value is listed as a child of the enumerated type
11416   DIE.  */
11417
11418static dw_die_ref
11419gen_enumeration_type_die (tree type, dw_die_ref context_die)
11420{
11421  dw_die_ref type_die = lookup_type_die (type);
11422
11423  if (type_die == NULL)
11424    {
11425      type_die = new_die (DW_TAG_enumeration_type,
11426			  scope_die_for (type, context_die), type);
11427      equate_type_number_to_die (type, type_die);
11428      add_name_attribute (type_die, type_tag (type));
11429    }
11430  else if (! TYPE_SIZE (type))
11431    return type_die;
11432  else
11433    remove_AT (type_die, DW_AT_declaration);
11434
11435  /* Handle a GNU C/C++ extension, i.e. incomplete enum types.  If the
11436     given enum type is incomplete, do not generate the DW_AT_byte_size
11437     attribute or the DW_AT_element_list attribute.  */
11438  if (TYPE_SIZE (type))
11439    {
11440      tree link;
11441
11442      TREE_ASM_WRITTEN (type) = 1;
11443      add_byte_size_attribute (type_die, type);
11444      if (TYPE_STUB_DECL (type) != NULL_TREE)
11445	add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11446
11447      /* If the first reference to this type was as the return type of an
11448	 inline function, then it may not have a parent.  Fix this now.  */
11449      if (type_die->die_parent == NULL)
11450	add_child_die (scope_die_for (type, context_die), type_die);
11451
11452      for (link = TYPE_VALUES (type);
11453	   link != NULL; link = TREE_CHAIN (link))
11454	{
11455	  dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11456	  tree value = TREE_VALUE (link);
11457
11458	  add_name_attribute (enum_die,
11459			      IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11460
11461	  if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11462	    /* DWARF2 does not provide a way of indicating whether or
11463	       not enumeration constants are signed or unsigned.  GDB
11464	       always assumes the values are signed, so we output all
11465	       values as if they were signed.  That means that
11466	       enumeration constants with very large unsigned values
11467	       will appear to have negative values in the debugger.  */
11468	    add_AT_int (enum_die, DW_AT_const_value,
11469			tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11470	}
11471    }
11472  else
11473    add_AT_flag (type_die, DW_AT_declaration, 1);
11474
11475  if (get_AT (type_die, DW_AT_name))
11476    add_pubtype (type, type_die);
11477
11478  return type_die;
11479}
11480
11481/* Generate a DIE to represent either a real live formal parameter decl or to
11482   represent just the type of some formal parameter position in some function
11483   type.
11484
11485   Note that this routine is a bit unusual because its argument may be a
11486   ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11487   represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11488   node.  If it's the former then this function is being called to output a
11489   DIE to represent a formal parameter object (or some inlining thereof).  If
11490   it's the latter, then this function is only being called to output a
11491   DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11492   argument type of some subprogram type.  */
11493
11494static dw_die_ref
11495gen_formal_parameter_die (tree node, dw_die_ref context_die)
11496{
11497  dw_die_ref parm_die
11498    = new_die (DW_TAG_formal_parameter, context_die, node);
11499  tree origin;
11500
11501  switch (TREE_CODE_CLASS (TREE_CODE (node)))
11502    {
11503    case tcc_declaration:
11504      origin = decl_ultimate_origin (node);
11505      if (origin != NULL)
11506	add_abstract_origin_attribute (parm_die, origin);
11507      else
11508	{
11509	  add_name_and_src_coords_attributes (parm_die, node);
11510	  add_type_attribute (parm_die, TREE_TYPE (node),
11511			      TREE_READONLY (node),
11512			      TREE_THIS_VOLATILE (node),
11513			      context_die);
11514	  if (DECL_ARTIFICIAL (node))
11515	    add_AT_flag (parm_die, DW_AT_artificial, 1);
11516	}
11517
11518      equate_decl_number_to_die (node, parm_die);
11519      if (! DECL_ABSTRACT (node))
11520	add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11521
11522      break;
11523
11524    case tcc_type:
11525      /* We were called with some kind of a ..._TYPE node.  */
11526      add_type_attribute (parm_die, node, 0, 0, context_die);
11527      break;
11528
11529    default:
11530      gcc_unreachable ();
11531    }
11532
11533  return parm_die;
11534}
11535
11536/* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11537   at the end of an (ANSI prototyped) formal parameters list.  */
11538
11539static void
11540gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11541{
11542  new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11543}
11544
11545/* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11546   DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11547   parameters as specified in some function type specification (except for
11548   those which appear as part of a function *definition*).  */
11549
11550static void
11551gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11552{
11553  tree link;
11554  tree formal_type = NULL;
11555  tree first_parm_type;
11556  tree arg;
11557
11558  if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11559    {
11560      arg = DECL_ARGUMENTS (function_or_method_type);
11561      function_or_method_type = TREE_TYPE (function_or_method_type);
11562    }
11563  else
11564    arg = NULL_TREE;
11565
11566  first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11567
11568  /* Make our first pass over the list of formal parameter types and output a
11569     DW_TAG_formal_parameter DIE for each one.  */
11570  for (link = first_parm_type; link; )
11571    {
11572      dw_die_ref parm_die;
11573
11574      formal_type = TREE_VALUE (link);
11575      if (formal_type == void_type_node)
11576	break;
11577
11578      /* Output a (nameless) DIE to represent the formal parameter itself.  */
11579      parm_die = gen_formal_parameter_die (formal_type, context_die);
11580      if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11581	   && link == first_parm_type)
11582	  || (arg && DECL_ARTIFICIAL (arg)))
11583	add_AT_flag (parm_die, DW_AT_artificial, 1);
11584
11585      link = TREE_CHAIN (link);
11586      if (arg)
11587	arg = TREE_CHAIN (arg);
11588    }
11589
11590  /* If this function type has an ellipsis, add a
11591     DW_TAG_unspecified_parameters DIE to the end of the parameter list.  */
11592  if (formal_type != void_type_node)
11593    gen_unspecified_parameters_die (function_or_method_type, context_die);
11594
11595  /* Make our second (and final) pass over the list of formal parameter types
11596     and output DIEs to represent those types (as necessary).  */
11597  for (link = TYPE_ARG_TYPES (function_or_method_type);
11598       link && TREE_VALUE (link);
11599       link = TREE_CHAIN (link))
11600    gen_type_die (TREE_VALUE (link), context_die);
11601}
11602
11603/* We want to generate the DIE for TYPE so that we can generate the
11604   die for MEMBER, which has been defined; we will need to refer back
11605   to the member declaration nested within TYPE.  If we're trying to
11606   generate minimal debug info for TYPE, processing TYPE won't do the
11607   trick; we need to attach the member declaration by hand.  */
11608
11609static void
11610gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11611{
11612  gen_type_die (type, context_die);
11613
11614  /* If we're trying to avoid duplicate debug info, we may not have
11615     emitted the member decl for this function.  Emit it now.  */
11616  if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11617      && ! lookup_decl_die (member))
11618    {
11619      dw_die_ref type_die;
11620      gcc_assert (!decl_ultimate_origin (member));
11621
11622      push_decl_scope (type);
11623      type_die = lookup_type_die (type);
11624      if (TREE_CODE (member) == FUNCTION_DECL)
11625	gen_subprogram_die (member, type_die);
11626      else if (TREE_CODE (member) == FIELD_DECL)
11627	{
11628	  /* Ignore the nameless fields that are used to skip bits but handle
11629	     C++ anonymous unions and structs.  */
11630	  if (DECL_NAME (member) != NULL_TREE
11631	      || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11632	      || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11633	    {
11634	      gen_type_die (member_declared_type (member), type_die);
11635	      gen_field_die (member, type_die);
11636	    }
11637	}
11638      else
11639	gen_variable_die (member, type_die);
11640
11641      pop_decl_scope ();
11642    }
11643}
11644
11645/* Generate the DWARF2 info for the "abstract" instance of a function which we
11646   may later generate inlined and/or out-of-line instances of.  */
11647
11648static void
11649dwarf2out_abstract_function (tree decl)
11650{
11651  dw_die_ref old_die;
11652  tree save_fn;
11653  struct function *save_cfun;
11654  tree context;
11655  int was_abstract = DECL_ABSTRACT (decl);
11656
11657  /* Make sure we have the actual abstract inline, not a clone.  */
11658  decl = DECL_ORIGIN (decl);
11659
11660  old_die = lookup_decl_die (decl);
11661  if (old_die && get_AT (old_die, DW_AT_inline))
11662    /* We've already generated the abstract instance.  */
11663    return;
11664
11665  /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11666     we don't get confused by DECL_ABSTRACT.  */
11667  if (debug_info_level > DINFO_LEVEL_TERSE)
11668    {
11669      context = decl_class_context (decl);
11670      if (context)
11671	gen_type_die_for_member
11672	  (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11673    }
11674
11675  /* Pretend we've just finished compiling this function.  */
11676  save_fn = current_function_decl;
11677  save_cfun = cfun;
11678  current_function_decl = decl;
11679  cfun = DECL_STRUCT_FUNCTION (decl);
11680
11681  set_decl_abstract_flags (decl, 1);
11682  dwarf2out_decl (decl);
11683  if (! was_abstract)
11684    set_decl_abstract_flags (decl, 0);
11685
11686  current_function_decl = save_fn;
11687  cfun = save_cfun;
11688}
11689
11690/* Helper function of premark_used_types() which gets called through
11691   htab_traverse_resize().
11692
11693   Marks the DIE of a given type in *SLOT as perennial, so it never gets
11694   marked as unused by prune_unused_types.  */
11695static int
11696premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
11697{
11698  tree type;
11699  dw_die_ref die;
11700
11701  type = *slot;
11702  die = lookup_type_die (type);
11703  if (die != NULL)
11704    die->die_perennial_p = 1;
11705  return 1;
11706}
11707
11708/* Mark all members of used_types_hash as perennial.  */
11709static void
11710premark_used_types (void)
11711{
11712  if (cfun && cfun->used_types_hash)
11713    htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
11714}
11715
11716/* Generate a DIE to represent a declared function (either file-scope or
11717   block-local).  */
11718
11719static void
11720gen_subprogram_die (tree decl, dw_die_ref context_die)
11721{
11722  char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11723  tree origin = decl_ultimate_origin (decl);
11724  dw_die_ref subr_die;
11725  tree fn_arg_types;
11726  tree outer_scope;
11727  dw_die_ref old_die = lookup_decl_die (decl);
11728  int declaration = (current_function_decl != decl
11729		     || class_or_namespace_scope_p (context_die));
11730
11731  premark_used_types ();
11732
11733  /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11734     started to generate the abstract instance of an inline, decided to output
11735     its containing class, and proceeded to emit the declaration of the inline
11736     from the member list for the class.  If so, DECLARATION takes priority;
11737     we'll get back to the abstract instance when done with the class.  */
11738
11739  /* The class-scope declaration DIE must be the primary DIE.  */
11740  if (origin && declaration && class_or_namespace_scope_p (context_die))
11741    {
11742      origin = NULL;
11743      gcc_assert (!old_die);
11744    }
11745
11746  /* Now that the C++ front end lazily declares artificial member fns, we
11747     might need to retrofit the declaration into its class.  */
11748  if (!declaration && !origin && !old_die
11749      && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11750      && !class_or_namespace_scope_p (context_die)
11751      && debug_info_level > DINFO_LEVEL_TERSE)
11752    old_die = force_decl_die (decl);
11753
11754  if (origin != NULL)
11755    {
11756      gcc_assert (!declaration || local_scope_p (context_die));
11757
11758      /* Fixup die_parent for the abstract instance of a nested
11759	 inline function.  */
11760      if (old_die && old_die->die_parent == NULL)
11761	add_child_die (context_die, old_die);
11762
11763      subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11764      add_abstract_origin_attribute (subr_die, origin);
11765    }
11766  else if (old_die)
11767    {
11768      expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11769      struct dwarf_file_data * file_index = lookup_filename (s.file);
11770
11771      if (!get_AT_flag (old_die, DW_AT_declaration)
11772	  /* We can have a normal definition following an inline one in the
11773	     case of redefinition of GNU C extern inlines.
11774	     It seems reasonable to use AT_specification in this case.  */
11775	  && !get_AT (old_die, DW_AT_inline))
11776	{
11777	  /* Detect and ignore this case, where we are trying to output
11778	     something we have already output.  */
11779	  return;
11780	}
11781
11782      /* If the definition comes from the same place as the declaration,
11783	 maybe use the old DIE.  We always want the DIE for this function
11784	 that has the *_pc attributes to be under comp_unit_die so the
11785	 debugger can find it.  We also need to do this for abstract
11786	 instances of inlines, since the spec requires the out-of-line copy
11787	 to have the same parent.  For local class methods, this doesn't
11788	 apply; we just use the old DIE.  */
11789      if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11790	  && (DECL_ARTIFICIAL (decl)
11791	      || (get_AT_file (old_die, DW_AT_decl_file) == file_index
11792		  && (get_AT_unsigned (old_die, DW_AT_decl_line)
11793		      == (unsigned) s.line))))
11794	{
11795	  subr_die = old_die;
11796
11797	  /* Clear out the declaration attribute and the formal parameters.
11798	     Do not remove all children, because it is possible that this
11799	     declaration die was forced using force_decl_die(). In such
11800	     cases die that forced declaration die (e.g. TAG_imported_module)
11801	     is one of the children that we do not want to remove.  */
11802	  remove_AT (subr_die, DW_AT_declaration);
11803	  remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11804	}
11805      else
11806	{
11807	  subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11808	  add_AT_specification (subr_die, old_die);
11809	  if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
11810	    add_AT_file (subr_die, DW_AT_decl_file, file_index);
11811	  if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
11812	    add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
11813	}
11814    }
11815  else
11816    {
11817      subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11818
11819      if (TREE_PUBLIC (decl))
11820	add_AT_flag (subr_die, DW_AT_external, 1);
11821
11822      add_name_and_src_coords_attributes (subr_die, decl);
11823      if (debug_info_level > DINFO_LEVEL_TERSE)
11824	{
11825	  add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11826	  add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11827			      0, 0, context_die);
11828	}
11829
11830      add_pure_or_virtual_attribute (subr_die, decl);
11831      if (DECL_ARTIFICIAL (decl))
11832	add_AT_flag (subr_die, DW_AT_artificial, 1);
11833
11834      if (TREE_PROTECTED (decl))
11835	add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11836      else if (TREE_PRIVATE (decl))
11837	add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11838    }
11839
11840  if (declaration)
11841    {
11842      if (!old_die || !get_AT (old_die, DW_AT_inline))
11843	{
11844	  add_AT_flag (subr_die, DW_AT_declaration, 1);
11845
11846	  /* The first time we see a member function, it is in the context of
11847	     the class to which it belongs.  We make sure of this by emitting
11848	     the class first.  The next time is the definition, which is
11849	     handled above.  The two may come from the same source text.
11850
11851	     Note that force_decl_die() forces function declaration die. It is
11852	     later reused to represent definition.  */
11853	  equate_decl_number_to_die (decl, subr_die);
11854	}
11855    }
11856  else if (DECL_ABSTRACT (decl))
11857    {
11858      if (DECL_DECLARED_INLINE_P (decl))
11859	{
11860          if (cgraph_function_possibly_inlined_p (decl))
11861	    add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11862	  else
11863	    add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11864	}
11865      else
11866	{
11867	  if (cgraph_function_possibly_inlined_p (decl))
11868            add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11869	  else
11870            add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11871	}
11872
11873      equate_decl_number_to_die (decl, subr_die);
11874    }
11875  else if (!DECL_EXTERNAL (decl))
11876    {
11877      HOST_WIDE_INT cfa_fb_offset;
11878
11879      if (!old_die || !get_AT (old_die, DW_AT_inline))
11880	equate_decl_number_to_die (decl, subr_die);
11881
11882      if (!flag_reorder_blocks_and_partition)
11883	{
11884	  ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11885				       current_function_funcdef_no);
11886	  add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11887	  ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11888				       current_function_funcdef_no);
11889	  add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11890
11891	  add_pubname (decl, subr_die);
11892	  add_arange (decl, subr_die);
11893	}
11894      else
11895	{  /* Do nothing for now; maybe need to duplicate die, one for
11896	      hot section and ond for cold section, then use the hot/cold
11897	      section begin/end labels to generate the aranges...  */
11898	  /*
11899	    add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11900	    add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11901	    add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11902	    add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11903
11904	    add_pubname (decl, subr_die);
11905	    add_arange (decl, subr_die);
11906	    add_arange (decl, subr_die);
11907	   */
11908	}
11909
11910#ifdef MIPS_DEBUGGING_INFO
11911      /* Add a reference to the FDE for this routine.  */
11912      add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11913#endif
11914
11915      cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11916
11917      /* We define the "frame base" as the function's CFA.  This is more
11918	 convenient for several reasons: (1) It's stable across the prologue
11919	 and epilogue, which makes it better than just a frame pointer,
11920	 (2) With dwarf3, there exists a one-byte encoding that allows us
11921	 to reference the .debug_frame data by proxy, but failing that,
11922	 (3) We can at least reuse the code inspection and interpretation
11923	 code that determines the CFA position at various points in the
11924	 function.  */
11925      /* ??? Use some command-line or configury switch to enable the use
11926	 of dwarf3 DW_OP_call_frame_cfa.  At present there are no dwarf
11927	 consumers that understand it; fall back to "pure" dwarf2 and
11928	 convert the CFA data into a location list.  */
11929      {
11930	dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
11931	if (list->dw_loc_next)
11932	  add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11933	else
11934	  add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11935      }
11936
11937      /* Compute a displacement from the "steady-state frame pointer" to
11938	 the CFA.  The former is what all stack slots and argument slots
11939	 will reference in the rtl; the later is what we've told the
11940	 debugger about.  We'll need to adjust all frame_base references
11941	 by this displacement.  */
11942      compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
11943
11944      if (cfun->static_chain_decl)
11945	add_AT_location_description (subr_die, DW_AT_static_link,
11946		 loc_descriptor_from_tree (cfun->static_chain_decl));
11947    }
11948
11949  /* Now output descriptions of the arguments for this function. This gets
11950     (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11951     for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11952     `...' at the end of the formal parameter list.  In order to find out if
11953     there was a trailing ellipsis or not, we must instead look at the type
11954     associated with the FUNCTION_DECL.  This will be a node of type
11955     FUNCTION_TYPE. If the chain of type nodes hanging off of this
11956     FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11957     an ellipsis at the end.  */
11958
11959  /* In the case where we are describing a mere function declaration, all we
11960     need to do here (and all we *can* do here) is to describe the *types* of
11961     its formal parameters.  */
11962  if (debug_info_level <= DINFO_LEVEL_TERSE)
11963    ;
11964  else if (declaration)
11965    gen_formal_types_die (decl, subr_die);
11966  else
11967    {
11968      /* Generate DIEs to represent all known formal parameters.  */
11969      tree arg_decls = DECL_ARGUMENTS (decl);
11970      tree parm;
11971
11972      /* When generating DIEs, generate the unspecified_parameters DIE
11973	 instead if we come across the arg "__builtin_va_alist" */
11974      for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11975	if (TREE_CODE (parm) == PARM_DECL)
11976	  {
11977	    if (DECL_NAME (parm)
11978		&& !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11979			    "__builtin_va_alist"))
11980	      gen_unspecified_parameters_die (parm, subr_die);
11981	    else
11982	      gen_decl_die (parm, subr_die);
11983	  }
11984
11985      /* Decide whether we need an unspecified_parameters DIE at the end.
11986	 There are 2 more cases to do this for: 1) the ansi ... declaration -
11987	 this is detectable when the end of the arg list is not a
11988	 void_type_node 2) an unprototyped function declaration (not a
11989	 definition).  This just means that we have no info about the
11990	 parameters at all.  */
11991      fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11992      if (fn_arg_types != NULL)
11993	{
11994	  /* This is the prototyped case, check for....  */
11995	  if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11996	    gen_unspecified_parameters_die (decl, subr_die);
11997	}
11998      else if (DECL_INITIAL (decl) == NULL_TREE)
11999	gen_unspecified_parameters_die (decl, subr_die);
12000    }
12001
12002  /* Output Dwarf info for all of the stuff within the body of the function
12003     (if it has one - it may be just a declaration).  */
12004  outer_scope = DECL_INITIAL (decl);
12005
12006  /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
12007     a function.  This BLOCK actually represents the outermost binding contour
12008     for the function, i.e. the contour in which the function's formal
12009     parameters and labels get declared. Curiously, it appears that the front
12010     end doesn't actually put the PARM_DECL nodes for the current function onto
12011     the BLOCK_VARS list for this outer scope, but are strung off of the
12012     DECL_ARGUMENTS list for the function instead.
12013
12014     The BLOCK_VARS list for the `outer_scope' does provide us with a list of
12015     the LABEL_DECL nodes for the function however, and we output DWARF info
12016     for those in decls_for_scope.  Just within the `outer_scope' there will be
12017     a BLOCK node representing the function's outermost pair of curly braces,
12018     and any blocks used for the base and member initializers of a C++
12019     constructor function.  */
12020  if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
12021    {
12022      /* Emit a DW_TAG_variable DIE for a named return value.  */
12023      if (DECL_NAME (DECL_RESULT (decl)))
12024	gen_decl_die (DECL_RESULT (decl), subr_die);
12025
12026      current_function_has_inlines = 0;
12027      decls_for_scope (outer_scope, subr_die, 0);
12028
12029#if 0 && defined (MIPS_DEBUGGING_INFO)
12030      if (current_function_has_inlines)
12031	{
12032	  add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
12033	  if (! comp_unit_has_inlines)
12034	    {
12035	      add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
12036	      comp_unit_has_inlines = 1;
12037	    }
12038	}
12039#endif
12040    }
12041  /* Add the calling convention attribute if requested.  */
12042  add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
12043
12044}
12045
12046/* Generate a DIE to represent a declared data object.  */
12047
12048static void
12049gen_variable_die (tree decl, dw_die_ref context_die)
12050{
12051  tree origin = decl_ultimate_origin (decl);
12052  dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
12053
12054  dw_die_ref old_die = lookup_decl_die (decl);
12055  int declaration = (DECL_EXTERNAL (decl)
12056		     /* If DECL is COMDAT and has not actually been
12057			emitted, we cannot take its address; there
12058			might end up being no definition anywhere in
12059			the program.  For example, consider the C++
12060			test case:
12061
12062                          template <class T>
12063                          struct S { static const int i = 7; };
12064
12065                          template <class T>
12066                          const int S<T>::i;
12067
12068                          int f() { return S<int>::i; }
12069
12070			Here, S<int>::i is not DECL_EXTERNAL, but no
12071			definition is required, so the compiler will
12072			not emit a definition.  */
12073		     || (TREE_CODE (decl) == VAR_DECL
12074			 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
12075		     || class_or_namespace_scope_p (context_die));
12076
12077  if (origin != NULL)
12078    add_abstract_origin_attribute (var_die, origin);
12079
12080  /* Loop unrolling can create multiple blocks that refer to the same
12081     static variable, so we must test for the DW_AT_declaration flag.
12082
12083     ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
12084     copy decls and set the DECL_ABSTRACT flag on them instead of
12085     sharing them.
12086
12087     ??? Duplicated blocks have been rewritten to use .debug_ranges.
12088
12089     ??? The declare_in_namespace support causes us to get two DIEs for one
12090     variable, both of which are declarations.  We want to avoid considering
12091     one to be a specification, so we must test that this DIE is not a
12092     declaration.  */
12093  else if (old_die && TREE_STATIC (decl) && ! declaration
12094	   && get_AT_flag (old_die, DW_AT_declaration) == 1)
12095    {
12096      /* This is a definition of a C++ class level static.  */
12097      add_AT_specification (var_die, old_die);
12098      if (DECL_NAME (decl))
12099	{
12100	  expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12101	  struct dwarf_file_data * file_index = lookup_filename (s.file);
12102
12103	  if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12104	    add_AT_file (var_die, DW_AT_decl_file, file_index);
12105
12106	  if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12107
12108	    add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12109	}
12110    }
12111  else
12112    {
12113      add_name_and_src_coords_attributes (var_die, decl);
12114      add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
12115			  TREE_THIS_VOLATILE (decl), context_die);
12116
12117      if (TREE_PUBLIC (decl))
12118	add_AT_flag (var_die, DW_AT_external, 1);
12119
12120      if (DECL_ARTIFICIAL (decl))
12121	add_AT_flag (var_die, DW_AT_artificial, 1);
12122
12123      if (TREE_PROTECTED (decl))
12124	add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12125      else if (TREE_PRIVATE (decl))
12126	add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12127    }
12128
12129  if (declaration)
12130    add_AT_flag (var_die, DW_AT_declaration, 1);
12131
12132  if (DECL_ABSTRACT (decl) || declaration)
12133    equate_decl_number_to_die (decl, var_die);
12134
12135  if (! declaration && ! DECL_ABSTRACT (decl))
12136    {
12137      add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12138      add_pubname (decl, var_die);
12139    }
12140  else
12141    tree_add_const_value_attribute (var_die, decl);
12142}
12143
12144/* Generate a DIE to represent a label identifier.  */
12145
12146static void
12147gen_label_die (tree decl, dw_die_ref context_die)
12148{
12149  tree origin = decl_ultimate_origin (decl);
12150  dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12151  rtx insn;
12152  char label[MAX_ARTIFICIAL_LABEL_BYTES];
12153
12154  if (origin != NULL)
12155    add_abstract_origin_attribute (lbl_die, origin);
12156  else
12157    add_name_and_src_coords_attributes (lbl_die, decl);
12158
12159  if (DECL_ABSTRACT (decl))
12160    equate_decl_number_to_die (decl, lbl_die);
12161  else
12162    {
12163      insn = DECL_RTL_IF_SET (decl);
12164
12165      /* Deleted labels are programmer specified labels which have been
12166	 eliminated because of various optimizations.  We still emit them
12167	 here so that it is possible to put breakpoints on them.  */
12168      if (insn
12169	  && (LABEL_P (insn)
12170	      || ((NOTE_P (insn)
12171	           && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
12172	{
12173	  /* When optimization is enabled (via -O) some parts of the compiler
12174	     (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12175	     represent source-level labels which were explicitly declared by
12176	     the user.  This really shouldn't be happening though, so catch
12177	     it if it ever does happen.  */
12178	  gcc_assert (!INSN_DELETED_P (insn));
12179
12180	  ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12181	  add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12182	}
12183    }
12184}
12185
12186/* A helper function for gen_inlined_subroutine_die.  Add source coordinate
12187   attributes to the DIE for a block STMT, to describe where the inlined
12188   function was called from.  This is similar to add_src_coords_attributes.  */
12189
12190static inline void
12191add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12192{
12193  expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12194
12195  add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12196  add_AT_unsigned (die, DW_AT_call_line, s.line);
12197}
12198
12199/* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12200   Add low_pc and high_pc attributes to the DIE for a block STMT.  */
12201
12202static inline void
12203add_high_low_attributes (tree stmt, dw_die_ref die)
12204{
12205  char label[MAX_ARTIFICIAL_LABEL_BYTES];
12206
12207  if (BLOCK_FRAGMENT_CHAIN (stmt))
12208    {
12209      tree chain;
12210
12211      add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12212
12213      chain = BLOCK_FRAGMENT_CHAIN (stmt);
12214      do
12215	{
12216	  add_ranges (chain);
12217	  chain = BLOCK_FRAGMENT_CHAIN (chain);
12218	}
12219      while (chain);
12220      add_ranges (NULL);
12221    }
12222  else
12223    {
12224      ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12225				   BLOCK_NUMBER (stmt));
12226      add_AT_lbl_id (die, DW_AT_low_pc, label);
12227      ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12228				   BLOCK_NUMBER (stmt));
12229      add_AT_lbl_id (die, DW_AT_high_pc, label);
12230    }
12231}
12232
12233/* Generate a DIE for a lexical block.  */
12234
12235static void
12236gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12237{
12238  dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12239
12240  if (! BLOCK_ABSTRACT (stmt))
12241    add_high_low_attributes (stmt, stmt_die);
12242
12243  decls_for_scope (stmt, stmt_die, depth);
12244}
12245
12246/* Generate a DIE for an inlined subprogram.  */
12247
12248static void
12249gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12250{
12251  tree decl = block_ultimate_origin (stmt);
12252
12253  /* Emit info for the abstract instance first, if we haven't yet.  We
12254     must emit this even if the block is abstract, otherwise when we
12255     emit the block below (or elsewhere), we may end up trying to emit
12256     a die whose origin die hasn't been emitted, and crashing.  */
12257  dwarf2out_abstract_function (decl);
12258
12259  if (! BLOCK_ABSTRACT (stmt))
12260    {
12261      dw_die_ref subr_die
12262	= new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12263
12264      add_abstract_origin_attribute (subr_die, decl);
12265      add_high_low_attributes (stmt, subr_die);
12266      add_call_src_coords_attributes (stmt, subr_die);
12267
12268      decls_for_scope (stmt, subr_die, depth);
12269      current_function_has_inlines = 1;
12270    }
12271  else
12272    /* We may get here if we're the outer block of function A that was
12273       inlined into function B that was inlined into function C.  When
12274       generating debugging info for C, dwarf2out_abstract_function(B)
12275       would mark all inlined blocks as abstract, including this one.
12276       So, we wouldn't (and shouldn't) expect labels to be generated
12277       for this one.  Instead, just emit debugging info for
12278       declarations within the block.  This is particularly important
12279       in the case of initializers of arguments passed from B to us:
12280       if they're statement expressions containing declarations, we
12281       wouldn't generate dies for their abstract variables, and then,
12282       when generating dies for the real variables, we'd die (pun
12283       intended :-)  */
12284    gen_lexical_block_die (stmt, context_die, depth);
12285}
12286
12287/* Generate a DIE for a field in a record, or structure.  */
12288
12289static void
12290gen_field_die (tree decl, dw_die_ref context_die)
12291{
12292  dw_die_ref decl_die;
12293
12294  if (TREE_TYPE (decl) == error_mark_node)
12295    return;
12296
12297  decl_die = new_die (DW_TAG_member, context_die, decl);
12298  add_name_and_src_coords_attributes (decl_die, decl);
12299  add_type_attribute (decl_die, member_declared_type (decl),
12300		      TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12301		      context_die);
12302
12303  if (DECL_BIT_FIELD_TYPE (decl))
12304    {
12305      add_byte_size_attribute (decl_die, decl);
12306      add_bit_size_attribute (decl_die, decl);
12307      add_bit_offset_attribute (decl_die, decl);
12308    }
12309
12310  if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12311    add_data_member_location_attribute (decl_die, decl);
12312
12313  if (DECL_ARTIFICIAL (decl))
12314    add_AT_flag (decl_die, DW_AT_artificial, 1);
12315
12316  if (TREE_PROTECTED (decl))
12317    add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12318  else if (TREE_PRIVATE (decl))
12319    add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12320
12321  /* Equate decl number to die, so that we can look up this decl later on.  */
12322  equate_decl_number_to_die (decl, decl_die);
12323}
12324
12325#if 0
12326/* Don't generate either pointer_type DIEs or reference_type DIEs here.
12327   Use modified_type_die instead.
12328   We keep this code here just in case these types of DIEs may be needed to
12329   represent certain things in other languages (e.g. Pascal) someday.  */
12330
12331static void
12332gen_pointer_type_die (tree type, dw_die_ref context_die)
12333{
12334  dw_die_ref ptr_die
12335    = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12336
12337  equate_type_number_to_die (type, ptr_die);
12338  add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12339  add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12340}
12341
12342/* Don't generate either pointer_type DIEs or reference_type DIEs here.
12343   Use modified_type_die instead.
12344   We keep this code here just in case these types of DIEs may be needed to
12345   represent certain things in other languages (e.g. Pascal) someday.  */
12346
12347static void
12348gen_reference_type_die (tree type, dw_die_ref context_die)
12349{
12350  dw_die_ref ref_die
12351    = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12352
12353  equate_type_number_to_die (type, ref_die);
12354  add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12355  add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12356}
12357#endif
12358
12359/* Generate a DIE for a pointer to a member type.  */
12360
12361static void
12362gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12363{
12364  dw_die_ref ptr_die
12365    = new_die (DW_TAG_ptr_to_member_type,
12366	       scope_die_for (type, context_die), type);
12367
12368  equate_type_number_to_die (type, ptr_die);
12369  add_AT_die_ref (ptr_die, DW_AT_containing_type,
12370		  lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12371  add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12372}
12373
12374/* Generate the DIE for the compilation unit.  */
12375
12376static dw_die_ref
12377gen_compile_unit_die (const char *filename)
12378{
12379  dw_die_ref die;
12380  char producer[250];
12381  const char *language_string = lang_hooks.name;
12382  int language;
12383
12384  die = new_die (DW_TAG_compile_unit, NULL, NULL);
12385
12386  if (filename)
12387    {
12388      add_name_attribute (die, filename);
12389      /* Don't add cwd for <built-in>.  */
12390      if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
12391	add_comp_dir_attribute (die);
12392    }
12393
12394  sprintf (producer, "%s %s", language_string, version_string);
12395
12396#ifdef MIPS_DEBUGGING_INFO
12397  /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12398     string.  The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12399     not appear in the producer string, the debugger reaches the conclusion
12400     that the object file is stripped and has no debugging information.
12401     To get the MIPS/SGI debugger to believe that there is debugging
12402     information in the object file, we add a -g to the producer string.  */
12403  if (debug_info_level > DINFO_LEVEL_TERSE)
12404    strcat (producer, " -g");
12405#endif
12406
12407  add_AT_string (die, DW_AT_producer, producer);
12408
12409  if (strcmp (language_string, "GNU C++") == 0)
12410    language = DW_LANG_C_plus_plus;
12411  else if (strcmp (language_string, "GNU Ada") == 0)
12412    language = DW_LANG_Ada95;
12413  else if (strcmp (language_string, "GNU F77") == 0)
12414    language = DW_LANG_Fortran77;
12415  else if (strcmp (language_string, "GNU F95") == 0)
12416    language = DW_LANG_Fortran95;
12417  else if (strcmp (language_string, "GNU Pascal") == 0)
12418    language = DW_LANG_Pascal83;
12419  else if (strcmp (language_string, "GNU Java") == 0)
12420    language = DW_LANG_Java;
12421  else if (strcmp (language_string, "GNU Objective-C") == 0)
12422    language = DW_LANG_ObjC;
12423  else if (strcmp (language_string, "GNU Objective-C++") == 0)
12424    language = DW_LANG_ObjC_plus_plus;
12425  else
12426    language = DW_LANG_C89;
12427
12428  add_AT_unsigned (die, DW_AT_language, language);
12429  return die;
12430}
12431
12432/* Generate the DIE for a base class.  */
12433
12434static void
12435gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12436{
12437  dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12438
12439  add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12440  add_data_member_location_attribute (die, binfo);
12441
12442  if (BINFO_VIRTUAL_P (binfo))
12443    add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12444
12445  if (access == access_public_node)
12446    add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12447  else if (access == access_protected_node)
12448    add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12449}
12450
12451/* Generate a DIE for a class member.  */
12452
12453static void
12454gen_member_die (tree type, dw_die_ref context_die)
12455{
12456  tree member;
12457  tree binfo = TYPE_BINFO (type);
12458  dw_die_ref child;
12459
12460  /* If this is not an incomplete type, output descriptions of each of its
12461     members. Note that as we output the DIEs necessary to represent the
12462     members of this record or union type, we will also be trying to output
12463     DIEs to represent the *types* of those members. However the `type'
12464     function (above) will specifically avoid generating type DIEs for member
12465     types *within* the list of member DIEs for this (containing) type except
12466     for those types (of members) which are explicitly marked as also being
12467     members of this (containing) type themselves.  The g++ front- end can
12468     force any given type to be treated as a member of some other (containing)
12469     type by setting the TYPE_CONTEXT of the given (member) type to point to
12470     the TREE node representing the appropriate (containing) type.  */
12471
12472  /* First output info about the base classes.  */
12473  if (binfo)
12474    {
12475      VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12476      int i;
12477      tree base;
12478
12479      for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12480	gen_inheritance_die (base,
12481			     (accesses ? VEC_index (tree, accesses, i)
12482			      : access_public_node), context_die);
12483    }
12484
12485  /* Now output info about the data members and type members.  */
12486  for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12487    {
12488      /* If we thought we were generating minimal debug info for TYPE
12489	 and then changed our minds, some of the member declarations
12490	 may have already been defined.  Don't define them again, but
12491	 do put them in the right order.  */
12492
12493      child = lookup_decl_die (member);
12494      if (child)
12495	splice_child_die (context_die, child);
12496      else
12497	gen_decl_die (member, context_die);
12498    }
12499
12500  /* Now output info about the function members (if any).  */
12501  for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12502    {
12503      /* Don't include clones in the member list.  */
12504      if (DECL_ABSTRACT_ORIGIN (member))
12505	continue;
12506
12507      child = lookup_decl_die (member);
12508      if (child)
12509	splice_child_die (context_die, child);
12510      else
12511	gen_decl_die (member, context_die);
12512    }
12513}
12514
12515/* Generate a DIE for a structure or union type.  If TYPE_DECL_SUPPRESS_DEBUG
12516   is set, we pretend that the type was never defined, so we only get the
12517   member DIEs needed by later specification DIEs.  */
12518
12519static void
12520gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
12521				enum debug_info_usage usage)
12522{
12523  dw_die_ref type_die = lookup_type_die (type);
12524  dw_die_ref scope_die = 0;
12525  int nested = 0;
12526  int complete = (TYPE_SIZE (type)
12527		  && (! TYPE_STUB_DECL (type)
12528		      || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12529  int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12530  complete = complete && should_emit_struct_debug (type, usage);
12531
12532  if (type_die && ! complete)
12533    return;
12534
12535  if (TYPE_CONTEXT (type) != NULL_TREE
12536      && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12537	  || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12538    nested = 1;
12539
12540  scope_die = scope_die_for (type, context_die);
12541
12542  if (! type_die || (nested && scope_die == comp_unit_die))
12543    /* First occurrence of type or toplevel definition of nested class.  */
12544    {
12545      dw_die_ref old_die = type_die;
12546
12547      type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12548			  ? DW_TAG_structure_type : DW_TAG_union_type,
12549			  scope_die, type);
12550      equate_type_number_to_die (type, type_die);
12551      if (old_die)
12552	add_AT_specification (type_die, old_die);
12553      else
12554	add_name_attribute (type_die, type_tag (type));
12555    }
12556  else
12557    remove_AT (type_die, DW_AT_declaration);
12558
12559  /* If this type has been completed, then give it a byte_size attribute and
12560     then give a list of members.  */
12561  if (complete && !ns_decl)
12562    {
12563      /* Prevent infinite recursion in cases where the type of some member of
12564	 this type is expressed in terms of this type itself.  */
12565      TREE_ASM_WRITTEN (type) = 1;
12566      add_byte_size_attribute (type_die, type);
12567      if (TYPE_STUB_DECL (type) != NULL_TREE)
12568	add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12569
12570      /* If the first reference to this type was as the return type of an
12571	 inline function, then it may not have a parent.  Fix this now.  */
12572      if (type_die->die_parent == NULL)
12573	add_child_die (scope_die, type_die);
12574
12575      push_decl_scope (type);
12576      gen_member_die (type, type_die);
12577      pop_decl_scope ();
12578
12579      /* GNU extension: Record what type our vtable lives in.  */
12580      if (TYPE_VFIELD (type))
12581	{
12582	  tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12583
12584	  gen_type_die (vtype, context_die);
12585	  add_AT_die_ref (type_die, DW_AT_containing_type,
12586			  lookup_type_die (vtype));
12587	}
12588    }
12589  else
12590    {
12591      add_AT_flag (type_die, DW_AT_declaration, 1);
12592
12593      /* We don't need to do this for function-local types.  */
12594      if (TYPE_STUB_DECL (type)
12595	  && ! decl_function_context (TYPE_STUB_DECL (type)))
12596	VEC_safe_push (tree, gc, incomplete_types, type);
12597    }
12598
12599  if (get_AT (type_die, DW_AT_name))
12600    add_pubtype (type, type_die);
12601}
12602
12603/* Generate a DIE for a subroutine _type_.  */
12604
12605static void
12606gen_subroutine_type_die (tree type, dw_die_ref context_die)
12607{
12608  tree return_type = TREE_TYPE (type);
12609  dw_die_ref subr_die
12610    = new_die (DW_TAG_subroutine_type,
12611	       scope_die_for (type, context_die), type);
12612
12613  equate_type_number_to_die (type, subr_die);
12614  add_prototyped_attribute (subr_die, type);
12615  add_type_attribute (subr_die, return_type, 0, 0, context_die);
12616  gen_formal_types_die (type, subr_die);
12617
12618  if (get_AT (subr_die, DW_AT_name))
12619    add_pubtype (type, subr_die);
12620}
12621
12622/* Generate a DIE for a type definition.  */
12623
12624static void
12625gen_typedef_die (tree decl, dw_die_ref context_die)
12626{
12627  dw_die_ref type_die;
12628  tree origin;
12629
12630  if (TREE_ASM_WRITTEN (decl))
12631    return;
12632
12633  TREE_ASM_WRITTEN (decl) = 1;
12634  type_die = new_die (DW_TAG_typedef, context_die, decl);
12635  origin = decl_ultimate_origin (decl);
12636  if (origin != NULL)
12637    add_abstract_origin_attribute (type_die, origin);
12638  else
12639    {
12640      tree type;
12641
12642      add_name_and_src_coords_attributes (type_die, decl);
12643      if (DECL_ORIGINAL_TYPE (decl))
12644	{
12645	  type = DECL_ORIGINAL_TYPE (decl);
12646
12647	  gcc_assert (type != TREE_TYPE (decl));
12648	  equate_type_number_to_die (TREE_TYPE (decl), type_die);
12649	}
12650      else
12651	type = TREE_TYPE (decl);
12652
12653      add_type_attribute (type_die, type, TREE_READONLY (decl),
12654			  TREE_THIS_VOLATILE (decl), context_die);
12655    }
12656
12657  if (DECL_ABSTRACT (decl))
12658    equate_decl_number_to_die (decl, type_die);
12659
12660  if (get_AT (type_die, DW_AT_name))
12661    add_pubtype (decl, type_die);
12662}
12663
12664/* Generate a type description DIE.  */
12665
12666static void
12667gen_type_die_with_usage (tree type, dw_die_ref context_die,
12668				enum debug_info_usage usage)
12669{
12670  int need_pop;
12671
12672  if (type == NULL_TREE || type == error_mark_node)
12673    return;
12674
12675  if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12676      && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12677    {
12678      if (TREE_ASM_WRITTEN (type))
12679	return;
12680
12681      /* Prevent broken recursion; we can't hand off to the same type.  */
12682      gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12683
12684      TREE_ASM_WRITTEN (type) = 1;
12685      gen_decl_die (TYPE_NAME (type), context_die);
12686      return;
12687    }
12688
12689  /* We are going to output a DIE to represent the unqualified version
12690     of this type (i.e. without any const or volatile qualifiers) so
12691     get the main variant (i.e. the unqualified version) of this type
12692     now.  (Vectors are special because the debugging info is in the
12693     cloned type itself).  */
12694  if (TREE_CODE (type) != VECTOR_TYPE)
12695    type = type_main_variant (type);
12696
12697  if (TREE_ASM_WRITTEN (type))
12698    return;
12699
12700  switch (TREE_CODE (type))
12701    {
12702    case ERROR_MARK:
12703      break;
12704
12705    case POINTER_TYPE:
12706    case REFERENCE_TYPE:
12707      /* We must set TREE_ASM_WRITTEN in case this is a recursive type.  This
12708	 ensures that the gen_type_die recursion will terminate even if the
12709	 type is recursive.  Recursive types are possible in Ada.  */
12710      /* ??? We could perhaps do this for all types before the switch
12711	 statement.  */
12712      TREE_ASM_WRITTEN (type) = 1;
12713
12714      /* For these types, all that is required is that we output a DIE (or a
12715	 set of DIEs) to represent the "basis" type.  */
12716      gen_type_die_with_usage (TREE_TYPE (type), context_die,
12717				DINFO_USAGE_IND_USE);
12718      break;
12719
12720    case OFFSET_TYPE:
12721      /* This code is used for C++ pointer-to-data-member types.
12722	 Output a description of the relevant class type.  */
12723      gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
12724					DINFO_USAGE_IND_USE);
12725
12726      /* Output a description of the type of the object pointed to.  */
12727      gen_type_die_with_usage (TREE_TYPE (type), context_die,
12728					DINFO_USAGE_IND_USE);
12729
12730      /* Now output a DIE to represent this pointer-to-data-member type
12731	 itself.  */
12732      gen_ptr_to_mbr_type_die (type, context_die);
12733      break;
12734
12735    case FUNCTION_TYPE:
12736      /* Force out return type (in case it wasn't forced out already).  */
12737      gen_type_die_with_usage (TREE_TYPE (type), context_die,
12738					DINFO_USAGE_DIR_USE);
12739      gen_subroutine_type_die (type, context_die);
12740      break;
12741
12742    case METHOD_TYPE:
12743      /* Force out return type (in case it wasn't forced out already).  */
12744      gen_type_die_with_usage (TREE_TYPE (type), context_die,
12745					DINFO_USAGE_DIR_USE);
12746      gen_subroutine_type_die (type, context_die);
12747      break;
12748
12749    case ARRAY_TYPE:
12750      gen_array_type_die (type, context_die);
12751      break;
12752
12753    case VECTOR_TYPE:
12754      gen_array_type_die (type, context_die);
12755      break;
12756
12757    case ENUMERAL_TYPE:
12758    case RECORD_TYPE:
12759    case UNION_TYPE:
12760    case QUAL_UNION_TYPE:
12761      /* If this is a nested type whose containing class hasn't been written
12762	 out yet, writing it out will cover this one, too.  This does not apply
12763	 to instantiations of member class templates; they need to be added to
12764	 the containing class as they are generated.  FIXME: This hurts the
12765	 idea of combining type decls from multiple TUs, since we can't predict
12766	 what set of template instantiations we'll get.  */
12767      if (TYPE_CONTEXT (type)
12768	  && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12769	  && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12770	{
12771	  gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);
12772
12773	  if (TREE_ASM_WRITTEN (type))
12774	    return;
12775
12776	  /* If that failed, attach ourselves to the stub.  */
12777	  push_decl_scope (TYPE_CONTEXT (type));
12778	  context_die = lookup_type_die (TYPE_CONTEXT (type));
12779	  need_pop = 1;
12780	}
12781      else
12782	{
12783	  declare_in_namespace (type, context_die);
12784	  need_pop = 0;
12785	}
12786
12787      if (TREE_CODE (type) == ENUMERAL_TYPE)
12788	{
12789	  /* This might have been written out by the call to
12790	     declare_in_namespace.  */
12791	  if (!TREE_ASM_WRITTEN (type))
12792	    gen_enumeration_type_die (type, context_die);
12793	}
12794      else
12795	gen_struct_or_union_type_die (type, context_die, usage);
12796
12797      if (need_pop)
12798	pop_decl_scope ();
12799
12800      /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12801	 it up if it is ever completed.  gen_*_type_die will set it for us
12802	 when appropriate.  */
12803      return;
12804
12805    case VOID_TYPE:
12806    case INTEGER_TYPE:
12807    case REAL_TYPE:
12808    case COMPLEX_TYPE:
12809    case BOOLEAN_TYPE:
12810      /* No DIEs needed for fundamental types.  */
12811      break;
12812
12813    case LANG_TYPE:
12814      /* No Dwarf representation currently defined.  */
12815      break;
12816
12817    default:
12818      gcc_unreachable ();
12819    }
12820
12821  TREE_ASM_WRITTEN (type) = 1;
12822}
12823
12824static void
12825gen_type_die (tree type, dw_die_ref context_die)
12826{
12827  gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
12828}
12829
12830/* Generate a DIE for a tagged type instantiation.  */
12831
12832static void
12833gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12834{
12835  if (type == NULL_TREE || type == error_mark_node)
12836    return;
12837
12838  /* We are going to output a DIE to represent the unqualified version of
12839     this type (i.e. without any const or volatile qualifiers) so make sure
12840     that we have the main variant (i.e. the unqualified version) of this
12841     type now.  */
12842  gcc_assert (type == type_main_variant (type));
12843
12844  /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12845     an instance of an unresolved type.  */
12846
12847  switch (TREE_CODE (type))
12848    {
12849    case ERROR_MARK:
12850      break;
12851
12852    case ENUMERAL_TYPE:
12853      gen_inlined_enumeration_type_die (type, context_die);
12854      break;
12855
12856    case RECORD_TYPE:
12857      gen_inlined_structure_type_die (type, context_die);
12858      break;
12859
12860    case UNION_TYPE:
12861    case QUAL_UNION_TYPE:
12862      gen_inlined_union_type_die (type, context_die);
12863      break;
12864
12865    default:
12866      gcc_unreachable ();
12867    }
12868}
12869
12870/* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12871   things which are local to the given block.  */
12872
12873static void
12874gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12875{
12876  int must_output_die = 0;
12877  tree origin;
12878  tree decl;
12879  enum tree_code origin_code;
12880
12881  /* Ignore blocks that are NULL.  */
12882  if (stmt == NULL_TREE)
12883    return;
12884
12885  /* If the block is one fragment of a non-contiguous block, do not
12886     process the variables, since they will have been done by the
12887     origin block.  Do process subblocks.  */
12888  if (BLOCK_FRAGMENT_ORIGIN (stmt))
12889    {
12890      tree sub;
12891
12892      for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12893	gen_block_die (sub, context_die, depth + 1);
12894
12895      return;
12896    }
12897
12898  /* Determine the "ultimate origin" of this block.  This block may be an
12899     inlined instance of an inlined instance of inline function, so we have
12900     to trace all of the way back through the origin chain to find out what
12901     sort of node actually served as the original seed for the creation of
12902     the current block.  */
12903  origin = block_ultimate_origin (stmt);
12904  origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12905
12906  /* Determine if we need to output any Dwarf DIEs at all to represent this
12907     block.  */
12908  if (origin_code == FUNCTION_DECL)
12909    /* The outer scopes for inlinings *must* always be represented.  We
12910       generate DW_TAG_inlined_subroutine DIEs for them.  (See below.) */
12911    must_output_die = 1;
12912  else
12913    {
12914      /* In the case where the current block represents an inlining of the
12915	 "body block" of an inline function, we must *NOT* output any DIE for
12916	 this block because we have already output a DIE to represent the whole
12917	 inlined function scope and the "body block" of any function doesn't
12918	 really represent a different scope according to ANSI C rules.  So we
12919	 check here to make sure that this block does not represent a "body
12920	 block inlining" before trying to set the MUST_OUTPUT_DIE flag.  */
12921      if (! is_body_block (origin ? origin : stmt))
12922	{
12923	  /* Determine if this block directly contains any "significant"
12924	     local declarations which we will need to output DIEs for.  */
12925	  if (debug_info_level > DINFO_LEVEL_TERSE)
12926	    /* We are not in terse mode so *any* local declaration counts
12927	       as being a "significant" one.  */
12928	    must_output_die = (BLOCK_VARS (stmt) != NULL
12929			       && (TREE_USED (stmt)
12930				   || TREE_ASM_WRITTEN (stmt)
12931				   || BLOCK_ABSTRACT (stmt)));
12932	  else
12933	    /* We are in terse mode, so only local (nested) function
12934	       definitions count as "significant" local declarations.  */
12935	    for (decl = BLOCK_VARS (stmt);
12936		 decl != NULL; decl = TREE_CHAIN (decl))
12937	      if (TREE_CODE (decl) == FUNCTION_DECL
12938		  && DECL_INITIAL (decl))
12939		{
12940		  must_output_die = 1;
12941		  break;
12942		}
12943	}
12944    }
12945
12946  /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12947     DIE for any block which contains no significant local declarations at
12948     all.  Rather, in such cases we just call `decls_for_scope' so that any
12949     needed Dwarf info for any sub-blocks will get properly generated. Note
12950     that in terse mode, our definition of what constitutes a "significant"
12951     local declaration gets restricted to include only inlined function
12952     instances and local (nested) function definitions.  */
12953  if (must_output_die)
12954    {
12955      if (origin_code == FUNCTION_DECL)
12956	gen_inlined_subroutine_die (stmt, context_die, depth);
12957      else
12958	gen_lexical_block_die (stmt, context_die, depth);
12959    }
12960  else
12961    decls_for_scope (stmt, context_die, depth);
12962}
12963
12964/* Generate all of the decls declared within a given scope and (recursively)
12965   all of its sub-blocks.  */
12966
12967static void
12968decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12969{
12970  tree decl;
12971  tree subblocks;
12972
12973  /* Ignore NULL blocks.  */
12974  if (stmt == NULL_TREE)
12975    return;
12976
12977  if (TREE_USED (stmt))
12978    {
12979      /* Output the DIEs to represent all of the data objects and typedefs
12980	 declared directly within this block but not within any nested
12981	 sub-blocks.  Also, nested function and tag DIEs have been
12982	 generated with a parent of NULL; fix that up now.  */
12983      for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12984	{
12985	  dw_die_ref die;
12986
12987	  if (TREE_CODE (decl) == FUNCTION_DECL)
12988	    die = lookup_decl_die (decl);
12989	  else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12990	    die = lookup_type_die (TREE_TYPE (decl));
12991	  else
12992	    die = NULL;
12993
12994	  if (die != NULL && die->die_parent == NULL)
12995	    add_child_die (context_die, die);
12996	  /* Do not produce debug information for static variables since
12997	     these might be optimized out.  We are called for these later
12998	     in cgraph_varpool_analyze_pending_decls. */
12999	  if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
13000	    ;
13001	  else
13002	    gen_decl_die (decl, context_die);
13003	}
13004    }
13005
13006  /* If we're at -g1, we're not interested in subblocks.  */
13007  if (debug_info_level <= DINFO_LEVEL_TERSE)
13008    return;
13009
13010  /* Output the DIEs to represent all sub-blocks (and the items declared
13011     therein) of this block.  */
13012  for (subblocks = BLOCK_SUBBLOCKS (stmt);
13013       subblocks != NULL;
13014       subblocks = BLOCK_CHAIN (subblocks))
13015    gen_block_die (subblocks, context_die, depth + 1);
13016}
13017
13018/* Is this a typedef we can avoid emitting?  */
13019
13020static inline int
13021is_redundant_typedef (tree decl)
13022{
13023  if (TYPE_DECL_IS_STUB (decl))
13024    return 1;
13025
13026  if (DECL_ARTIFICIAL (decl)
13027      && DECL_CONTEXT (decl)
13028      && is_tagged_type (DECL_CONTEXT (decl))
13029      && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
13030      && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
13031    /* Also ignore the artificial member typedef for the class name.  */
13032    return 1;
13033
13034  return 0;
13035}
13036
13037/* Returns the DIE for decl.  A DIE will always be returned.  */
13038
13039static dw_die_ref
13040force_decl_die (tree decl)
13041{
13042  dw_die_ref decl_die;
13043  unsigned saved_external_flag;
13044  tree save_fn = NULL_TREE;
13045  decl_die = lookup_decl_die (decl);
13046  if (!decl_die)
13047    {
13048      dw_die_ref context_die;
13049      tree decl_context = DECL_CONTEXT (decl);
13050      if (decl_context)
13051	{
13052	  /* Find die that represents this context.  */
13053	  if (TYPE_P (decl_context))
13054	    context_die = force_type_die (decl_context);
13055	  else
13056	    context_die = force_decl_die (decl_context);
13057	}
13058      else
13059	context_die = comp_unit_die;
13060
13061      decl_die = lookup_decl_die (decl);
13062      if (decl_die)
13063	return decl_die;
13064
13065      switch (TREE_CODE (decl))
13066	{
13067	case FUNCTION_DECL:
13068	  /* Clear current_function_decl, so that gen_subprogram_die thinks
13069	     that this is a declaration. At this point, we just want to force
13070	     declaration die.  */
13071	  save_fn = current_function_decl;
13072	  current_function_decl = NULL_TREE;
13073	  gen_subprogram_die (decl, context_die);
13074	  current_function_decl = save_fn;
13075	  break;
13076
13077	case VAR_DECL:
13078	  /* Set external flag to force declaration die. Restore it after
13079	   gen_decl_die() call.  */
13080	  saved_external_flag = DECL_EXTERNAL (decl);
13081	  DECL_EXTERNAL (decl) = 1;
13082	  gen_decl_die (decl, context_die);
13083	  DECL_EXTERNAL (decl) = saved_external_flag;
13084	  break;
13085
13086	case NAMESPACE_DECL:
13087	  dwarf2out_decl (decl);
13088	  break;
13089
13090	default:
13091	  gcc_unreachable ();
13092	}
13093
13094      /* We should be able to find the DIE now.  */
13095      if (!decl_die)
13096	decl_die = lookup_decl_die (decl);
13097      gcc_assert (decl_die);
13098    }
13099
13100  return decl_die;
13101}
13102
13103/* Returns the DIE for TYPE, that must not be a base type.  A DIE is
13104   always returned.  */
13105
13106static dw_die_ref
13107force_type_die (tree type)
13108{
13109  dw_die_ref type_die;
13110
13111  type_die = lookup_type_die (type);
13112  if (!type_die)
13113    {
13114      dw_die_ref context_die;
13115      if (TYPE_CONTEXT (type))
13116	{
13117	  if (TYPE_P (TYPE_CONTEXT (type)))
13118	    context_die = force_type_die (TYPE_CONTEXT (type));
13119	  else
13120	    context_die = force_decl_die (TYPE_CONTEXT (type));
13121	}
13122      else
13123	context_die = comp_unit_die;
13124
13125      type_die = lookup_type_die (type);
13126      if (type_die)
13127	return type_die;
13128      gen_type_die (type, context_die);
13129      type_die = lookup_type_die (type);
13130      gcc_assert (type_die);
13131    }
13132  return type_die;
13133}
13134
13135/* Force out any required namespaces to be able to output DECL,
13136   and return the new context_die for it, if it's changed.  */
13137
13138static dw_die_ref
13139setup_namespace_context (tree thing, dw_die_ref context_die)
13140{
13141  tree context = (DECL_P (thing)
13142		  ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13143  if (context && TREE_CODE (context) == NAMESPACE_DECL)
13144    /* Force out the namespace.  */
13145    context_die = force_decl_die (context);
13146
13147  return context_die;
13148}
13149
13150/* Emit a declaration DIE for THING (which is either a DECL or a tagged
13151   type) within its namespace, if appropriate.
13152
13153   For compatibility with older debuggers, namespace DIEs only contain
13154   declarations; all definitions are emitted at CU scope.  */
13155
13156static void
13157declare_in_namespace (tree thing, dw_die_ref context_die)
13158{
13159  dw_die_ref ns_context;
13160
13161  if (debug_info_level <= DINFO_LEVEL_TERSE)
13162    return;
13163
13164  /* If this decl is from an inlined function, then don't try to emit it in its
13165     namespace, as we will get confused.  It would have already been emitted
13166     when the abstract instance of the inline function was emitted anyways.  */
13167  if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13168    return;
13169
13170  ns_context = setup_namespace_context (thing, context_die);
13171
13172  if (ns_context != context_die)
13173    {
13174      if (DECL_P (thing))
13175	gen_decl_die (thing, ns_context);
13176      else
13177	gen_type_die (thing, ns_context);
13178    }
13179}
13180
13181/* Generate a DIE for a namespace or namespace alias.  */
13182
13183static void
13184gen_namespace_die (tree decl)
13185{
13186  dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13187
13188  /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13189     they are an alias of.  */
13190  if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13191    {
13192      /* Output a real namespace.  */
13193      dw_die_ref namespace_die
13194	= new_die (DW_TAG_namespace, context_die, decl);
13195      add_name_and_src_coords_attributes (namespace_die, decl);
13196      equate_decl_number_to_die (decl, namespace_die);
13197    }
13198  else
13199    {
13200      /* Output a namespace alias.  */
13201
13202      /* Force out the namespace we are an alias of, if necessary.  */
13203      dw_die_ref origin_die
13204	= force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
13205
13206      /* Now create the namespace alias DIE.  */
13207      dw_die_ref namespace_die
13208	= new_die (DW_TAG_imported_declaration, context_die, decl);
13209      add_name_and_src_coords_attributes (namespace_die, decl);
13210      add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13211      equate_decl_number_to_die (decl, namespace_die);
13212    }
13213}
13214
13215/* Generate Dwarf debug information for a decl described by DECL.  */
13216
13217static void
13218gen_decl_die (tree decl, dw_die_ref context_die)
13219{
13220  tree origin;
13221
13222  if (DECL_P (decl) && DECL_IGNORED_P (decl))
13223    return;
13224
13225  switch (TREE_CODE (decl))
13226    {
13227    case ERROR_MARK:
13228      break;
13229
13230    case CONST_DECL:
13231      /* The individual enumerators of an enum type get output when we output
13232	 the Dwarf representation of the relevant enum type itself.  */
13233      break;
13234
13235    case FUNCTION_DECL:
13236      /* Don't output any DIEs to represent mere function declarations,
13237	 unless they are class members or explicit block externs.  */
13238      if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13239	  && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13240	break;
13241
13242#if 0
13243      /* FIXME */
13244      /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13245	 on local redeclarations of global functions.  That seems broken.  */
13246      if (current_function_decl != decl)
13247	/* This is only a declaration.  */;
13248#endif
13249
13250      /* If we're emitting a clone, emit info for the abstract instance.  */
13251      if (DECL_ORIGIN (decl) != decl)
13252	dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13253
13254      /* If we're emitting an out-of-line copy of an inline function,
13255	 emit info for the abstract instance and set up to refer to it.  */
13256      else if (cgraph_function_possibly_inlined_p (decl)
13257	       && ! DECL_ABSTRACT (decl)
13258	       && ! class_or_namespace_scope_p (context_die)
13259	       /* dwarf2out_abstract_function won't emit a die if this is just
13260		  a declaration.  We must avoid setting DECL_ABSTRACT_ORIGIN in
13261		  that case, because that works only if we have a die.  */
13262	       && DECL_INITIAL (decl) != NULL_TREE)
13263	{
13264	  dwarf2out_abstract_function (decl);
13265	  set_decl_origin_self (decl);
13266	}
13267
13268      /* Otherwise we're emitting the primary DIE for this decl.  */
13269      else if (debug_info_level > DINFO_LEVEL_TERSE)
13270	{
13271	  /* Before we describe the FUNCTION_DECL itself, make sure that we
13272	     have described its return type.  */
13273	  gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13274
13275	  /* And its virtual context.  */
13276	  if (DECL_VINDEX (decl) != NULL_TREE)
13277	    gen_type_die (DECL_CONTEXT (decl), context_die);
13278
13279	  /* And its containing type.  */
13280	  origin = decl_class_context (decl);
13281	  if (origin != NULL_TREE)
13282	    gen_type_die_for_member (origin, decl, context_die);
13283
13284	  /* And its containing namespace.  */
13285	  declare_in_namespace (decl, context_die);
13286	}
13287
13288      /* Now output a DIE to represent the function itself.  */
13289      gen_subprogram_die (decl, context_die);
13290      break;
13291
13292    case TYPE_DECL:
13293      /* If we are in terse mode, don't generate any DIEs to represent any
13294	 actual typedefs.  */
13295      if (debug_info_level <= DINFO_LEVEL_TERSE)
13296	break;
13297
13298      /* In the special case of a TYPE_DECL node representing the declaration
13299	 of some type tag, if the given TYPE_DECL is marked as having been
13300	 instantiated from some other (original) TYPE_DECL node (e.g. one which
13301	 was generated within the original definition of an inline function) we
13302	 have to generate a special (abbreviated) DW_TAG_structure_type,
13303	 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here.  */
13304      if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE
13305	  && is_tagged_type (TREE_TYPE (decl)))
13306	{
13307	  gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13308	  break;
13309	}
13310
13311      if (is_redundant_typedef (decl))
13312	gen_type_die (TREE_TYPE (decl), context_die);
13313      else
13314	/* Output a DIE to represent the typedef itself.  */
13315	gen_typedef_die (decl, context_die);
13316      break;
13317
13318    case LABEL_DECL:
13319      if (debug_info_level >= DINFO_LEVEL_NORMAL)
13320	gen_label_die (decl, context_die);
13321      break;
13322
13323    case VAR_DECL:
13324    case RESULT_DECL:
13325      /* If we are in terse mode, don't generate any DIEs to represent any
13326	 variable declarations or definitions.  */
13327      if (debug_info_level <= DINFO_LEVEL_TERSE)
13328	break;
13329
13330      /* Output any DIEs that are needed to specify the type of this data
13331	 object.  */
13332      gen_type_die (TREE_TYPE (decl), context_die);
13333
13334      /* And its containing type.  */
13335      origin = decl_class_context (decl);
13336      if (origin != NULL_TREE)
13337	gen_type_die_for_member (origin, decl, context_die);
13338
13339      /* And its containing namespace.  */
13340      declare_in_namespace (decl, context_die);
13341
13342      /* Now output the DIE to represent the data object itself.  This gets
13343	 complicated because of the possibility that the VAR_DECL really
13344	 represents an inlined instance of a formal parameter for an inline
13345	 function.  */
13346      origin = decl_ultimate_origin (decl);
13347      if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13348	gen_formal_parameter_die (decl, context_die);
13349      else
13350	gen_variable_die (decl, context_die);
13351      break;
13352
13353    case FIELD_DECL:
13354      /* Ignore the nameless fields that are used to skip bits but handle C++
13355	 anonymous unions and structs.  */
13356      if (DECL_NAME (decl) != NULL_TREE
13357	  || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13358	  || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13359	{
13360	  gen_type_die (member_declared_type (decl), context_die);
13361	  gen_field_die (decl, context_die);
13362	}
13363      break;
13364
13365    case PARM_DECL:
13366      gen_type_die (TREE_TYPE (decl), context_die);
13367      gen_formal_parameter_die (decl, context_die);
13368      break;
13369
13370    case NAMESPACE_DECL:
13371      gen_namespace_die (decl);
13372      break;
13373
13374    default:
13375      /* Probably some frontend-internal decl.  Assume we don't care.  */
13376      gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13377      break;
13378    }
13379}
13380
13381/* Output debug information for global decl DECL.  Called from toplev.c after
13382   compilation proper has finished.  */
13383
13384static void
13385dwarf2out_global_decl (tree decl)
13386{
13387  /* Output DWARF2 information for file-scope tentative data object
13388     declarations, file-scope (extern) function declarations (which had no
13389     corresponding body) and file-scope tagged type declarations and
13390     definitions which have not yet been forced out.  */
13391  if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13392    dwarf2out_decl (decl);
13393}
13394
13395/* Output debug information for type decl DECL.  Called from toplev.c
13396   and from language front ends (to record built-in types).  */
13397static void
13398dwarf2out_type_decl (tree decl, int local)
13399{
13400  if (!local)
13401    dwarf2out_decl (decl);
13402}
13403
13404/* Output debug information for imported module or decl.  */
13405
13406static void
13407dwarf2out_imported_module_or_decl (tree decl, tree context)
13408{
13409  dw_die_ref imported_die, at_import_die;
13410  dw_die_ref scope_die;
13411  expanded_location xloc;
13412
13413  if (debug_info_level <= DINFO_LEVEL_TERSE)
13414    return;
13415
13416  gcc_assert (decl);
13417
13418  /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13419     We need decl DIE for reference and scope die. First, get DIE for the decl
13420     itself.  */
13421
13422  /* Get the scope die for decl context. Use comp_unit_die for global module
13423     or decl. If die is not found for non globals, force new die.  */
13424  if (!context)
13425    scope_die = comp_unit_die;
13426  else if (TYPE_P (context))
13427    {
13428      if (!should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
13429	return;
13430    scope_die = force_type_die (context);
13431    }
13432  else
13433    scope_die = force_decl_die (context);
13434
13435  /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE.  */
13436  if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13437    {
13438      if (is_base_type (TREE_TYPE (decl)))
13439	at_import_die = base_type_die (TREE_TYPE (decl));
13440      else
13441	at_import_die = force_type_die (TREE_TYPE (decl));
13442    }
13443  else
13444    {
13445      at_import_die = lookup_decl_die (decl);
13446      if (!at_import_die)
13447	{
13448	  /* If we're trying to avoid duplicate debug info, we may not have
13449	     emitted the member decl for this field.  Emit it now.  */
13450	  if (TREE_CODE (decl) == FIELD_DECL)
13451	    {
13452	      tree type = DECL_CONTEXT (decl);
13453	      dw_die_ref type_context_die;
13454
13455	      if (TYPE_CONTEXT (type))
13456		if (TYPE_P (TYPE_CONTEXT (type)))
13457		  {
13458		    if (!should_emit_struct_debug (TYPE_CONTEXT (type),
13459						   DINFO_USAGE_DIR_USE))
13460		      return;
13461		  type_context_die = force_type_die (TYPE_CONTEXT (type));
13462		  }
13463	      else
13464		type_context_die = force_decl_die (TYPE_CONTEXT (type));
13465	      else
13466		type_context_die = comp_unit_die;
13467	      gen_type_die_for_member (type, decl, type_context_die);
13468	    }
13469	  at_import_die = force_decl_die (decl);
13470	}
13471    }
13472
13473  /* OK, now we have DIEs for decl as well as scope. Emit imported die.  */
13474  if (TREE_CODE (decl) == NAMESPACE_DECL)
13475    imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13476  else
13477    imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13478
13479  xloc = expand_location (input_location);
13480  add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
13481  add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13482  add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13483}
13484
13485/* Write the debugging output for DECL.  */
13486
13487void
13488dwarf2out_decl (tree decl)
13489{
13490  dw_die_ref context_die = comp_unit_die;
13491
13492  switch (TREE_CODE (decl))
13493    {
13494    case ERROR_MARK:
13495      return;
13496
13497    case FUNCTION_DECL:
13498      /* What we would really like to do here is to filter out all mere
13499	 file-scope declarations of file-scope functions which are never
13500	 referenced later within this translation unit (and keep all of ones
13501	 that *are* referenced later on) but we aren't clairvoyant, so we have
13502	 no idea which functions will be referenced in the future (i.e. later
13503	 on within the current translation unit). So here we just ignore all
13504	 file-scope function declarations which are not also definitions.  If
13505	 and when the debugger needs to know something about these functions,
13506	 it will have to hunt around and find the DWARF information associated
13507	 with the definition of the function.
13508
13509	 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13510	 nodes represent definitions and which ones represent mere
13511	 declarations.  We have to check DECL_INITIAL instead. That's because
13512	 the C front-end supports some weird semantics for "extern inline"
13513	 function definitions.  These can get inlined within the current
13514	 translation unit (and thus, we need to generate Dwarf info for their
13515	 abstract instances so that the Dwarf info for the concrete inlined
13516	 instances can have something to refer to) but the compiler never
13517	 generates any out-of-lines instances of such things (despite the fact
13518	 that they *are* definitions).
13519
13520	 The important point is that the C front-end marks these "extern
13521	 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13522	 them anyway. Note that the C++ front-end also plays some similar games
13523	 for inline function definitions appearing within include files which
13524	 also contain `#pragma interface' pragmas.  */
13525      if (DECL_INITIAL (decl) == NULL_TREE)
13526	return;
13527
13528      /* If we're a nested function, initially use a parent of NULL; if we're
13529	 a plain function, this will be fixed up in decls_for_scope.  If
13530	 we're a method, it will be ignored, since we already have a DIE.  */
13531      if (decl_function_context (decl)
13532	  /* But if we're in terse mode, we don't care about scope.  */
13533	  && debug_info_level > DINFO_LEVEL_TERSE)
13534	context_die = NULL;
13535      break;
13536
13537    case VAR_DECL:
13538      /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13539	 declaration and if the declaration was never even referenced from
13540	 within this entire compilation unit.  We suppress these DIEs in
13541	 order to save space in the .debug section (by eliminating entries
13542	 which are probably useless).  Note that we must not suppress
13543	 block-local extern declarations (whether used or not) because that
13544	 would screw-up the debugger's name lookup mechanism and cause it to
13545	 miss things which really ought to be in scope at a given point.  */
13546      if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13547	return;
13548
13549      /* For local statics lookup proper context die.  */
13550      if (TREE_STATIC (decl) && decl_function_context (decl))
13551	context_die = lookup_decl_die (DECL_CONTEXT (decl));
13552
13553      /* If we are in terse mode, don't generate any DIEs to represent any
13554	 variable declarations or definitions.  */
13555      if (debug_info_level <= DINFO_LEVEL_TERSE)
13556	return;
13557      break;
13558
13559    case NAMESPACE_DECL:
13560      if (debug_info_level <= DINFO_LEVEL_TERSE)
13561	return;
13562      if (lookup_decl_die (decl) != NULL)
13563        return;
13564      break;
13565
13566    case TYPE_DECL:
13567      /* Don't emit stubs for types unless they are needed by other DIEs.  */
13568      if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13569	return;
13570
13571      /* Don't bother trying to generate any DIEs to represent any of the
13572	 normal built-in types for the language we are compiling.  */
13573      if (DECL_IS_BUILTIN (decl))
13574	{
13575	  /* OK, we need to generate one for `bool' so GDB knows what type
13576	     comparisons have.  */
13577	  if (is_cxx ()
13578	      && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13579	      && ! DECL_IGNORED_P (decl))
13580	    modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13581
13582	  return;
13583	}
13584
13585      /* If we are in terse mode, don't generate any DIEs for types.  */
13586      if (debug_info_level <= DINFO_LEVEL_TERSE)
13587	return;
13588
13589      /* If we're a function-scope tag, initially use a parent of NULL;
13590	 this will be fixed up in decls_for_scope.  */
13591      if (decl_function_context (decl))
13592	context_die = NULL;
13593
13594      break;
13595
13596    default:
13597      return;
13598    }
13599
13600  gen_decl_die (decl, context_die);
13601}
13602
13603/* Output a marker (i.e. a label) for the beginning of the generated code for
13604   a lexical block.  */
13605
13606static void
13607dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13608		       unsigned int blocknum)
13609{
13610  switch_to_section (current_function_section ());
13611  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13612}
13613
13614/* Output a marker (i.e. a label) for the end of the generated code for a
13615   lexical block.  */
13616
13617static void
13618dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13619{
13620  switch_to_section (current_function_section ());
13621  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13622}
13623
13624/* Returns nonzero if it is appropriate not to emit any debugging
13625   information for BLOCK, because it doesn't contain any instructions.
13626
13627   Don't allow this for blocks with nested functions or local classes
13628   as we would end up with orphans, and in the presence of scheduling
13629   we may end up calling them anyway.  */
13630
13631static bool
13632dwarf2out_ignore_block (tree block)
13633{
13634  tree decl;
13635
13636  for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13637    if (TREE_CODE (decl) == FUNCTION_DECL
13638	|| (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13639      return 0;
13640
13641  return 1;
13642}
13643
13644/* Hash table routines for file_hash.  */
13645
13646static int
13647file_table_eq (const void *p1_p, const void *p2_p)
13648{
13649  const struct dwarf_file_data * p1 = p1_p;
13650  const char * p2 = p2_p;
13651  return strcmp (p1->filename, p2) == 0;
13652}
13653
13654static hashval_t
13655file_table_hash (const void *p_p)
13656{
13657  const struct dwarf_file_data * p = p_p;
13658  return htab_hash_string (p->filename);
13659}
13660
13661/* Lookup FILE_NAME (in the list of filenames that we know about here in
13662   dwarf2out.c) and return its "index".  The index of each (known) filename is
13663   just a unique number which is associated with only that one filename.  We
13664   need such numbers for the sake of generating labels (in the .debug_sfnames
13665   section) and references to those files numbers (in the .debug_srcinfo
13666   and.debug_macinfo sections).  If the filename given as an argument is not
13667   found in our current list, add it to the list and assign it the next
13668   available unique index number.  In order to speed up searches, we remember
13669   the index of the filename was looked up last.  This handles the majority of
13670   all searches.  */
13671
13672static struct dwarf_file_data *
13673lookup_filename (const char *file_name)
13674{
13675  void ** slot;
13676  struct dwarf_file_data * created;
13677
13678  /* Check to see if the file name that was searched on the previous
13679     call matches this file name.  If so, return the index.  */
13680  if (file_table_last_lookup
13681      && (file_name == file_table_last_lookup->filename
13682	  || strcmp (file_table_last_lookup->filename, file_name) == 0))
13683    return file_table_last_lookup;
13684
13685  /* Didn't match the previous lookup, search the table.  */
13686  slot = htab_find_slot_with_hash (file_table, file_name,
13687				   htab_hash_string (file_name), INSERT);
13688  if (*slot)
13689    return *slot;
13690
13691  created = ggc_alloc (sizeof (struct dwarf_file_data));
13692  created->filename = file_name;
13693  created->emitted_number = 0;
13694  *slot = created;
13695  return created;
13696}
13697
13698/* If the assembler will construct the file table, then translate the compiler
13699   internal file table number into the assembler file table number, and emit
13700   a .file directive if we haven't already emitted one yet.  The file table
13701   numbers are different because we prune debug info for unused variables and
13702   types, which may include filenames.  */
13703
13704static int
13705maybe_emit_file (struct dwarf_file_data * fd)
13706{
13707  if (! fd->emitted_number)
13708    {
13709      if (last_emitted_file)
13710	fd->emitted_number = last_emitted_file->emitted_number + 1;
13711      else
13712	fd->emitted_number = 1;
13713      last_emitted_file = fd;
13714
13715      if (DWARF2_ASM_LINE_DEBUG_INFO)
13716	{
13717	  fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
13718	  output_quoted_string (asm_out_file, fd->filename);
13719	  fputc ('\n', asm_out_file);
13720	}
13721    }
13722
13723  return fd->emitted_number;
13724}
13725
13726/* Called by the final INSN scan whenever we see a var location.  We
13727   use it to drop labels in the right places, and throw the location in
13728   our lookup table.  */
13729
13730static void
13731dwarf2out_var_location (rtx loc_note)
13732{
13733  char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13734  struct var_loc_node *newloc;
13735  rtx prev_insn;
13736  static rtx last_insn;
13737  static const char *last_label;
13738  tree decl;
13739
13740  if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13741    return;
13742  prev_insn = PREV_INSN (loc_note);
13743
13744  newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13745  /* If the insn we processed last time is the previous insn
13746     and it is also a var location note, use the label we emitted
13747     last time.  */
13748  if (last_insn != NULL_RTX
13749      && last_insn == prev_insn
13750      && NOTE_P (prev_insn)
13751      && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13752    {
13753      newloc->label = last_label;
13754    }
13755  else
13756    {
13757      ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13758      ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13759      loclabel_num++;
13760      newloc->label = ggc_strdup (loclabel);
13761    }
13762  newloc->var_loc_note = loc_note;
13763  newloc->next = NULL;
13764
13765  if (cfun && in_cold_section_p)
13766    newloc->section_label = cfun->cold_section_label;
13767  else
13768    newloc->section_label = text_section_label;
13769
13770  last_insn = loc_note;
13771  last_label = newloc->label;
13772  decl = NOTE_VAR_LOCATION_DECL (loc_note);
13773  add_var_loc_to_decl (decl, newloc);
13774}
13775
13776/* We need to reset the locations at the beginning of each
13777   function. We can't do this in the end_function hook, because the
13778   declarations that use the locations won't have been output when
13779   that hook is called.  Also compute have_multiple_function_sections here.  */
13780
13781static void
13782dwarf2out_begin_function (tree fun)
13783{
13784  htab_empty (decl_loc_table);
13785
13786  if (function_section (fun) != text_section)
13787    have_multiple_function_sections = true;
13788}
13789
13790/* Output a label to mark the beginning of a source code line entry
13791   and record information relating to this source line, in
13792   'line_info_table' for later output of the .debug_line section.  */
13793
13794static void
13795dwarf2out_source_line (unsigned int line, const char *filename)
13796{
13797  if (debug_info_level >= DINFO_LEVEL_NORMAL
13798      && line != 0)
13799    {
13800      int file_num = maybe_emit_file (lookup_filename (filename));
13801
13802      switch_to_section (current_function_section ());
13803
13804      /* If requested, emit something human-readable.  */
13805      if (flag_debug_asm)
13806	fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13807		 filename, line);
13808
13809      if (DWARF2_ASM_LINE_DEBUG_INFO)
13810	{
13811	  /* Emit the .loc directive understood by GNU as.  */
13812	  fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13813
13814	  /* Indicate that line number info exists.  */
13815	  line_info_table_in_use++;
13816	}
13817      else if (function_section (current_function_decl) != text_section)
13818	{
13819	  dw_separate_line_info_ref line_info;
13820	  targetm.asm_out.internal_label (asm_out_file,
13821					  SEPARATE_LINE_CODE_LABEL,
13822					  separate_line_info_table_in_use);
13823
13824	  /* Expand the line info table if necessary.  */
13825	  if (separate_line_info_table_in_use
13826	      == separate_line_info_table_allocated)
13827	    {
13828	      separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13829	      separate_line_info_table
13830		= ggc_realloc (separate_line_info_table,
13831			       separate_line_info_table_allocated
13832			       * sizeof (dw_separate_line_info_entry));
13833	      memset (separate_line_info_table
13834		       + separate_line_info_table_in_use,
13835		      0,
13836		      (LINE_INFO_TABLE_INCREMENT
13837		       * sizeof (dw_separate_line_info_entry)));
13838	    }
13839
13840	  /* Add the new entry at the end of the line_info_table.  */
13841	  line_info
13842	    = &separate_line_info_table[separate_line_info_table_in_use++];
13843	  line_info->dw_file_num = file_num;
13844	  line_info->dw_line_num = line;
13845	  line_info->function = current_function_funcdef_no;
13846	}
13847      else
13848	{
13849	  dw_line_info_ref line_info;
13850
13851	  targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13852				     line_info_table_in_use);
13853
13854	  /* Expand the line info table if necessary.  */
13855	  if (line_info_table_in_use == line_info_table_allocated)
13856	    {
13857	      line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13858	      line_info_table
13859		= ggc_realloc (line_info_table,
13860			       (line_info_table_allocated
13861				* sizeof (dw_line_info_entry)));
13862	      memset (line_info_table + line_info_table_in_use, 0,
13863		      LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13864	    }
13865
13866	  /* Add the new entry at the end of the line_info_table.  */
13867	  line_info = &line_info_table[line_info_table_in_use++];
13868	  line_info->dw_file_num = file_num;
13869	  line_info->dw_line_num = line;
13870	}
13871    }
13872}
13873
13874/* Record the beginning of a new source file.  */
13875
13876static void
13877dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13878{
13879  if (flag_eliminate_dwarf2_dups)
13880    {
13881      /* Record the beginning of the file for break_out_includes.  */
13882      dw_die_ref bincl_die;
13883
13884      bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13885      add_AT_string (bincl_die, DW_AT_name, filename);
13886    }
13887
13888  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13889    {
13890      int file_num = maybe_emit_file (lookup_filename (filename));
13891
13892      switch_to_section (debug_macinfo_section);
13893      dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13894      dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13895				   lineno);
13896
13897      dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
13898    }
13899}
13900
13901/* Record the end of a source file.  */
13902
13903static void
13904dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13905{
13906  if (flag_eliminate_dwarf2_dups)
13907    /* Record the end of the file for break_out_includes.  */
13908    new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13909
13910  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13911    {
13912      switch_to_section (debug_macinfo_section);
13913      dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13914    }
13915}
13916
13917/* Called from debug_define in toplev.c.  The `buffer' parameter contains
13918   the tail part of the directive line, i.e. the part which is past the
13919   initial whitespace, #, whitespace, directive-name, whitespace part.  */
13920
13921static void
13922dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13923		  const char *buffer ATTRIBUTE_UNUSED)
13924{
13925  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13926    {
13927      switch_to_section (debug_macinfo_section);
13928      dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13929      dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13930      dw2_asm_output_nstring (buffer, -1, "The macro");
13931    }
13932}
13933
13934/* Called from debug_undef in toplev.c.  The `buffer' parameter contains
13935   the tail part of the directive line, i.e. the part which is past the
13936   initial whitespace, #, whitespace, directive-name, whitespace part.  */
13937
13938static void
13939dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13940		 const char *buffer ATTRIBUTE_UNUSED)
13941{
13942  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13943    {
13944      switch_to_section (debug_macinfo_section);
13945      dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13946      dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13947      dw2_asm_output_nstring (buffer, -1, "The macro");
13948    }
13949}
13950
13951/* Set up for Dwarf output at the start of compilation.  */
13952
13953static void
13954dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13955{
13956  /* Allocate the file_table.  */
13957  file_table = htab_create_ggc (50, file_table_hash,
13958				file_table_eq, NULL);
13959
13960  /* Allocate the decl_die_table.  */
13961  decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13962				    decl_die_table_eq, NULL);
13963
13964  /* Allocate the decl_loc_table.  */
13965  decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13966				    decl_loc_table_eq, NULL);
13967
13968  /* Allocate the initial hunk of the decl_scope_table.  */
13969  decl_scope_table = VEC_alloc (tree, gc, 256);
13970
13971  /* Allocate the initial hunk of the abbrev_die_table.  */
13972  abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13973					* sizeof (dw_die_ref));
13974  abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13975  /* Zero-th entry is allocated, but unused.  */
13976  abbrev_die_table_in_use = 1;
13977
13978  /* Allocate the initial hunk of the line_info_table.  */
13979  line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13980				       * sizeof (dw_line_info_entry));
13981  line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13982
13983  /* Zero-th entry is allocated, but unused.  */
13984  line_info_table_in_use = 1;
13985
13986  /* Allocate the pubtypes and pubnames vectors.  */
13987  pubname_table = VEC_alloc (pubname_entry, gc, 32);
13988  pubtype_table = VEC_alloc (pubname_entry, gc, 32);
13989
13990  /* Generate the initial DIE for the .debug section.  Note that the (string)
13991     value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13992     will (typically) be a relative pathname and that this pathname should be
13993     taken as being relative to the directory from which the compiler was
13994     invoked when the given (base) source file was compiled.  We will fill
13995     in this value in dwarf2out_finish.  */
13996  comp_unit_die = gen_compile_unit_die (NULL);
13997
13998  incomplete_types = VEC_alloc (tree, gc, 64);
13999
14000  used_rtx_array = VEC_alloc (rtx, gc, 32);
14001
14002  debug_info_section = get_section (DEBUG_INFO_SECTION,
14003				    SECTION_DEBUG, NULL);
14004  debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
14005				      SECTION_DEBUG, NULL);
14006  debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
14007				       SECTION_DEBUG, NULL);
14008  debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
14009				       SECTION_DEBUG, NULL);
14010  debug_line_section = get_section (DEBUG_LINE_SECTION,
14011				    SECTION_DEBUG, NULL);
14012  debug_loc_section = get_section (DEBUG_LOC_SECTION,
14013				   SECTION_DEBUG, NULL);
14014  debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
14015					SECTION_DEBUG, NULL);
14016#ifdef DEBUG_PUBTYPES_SECTION
14017  debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
14018					SECTION_DEBUG, NULL);
14019#endif
14020  debug_str_section = get_section (DEBUG_STR_SECTION,
14021				   DEBUG_STR_SECTION_FLAGS, NULL);
14022  debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
14023				      SECTION_DEBUG, NULL);
14024  debug_frame_section = get_section (DEBUG_FRAME_SECTION,
14025				     SECTION_DEBUG, NULL);
14026
14027  ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
14028  ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
14029			       DEBUG_ABBREV_SECTION_LABEL, 0);
14030  ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
14031  ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
14032			       COLD_TEXT_SECTION_LABEL, 0);
14033  ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
14034
14035  ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
14036			       DEBUG_INFO_SECTION_LABEL, 0);
14037  ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
14038			       DEBUG_LINE_SECTION_LABEL, 0);
14039  ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
14040			       DEBUG_RANGES_SECTION_LABEL, 0);
14041  switch_to_section (debug_abbrev_section);
14042  ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
14043  switch_to_section (debug_info_section);
14044  ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
14045  switch_to_section (debug_line_section);
14046  ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
14047
14048  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14049    {
14050      switch_to_section (debug_macinfo_section);
14051      ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
14052				   DEBUG_MACINFO_SECTION_LABEL, 0);
14053      ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
14054    }
14055
14056  switch_to_section (text_section);
14057  ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
14058  if (flag_reorder_blocks_and_partition)
14059    {
14060      switch_to_section (unlikely_text_section ());
14061      ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
14062    }
14063}
14064
14065/* A helper function for dwarf2out_finish called through
14066   ht_forall.  Emit one queued .debug_str string.  */
14067
14068static int
14069output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
14070{
14071  struct indirect_string_node *node = (struct indirect_string_node *) *h;
14072
14073  if (node->form == DW_FORM_strp)
14074    {
14075      switch_to_section (debug_str_section);
14076      ASM_OUTPUT_LABEL (asm_out_file, node->label);
14077      assemble_string (node->str, strlen (node->str) + 1);
14078    }
14079
14080  return 1;
14081}
14082
14083#if ENABLE_ASSERT_CHECKING
14084/* Verify that all marks are clear.  */
14085
14086static void
14087verify_marks_clear (dw_die_ref die)
14088{
14089  dw_die_ref c;
14090
14091  gcc_assert (! die->die_mark);
14092  FOR_EACH_CHILD (die, c, verify_marks_clear (c));
14093}
14094#endif /* ENABLE_ASSERT_CHECKING */
14095
14096/* Clear the marks for a die and its children.
14097   Be cool if the mark isn't set.  */
14098
14099static void
14100prune_unmark_dies (dw_die_ref die)
14101{
14102  dw_die_ref c;
14103
14104  if (die->die_mark)
14105    die->die_mark = 0;
14106  FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
14107}
14108
14109/* Given DIE that we're marking as used, find any other dies
14110   it references as attributes and mark them as used.  */
14111
14112static void
14113prune_unused_types_walk_attribs (dw_die_ref die)
14114{
14115  dw_attr_ref a;
14116  unsigned ix;
14117
14118  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14119    {
14120      if (a->dw_attr_val.val_class == dw_val_class_die_ref)
14121	{
14122	  /* A reference to another DIE.
14123	     Make sure that it will get emitted.  */
14124	  prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
14125	}
14126      /* Set the string's refcount to 0 so that prune_unused_types_mark
14127	 accounts properly for it.  */
14128      if (AT_class (a) == dw_val_class_str)
14129	a->dw_attr_val.v.val_str->refcount = 0;
14130    }
14131}
14132
14133
14134/* Mark DIE as being used.  If DOKIDS is true, then walk down
14135   to DIE's children.  */
14136
14137static void
14138prune_unused_types_mark (dw_die_ref die, int dokids)
14139{
14140  dw_die_ref c;
14141
14142  if (die->die_mark == 0)
14143    {
14144      /* We haven't done this node yet.  Mark it as used.  */
14145      die->die_mark = 1;
14146
14147      /* We also have to mark its parents as used.
14148	 (But we don't want to mark our parents' kids due to this.)  */
14149      if (die->die_parent)
14150	prune_unused_types_mark (die->die_parent, 0);
14151
14152      /* Mark any referenced nodes.  */
14153      prune_unused_types_walk_attribs (die);
14154
14155      /* If this node is a specification,
14156         also mark the definition, if it exists.  */
14157      if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14158        prune_unused_types_mark (die->die_definition, 1);
14159    }
14160
14161  if (dokids && die->die_mark != 2)
14162    {
14163      /* We need to walk the children, but haven't done so yet.
14164	 Remember that we've walked the kids.  */
14165      die->die_mark = 2;
14166
14167      /* If this is an array type, we need to make sure our
14168	 kids get marked, even if they're types.  */
14169      if (die->die_tag == DW_TAG_array_type)
14170	FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14171      else
14172	FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14173    }
14174}
14175
14176
14177/* Walk the tree DIE and mark types that we actually use.  */
14178
14179static void
14180prune_unused_types_walk (dw_die_ref die)
14181{
14182  dw_die_ref c;
14183
14184  /* Don't do anything if this node is already marked.  */
14185  if (die->die_mark)
14186    return;
14187
14188  switch (die->die_tag) {
14189  case DW_TAG_const_type:
14190  case DW_TAG_packed_type:
14191  case DW_TAG_pointer_type:
14192  case DW_TAG_reference_type:
14193  case DW_TAG_volatile_type:
14194  case DW_TAG_typedef:
14195  case DW_TAG_array_type:
14196  case DW_TAG_structure_type:
14197  case DW_TAG_union_type:
14198  case DW_TAG_class_type:
14199  case DW_TAG_friend:
14200  case DW_TAG_variant_part:
14201  case DW_TAG_enumeration_type:
14202  case DW_TAG_subroutine_type:
14203  case DW_TAG_string_type:
14204  case DW_TAG_set_type:
14205  case DW_TAG_subrange_type:
14206  case DW_TAG_ptr_to_member_type:
14207  case DW_TAG_file_type:
14208    if (die->die_perennial_p)
14209      break;
14210
14211    /* It's a type node --- don't mark it.  */
14212    return;
14213
14214  default:
14215    /* Mark everything else.  */
14216    break;
14217  }
14218
14219  die->die_mark = 1;
14220
14221  /* Now, mark any dies referenced from here.  */
14222  prune_unused_types_walk_attribs (die);
14223
14224  /* Mark children.  */
14225  FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14226}
14227
14228/* Increment the string counts on strings referred to from DIE's
14229   attributes.  */
14230
14231static void
14232prune_unused_types_update_strings (dw_die_ref die)
14233{
14234  dw_attr_ref a;
14235  unsigned ix;
14236
14237  for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14238    if (AT_class (a) == dw_val_class_str)
14239      {
14240	struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14241	s->refcount++;
14242	/* Avoid unnecessarily putting strings that are used less than
14243	   twice in the hash table.  */
14244	if (s->refcount
14245	    == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
14246	  {
14247	    void ** slot;
14248	    slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14249					     htab_hash_string (s->str),
14250					     INSERT);
14251	    gcc_assert (*slot == NULL);
14252	    *slot = s;
14253	  }
14254      }
14255}
14256
14257/* Remove from the tree DIE any dies that aren't marked.  */
14258
14259static void
14260prune_unused_types_prune (dw_die_ref die)
14261{
14262  dw_die_ref c;
14263
14264  gcc_assert (die->die_mark);
14265  prune_unused_types_update_strings (die);
14266
14267  if (! die->die_child)
14268    return;
14269
14270  c = die->die_child;
14271  do {
14272    dw_die_ref prev = c;
14273    for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14274      if (c == die->die_child)
14275	{
14276	  /* No marked children between 'prev' and the end of the list.  */
14277	  if (prev == c)
14278	    /* No marked children at all.  */
14279	    die->die_child = NULL;
14280	  else
14281	    {
14282	      prev->die_sib = c->die_sib;
14283	      die->die_child = prev;
14284	    }
14285	  return;
14286	}
14287
14288    if (c != prev->die_sib)
14289      prev->die_sib = c;
14290    prune_unused_types_prune (c);
14291  } while (c != die->die_child);
14292}
14293
14294
14295/* Remove dies representing declarations that we never use.  */
14296
14297static void
14298prune_unused_types (void)
14299{
14300  unsigned int i;
14301  limbo_die_node *node;
14302  pubname_ref pub;
14303
14304#if ENABLE_ASSERT_CHECKING
14305  /* All the marks should already be clear.  */
14306  verify_marks_clear (comp_unit_die);
14307  for (node = limbo_die_list; node; node = node->next)
14308    verify_marks_clear (node->die);
14309#endif /* ENABLE_ASSERT_CHECKING */
14310
14311  /* Set the mark on nodes that are actually used.  */
14312  prune_unused_types_walk (comp_unit_die);
14313  for (node = limbo_die_list; node; node = node->next)
14314    prune_unused_types_walk (node->die);
14315
14316  /* Also set the mark on nodes referenced from the
14317     pubname_table or arange_table.  */
14318  for (i = 0; VEC_iterate (pubname_entry, pubname_table, i, pub); i++)
14319    prune_unused_types_mark (pub->die, 1);
14320  for (i = 0; i < arange_table_in_use; i++)
14321    prune_unused_types_mark (arange_table[i], 1);
14322
14323  /* Get rid of nodes that aren't marked; and update the string counts.  */
14324  if (debug_str_hash)
14325    htab_empty (debug_str_hash);
14326  prune_unused_types_prune (comp_unit_die);
14327  for (node = limbo_die_list; node; node = node->next)
14328    prune_unused_types_prune (node->die);
14329
14330  /* Leave the marks clear.  */
14331  prune_unmark_dies (comp_unit_die);
14332  for (node = limbo_die_list; node; node = node->next)
14333    prune_unmark_dies (node->die);
14334}
14335
14336/* Set the parameter to true if there are any relative pathnames in
14337   the file table.  */
14338static int
14339file_table_relative_p (void ** slot, void *param)
14340{
14341  bool *p = param;
14342  struct dwarf_file_data *d = *slot;
14343  if (d->emitted_number && d->filename[0] != DIR_SEPARATOR)
14344    {
14345      *p = true;
14346      return 0;
14347    }
14348  return 1;
14349}
14350
14351/* Output stuff that dwarf requires at the end of every file,
14352   and generate the DWARF-2 debugging info.  */
14353
14354static void
14355dwarf2out_finish (const char *filename)
14356{
14357  limbo_die_node *node, *next_node;
14358  dw_die_ref die = 0;
14359
14360  /* Add the name for the main input file now.  We delayed this from
14361     dwarf2out_init to avoid complications with PCH.  */
14362  add_name_attribute (comp_unit_die, filename);
14363  if (filename[0] != DIR_SEPARATOR)
14364    add_comp_dir_attribute (comp_unit_die);
14365  else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14366    {
14367      bool p = false;
14368      htab_traverse (file_table, file_table_relative_p, &p);
14369      if (p)
14370	add_comp_dir_attribute (comp_unit_die);
14371    }
14372
14373  /* Traverse the limbo die list, and add parent/child links.  The only
14374     dies without parents that should be here are concrete instances of
14375     inline functions, and the comp_unit_die.  We can ignore the comp_unit_die.
14376     For concrete instances, we can get the parent die from the abstract
14377     instance.  */
14378  for (node = limbo_die_list; node; node = next_node)
14379    {
14380      next_node = node->next;
14381      die = node->die;
14382
14383      if (die->die_parent == NULL)
14384	{
14385	  dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14386
14387	  if (origin)
14388	    add_child_die (origin->die_parent, die);
14389	  else if (die == comp_unit_die)
14390	    ;
14391	  else if (errorcount > 0 || sorrycount > 0)
14392	    /* It's OK to be confused by errors in the input.  */
14393	    add_child_die (comp_unit_die, die);
14394	  else
14395	    {
14396	      /* In certain situations, the lexical block containing a
14397		 nested function can be optimized away, which results
14398		 in the nested function die being orphaned.  Likewise
14399		 with the return type of that nested function.  Force
14400		 this to be a child of the containing function.
14401
14402		 It may happen that even the containing function got fully
14403		 inlined and optimized out.  In that case we are lost and
14404		 assign the empty child.  This should not be big issue as
14405		 the function is likely unreachable too.  */
14406	      tree context = NULL_TREE;
14407
14408	      gcc_assert (node->created_for);
14409
14410	      if (DECL_P (node->created_for))
14411		context = DECL_CONTEXT (node->created_for);
14412	      else if (TYPE_P (node->created_for))
14413		context = TYPE_CONTEXT (node->created_for);
14414
14415	      gcc_assert (context
14416			  && (TREE_CODE (context) == FUNCTION_DECL
14417			      || TREE_CODE (context) == NAMESPACE_DECL));
14418
14419	      origin = lookup_decl_die (context);
14420	      if (origin)
14421	        add_child_die (origin, die);
14422	      else
14423	        add_child_die (comp_unit_die, die);
14424	    }
14425	}
14426    }
14427
14428  limbo_die_list = NULL;
14429
14430  /* Walk through the list of incomplete types again, trying once more to
14431     emit full debugging info for them.  */
14432  retry_incomplete_types ();
14433
14434  if (flag_eliminate_unused_debug_types)
14435    prune_unused_types ();
14436
14437  /* Generate separate CUs for each of the include files we've seen.
14438     They will go into limbo_die_list.  */
14439  if (flag_eliminate_dwarf2_dups)
14440    break_out_includes (comp_unit_die);
14441
14442  /* Traverse the DIE's and add add sibling attributes to those DIE's
14443     that have children.  */
14444  add_sibling_attributes (comp_unit_die);
14445  for (node = limbo_die_list; node; node = node->next)
14446    add_sibling_attributes (node->die);
14447
14448  /* Output a terminator label for the .text section.  */
14449  switch_to_section (text_section);
14450  targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14451  if (flag_reorder_blocks_and_partition)
14452    {
14453      switch_to_section (unlikely_text_section ());
14454      targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14455    }
14456
14457  /* We can only use the low/high_pc attributes if all of the code was
14458     in .text.  */
14459  if (!have_multiple_function_sections)
14460    {
14461      add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14462      add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14463    }
14464
14465  /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14466     "base address".  Use zero so that these addresses become absolute.  */
14467  else if (have_location_lists || ranges_table_in_use)
14468    add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14469
14470  /* Output location list section if necessary.  */
14471  if (have_location_lists)
14472    {
14473      /* Output the location lists info.  */
14474      switch_to_section (debug_loc_section);
14475      ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14476				   DEBUG_LOC_SECTION_LABEL, 0);
14477      ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14478      output_location_lists (die);
14479    }
14480
14481  if (debug_info_level >= DINFO_LEVEL_NORMAL)
14482    add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
14483		    debug_line_section_label);
14484
14485  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14486    add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14487
14488  /* Output all of the compilation units.  We put the main one last so that
14489     the offsets are available to output_pubnames.  */
14490  for (node = limbo_die_list; node; node = node->next)
14491    output_comp_unit (node->die, 0);
14492
14493  output_comp_unit (comp_unit_die, 0);
14494
14495  /* Output the abbreviation table.  */
14496  switch_to_section (debug_abbrev_section);
14497  output_abbrev_section ();
14498
14499  /* Output public names table if necessary.  */
14500  if (!VEC_empty (pubname_entry, pubname_table))
14501    {
14502      switch_to_section (debug_pubnames_section);
14503      output_pubnames (pubname_table);
14504    }
14505
14506#ifdef DEBUG_PUBTYPES_SECTION
14507  /* Output public types table if necessary.  */
14508  if (!VEC_empty (pubname_entry, pubtype_table))
14509    {
14510      switch_to_section (debug_pubtypes_section);
14511      output_pubnames (pubtype_table);
14512    }
14513#endif
14514
14515  /* Output the address range information.  We only put functions in the arange
14516     table, so don't write it out if we don't have any.  */
14517  if (fde_table_in_use)
14518    {
14519      switch_to_section (debug_aranges_section);
14520      output_aranges ();
14521    }
14522
14523  /* Output ranges section if necessary.  */
14524  if (ranges_table_in_use)
14525    {
14526      switch_to_section (debug_ranges_section);
14527      ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14528      output_ranges ();
14529    }
14530
14531  /* Output the source line correspondence table.  We must do this
14532     even if there is no line information.  Otherwise, on an empty
14533     translation unit, we will generate a present, but empty,
14534     .debug_info section.  IRIX 6.5 `nm' will then complain when
14535     examining the file.  This is done late so that any filenames
14536     used by the debug_info section are marked as 'used'.  */
14537  if (! DWARF2_ASM_LINE_DEBUG_INFO)
14538    {
14539      switch_to_section (debug_line_section);
14540      output_line_info ();
14541    }
14542
14543  /* Have to end the macro section.  */
14544  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14545    {
14546      switch_to_section (debug_macinfo_section);
14547      dw2_asm_output_data (1, 0, "End compilation unit");
14548    }
14549
14550  /* If we emitted any DW_FORM_strp form attribute, output the string
14551     table too.  */
14552  if (debug_str_hash)
14553    htab_traverse (debug_str_hash, output_indirect_string, NULL);
14554}
14555#else
14556
14557/* This should never be used, but its address is needed for comparisons.  */
14558const struct gcc_debug_hooks dwarf2_debug_hooks;
14559
14560#endif /* DWARF2_DEBUGGING_INFO */
14561
14562#include "gt-dwarf2out.h"
14563