tc-i386.c revision 261307
1/* tc-i386.c -- Assemble code for the Intel 80386
2   Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4   Free Software Foundation, Inc.
5
6   This file is part of GAS, the GNU Assembler.
7
8   GAS is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 2, or (at your option)
11   any later version.
12
13   GAS is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with GAS; see the file COPYING.  If not, write to the Free
20   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21   02110-1301, USA.  */
22
23/* Intel 80386 machine specific gas.
24   Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25   x86_64 support by Jan Hubicka (jh@suse.cz)
26   VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27   Bugs & suggestions are completely welcome.  This is free software.
28   Please help us make it better.  */
29
30#include "as.h"
31#include "safe-ctype.h"
32#include "subsegs.h"
33#include "dwarf2dbg.h"
34#include "dw2gencfi.h"
35#include "elf/x86-64.h"
36
37#ifndef REGISTER_WARNINGS
38#define REGISTER_WARNINGS 1
39#endif
40
41#ifndef INFER_ADDR_PREFIX
42#define INFER_ADDR_PREFIX 1
43#endif
44
45#ifndef SCALE1_WHEN_NO_INDEX
46/* Specifying a scale factor besides 1 when there is no index is
47   futile.  eg. `mov (%ebx,2),%al' does exactly the same as
48   `mov (%ebx),%al'.  To slavishly follow what the programmer
49   specified, set SCALE1_WHEN_NO_INDEX to 0.  */
50#define SCALE1_WHEN_NO_INDEX 1
51#endif
52
53#ifndef DEFAULT_ARCH
54#define DEFAULT_ARCH "i386"
55#endif
56
57#ifndef INLINE
58#if __GNUC__ >= 2
59#define INLINE __inline__
60#else
61#define INLINE
62#endif
63#endif
64
65static void set_code_flag (int);
66static void set_16bit_gcc_code_flag (int);
67static void set_intel_syntax (int);
68static void set_cpu_arch (int);
69#ifdef TE_PE
70static void pe_directive_secrel (int);
71#endif
72static void signed_cons (int);
73static char *output_invalid (int c);
74static int i386_operand (char *);
75static int i386_intel_operand (char *, int);
76static const reg_entry *parse_register (char *, char **);
77static char *parse_insn (char *, char *);
78static char *parse_operands (char *, const char *);
79static void swap_operands (void);
80static void swap_2_operands (int, int);
81static void optimize_imm (void);
82static void optimize_disp (void);
83static int match_template (void);
84static int check_string (void);
85static int process_suffix (void);
86static int check_byte_reg (void);
87static int check_long_reg (void);
88static int check_qword_reg (void);
89static int check_word_reg (void);
90static int finalize_imm (void);
91static int process_operands (void);
92static const seg_entry *build_modrm_byte (void);
93static void output_insn (void);
94static void output_imm (fragS *, offsetT);
95static void output_disp (fragS *, offsetT);
96#ifndef I386COFF
97static void s_bss (int);
98#endif
99#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
100static void handle_large_common (int small ATTRIBUTE_UNUSED);
101#endif
102
103static const char *default_arch = DEFAULT_ARCH;
104
105/* 'md_assemble ()' gathers together information and puts it into a
106   i386_insn.  */
107
108union i386_op
109  {
110    expressionS *disps;
111    expressionS *imms;
112    const reg_entry *regs;
113  };
114
115struct _i386_insn
116  {
117    /* TM holds the template for the insn were currently assembling.  */
118    template tm;
119
120    /* SUFFIX holds the instruction mnemonic suffix if given.
121       (e.g. 'l' for 'movl')  */
122    char suffix;
123
124    /* OPERANDS gives the number of given operands.  */
125    unsigned int operands;
126
127    /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
128       of given register, displacement, memory operands and immediate
129       operands.  */
130    unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
131
132    /* TYPES [i] is the type (see above #defines) which tells us how to
133       use OP[i] for the corresponding operand.  */
134    unsigned int types[MAX_OPERANDS];
135
136    /* Displacement expression, immediate expression, or register for each
137       operand.  */
138    union i386_op op[MAX_OPERANDS];
139
140    /* Flags for operands.  */
141    unsigned int flags[MAX_OPERANDS];
142#define Operand_PCrel 1
143
144    /* Relocation type for operand */
145    enum bfd_reloc_code_real reloc[MAX_OPERANDS];
146
147    /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
148       the base index byte below.  */
149    const reg_entry *base_reg;
150    const reg_entry *index_reg;
151    unsigned int log2_scale_factor;
152
153    /* SEG gives the seg_entries of this insn.  They are zero unless
154       explicit segment overrides are given.  */
155    const seg_entry *seg[2];
156
157    /* PREFIX holds all the given prefix opcodes (usually null).
158       PREFIXES is the number of prefix opcodes.  */
159    unsigned int prefixes;
160    unsigned char prefix[MAX_PREFIXES];
161
162    /* RM and SIB are the modrm byte and the sib byte where the
163       addressing modes of this insn are encoded.  */
164
165    modrm_byte rm;
166    rex_byte rex;
167    sib_byte sib;
168  };
169
170typedef struct _i386_insn i386_insn;
171
172/* List of chars besides those in app.c:symbol_chars that can start an
173   operand.  Used to prevent the scrubber eating vital white-space.  */
174const char extra_symbol_chars[] = "*%-(["
175#ifdef LEX_AT
176	"@"
177#endif
178#ifdef LEX_QM
179	"?"
180#endif
181	;
182
183#if (defined (TE_I386AIX)				\
184     || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))	\
185	 && !defined (TE_GNU)				\
186	 && !defined (TE_LINUX)				\
187 	 && !defined (TE_NETWARE)			\
188	 && !defined (TE_FreeBSD)			\
189	 && !defined (TE_NetBSD)))
190/* This array holds the chars that always start a comment.  If the
191   pre-processor is disabled, these aren't very useful.  The option
192   --divide will remove '/' from this list.  */
193const char *i386_comment_chars = "#/";
194#define SVR4_COMMENT_CHARS 1
195#define PREFIX_SEPARATOR '\\'
196
197#else
198const char *i386_comment_chars = "#";
199#define PREFIX_SEPARATOR '/'
200#endif
201
202/* This array holds the chars that only start a comment at the beginning of
203   a line.  If the line seems to have the form '# 123 filename'
204   .line and .file directives will appear in the pre-processed output.
205   Note that input_file.c hand checks for '#' at the beginning of the
206   first line of the input file.  This is because the compiler outputs
207   #NO_APP at the beginning of its output.
208   Also note that comments started like this one will always work if
209   '/' isn't otherwise defined.  */
210const char line_comment_chars[] = "#/";
211
212const char line_separator_chars[] = ";";
213
214/* Chars that can be used to separate mant from exp in floating point
215   nums.  */
216const char EXP_CHARS[] = "eE";
217
218/* Chars that mean this number is a floating point constant
219   As in 0f12.456
220   or    0d1.2345e12.  */
221const char FLT_CHARS[] = "fFdDxX";
222
223/* Tables for lexical analysis.  */
224static char mnemonic_chars[256];
225static char register_chars[256];
226static char operand_chars[256];
227static char identifier_chars[256];
228static char digit_chars[256];
229
230/* Lexical macros.  */
231#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
232#define is_operand_char(x) (operand_chars[(unsigned char) x])
233#define is_register_char(x) (register_chars[(unsigned char) x])
234#define is_space_char(x) ((x) == ' ')
235#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
236#define is_digit_char(x) (digit_chars[(unsigned char) x])
237
238/* All non-digit non-letter characters that may occur in an operand.  */
239static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
240
241/* md_assemble() always leaves the strings it's passed unaltered.  To
242   effect this we maintain a stack of saved characters that we've smashed
243   with '\0's (indicating end of strings for various sub-fields of the
244   assembler instruction).  */
245static char save_stack[32];
246static char *save_stack_p;
247#define END_STRING_AND_SAVE(s) \
248	do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
249#define RESTORE_END_STRING(s) \
250	do { *(s) = *--save_stack_p; } while (0)
251
252/* The instruction we're assembling.  */
253static i386_insn i;
254
255/* Possible templates for current insn.  */
256static const templates *current_templates;
257
258/* Per instruction expressionS buffers: max displacements & immediates.  */
259static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
260static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
261
262/* Current operand we are working on.  */
263static int this_operand;
264
265/* We support four different modes.  FLAG_CODE variable is used to distinguish
266   these.  */
267
268enum flag_code {
269	CODE_32BIT,
270	CODE_16BIT,
271	CODE_64BIT };
272#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
273
274static enum flag_code flag_code;
275static unsigned int object_64bit;
276static int use_rela_relocations = 0;
277
278/* The names used to print error messages.  */
279static const char *flag_code_names[] =
280  {
281    "32",
282    "16",
283    "64"
284  };
285
286/* 1 for intel syntax,
287   0 if att syntax.  */
288static int intel_syntax = 0;
289
290/* 1 if register prefix % not required.  */
291static int allow_naked_reg = 0;
292
293/* Register prefix used for error message.  */
294static const char *register_prefix = "%";
295
296/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
297   leave, push, and pop instructions so that gcc has the same stack
298   frame as in 32 bit mode.  */
299static char stackop_size = '\0';
300
301/* Non-zero to optimize code alignment.  */
302int optimize_align_code = 1;
303
304/* Non-zero to quieten some warnings.  */
305static int quiet_warnings = 0;
306
307/* CPU name.  */
308static const char *cpu_arch_name = NULL;
309static const char *cpu_sub_arch_name = NULL;
310
311/* CPU feature flags.  */
312static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
313
314/* If we have selected a cpu we are generating instructions for.  */
315static int cpu_arch_tune_set = 0;
316
317/* Cpu we are generating instructions for.  */
318static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
319
320/* CPU feature flags of cpu we are generating instructions for.  */
321static unsigned int cpu_arch_tune_flags = 0;
322
323/* CPU instruction set architecture used.  */
324static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
325
326/* CPU feature flags of instruction set architecture used.  */
327static unsigned int cpu_arch_isa_flags = 0;
328
329/* If set, conditional jumps are not automatically promoted to handle
330   larger than a byte offset.  */
331static unsigned int no_cond_jump_promotion = 0;
332
333/* Pre-defined "_GLOBAL_OFFSET_TABLE_".  */
334static symbolS *GOT_symbol;
335
336/* The dwarf2 return column, adjusted for 32 or 64 bit.  */
337unsigned int x86_dwarf2_return_column;
338
339/* The dwarf2 data alignment, adjusted for 32 or 64 bit.  */
340int x86_cie_data_alignment;
341
342/* Interface to relax_segment.
343   There are 3 major relax states for 386 jump insns because the
344   different types of jumps add different sizes to frags when we're
345   figuring out what sort of jump to choose to reach a given label.  */
346
347/* Types.  */
348#define UNCOND_JUMP 0
349#define COND_JUMP 1
350#define COND_JUMP86 2
351
352/* Sizes.  */
353#define CODE16	1
354#define SMALL	0
355#define SMALL16 (SMALL | CODE16)
356#define BIG	2
357#define BIG16	(BIG | CODE16)
358
359#ifndef INLINE
360#ifdef __GNUC__
361#define INLINE __inline__
362#else
363#define INLINE
364#endif
365#endif
366
367#define ENCODE_RELAX_STATE(type, size) \
368  ((relax_substateT) (((type) << 2) | (size)))
369#define TYPE_FROM_RELAX_STATE(s) \
370  ((s) >> 2)
371#define DISP_SIZE_FROM_RELAX_STATE(s) \
372    ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
373
374/* This table is used by relax_frag to promote short jumps to long
375   ones where necessary.  SMALL (short) jumps may be promoted to BIG
376   (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long).  We
377   don't allow a short jump in a 32 bit code segment to be promoted to
378   a 16 bit offset jump because it's slower (requires data size
379   prefix), and doesn't work, unless the destination is in the bottom
380   64k of the code segment (The top 16 bits of eip are zeroed).  */
381
382const relax_typeS md_relax_table[] =
383{
384  /* The fields are:
385     1) most positive reach of this state,
386     2) most negative reach of this state,
387     3) how many bytes this mode will have in the variable part of the frag
388     4) which index into the table to try if we can't fit into this one.  */
389
390  /* UNCOND_JUMP states.  */
391  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
392  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
393  /* dword jmp adds 4 bytes to frag:
394     0 extra opcode bytes, 4 displacement bytes.  */
395  {0, 0, 4, 0},
396  /* word jmp adds 2 byte2 to frag:
397     0 extra opcode bytes, 2 displacement bytes.  */
398  {0, 0, 2, 0},
399
400  /* COND_JUMP states.  */
401  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
402  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
403  /* dword conditionals adds 5 bytes to frag:
404     1 extra opcode byte, 4 displacement bytes.  */
405  {0, 0, 5, 0},
406  /* word conditionals add 3 bytes to frag:
407     1 extra opcode byte, 2 displacement bytes.  */
408  {0, 0, 3, 0},
409
410  /* COND_JUMP86 states.  */
411  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
412  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
413  /* dword conditionals adds 5 bytes to frag:
414     1 extra opcode byte, 4 displacement bytes.  */
415  {0, 0, 5, 0},
416  /* word conditionals add 4 bytes to frag:
417     1 displacement byte and a 3 byte long branch insn.  */
418  {0, 0, 4, 0}
419};
420
421static const arch_entry cpu_arch[] =
422{
423  {"generic32", PROCESSOR_GENERIC32,
424   Cpu186|Cpu286|Cpu386},
425  {"generic64", PROCESSOR_GENERIC64,
426   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
427   |CpuMMX2|CpuSSE|CpuSSE2},
428  {"i8086", PROCESSOR_UNKNOWN,
429   0},
430  {"i186", PROCESSOR_UNKNOWN,
431   Cpu186},
432  {"i286", PROCESSOR_UNKNOWN,
433   Cpu186|Cpu286},
434  {"i386", PROCESSOR_GENERIC32,
435   Cpu186|Cpu286|Cpu386},
436  {"i486", PROCESSOR_I486,
437   Cpu186|Cpu286|Cpu386|Cpu486},
438  {"i586", PROCESSOR_PENTIUM,
439   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
440  {"i686", PROCESSOR_PENTIUMPRO,
441   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
442  {"pentium", PROCESSOR_PENTIUM,
443   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
444  {"pentiumpro",PROCESSOR_PENTIUMPRO,
445   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
446  {"pentiumii",	PROCESSOR_PENTIUMPRO,
447   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX},
448  {"pentiumiii",PROCESSOR_PENTIUMPRO,
449   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE},
450  {"pentium4", PROCESSOR_PENTIUM4,
451   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
452   |CpuMMX2|CpuSSE|CpuSSE2},
453  {"prescott", PROCESSOR_NOCONA,
454   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
455   |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
456  {"nocona", PROCESSOR_NOCONA,
457   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
458   |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
459  {"yonah", PROCESSOR_CORE,
460   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
461   |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
462  {"core", PROCESSOR_CORE,
463   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
464   |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
465  {"merom", PROCESSOR_CORE2,
466   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
467   |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
468  {"core2", PROCESSOR_CORE2,
469   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
470   |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
471  {"k6", PROCESSOR_K6,
472   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX},
473  {"k6_2", PROCESSOR_K6,
474   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow},
475  {"athlon", PROCESSOR_ATHLON,
476   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
477   |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
478  {"sledgehammer", PROCESSOR_K8,
479   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
480   |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
481  {"opteron", PROCESSOR_K8,
482   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
483   |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
484  {"k8", PROCESSOR_K8,
485   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
486   |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
487  {"amdfam10", PROCESSOR_AMDFAM10,
488   Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuSledgehammer
489   |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a
490   |CpuABM},
491  {".mmx", PROCESSOR_UNKNOWN,
492   CpuMMX},
493  {".sse", PROCESSOR_UNKNOWN,
494   CpuMMX|CpuMMX2|CpuSSE},
495  {".sse2", PROCESSOR_UNKNOWN,
496   CpuMMX|CpuMMX2|CpuSSE|CpuSSE2},
497  {".sse3", PROCESSOR_UNKNOWN,
498   CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
499  {".ssse3", PROCESSOR_UNKNOWN,
500   CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
501  {".sse4.1", PROCESSOR_UNKNOWN,
502   CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4_1},
503  {".sse4.2", PROCESSOR_UNKNOWN,
504   CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
505  {".sse4", PROCESSOR_UNKNOWN,
506   CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
507  {".3dnow", PROCESSOR_UNKNOWN,
508   CpuMMX|Cpu3dnow},
509  {".3dnowa", PROCESSOR_UNKNOWN,
510   CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
511  {".padlock", PROCESSOR_UNKNOWN,
512   CpuPadLock},
513  {".pacifica", PROCESSOR_UNKNOWN,
514   CpuSVME},
515  {".svme", PROCESSOR_UNKNOWN,
516   CpuSVME},
517  {".sse4a", PROCESSOR_UNKNOWN,
518   CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a},
519  {".abm", PROCESSOR_UNKNOWN,
520   CpuABM},
521  {".xsave", PROCESSOR_UNKNOWN,
522   CpuXSAVE}
523};
524
525const pseudo_typeS md_pseudo_table[] =
526{
527#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
528  {"align", s_align_bytes, 0},
529#else
530  {"align", s_align_ptwo, 0},
531#endif
532  {"arch", set_cpu_arch, 0},
533#ifndef I386COFF
534  {"bss", s_bss, 0},
535#endif
536  {"ffloat", float_cons, 'f'},
537  {"dfloat", float_cons, 'd'},
538  {"tfloat", float_cons, 'x'},
539  {"value", cons, 2},
540  {"slong", signed_cons, 4},
541  {"noopt", s_ignore, 0},
542  {"optim", s_ignore, 0},
543  {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
544  {"code16", set_code_flag, CODE_16BIT},
545  {"code32", set_code_flag, CODE_32BIT},
546  {"code64", set_code_flag, CODE_64BIT},
547  {"intel_syntax", set_intel_syntax, 1},
548  {"att_syntax", set_intel_syntax, 0},
549#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
550  {"largecomm", handle_large_common, 0},
551#else
552  {"file", (void (*) (int)) dwarf2_directive_file, 0},
553  {"loc", dwarf2_directive_loc, 0},
554  {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
555#endif
556#ifdef TE_PE
557  {"secrel32", pe_directive_secrel, 0},
558#endif
559  {0, 0, 0}
560};
561
562/* For interface with expression ().  */
563extern char *input_line_pointer;
564
565/* Hash table for instruction mnemonic lookup.  */
566static struct hash_control *op_hash;
567
568/* Hash table for register lookup.  */
569static struct hash_control *reg_hash;
570
571void
572i386_align_code (fragS *fragP, int count)
573{
574  /* Various efficient no-op patterns for aligning code labels.
575     Note: Don't try to assemble the instructions in the comments.
576     0L and 0w are not legal.  */
577  static const char f32_1[] =
578    {0x90};					/* nop			*/
579  static const char f32_2[] =
580    {0x66,0x90};				/* xchg %ax,%ax */
581  static const char f32_3[] =
582    {0x8d,0x76,0x00};				/* leal 0(%esi),%esi	*/
583  static const char f32_4[] =
584    {0x8d,0x74,0x26,0x00};			/* leal 0(%esi,1),%esi	*/
585  static const char f32_5[] =
586    {0x90,					/* nop			*/
587     0x8d,0x74,0x26,0x00};			/* leal 0(%esi,1),%esi	*/
588  static const char f32_6[] =
589    {0x8d,0xb6,0x00,0x00,0x00,0x00};		/* leal 0L(%esi),%esi	*/
590  static const char f32_7[] =
591    {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00};	/* leal 0L(%esi,1),%esi */
592  static const char f32_8[] =
593    {0x90,					/* nop			*/
594     0x8d,0xb4,0x26,0x00,0x00,0x00,0x00};	/* leal 0L(%esi,1),%esi */
595  static const char f32_9[] =
596    {0x89,0xf6,					/* movl %esi,%esi	*/
597     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
598  static const char f32_10[] =
599    {0x8d,0x76,0x00,				/* leal 0(%esi),%esi	*/
600     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
601  static const char f32_11[] =
602    {0x8d,0x74,0x26,0x00,			/* leal 0(%esi,1),%esi	*/
603     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
604  static const char f32_12[] =
605    {0x8d,0xb6,0x00,0x00,0x00,0x00,		/* leal 0L(%esi),%esi	*/
606     0x8d,0xbf,0x00,0x00,0x00,0x00};		/* leal 0L(%edi),%edi	*/
607  static const char f32_13[] =
608    {0x8d,0xb6,0x00,0x00,0x00,0x00,		/* leal 0L(%esi),%esi	*/
609     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
610  static const char f32_14[] =
611    {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00,	/* leal 0L(%esi,1),%esi */
612     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};	/* leal 0L(%edi,1),%edi */
613  static const char f32_15[] =
614    {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90,	/* jmp .+15; lotsa nops	*/
615     0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
616  static const char f16_3[] =
617    {0x8d,0x74,0x00};				/* lea 0(%esi),%esi	*/
618  static const char f16_4[] =
619    {0x8d,0xb4,0x00,0x00};			/* lea 0w(%si),%si	*/
620  static const char f16_5[] =
621    {0x90,					/* nop			*/
622     0x8d,0xb4,0x00,0x00};			/* lea 0w(%si),%si	*/
623  static const char f16_6[] =
624    {0x89,0xf6,					/* mov %si,%si		*/
625     0x8d,0xbd,0x00,0x00};			/* lea 0w(%di),%di	*/
626  static const char f16_7[] =
627    {0x8d,0x74,0x00,				/* lea 0(%si),%si	*/
628     0x8d,0xbd,0x00,0x00};			/* lea 0w(%di),%di	*/
629  static const char f16_8[] =
630    {0x8d,0xb4,0x00,0x00,			/* lea 0w(%si),%si	*/
631     0x8d,0xbd,0x00,0x00};			/* lea 0w(%di),%di	*/
632  static const char *const f32_patt[] = {
633    f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
634    f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
635  };
636  static const char *const f16_patt[] = {
637    f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
638    f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
639  };
640  /* nopl (%[re]ax) */
641  static const char alt_3[] =
642    {0x0f,0x1f,0x00};
643  /* nopl 0(%[re]ax) */
644  static const char alt_4[] =
645    {0x0f,0x1f,0x40,0x00};
646  /* nopl 0(%[re]ax,%[re]ax,1) */
647  static const char alt_5[] =
648    {0x0f,0x1f,0x44,0x00,0x00};
649  /* nopw 0(%[re]ax,%[re]ax,1) */
650  static const char alt_6[] =
651    {0x66,0x0f,0x1f,0x44,0x00,0x00};
652  /* nopl 0L(%[re]ax) */
653  static const char alt_7[] =
654    {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
655  /* nopl 0L(%[re]ax,%[re]ax,1) */
656  static const char alt_8[] =
657    {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
658  /* nopw 0L(%[re]ax,%[re]ax,1) */
659  static const char alt_9[] =
660    {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
661  /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
662  static const char alt_10[] =
663    {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
664  /* data16
665     nopw %cs:0L(%[re]ax,%[re]ax,1) */
666  static const char alt_long_11[] =
667    {0x66,
668     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
669  /* data16
670     data16
671     nopw %cs:0L(%[re]ax,%[re]ax,1) */
672  static const char alt_long_12[] =
673    {0x66,
674     0x66,
675     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
676  /* data16
677     data16
678     data16
679     nopw %cs:0L(%[re]ax,%[re]ax,1) */
680  static const char alt_long_13[] =
681    {0x66,
682     0x66,
683     0x66,
684     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
685  /* data16
686     data16
687     data16
688     data16
689     nopw %cs:0L(%[re]ax,%[re]ax,1) */
690  static const char alt_long_14[] =
691    {0x66,
692     0x66,
693     0x66,
694     0x66,
695     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
696  /* data16
697     data16
698     data16
699     data16
700     data16
701     nopw %cs:0L(%[re]ax,%[re]ax,1) */
702  static const char alt_long_15[] =
703    {0x66,
704     0x66,
705     0x66,
706     0x66,
707     0x66,
708     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
709  /* nopl 0(%[re]ax,%[re]ax,1)
710     nopw 0(%[re]ax,%[re]ax,1) */
711  static const char alt_short_11[] =
712    {0x0f,0x1f,0x44,0x00,0x00,
713     0x66,0x0f,0x1f,0x44,0x00,0x00};
714  /* nopw 0(%[re]ax,%[re]ax,1)
715     nopw 0(%[re]ax,%[re]ax,1) */
716  static const char alt_short_12[] =
717    {0x66,0x0f,0x1f,0x44,0x00,0x00,
718     0x66,0x0f,0x1f,0x44,0x00,0x00};
719  /* nopw 0(%[re]ax,%[re]ax,1)
720     nopl 0L(%[re]ax) */
721  static const char alt_short_13[] =
722    {0x66,0x0f,0x1f,0x44,0x00,0x00,
723     0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
724  /* nopl 0L(%[re]ax)
725     nopl 0L(%[re]ax) */
726  static const char alt_short_14[] =
727    {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
728     0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
729  /* nopl 0L(%[re]ax)
730     nopl 0L(%[re]ax,%[re]ax,1) */
731  static const char alt_short_15[] =
732    {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
733     0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
734  static const char *const alt_short_patt[] = {
735    f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
736    alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
737    alt_short_14, alt_short_15
738  };
739  static const char *const alt_long_patt[] = {
740    f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
741    alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
742    alt_long_14, alt_long_15
743  };
744
745  if (count <= 0 || count > 15)
746    return;
747
748  /* We need to decide which NOP sequence to use for 32bit and
749     64bit. When -mtune= is used:
750
751     1. For PROCESSOR_I486, PROCESSOR_PENTIUM and PROCESSOR_GENERIC32,
752     f32_patt will be used.
753     2. For PROCESSOR_K8 and PROCESSOR_AMDFAM10 in 64bit, NOPs with
754     0x66 prefix will be used.
755     3. For PROCESSOR_CORE2, alt_long_patt will be used.
756     4. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
757     PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_K6, PROCESSOR_ATHLON
758     and PROCESSOR_GENERIC64, alt_short_patt will be used.
759
760     When -mtune= isn't used, alt_short_patt will be used if
761     cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will be used.
762
763     When -march= or .arch is used, we can't use anything beyond
764     cpu_arch_isa_flags.   */
765
766  if (flag_code == CODE_16BIT)
767    {
768      memcpy (fragP->fr_literal + fragP->fr_fix,
769	      f16_patt[count - 1], count);
770      if (count > 8)
771	/* Adjust jump offset.  */
772	fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
773    }
774  else if (flag_code == CODE_64BIT && cpu_arch_tune == PROCESSOR_K8)
775    {
776      int i;
777      int nnops = (count + 3) / 4;
778      int len = count / nnops;
779      int remains = count - nnops * len;
780      int pos = 0;
781
782      /* The recommended way to pad 64bit code is to use NOPs preceded
783	 by maximally four 0x66 prefixes.  Balance the size of nops.  */
784      for (i = 0; i < remains; i++)
785	{
786	  memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
787	  fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
788	  pos += len + 1;
789	}
790      for (; i < nnops; i++)
791	{
792	  memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
793	  fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
794	  pos += len;
795	}
796    }
797  else
798    {
799      const char *const *patt = NULL;
800
801      if (cpu_arch_isa == PROCESSOR_UNKNOWN)
802	{
803	  /* PROCESSOR_UNKNOWN means that all ISAs may be used.  */
804	  switch (cpu_arch_tune)
805	    {
806	    case PROCESSOR_UNKNOWN:
807	      /* We use cpu_arch_isa_flags to check if we SHOULD
808		 optimize for Cpu686.  */
809	      if ((cpu_arch_isa_flags & Cpu686) != 0)
810		patt = alt_short_patt;
811	      else
812		patt = f32_patt;
813	      break;
814	    case PROCESSOR_CORE2:
815	      patt = alt_long_patt;
816	      break;
817	    case PROCESSOR_PENTIUMPRO:
818	    case PROCESSOR_PENTIUM4:
819	    case PROCESSOR_NOCONA:
820	    case PROCESSOR_CORE:
821	    case PROCESSOR_K6:
822	    case PROCESSOR_ATHLON:
823	    case PROCESSOR_K8:
824	    case PROCESSOR_GENERIC64:
825	    case PROCESSOR_AMDFAM10:
826	      patt = alt_short_patt;
827	      break;
828	    case PROCESSOR_I486:
829	    case PROCESSOR_PENTIUM:
830	    case PROCESSOR_GENERIC32:
831	      patt = f32_patt;
832	      break;
833	    }
834	}
835      else
836	{
837	  switch (cpu_arch_tune)
838	    {
839	    case PROCESSOR_UNKNOWN:
840	      /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
841		 PROCESSOR_UNKNOWN.  */
842	      abort ();
843	      break;
844
845	    case PROCESSOR_I486:
846	    case PROCESSOR_PENTIUM:
847	    case PROCESSOR_PENTIUMPRO:
848	    case PROCESSOR_PENTIUM4:
849	    case PROCESSOR_NOCONA:
850	    case PROCESSOR_CORE:
851	    case PROCESSOR_K6:
852	    case PROCESSOR_ATHLON:
853	    case PROCESSOR_K8:
854	    case PROCESSOR_AMDFAM10:
855	    case PROCESSOR_GENERIC32:
856	      /* We use cpu_arch_isa_flags to check if we CAN optimize
857		 for Cpu686.  */
858	      if ((cpu_arch_isa_flags & Cpu686) != 0)
859		patt = alt_short_patt;
860	      else
861		patt = f32_patt;
862	      break;
863	    case PROCESSOR_CORE2:
864	      if ((cpu_arch_isa_flags & Cpu686) != 0)
865		patt = alt_long_patt;
866	      else
867		patt = f32_patt;
868	      break;
869	    case PROCESSOR_GENERIC64:
870	      patt = alt_short_patt;
871	      break;
872	    }
873	}
874
875      memcpy (fragP->fr_literal + fragP->fr_fix,
876	      patt[count - 1], count);
877    }
878  fragP->fr_var = count;
879}
880
881static INLINE unsigned int
882mode_from_disp_size (unsigned int t)
883{
884  return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
885}
886
887static INLINE int
888fits_in_signed_byte (offsetT num)
889{
890  return (num >= -128) && (num <= 127);
891}
892
893static INLINE int
894fits_in_unsigned_byte (offsetT num)
895{
896  return (num & 0xff) == num;
897}
898
899static INLINE int
900fits_in_unsigned_word (offsetT num)
901{
902  return (num & 0xffff) == num;
903}
904
905static INLINE int
906fits_in_signed_word (offsetT num)
907{
908  return (-32768 <= num) && (num <= 32767);
909}
910
911static INLINE int
912fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
913{
914#ifndef BFD64
915  return 1;
916#else
917  return (!(((offsetT) -1 << 31) & num)
918	  || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
919#endif
920}				/* fits_in_signed_long() */
921
922static INLINE int
923fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
924{
925#ifndef BFD64
926  return 1;
927#else
928  return (num & (((offsetT) 2 << 31) - 1)) == num;
929#endif
930}				/* fits_in_unsigned_long() */
931
932static unsigned int
933smallest_imm_type (offsetT num)
934{
935  if (cpu_arch_flags != (Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
936    {
937      /* This code is disabled on the 486 because all the Imm1 forms
938	 in the opcode table are slower on the i486.  They're the
939	 versions with the implicitly specified single-position
940	 displacement, which has another syntax if you really want to
941	 use that form.  */
942      if (num == 1)
943	return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
944    }
945  return (fits_in_signed_byte (num)
946	  ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
947	  : fits_in_unsigned_byte (num)
948	  ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
949	  : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
950	  ? (Imm16 | Imm32 | Imm32S | Imm64)
951	  : fits_in_signed_long (num)
952	  ? (Imm32 | Imm32S | Imm64)
953	  : fits_in_unsigned_long (num)
954	  ? (Imm32 | Imm64)
955	  : Imm64);
956}
957
958static offsetT
959offset_in_range (offsetT val, int size)
960{
961  addressT mask;
962
963  switch (size)
964    {
965    case 1: mask = ((addressT) 1 <<  8) - 1; break;
966    case 2: mask = ((addressT) 1 << 16) - 1; break;
967    case 4: mask = ((addressT) 2 << 31) - 1; break;
968#ifdef BFD64
969    case 8: mask = ((addressT) 2 << 63) - 1; break;
970#endif
971    default: abort ();
972    }
973
974  /* If BFD64, sign extend val.  */
975  if (!use_rela_relocations)
976    if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
977      val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
978
979  if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
980    {
981      char buf1[40], buf2[40];
982
983      sprint_value (buf1, val);
984      sprint_value (buf2, val & mask);
985      as_warn (_("%s shortened to %s"), buf1, buf2);
986    }
987  return val & mask;
988}
989
990/* Returns 0 if attempting to add a prefix where one from the same
991   class already exists, 1 if non rep/repne added, 2 if rep/repne
992   added.  */
993static int
994add_prefix (unsigned int prefix)
995{
996  int ret = 1;
997  unsigned int q;
998
999  if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1000      && flag_code == CODE_64BIT)
1001    {
1002      if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1003	  || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1004	      && (prefix & (REX_R | REX_X | REX_B))))
1005	ret = 0;
1006      q = REX_PREFIX;
1007    }
1008  else
1009    {
1010      switch (prefix)
1011	{
1012	default:
1013	  abort ();
1014
1015	case CS_PREFIX_OPCODE:
1016	case DS_PREFIX_OPCODE:
1017	case ES_PREFIX_OPCODE:
1018	case FS_PREFIX_OPCODE:
1019	case GS_PREFIX_OPCODE:
1020	case SS_PREFIX_OPCODE:
1021	  q = SEG_PREFIX;
1022	  break;
1023
1024	case REPNE_PREFIX_OPCODE:
1025	case REPE_PREFIX_OPCODE:
1026	  ret = 2;
1027	  /* fall thru */
1028	case LOCK_PREFIX_OPCODE:
1029	  q = LOCKREP_PREFIX;
1030	  break;
1031
1032	case FWAIT_OPCODE:
1033	  q = WAIT_PREFIX;
1034	  break;
1035
1036	case ADDR_PREFIX_OPCODE:
1037	  q = ADDR_PREFIX;
1038	  break;
1039
1040	case DATA_PREFIX_OPCODE:
1041	  q = DATA_PREFIX;
1042	  break;
1043	}
1044      if (i.prefix[q] != 0)
1045	ret = 0;
1046    }
1047
1048  if (ret)
1049    {
1050      if (!i.prefix[q])
1051	++i.prefixes;
1052      i.prefix[q] |= prefix;
1053    }
1054  else
1055    as_bad (_("same type of prefix used twice"));
1056
1057  return ret;
1058}
1059
1060static void
1061set_code_flag (int value)
1062{
1063  flag_code = value;
1064  cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1065  cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1066  if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
1067    {
1068      as_bad (_("64bit mode not supported on this CPU."));
1069    }
1070  if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
1071    {
1072      as_bad (_("32bit mode not supported on this CPU."));
1073    }
1074  stackop_size = '\0';
1075}
1076
1077static void
1078set_16bit_gcc_code_flag (int new_code_flag)
1079{
1080  flag_code = new_code_flag;
1081  cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1082  cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1083  stackop_size = LONG_MNEM_SUFFIX;
1084}
1085
1086static void
1087set_intel_syntax (int syntax_flag)
1088{
1089  /* Find out if register prefixing is specified.  */
1090  int ask_naked_reg = 0;
1091
1092  SKIP_WHITESPACE ();
1093  if (!is_end_of_line[(unsigned char) *input_line_pointer])
1094    {
1095      char *string = input_line_pointer;
1096      int e = get_symbol_end ();
1097
1098      if (strcmp (string, "prefix") == 0)
1099	ask_naked_reg = 1;
1100      else if (strcmp (string, "noprefix") == 0)
1101	ask_naked_reg = -1;
1102      else
1103	as_bad (_("bad argument to syntax directive."));
1104      *input_line_pointer = e;
1105    }
1106  demand_empty_rest_of_line ();
1107
1108  intel_syntax = syntax_flag;
1109
1110  if (ask_naked_reg == 0)
1111    allow_naked_reg = (intel_syntax
1112		       && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1113  else
1114    allow_naked_reg = (ask_naked_reg < 0);
1115
1116  identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1117  identifier_chars['$'] = intel_syntax ? '$' : 0;
1118  register_prefix = allow_naked_reg ? "" : "%";
1119}
1120
1121static void
1122set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1123{
1124  SKIP_WHITESPACE ();
1125
1126  if (!is_end_of_line[(unsigned char) *input_line_pointer])
1127    {
1128      char *string = input_line_pointer;
1129      int e = get_symbol_end ();
1130      unsigned int i;
1131
1132      for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1133	{
1134	  if (strcmp (string, cpu_arch[i].name) == 0)
1135	    {
1136	      if (*string != '.')
1137		{
1138		  cpu_arch_name = cpu_arch[i].name;
1139		  cpu_sub_arch_name = NULL;
1140		  cpu_arch_flags = (cpu_arch[i].flags
1141				    | (flag_code == CODE_64BIT
1142				       ? Cpu64 : CpuNo64));
1143		  cpu_arch_isa = cpu_arch[i].type;
1144		  cpu_arch_isa_flags = cpu_arch[i].flags;
1145		  if (!cpu_arch_tune_set)
1146		    {
1147		      cpu_arch_tune = cpu_arch_isa;
1148		      cpu_arch_tune_flags = cpu_arch_isa_flags;
1149		    }
1150		  break;
1151		}
1152	      if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
1153		{
1154		  cpu_sub_arch_name = cpu_arch[i].name;
1155		  cpu_arch_flags |= cpu_arch[i].flags;
1156		}
1157	      *input_line_pointer = e;
1158	      demand_empty_rest_of_line ();
1159	      return;
1160	    }
1161	}
1162      if (i >= ARRAY_SIZE (cpu_arch))
1163	as_bad (_("no such architecture: `%s'"), string);
1164
1165      *input_line_pointer = e;
1166    }
1167  else
1168    as_bad (_("missing cpu architecture"));
1169
1170  no_cond_jump_promotion = 0;
1171  if (*input_line_pointer == ','
1172      && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1173    {
1174      char *string = ++input_line_pointer;
1175      int e = get_symbol_end ();
1176
1177      if (strcmp (string, "nojumps") == 0)
1178	no_cond_jump_promotion = 1;
1179      else if (strcmp (string, "jumps") == 0)
1180	;
1181      else
1182	as_bad (_("no such architecture modifier: `%s'"), string);
1183
1184      *input_line_pointer = e;
1185    }
1186
1187  demand_empty_rest_of_line ();
1188}
1189
1190unsigned long
1191i386_mach ()
1192{
1193  if (!strcmp (default_arch, "x86_64"))
1194    return bfd_mach_x86_64;
1195  else if (!strcmp (default_arch, "i386"))
1196    return bfd_mach_i386_i386;
1197  else
1198    as_fatal (_("Unknown architecture"));
1199}
1200
1201void
1202md_begin ()
1203{
1204  const char *hash_err;
1205
1206  /* Initialize op_hash hash table.  */
1207  op_hash = hash_new ();
1208
1209  {
1210    const template *optab;
1211    templates *core_optab;
1212
1213    /* Setup for loop.  */
1214    optab = i386_optab;
1215    core_optab = (templates *) xmalloc (sizeof (templates));
1216    core_optab->start = optab;
1217
1218    while (1)
1219      {
1220	++optab;
1221	if (optab->name == NULL
1222	    || strcmp (optab->name, (optab - 1)->name) != 0)
1223	  {
1224	    /* different name --> ship out current template list;
1225	       add to hash table; & begin anew.  */
1226	    core_optab->end = optab;
1227	    hash_err = hash_insert (op_hash,
1228				    (optab - 1)->name,
1229				    (PTR) core_optab);
1230	    if (hash_err)
1231	      {
1232		as_fatal (_("Internal Error:  Can't hash %s: %s"),
1233			  (optab - 1)->name,
1234			  hash_err);
1235	      }
1236	    if (optab->name == NULL)
1237	      break;
1238	    core_optab = (templates *) xmalloc (sizeof (templates));
1239	    core_optab->start = optab;
1240	  }
1241      }
1242  }
1243
1244  /* Initialize reg_hash hash table.  */
1245  reg_hash = hash_new ();
1246  {
1247    const reg_entry *regtab;
1248    unsigned int regtab_size = i386_regtab_size;
1249
1250    for (regtab = i386_regtab; regtab_size--; regtab++)
1251      {
1252	hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1253	if (hash_err)
1254	  as_fatal (_("Internal Error:  Can't hash %s: %s"),
1255		    regtab->reg_name,
1256		    hash_err);
1257      }
1258  }
1259
1260  /* Fill in lexical tables:  mnemonic_chars, operand_chars.  */
1261  {
1262    int c;
1263    char *p;
1264
1265    for (c = 0; c < 256; c++)
1266      {
1267	if (ISDIGIT (c))
1268	  {
1269	    digit_chars[c] = c;
1270	    mnemonic_chars[c] = c;
1271	    register_chars[c] = c;
1272	    operand_chars[c] = c;
1273	  }
1274	else if (ISLOWER (c))
1275	  {
1276	    mnemonic_chars[c] = c;
1277	    register_chars[c] = c;
1278	    operand_chars[c] = c;
1279	  }
1280	else if (ISUPPER (c))
1281	  {
1282	    mnemonic_chars[c] = TOLOWER (c);
1283	    register_chars[c] = mnemonic_chars[c];
1284	    operand_chars[c] = c;
1285	  }
1286
1287	if (ISALPHA (c) || ISDIGIT (c))
1288	  identifier_chars[c] = c;
1289	else if (c >= 128)
1290	  {
1291	    identifier_chars[c] = c;
1292	    operand_chars[c] = c;
1293	  }
1294      }
1295
1296#ifdef LEX_AT
1297    identifier_chars['@'] = '@';
1298#endif
1299#ifdef LEX_QM
1300    identifier_chars['?'] = '?';
1301    operand_chars['?'] = '?';
1302#endif
1303    digit_chars['-'] = '-';
1304    mnemonic_chars['-'] = '-';
1305    mnemonic_chars['.'] = '.';
1306    identifier_chars['_'] = '_';
1307    identifier_chars['.'] = '.';
1308
1309    for (p = operand_special_chars; *p != '\0'; p++)
1310      operand_chars[(unsigned char) *p] = *p;
1311  }
1312
1313#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1314  if (IS_ELF)
1315    {
1316      record_alignment (text_section, 2);
1317      record_alignment (data_section, 2);
1318      record_alignment (bss_section, 2);
1319    }
1320#endif
1321
1322  if (flag_code == CODE_64BIT)
1323    {
1324      x86_dwarf2_return_column = 16;
1325      x86_cie_data_alignment = -8;
1326    }
1327  else
1328    {
1329      x86_dwarf2_return_column = 8;
1330      x86_cie_data_alignment = -4;
1331    }
1332}
1333
1334void
1335i386_print_statistics (FILE *file)
1336{
1337  hash_print_statistics (file, "i386 opcode", op_hash);
1338  hash_print_statistics (file, "i386 register", reg_hash);
1339}
1340
1341#ifdef DEBUG386
1342
1343/* Debugging routines for md_assemble.  */
1344static void pte (template *);
1345static void pt (unsigned int);
1346static void pe (expressionS *);
1347static void ps (symbolS *);
1348
1349static void
1350pi (char *line, i386_insn *x)
1351{
1352  unsigned int i;
1353
1354  fprintf (stdout, "%s: template ", line);
1355  pte (&x->tm);
1356  fprintf (stdout, "  address: base %s  index %s  scale %x\n",
1357	   x->base_reg ? x->base_reg->reg_name : "none",
1358	   x->index_reg ? x->index_reg->reg_name : "none",
1359	   x->log2_scale_factor);
1360  fprintf (stdout, "  modrm:  mode %x  reg %x  reg/mem %x\n",
1361	   x->rm.mode, x->rm.reg, x->rm.regmem);
1362  fprintf (stdout, "  sib:  base %x  index %x  scale %x\n",
1363	   x->sib.base, x->sib.index, x->sib.scale);
1364  fprintf (stdout, "  rex: 64bit %x  extX %x  extY %x  extZ %x\n",
1365	   (x->rex & REX_W) != 0,
1366	   (x->rex & REX_R) != 0,
1367	   (x->rex & REX_X) != 0,
1368	   (x->rex & REX_B) != 0);
1369  for (i = 0; i < x->operands; i++)
1370    {
1371      fprintf (stdout, "    #%d:  ", i + 1);
1372      pt (x->types[i]);
1373      fprintf (stdout, "\n");
1374      if (x->types[i]
1375	  & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1376	fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1377      if (x->types[i] & Imm)
1378	pe (x->op[i].imms);
1379      if (x->types[i] & Disp)
1380	pe (x->op[i].disps);
1381    }
1382}
1383
1384static void
1385pte (template *t)
1386{
1387  unsigned int i;
1388  fprintf (stdout, " %d operands ", t->operands);
1389  fprintf (stdout, "opcode %x ", t->base_opcode);
1390  if (t->extension_opcode != None)
1391    fprintf (stdout, "ext %x ", t->extension_opcode);
1392  if (t->opcode_modifier & D)
1393    fprintf (stdout, "D");
1394  if (t->opcode_modifier & W)
1395    fprintf (stdout, "W");
1396  fprintf (stdout, "\n");
1397  for (i = 0; i < t->operands; i++)
1398    {
1399      fprintf (stdout, "    #%d type ", i + 1);
1400      pt (t->operand_types[i]);
1401      fprintf (stdout, "\n");
1402    }
1403}
1404
1405static void
1406pe (expressionS *e)
1407{
1408  fprintf (stdout, "    operation     %d\n", e->X_op);
1409  fprintf (stdout, "    add_number    %ld (%lx)\n",
1410	   (long) e->X_add_number, (long) e->X_add_number);
1411  if (e->X_add_symbol)
1412    {
1413      fprintf (stdout, "    add_symbol    ");
1414      ps (e->X_add_symbol);
1415      fprintf (stdout, "\n");
1416    }
1417  if (e->X_op_symbol)
1418    {
1419      fprintf (stdout, "    op_symbol    ");
1420      ps (e->X_op_symbol);
1421      fprintf (stdout, "\n");
1422    }
1423}
1424
1425static void
1426ps (symbolS *s)
1427{
1428  fprintf (stdout, "%s type %s%s",
1429	   S_GET_NAME (s),
1430	   S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1431	   segment_name (S_GET_SEGMENT (s)));
1432}
1433
1434static struct type_name
1435  {
1436    unsigned int mask;
1437    char *tname;
1438  }
1439const type_names[] =
1440{
1441  { Reg8, "r8" },
1442  { Reg16, "r16" },
1443  { Reg32, "r32" },
1444  { Reg64, "r64" },
1445  { Imm8, "i8" },
1446  { Imm8S, "i8s" },
1447  { Imm16, "i16" },
1448  { Imm32, "i32" },
1449  { Imm32S, "i32s" },
1450  { Imm64, "i64" },
1451  { Imm1, "i1" },
1452  { BaseIndex, "BaseIndex" },
1453  { Disp8, "d8" },
1454  { Disp16, "d16" },
1455  { Disp32, "d32" },
1456  { Disp32S, "d32s" },
1457  { Disp64, "d64" },
1458  { InOutPortReg, "InOutPortReg" },
1459  { ShiftCount, "ShiftCount" },
1460  { Control, "control reg" },
1461  { Test, "test reg" },
1462  { Debug, "debug reg" },
1463  { FloatReg, "FReg" },
1464  { FloatAcc, "FAcc" },
1465  { SReg2, "SReg2" },
1466  { SReg3, "SReg3" },
1467  { Acc, "Acc" },
1468  { JumpAbsolute, "Jump Absolute" },
1469  { RegMMX, "rMMX" },
1470  { RegXMM, "rXMM" },
1471  { EsSeg, "es" },
1472  { 0, "" }
1473};
1474
1475static void
1476pt (t)
1477     unsigned int t;
1478{
1479  const struct type_name *ty;
1480
1481  for (ty = type_names; ty->mask; ty++)
1482    if (t & ty->mask)
1483      fprintf (stdout, "%s, ", ty->tname);
1484  fflush (stdout);
1485}
1486
1487#endif /* DEBUG386 */
1488
1489static bfd_reloc_code_real_type
1490reloc (unsigned int size,
1491       int pcrel,
1492       int sign,
1493       bfd_reloc_code_real_type other)
1494{
1495  if (other != NO_RELOC)
1496    {
1497      reloc_howto_type *reloc;
1498
1499      if (size == 8)
1500	switch (other)
1501	  {
1502	  case BFD_RELOC_X86_64_GOT32:
1503	    return BFD_RELOC_X86_64_GOT64;
1504	    break;
1505	  case BFD_RELOC_X86_64_PLTOFF64:
1506	    return BFD_RELOC_X86_64_PLTOFF64;
1507	    break;
1508	  case BFD_RELOC_X86_64_GOTPC32:
1509	    other = BFD_RELOC_X86_64_GOTPC64;
1510	    break;
1511	  case BFD_RELOC_X86_64_GOTPCREL:
1512	    other = BFD_RELOC_X86_64_GOTPCREL64;
1513	    break;
1514	  case BFD_RELOC_X86_64_TPOFF32:
1515	    other = BFD_RELOC_X86_64_TPOFF64;
1516	    break;
1517	  case BFD_RELOC_X86_64_DTPOFF32:
1518	    other = BFD_RELOC_X86_64_DTPOFF64;
1519	    break;
1520	  default:
1521	    break;
1522	  }
1523
1524      /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless.  */
1525      if (size == 4 && flag_code != CODE_64BIT)
1526	sign = -1;
1527
1528      reloc = bfd_reloc_type_lookup (stdoutput, other);
1529      if (!reloc)
1530	as_bad (_("unknown relocation (%u)"), other);
1531      else if (size != bfd_get_reloc_size (reloc))
1532	as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1533		bfd_get_reloc_size (reloc),
1534		size);
1535      else if (pcrel && !reloc->pc_relative)
1536	as_bad (_("non-pc-relative relocation for pc-relative field"));
1537      else if ((reloc->complain_on_overflow == complain_overflow_signed
1538		&& !sign)
1539	       || (reloc->complain_on_overflow == complain_overflow_unsigned
1540		   && sign > 0))
1541	as_bad (_("relocated field and relocation type differ in signedness"));
1542      else
1543	return other;
1544      return NO_RELOC;
1545    }
1546
1547  if (pcrel)
1548    {
1549      if (!sign)
1550	as_bad (_("there are no unsigned pc-relative relocations"));
1551      switch (size)
1552	{
1553	case 1: return BFD_RELOC_8_PCREL;
1554	case 2: return BFD_RELOC_16_PCREL;
1555	case 4: return BFD_RELOC_32_PCREL;
1556	case 8: return BFD_RELOC_64_PCREL;
1557	}
1558      as_bad (_("cannot do %u byte pc-relative relocation"), size);
1559    }
1560  else
1561    {
1562      if (sign > 0)
1563	switch (size)
1564	  {
1565	  case 4: return BFD_RELOC_X86_64_32S;
1566	  }
1567      else
1568	switch (size)
1569	  {
1570	  case 1: return BFD_RELOC_8;
1571	  case 2: return BFD_RELOC_16;
1572	  case 4: return BFD_RELOC_32;
1573	  case 8: return BFD_RELOC_64;
1574	  }
1575      as_bad (_("cannot do %s %u byte relocation"),
1576	      sign > 0 ? "signed" : "unsigned", size);
1577    }
1578
1579  abort ();
1580  return BFD_RELOC_NONE;
1581}
1582
1583/* Here we decide which fixups can be adjusted to make them relative to
1584   the beginning of the section instead of the symbol.  Basically we need
1585   to make sure that the dynamic relocations are done correctly, so in
1586   some cases we force the original symbol to be used.  */
1587
1588int
1589tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
1590{
1591#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1592  if (!IS_ELF)
1593    return 1;
1594
1595  /* Don't adjust pc-relative references to merge sections in 64-bit
1596     mode.  */
1597  if (use_rela_relocations
1598      && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1599      && fixP->fx_pcrel)
1600    return 0;
1601
1602  /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1603     and changed later by validate_fix.  */
1604  if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1605      && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1606    return 0;
1607
1608  /* adjust_reloc_syms doesn't know about the GOT.  */
1609  if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1610      || fixP->fx_r_type == BFD_RELOC_386_PLT32
1611      || fixP->fx_r_type == BFD_RELOC_386_GOT32
1612      || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1613      || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1614      || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1615      || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1616      || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1617      || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1618      || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1619      || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1620      || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
1621      || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
1622      || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1623      || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1624      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1625      || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1626      || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1627      || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1628      || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
1629      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1630      || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1631      || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1632      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
1633      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
1634      || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
1635      || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1636      || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1637    return 0;
1638#endif
1639  return 1;
1640}
1641
1642static int
1643intel_float_operand (const char *mnemonic)
1644{
1645  /* Note that the value returned is meaningful only for opcodes with (memory)
1646     operands, hence the code here is free to improperly handle opcodes that
1647     have no operands (for better performance and smaller code). */
1648
1649  if (mnemonic[0] != 'f')
1650    return 0; /* non-math */
1651
1652  switch (mnemonic[1])
1653    {
1654    /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1655       the fs segment override prefix not currently handled because no
1656       call path can make opcodes without operands get here */
1657    case 'i':
1658      return 2 /* integer op */;
1659    case 'l':
1660      if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1661	return 3; /* fldcw/fldenv */
1662      break;
1663    case 'n':
1664      if (mnemonic[2] != 'o' /* fnop */)
1665	return 3; /* non-waiting control op */
1666      break;
1667    case 'r':
1668      if (mnemonic[2] == 's')
1669	return 3; /* frstor/frstpm */
1670      break;
1671    case 's':
1672      if (mnemonic[2] == 'a')
1673	return 3; /* fsave */
1674      if (mnemonic[2] == 't')
1675	{
1676	  switch (mnemonic[3])
1677	    {
1678	    case 'c': /* fstcw */
1679	    case 'd': /* fstdw */
1680	    case 'e': /* fstenv */
1681	    case 's': /* fsts[gw] */
1682	      return 3;
1683	    }
1684	}
1685      break;
1686    case 'x':
1687      if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1688	return 0; /* fxsave/fxrstor are not really math ops */
1689      break;
1690    }
1691
1692  return 1;
1693}
1694
1695/* This is the guts of the machine-dependent assembler.  LINE points to a
1696   machine dependent instruction.  This function is supposed to emit
1697   the frags/bytes it assembles to.  */
1698
1699void
1700md_assemble (line)
1701     char *line;
1702{
1703  int j;
1704  char mnemonic[MAX_MNEM_SIZE];
1705
1706  /* Initialize globals.  */
1707  memset (&i, '\0', sizeof (i));
1708  for (j = 0; j < MAX_OPERANDS; j++)
1709    i.reloc[j] = NO_RELOC;
1710  memset (disp_expressions, '\0', sizeof (disp_expressions));
1711  memset (im_expressions, '\0', sizeof (im_expressions));
1712  save_stack_p = save_stack;
1713
1714  /* First parse an instruction mnemonic & call i386_operand for the operands.
1715     We assume that the scrubber has arranged it so that line[0] is the valid
1716     start of a (possibly prefixed) mnemonic.  */
1717
1718  line = parse_insn (line, mnemonic);
1719  if (line == NULL)
1720    return;
1721
1722  line = parse_operands (line, mnemonic);
1723  if (line == NULL)
1724    return;
1725
1726  /* The order of the immediates should be reversed
1727     for 2 immediates extrq and insertq instructions */
1728  if ((i.imm_operands == 2)
1729      && ((strcmp (mnemonic, "extrq") == 0)
1730	  || (strcmp (mnemonic, "insertq") == 0)))
1731    {
1732      swap_2_operands (0, 1);
1733      /* "extrq" and insertq" are the only two instructions whose operands
1734	 have to be reversed even though they have two immediate operands.
1735      */
1736      if (intel_syntax)
1737	swap_operands ();
1738    }
1739
1740  /* Now we've parsed the mnemonic into a set of templates, and have the
1741     operands at hand.  */
1742
1743  /* All intel opcodes have reversed operands except for "bound" and
1744     "enter".  We also don't reverse intersegment "jmp" and "call"
1745     instructions with 2 immediate operands so that the immediate segment
1746     precedes the offset, as it does when in AT&T mode. */
1747  if (intel_syntax
1748      && i.operands > 1
1749      && (strcmp (mnemonic, "bound") != 0)
1750      && (strcmp (mnemonic, "invlpga") != 0)
1751      && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1752    swap_operands ();
1753
1754  if (i.imm_operands)
1755    optimize_imm ();
1756
1757  /* Don't optimize displacement for movabs since it only takes 64bit
1758     displacement.  */
1759  if (i.disp_operands
1760      && (flag_code != CODE_64BIT
1761	  || strcmp (mnemonic, "movabs") != 0))
1762    optimize_disp ();
1763
1764  /* Next, we find a template that matches the given insn,
1765     making sure the overlap of the given operands types is consistent
1766     with the template operand types.  */
1767
1768  if (!match_template ())
1769    return;
1770
1771  if (intel_syntax)
1772    {
1773      /* Undo SYSV386_COMPAT brokenness when in Intel mode.  See i386.h  */
1774      if (SYSV386_COMPAT
1775	  && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1776	i.tm.base_opcode ^= Opcode_FloatR;
1777
1778      /* Zap movzx and movsx suffix.  The suffix may have been set from
1779	 "word ptr" or "byte ptr" on the source operand, but we'll use
1780	 the suffix later to choose the destination register.  */
1781      if ((i.tm.base_opcode & ~9) == 0x0fb6)
1782	{
1783	  if (i.reg_operands < 2
1784	      && !i.suffix
1785	      && (~i.tm.opcode_modifier
1786		  & (No_bSuf
1787		     | No_wSuf
1788		     | No_lSuf
1789		     | No_sSuf
1790		     | No_xSuf
1791		     | No_qSuf)))
1792	    as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1793
1794	  i.suffix = 0;
1795	}
1796    }
1797
1798  if (i.tm.opcode_modifier & FWait)
1799    if (!add_prefix (FWAIT_OPCODE))
1800      return;
1801
1802  /* Check string instruction segment overrides.  */
1803  if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1804    {
1805      if (!check_string ())
1806	return;
1807    }
1808
1809  if (!process_suffix ())
1810    return;
1811
1812  /* Make still unresolved immediate matches conform to size of immediate
1813     given in i.suffix.  */
1814  if (!finalize_imm ())
1815    return;
1816
1817  if (i.types[0] & Imm1)
1818    i.imm_operands = 0;	/* kludge for shift insns.  */
1819  if (i.types[0] & ImplicitRegister)
1820    i.reg_operands--;
1821  if (i.types[1] & ImplicitRegister)
1822    i.reg_operands--;
1823  if (i.types[2] & ImplicitRegister)
1824    i.reg_operands--;
1825
1826  if (i.tm.opcode_modifier & ImmExt)
1827    {
1828      expressionS *exp;
1829
1830      if ((i.tm.cpu_flags & (CpuSSE3|CpuSMAP)) && i.operands > 0)
1831	{
1832	  /* Streaming SIMD extensions 3 Instructions have the fixed
1833	     operands with an opcode suffix which is coded in the same
1834	     place as an 8-bit immediate field would be. Here we check
1835	     those operands and remove them afterwards.  */
1836	  unsigned int x;
1837
1838	  for (x = 0; x < i.operands; x++)
1839	    if (i.op[x].regs->reg_num != x)
1840	      as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1841		      register_prefix,
1842		      i.op[x].regs->reg_name,
1843		      x + 1,
1844		      i.tm.name);
1845	  i.operands = 0;
1846 	}
1847
1848      /* These AMD 3DNow! and Intel Katmai New Instructions have an
1849	 opcode suffix which is coded in the same place as an 8-bit
1850	 immediate field would be.  Here we fake an 8-bit immediate
1851	 operand from the opcode suffix stored in tm.extension_opcode.  */
1852
1853      assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1854
1855      exp = &im_expressions[i.imm_operands++];
1856      i.op[i.operands].imms = exp;
1857      i.types[i.operands++] = Imm8;
1858      exp->X_op = O_constant;
1859      exp->X_add_number = i.tm.extension_opcode;
1860      i.tm.extension_opcode = None;
1861    }
1862
1863  /* For insns with operands there are more diddles to do to the opcode.  */
1864  if (i.operands)
1865    {
1866      if (!process_operands ())
1867	return;
1868    }
1869  else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1870    {
1871      /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc.  */
1872      as_warn (_("translating to `%sp'"), i.tm.name);
1873    }
1874
1875  /* Handle conversion of 'int $3' --> special int3 insn.  */
1876  if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1877    {
1878      i.tm.base_opcode = INT3_OPCODE;
1879      i.imm_operands = 0;
1880    }
1881
1882  if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1883      && i.op[0].disps->X_op == O_constant)
1884    {
1885      /* Convert "jmp constant" (and "call constant") to a jump (call) to
1886	 the absolute address given by the constant.  Since ix86 jumps and
1887	 calls are pc relative, we need to generate a reloc.  */
1888      i.op[0].disps->X_add_symbol = &abs_symbol;
1889      i.op[0].disps->X_op = O_symbol;
1890    }
1891
1892  if ((i.tm.opcode_modifier & Rex64) != 0)
1893    i.rex |= REX_W;
1894
1895  /* For 8 bit registers we need an empty rex prefix.  Also if the
1896     instruction already has a prefix, we need to convert old
1897     registers to new ones.  */
1898
1899  if (((i.types[0] & Reg8) != 0
1900       && (i.op[0].regs->reg_flags & RegRex64) != 0)
1901      || ((i.types[1] & Reg8) != 0
1902	  && (i.op[1].regs->reg_flags & RegRex64) != 0)
1903      || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1904	  && i.rex != 0))
1905    {
1906      int x;
1907
1908      i.rex |= REX_OPCODE;
1909      for (x = 0; x < 2; x++)
1910	{
1911	  /* Look for 8 bit operand that uses old registers.  */
1912	  if ((i.types[x] & Reg8) != 0
1913	      && (i.op[x].regs->reg_flags & RegRex64) == 0)
1914	    {
1915	      /* In case it is "hi" register, give up.  */
1916	      if (i.op[x].regs->reg_num > 3)
1917		as_bad (_("can't encode register '%s%s' in an "
1918			  "instruction requiring REX prefix."),
1919			register_prefix, i.op[x].regs->reg_name);
1920
1921	      /* Otherwise it is equivalent to the extended register.
1922		 Since the encoding doesn't change this is merely
1923		 cosmetic cleanup for debug output.  */
1924
1925	      i.op[x].regs = i.op[x].regs + 8;
1926	    }
1927	}
1928    }
1929
1930  if (i.rex != 0)
1931    add_prefix (REX_OPCODE | i.rex);
1932
1933  /* We are ready to output the insn.  */
1934  output_insn ();
1935}
1936
1937static char *
1938parse_insn (char *line, char *mnemonic)
1939{
1940  char *l = line;
1941  char *token_start = l;
1942  char *mnem_p;
1943  int supported;
1944  const template *t;
1945
1946  /* Non-zero if we found a prefix only acceptable with string insns.  */
1947  const char *expecting_string_instruction = NULL;
1948
1949  while (1)
1950    {
1951      mnem_p = mnemonic;
1952      while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1953	{
1954	  mnem_p++;
1955	  if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1956	    {
1957	      as_bad (_("no such instruction: `%s'"), token_start);
1958	      return NULL;
1959	    }
1960	  l++;
1961	}
1962      if (!is_space_char (*l)
1963	  && *l != END_OF_INSN
1964	  && (intel_syntax
1965	      || (*l != PREFIX_SEPARATOR
1966		  && *l != ',')))
1967	{
1968	  as_bad (_("invalid character %s in mnemonic"),
1969		  output_invalid (*l));
1970	  return NULL;
1971	}
1972      if (token_start == l)
1973	{
1974	  if (!intel_syntax && *l == PREFIX_SEPARATOR)
1975	    as_bad (_("expecting prefix; got nothing"));
1976	  else
1977	    as_bad (_("expecting mnemonic; got nothing"));
1978	  return NULL;
1979	}
1980
1981      /* Look up instruction (or prefix) via hash table.  */
1982      current_templates = hash_find (op_hash, mnemonic);
1983
1984      if (*l != END_OF_INSN
1985	  && (!is_space_char (*l) || l[1] != END_OF_INSN)
1986	  && current_templates
1987	  && (current_templates->start->opcode_modifier & IsPrefix))
1988	{
1989	  if (current_templates->start->cpu_flags
1990	      & (flag_code != CODE_64BIT ? Cpu64 : CpuNo64))
1991	    {
1992	      as_bad ((flag_code != CODE_64BIT
1993		       ? _("`%s' is only supported in 64-bit mode")
1994		       : _("`%s' is not supported in 64-bit mode")),
1995		      current_templates->start->name);
1996	      return NULL;
1997	    }
1998	  /* If we are in 16-bit mode, do not allow addr16 or data16.
1999	     Similarly, in 32-bit mode, do not allow addr32 or data32.  */
2000	  if ((current_templates->start->opcode_modifier & (Size16 | Size32))
2001	      && flag_code != CODE_64BIT
2002	      && (((current_templates->start->opcode_modifier & Size32) != 0)
2003		  ^ (flag_code == CODE_16BIT)))
2004	    {
2005	      as_bad (_("redundant %s prefix"),
2006		      current_templates->start->name);
2007	      return NULL;
2008	    }
2009	  /* Add prefix, checking for repeated prefixes.  */
2010	  switch (add_prefix (current_templates->start->base_opcode))
2011	    {
2012	    case 0:
2013	      return NULL;
2014	    case 2:
2015	      expecting_string_instruction = current_templates->start->name;
2016	      break;
2017	    }
2018	  /* Skip past PREFIX_SEPARATOR and reset token_start.  */
2019	  token_start = ++l;
2020	}
2021      else
2022	break;
2023    }
2024
2025  if (!current_templates)
2026    {
2027      /* See if we can get a match by trimming off a suffix.  */
2028      switch (mnem_p[-1])
2029	{
2030	case WORD_MNEM_SUFFIX:
2031	  if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2032	    i.suffix = SHORT_MNEM_SUFFIX;
2033	  else
2034	case BYTE_MNEM_SUFFIX:
2035	case QWORD_MNEM_SUFFIX:
2036	  i.suffix = mnem_p[-1];
2037	  mnem_p[-1] = '\0';
2038	  current_templates = hash_find (op_hash, mnemonic);
2039	  break;
2040	case SHORT_MNEM_SUFFIX:
2041	case LONG_MNEM_SUFFIX:
2042	  if (!intel_syntax)
2043	    {
2044	      i.suffix = mnem_p[-1];
2045	      mnem_p[-1] = '\0';
2046	      current_templates = hash_find (op_hash, mnemonic);
2047	    }
2048	  break;
2049
2050	  /* Intel Syntax.  */
2051	case 'd':
2052	  if (intel_syntax)
2053	    {
2054	      if (intel_float_operand (mnemonic) == 1)
2055		i.suffix = SHORT_MNEM_SUFFIX;
2056	      else
2057		i.suffix = LONG_MNEM_SUFFIX;
2058	      mnem_p[-1] = '\0';
2059	      current_templates = hash_find (op_hash, mnemonic);
2060	    }
2061	  break;
2062	}
2063      if (!current_templates)
2064	{
2065	  as_bad (_("no such instruction: `%s'"), token_start);
2066	  return NULL;
2067	}
2068    }
2069
2070  if (current_templates->start->opcode_modifier & (Jump | JumpByte))
2071    {
2072      /* Check for a branch hint.  We allow ",pt" and ",pn" for
2073	 predict taken and predict not taken respectively.
2074	 I'm not sure that branch hints actually do anything on loop
2075	 and jcxz insns (JumpByte) for current Pentium4 chips.  They
2076	 may work in the future and it doesn't hurt to accept them
2077	 now.  */
2078      if (l[0] == ',' && l[1] == 'p')
2079	{
2080	  if (l[2] == 't')
2081	    {
2082	      if (!add_prefix (DS_PREFIX_OPCODE))
2083		return NULL;
2084	      l += 3;
2085	    }
2086	  else if (l[2] == 'n')
2087	    {
2088	      if (!add_prefix (CS_PREFIX_OPCODE))
2089		return NULL;
2090	      l += 3;
2091	    }
2092	}
2093    }
2094  /* Any other comma loses.  */
2095  if (*l == ',')
2096    {
2097      as_bad (_("invalid character %s in mnemonic"),
2098	      output_invalid (*l));
2099      return NULL;
2100    }
2101
2102  /* Check if instruction is supported on specified architecture.  */
2103  supported = 0;
2104  for (t = current_templates->start; t < current_templates->end; ++t)
2105    {
2106      if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
2107	    & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
2108	supported |= 1;
2109      if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
2110	supported |= 2;
2111    }
2112  if (!(supported & 2))
2113    {
2114      as_bad (flag_code == CODE_64BIT
2115	      ? _("`%s' is not supported in 64-bit mode")
2116	      : _("`%s' is only supported in 64-bit mode"),
2117	      current_templates->start->name);
2118      return NULL;
2119    }
2120  if (!(supported & 1))
2121    {
2122      as_warn (_("`%s' is not supported on `%s%s'"),
2123	       current_templates->start->name,
2124	       cpu_arch_name,
2125	       cpu_sub_arch_name ? cpu_sub_arch_name : "");
2126    }
2127  else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
2128    {
2129      as_warn (_("use .code16 to ensure correct addressing mode"));
2130    }
2131
2132  /* Check for rep/repne without a string instruction.  */
2133  if (expecting_string_instruction)
2134    {
2135      static templates override;
2136
2137      for (t = current_templates->start; t < current_templates->end; ++t)
2138	if (t->opcode_modifier & IsString)
2139	  break;
2140      if (t >= current_templates->end)
2141	{
2142	  as_bad (_("expecting string instruction after `%s'"),
2143		  expecting_string_instruction);
2144	  return NULL;
2145	}
2146      for (override.start = t; t < current_templates->end; ++t)
2147	if (!(t->opcode_modifier & IsString))
2148	  break;
2149      override.end = t;
2150      current_templates = &override;
2151    }
2152
2153  return l;
2154}
2155
2156static char *
2157parse_operands (char *l, const char *mnemonic)
2158{
2159  char *token_start;
2160
2161  /* 1 if operand is pending after ','.  */
2162  unsigned int expecting_operand = 0;
2163
2164  /* Non-zero if operand parens not balanced.  */
2165  unsigned int paren_not_balanced;
2166
2167  while (*l != END_OF_INSN)
2168    {
2169      /* Skip optional white space before operand.  */
2170      if (is_space_char (*l))
2171	++l;
2172      if (!is_operand_char (*l) && *l != END_OF_INSN)
2173	{
2174	  as_bad (_("invalid character %s before operand %d"),
2175		  output_invalid (*l),
2176		  i.operands + 1);
2177	  return NULL;
2178	}
2179      token_start = l;	/* after white space */
2180      paren_not_balanced = 0;
2181      while (paren_not_balanced || *l != ',')
2182	{
2183	  if (*l == END_OF_INSN)
2184	    {
2185	      if (paren_not_balanced)
2186		{
2187		  if (!intel_syntax)
2188		    as_bad (_("unbalanced parenthesis in operand %d."),
2189			    i.operands + 1);
2190		  else
2191		    as_bad (_("unbalanced brackets in operand %d."),
2192			    i.operands + 1);
2193		  return NULL;
2194		}
2195	      else
2196		break;	/* we are done */
2197	    }
2198	  else if (!is_operand_char (*l) && !is_space_char (*l))
2199	    {
2200	      as_bad (_("invalid character %s in operand %d"),
2201		      output_invalid (*l),
2202		      i.operands + 1);
2203	      return NULL;
2204	    }
2205	  if (!intel_syntax)
2206	    {
2207	      if (*l == '(')
2208		++paren_not_balanced;
2209	      if (*l == ')')
2210		--paren_not_balanced;
2211	    }
2212	  else
2213	    {
2214	      if (*l == '[')
2215		++paren_not_balanced;
2216	      if (*l == ']')
2217		--paren_not_balanced;
2218	    }
2219	  l++;
2220	}
2221      if (l != token_start)
2222	{			/* Yes, we've read in another operand.  */
2223	  unsigned int operand_ok;
2224	  this_operand = i.operands++;
2225	  if (i.operands > MAX_OPERANDS)
2226	    {
2227	      as_bad (_("spurious operands; (%d operands/instruction max)"),
2228		      MAX_OPERANDS);
2229	      return NULL;
2230	    }
2231	  /* Now parse operand adding info to 'i' as we go along.  */
2232	  END_STRING_AND_SAVE (l);
2233
2234	  if (intel_syntax)
2235	    operand_ok =
2236	      i386_intel_operand (token_start,
2237				  intel_float_operand (mnemonic));
2238	  else
2239	    operand_ok = i386_operand (token_start);
2240
2241	  RESTORE_END_STRING (l);
2242	  if (!operand_ok)
2243	    return NULL;
2244	}
2245      else
2246	{
2247	  if (expecting_operand)
2248	    {
2249	    expecting_operand_after_comma:
2250	      as_bad (_("expecting operand after ','; got nothing"));
2251	      return NULL;
2252	    }
2253	  if (*l == ',')
2254	    {
2255	      as_bad (_("expecting operand before ','; got nothing"));
2256	      return NULL;
2257	    }
2258	}
2259
2260      /* Now *l must be either ',' or END_OF_INSN.  */
2261      if (*l == ',')
2262	{
2263	  if (*++l == END_OF_INSN)
2264	    {
2265	      /* Just skip it, if it's \n complain.  */
2266	      goto expecting_operand_after_comma;
2267	    }
2268	  expecting_operand = 1;
2269	}
2270    }
2271  return l;
2272}
2273
2274static void
2275swap_2_operands (int xchg1, int xchg2)
2276{
2277  union i386_op temp_op;
2278  unsigned int temp_type;
2279  enum bfd_reloc_code_real temp_reloc;
2280
2281  temp_type = i.types[xchg2];
2282  i.types[xchg2] = i.types[xchg1];
2283  i.types[xchg1] = temp_type;
2284  temp_op = i.op[xchg2];
2285  i.op[xchg2] = i.op[xchg1];
2286  i.op[xchg1] = temp_op;
2287  temp_reloc = i.reloc[xchg2];
2288  i.reloc[xchg2] = i.reloc[xchg1];
2289  i.reloc[xchg1] = temp_reloc;
2290}
2291
2292static void
2293swap_operands (void)
2294{
2295  switch (i.operands)
2296    {
2297    case 4:
2298      swap_2_operands (1, i.operands - 2);
2299    case 3:
2300    case 2:
2301      swap_2_operands (0, i.operands - 1);
2302      break;
2303    default:
2304      abort ();
2305    }
2306
2307  if (i.mem_operands == 2)
2308    {
2309      const seg_entry *temp_seg;
2310      temp_seg = i.seg[0];
2311      i.seg[0] = i.seg[1];
2312      i.seg[1] = temp_seg;
2313    }
2314}
2315
2316/* Try to ensure constant immediates are represented in the smallest
2317   opcode possible.  */
2318static void
2319optimize_imm (void)
2320{
2321  char guess_suffix = 0;
2322  int op;
2323
2324  if (i.suffix)
2325    guess_suffix = i.suffix;
2326  else if (i.reg_operands)
2327    {
2328      /* Figure out a suffix from the last register operand specified.
2329	 We can't do this properly yet, ie. excluding InOutPortReg,
2330	 but the following works for instructions with immediates.
2331	 In any case, we can't set i.suffix yet.  */
2332      for (op = i.operands; --op >= 0;)
2333	if (i.types[op] & Reg)
2334	  {
2335	    if (i.types[op] & Reg8)
2336	      guess_suffix = BYTE_MNEM_SUFFIX;
2337	    else if (i.types[op] & Reg16)
2338	      guess_suffix = WORD_MNEM_SUFFIX;
2339	    else if (i.types[op] & Reg32)
2340	      guess_suffix = LONG_MNEM_SUFFIX;
2341	    else if (i.types[op] & Reg64)
2342	      guess_suffix = QWORD_MNEM_SUFFIX;
2343	    break;
2344	  }
2345    }
2346  else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2347    guess_suffix = WORD_MNEM_SUFFIX;
2348
2349  for (op = i.operands; --op >= 0;)
2350    if (i.types[op] & Imm)
2351      {
2352	switch (i.op[op].imms->X_op)
2353	  {
2354	  case O_constant:
2355	    /* If a suffix is given, this operand may be shortened.  */
2356	    switch (guess_suffix)
2357	      {
2358	      case LONG_MNEM_SUFFIX:
2359		i.types[op] |= Imm32 | Imm64;
2360		break;
2361	      case WORD_MNEM_SUFFIX:
2362		i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2363		break;
2364	      case BYTE_MNEM_SUFFIX:
2365		i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2366		break;
2367	      }
2368
2369	    /* If this operand is at most 16 bits, convert it
2370	       to a signed 16 bit number before trying to see
2371	       whether it will fit in an even smaller size.
2372	       This allows a 16-bit operand such as $0xffe0 to
2373	       be recognised as within Imm8S range.  */
2374	    if ((i.types[op] & Imm16)
2375		&& (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2376	      {
2377		i.op[op].imms->X_add_number =
2378		  (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2379	      }
2380	    if ((i.types[op] & Imm32)
2381		&& ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2382		    == 0))
2383	      {
2384		i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2385						^ ((offsetT) 1 << 31))
2386					       - ((offsetT) 1 << 31));
2387	      }
2388	    i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2389
2390	    /* We must avoid matching of Imm32 templates when 64bit
2391	       only immediate is available.  */
2392	    if (guess_suffix == QWORD_MNEM_SUFFIX)
2393	      i.types[op] &= ~Imm32;
2394	    break;
2395
2396	  case O_absent:
2397	  case O_register:
2398	    abort ();
2399
2400	    /* Symbols and expressions.  */
2401	  default:
2402	    /* Convert symbolic operand to proper sizes for matching, but don't
2403	       prevent matching a set of insns that only supports sizes other
2404	       than those matching the insn suffix.  */
2405	    {
2406	      unsigned int mask, allowed = 0;
2407	      const template *t;
2408
2409	      for (t = current_templates->start;
2410		   t < current_templates->end;
2411		   ++t)
2412		allowed |= t->operand_types[op];
2413	      switch (guess_suffix)
2414		{
2415		case QWORD_MNEM_SUFFIX:
2416		  mask = Imm64 | Imm32S;
2417		  break;
2418		case LONG_MNEM_SUFFIX:
2419		  mask = Imm32;
2420		  break;
2421		case WORD_MNEM_SUFFIX:
2422		  mask = Imm16;
2423		  break;
2424		case BYTE_MNEM_SUFFIX:
2425		  mask = Imm8;
2426		  break;
2427		default:
2428		  mask = 0;
2429		  break;
2430		}
2431	      if (mask & allowed)
2432		i.types[op] &= mask;
2433	    }
2434	    break;
2435	  }
2436      }
2437}
2438
2439/* Try to use the smallest displacement type too.  */
2440static void
2441optimize_disp (void)
2442{
2443  int op;
2444
2445  for (op = i.operands; --op >= 0;)
2446    if (i.types[op] & Disp)
2447      {
2448	if (i.op[op].disps->X_op == O_constant)
2449	  {
2450	    offsetT disp = i.op[op].disps->X_add_number;
2451
2452	    if ((i.types[op] & Disp16)
2453		&& (disp & ~(offsetT) 0xffff) == 0)
2454	      {
2455		/* If this operand is at most 16 bits, convert
2456		   to a signed 16 bit number and don't use 64bit
2457		   displacement.  */
2458		disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2459		i.types[op] &= ~Disp64;
2460	      }
2461	    if ((i.types[op] & Disp32)
2462		&& (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2463	      {
2464		/* If this operand is at most 32 bits, convert
2465		   to a signed 32 bit number and don't use 64bit
2466		   displacement.  */
2467		disp &= (((offsetT) 2 << 31) - 1);
2468		disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2469		i.types[op] &= ~Disp64;
2470	      }
2471	    if (!disp && (i.types[op] & BaseIndex))
2472	      {
2473		i.types[op] &= ~Disp;
2474		i.op[op].disps = 0;
2475		i.disp_operands--;
2476	      }
2477	    else if (flag_code == CODE_64BIT)
2478	      {
2479		if (fits_in_signed_long (disp))
2480		  {
2481		    i.types[op] &= ~Disp64;
2482		    i.types[op] |= Disp32S;
2483		  }
2484		if (fits_in_unsigned_long (disp))
2485		  i.types[op] |= Disp32;
2486	      }
2487	    if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2488		&& fits_in_signed_byte (disp))
2489	      i.types[op] |= Disp8;
2490	  }
2491	else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2492		 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2493	  {
2494	    fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2495			 i.op[op].disps, 0, i.reloc[op]);
2496	    i.types[op] &= ~Disp;
2497	  }
2498 	else
2499	  /* We only support 64bit displacement on constants.  */
2500	  i.types[op] &= ~Disp64;
2501      }
2502}
2503
2504static int
2505match_template (void)
2506{
2507  /* Points to template once we've found it.  */
2508  const template *t;
2509  unsigned int overlap0, overlap1, overlap2, overlap3;
2510  unsigned int found_reverse_match;
2511  int suffix_check;
2512  unsigned int operand_types [MAX_OPERANDS];
2513  int addr_prefix_disp;
2514  unsigned int j;
2515
2516#if MAX_OPERANDS != 4
2517# error "MAX_OPERANDS must be 4."
2518#endif
2519
2520#define MATCH(overlap, given, template)				\
2521  ((overlap & ~JumpAbsolute)					\
2522   && (((given) & (BaseIndex | JumpAbsolute))			\
2523       == ((overlap) & (BaseIndex | JumpAbsolute))))
2524
2525  /* If given types r0 and r1 are registers they must be of the same type
2526     unless the expected operand type register overlap is null.
2527     Note that Acc in a template matches every size of reg.  */
2528#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1)	\
2529  (((g0) & Reg) == 0 || ((g1) & Reg) == 0			\
2530   || ((g0) & Reg) == ((g1) & Reg)				\
2531   || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2532
2533  overlap0 = 0;
2534  overlap1 = 0;
2535  overlap2 = 0;
2536  overlap3 = 0;
2537  found_reverse_match = 0;
2538  for (j = 0; j < MAX_OPERANDS; j++)
2539    operand_types [j] = 0;
2540  addr_prefix_disp = -1;
2541  suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2542		  ? No_bSuf
2543		  : (i.suffix == WORD_MNEM_SUFFIX
2544		     ? No_wSuf
2545		     : (i.suffix == SHORT_MNEM_SUFFIX
2546			? No_sSuf
2547			: (i.suffix == LONG_MNEM_SUFFIX
2548			   ? No_lSuf
2549			   : (i.suffix == QWORD_MNEM_SUFFIX
2550			      ? No_qSuf
2551			      : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2552				 ? No_xSuf : 0))))));
2553
2554  for (t = current_templates->start; t < current_templates->end; t++)
2555    {
2556      addr_prefix_disp = -1;
2557
2558      /* Must have right number of operands.  */
2559      if (i.operands != t->operands)
2560	continue;
2561
2562      /* Check the suffix, except for some instructions in intel mode.  */
2563      if ((t->opcode_modifier & suffix_check)
2564	  && !(intel_syntax
2565	       && (t->opcode_modifier & IgnoreSize)))
2566	continue;
2567
2568      for (j = 0; j < MAX_OPERANDS; j++)
2569	operand_types [j] = t->operand_types [j];
2570
2571      /* In general, don't allow 64-bit operands in 32-bit mode.  */
2572      if (i.suffix == QWORD_MNEM_SUFFIX
2573	  && flag_code != CODE_64BIT
2574	  && (intel_syntax
2575	      ? (!(t->opcode_modifier & IgnoreSize)
2576		 && !intel_float_operand (t->name))
2577	      : intel_float_operand (t->name) != 2)
2578	  && (!(operand_types[0] & (RegMMX | RegXMM))
2579	      || !(operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2580	  && (t->base_opcode != 0x0fc7
2581	      || t->extension_opcode != 1 /* cmpxchg8b */))
2582	continue;
2583
2584      /* Do not verify operands when there are none.  */
2585      else if (!t->operands)
2586	{
2587	  if (t->cpu_flags & ~cpu_arch_flags)
2588	    continue;
2589	  /* We've found a match; break out of loop.  */
2590	  break;
2591	}
2592
2593      /* Address size prefix will turn Disp64/Disp32/Disp16 operand
2594	 into Disp32/Disp16/Disp32 operand.  */
2595      if (i.prefix[ADDR_PREFIX] != 0)
2596	  {
2597	    unsigned int DispOn = 0, DispOff = 0;
2598
2599	    switch (flag_code)
2600	    {
2601	    case CODE_16BIT:
2602	      DispOn = Disp32;
2603	      DispOff = Disp16;
2604	      break;
2605	    case CODE_32BIT:
2606	      DispOn = Disp16;
2607	      DispOff = Disp32;
2608	      break;
2609	    case CODE_64BIT:
2610	      DispOn = Disp32;
2611	      DispOff = Disp64;
2612	      break;
2613	    }
2614
2615	    for (j = 0; j < MAX_OPERANDS; j++)
2616	      {
2617		/* There should be only one Disp operand.  */
2618		if ((operand_types[j] & DispOff))
2619		  {
2620		    addr_prefix_disp = j;
2621		    operand_types[j] |= DispOn;
2622		    operand_types[j] &= ~DispOff;
2623		    break;
2624		  }
2625	      }
2626	  }
2627
2628      overlap0 = i.types[0] & operand_types[0];
2629      switch (t->operands)
2630	{
2631	case 1:
2632	  if (!MATCH (overlap0, i.types[0], operand_types[0]))
2633	    continue;
2634	  break;
2635	case 2:
2636	  /* xchg %eax, %eax is a special case. It is an aliase for nop
2637	     only in 32bit mode and we can use opcode 0x90.  In 64bit
2638	     mode, we can't use 0x90 for xchg %eax, %eax since it should
2639	     zero-extend %eax to %rax.  */
2640	  if (flag_code == CODE_64BIT
2641	      && t->base_opcode == 0x90
2642	      && i.types [0] == (Acc | Reg32)
2643	      && i.types [1] == (Acc | Reg32))
2644	    continue;
2645	case 3:
2646	case 4:
2647	  overlap1 = i.types[1] & operand_types[1];
2648	  if (!MATCH (overlap0, i.types[0], operand_types[0])
2649	      || !MATCH (overlap1, i.types[1], operand_types[1])
2650	      /* monitor in SSE3 is a very special case.  The first
2651		 register and the second register may have different
2652		 sizes.  The same applies to crc32 in SSE4.2.  */
2653	      || !((t->base_opcode == 0x0f01
2654		    && t->extension_opcode == 0xc8)
2655		   || t->base_opcode == 0xf20f38f1
2656		   || CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2657						 operand_types[0],
2658						 overlap1, i.types[1],
2659						 operand_types[1])))
2660	    {
2661	      /* Check if other direction is valid ...  */
2662	      if ((t->opcode_modifier & (D | FloatD)) == 0)
2663		continue;
2664
2665	      /* Try reversing direction of operands.  */
2666	      overlap0 = i.types[0] & operand_types[1];
2667	      overlap1 = i.types[1] & operand_types[0];
2668	      if (!MATCH (overlap0, i.types[0], operand_types[1])
2669		  || !MATCH (overlap1, i.types[1], operand_types[0])
2670		  || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2671						 operand_types[1],
2672						 overlap1, i.types[1],
2673						 operand_types[0]))
2674		{
2675		  /* Does not match either direction.  */
2676		  continue;
2677		}
2678	      /* found_reverse_match holds which of D or FloatDR
2679		 we've found.  */
2680	      if ((t->opcode_modifier & D))
2681		found_reverse_match = Opcode_D;
2682	      else if ((t->opcode_modifier & FloatD))
2683		found_reverse_match = Opcode_FloatD;
2684	      else
2685		found_reverse_match = 0;
2686	      if ((t->opcode_modifier & FloatR))
2687		found_reverse_match |= Opcode_FloatR;
2688	    }
2689	  else
2690	    {
2691	      /* Found a forward 2 operand match here.  */
2692	      switch (t->operands)
2693		{
2694		case 4:
2695		  overlap3 = i.types[3] & operand_types[3];
2696		case 3:
2697		  overlap2 = i.types[2] & operand_types[2];
2698		  break;
2699		}
2700
2701	      switch (t->operands)
2702		{
2703		case 4:
2704		  if (!MATCH (overlap3, i.types[3], operand_types[3])
2705		      || !CONSISTENT_REGISTER_MATCH (overlap2,
2706						     i.types[2],
2707						     operand_types[2],
2708						     overlap3,
2709						     i.types[3],
2710						     operand_types[3]))
2711		    continue;
2712		case 3:
2713		  /* Here we make use of the fact that there are no
2714		     reverse match 3 operand instructions, and all 3
2715		     operand instructions only need to be checked for
2716		     register consistency between operands 2 and 3.  */
2717		  if (!MATCH (overlap2, i.types[2], operand_types[2])
2718		      || !CONSISTENT_REGISTER_MATCH (overlap1,
2719						     i.types[1],
2720						     operand_types[1],
2721						     overlap2,
2722						     i.types[2],
2723						     operand_types[2]))
2724		    continue;
2725		  break;
2726		}
2727	    }
2728	  /* Found either forward/reverse 2, 3 or 4 operand match here:
2729	     slip through to break.  */
2730	}
2731      if (t->cpu_flags & ~cpu_arch_flags)
2732	{
2733	  found_reverse_match = 0;
2734	  continue;
2735	}
2736      /* We've found a match; break out of loop.  */
2737      break;
2738    }
2739
2740  if (t == current_templates->end)
2741    {
2742      /* We found no match.  */
2743      as_bad (_("suffix or operands invalid for `%s'"),
2744	      current_templates->start->name);
2745      return 0;
2746    }
2747
2748  if (!quiet_warnings)
2749    {
2750      if (!intel_syntax
2751	  && ((i.types[0] & JumpAbsolute)
2752	      != (operand_types[0] & JumpAbsolute)))
2753	{
2754	  as_warn (_("indirect %s without `*'"), t->name);
2755	}
2756
2757      if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2758	  == (IsPrefix | IgnoreSize))
2759	{
2760	  /* Warn them that a data or address size prefix doesn't
2761	     affect assembly of the next line of code.  */
2762	  as_warn (_("stand-alone `%s' prefix"), t->name);
2763	}
2764    }
2765
2766  /* Copy the template we found.  */
2767  i.tm = *t;
2768
2769  if (addr_prefix_disp != -1)
2770    i.tm.operand_types[addr_prefix_disp]
2771      = operand_types[addr_prefix_disp];
2772
2773  if (found_reverse_match)
2774    {
2775      /* If we found a reverse match we must alter the opcode
2776	 direction bit.  found_reverse_match holds bits to change
2777	 (different for int & float insns).  */
2778
2779      i.tm.base_opcode ^= found_reverse_match;
2780
2781      i.tm.operand_types[0] = operand_types[1];
2782      i.tm.operand_types[1] = operand_types[0];
2783    }
2784
2785  return 1;
2786}
2787
2788static int
2789check_string (void)
2790{
2791  int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2792  if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2793    {
2794      if (i.seg[0] != NULL && i.seg[0] != &es)
2795	{
2796	  as_bad (_("`%s' operand %d must use `%%es' segment"),
2797		  i.tm.name,
2798		  mem_op + 1);
2799	  return 0;
2800	}
2801      /* There's only ever one segment override allowed per instruction.
2802	 This instruction possibly has a legal segment override on the
2803	 second operand, so copy the segment to where non-string
2804	 instructions store it, allowing common code.  */
2805      i.seg[0] = i.seg[1];
2806    }
2807  else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2808    {
2809      if (i.seg[1] != NULL && i.seg[1] != &es)
2810	{
2811	  as_bad (_("`%s' operand %d must use `%%es' segment"),
2812		  i.tm.name,
2813		  mem_op + 2);
2814	  return 0;
2815	}
2816    }
2817  return 1;
2818}
2819
2820static int
2821process_suffix (void)
2822{
2823  /* If matched instruction specifies an explicit instruction mnemonic
2824     suffix, use it.  */
2825  if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2826    {
2827      if (i.tm.opcode_modifier & Size16)
2828	i.suffix = WORD_MNEM_SUFFIX;
2829      else if (i.tm.opcode_modifier & Size64)
2830	i.suffix = QWORD_MNEM_SUFFIX;
2831      else
2832	i.suffix = LONG_MNEM_SUFFIX;
2833    }
2834  else if (i.reg_operands)
2835    {
2836      /* If there's no instruction mnemonic suffix we try to invent one
2837	 based on register operands.  */
2838      if (!i.suffix)
2839	{
2840	  /* We take i.suffix from the last register operand specified,
2841	     Destination register type is more significant than source
2842	     register type.  crc32 in SSE4.2 prefers source register
2843	     type. */
2844	  if (i.tm.base_opcode == 0xf20f38f1)
2845	    {
2846	      if ((i.types[0] & Reg))
2847		i.suffix = ((i.types[0] & Reg16) ? WORD_MNEM_SUFFIX :
2848			    LONG_MNEM_SUFFIX);
2849	    }
2850	  else if (i.tm.base_opcode == 0xf20f38f0)
2851	    {
2852	      if ((i.types[0] & Reg8))
2853		i.suffix = BYTE_MNEM_SUFFIX;
2854	    }
2855
2856	  if (!i.suffix)
2857	    {
2858	      int op;
2859
2860	      if (i.tm.base_opcode == 0xf20f38f1
2861		  || i.tm.base_opcode == 0xf20f38f0)
2862		{
2863		  /* We have to know the operand size for crc32.  */
2864		  as_bad (_("ambiguous memory operand size for `%s`"),
2865			  i.tm.name);
2866		  return 0;
2867		}
2868
2869	      for (op = i.operands; --op >= 0;)
2870		if ((i.types[op] & Reg)
2871		    && !(i.tm.operand_types[op] & InOutPortReg))
2872		  {
2873		    i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2874				(i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2875				(i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2876				LONG_MNEM_SUFFIX);
2877		    break;
2878		  }
2879	    }
2880	}
2881      else if (i.suffix == BYTE_MNEM_SUFFIX)
2882	{
2883	  if (!check_byte_reg ())
2884	    return 0;
2885	}
2886      else if (i.suffix == LONG_MNEM_SUFFIX)
2887	{
2888	  if (!check_long_reg ())
2889	    return 0;
2890	}
2891      else if (i.suffix == QWORD_MNEM_SUFFIX)
2892	{
2893	  if (!check_qword_reg ())
2894	    return 0;
2895	}
2896      else if (i.suffix == WORD_MNEM_SUFFIX)
2897	{
2898	  if (!check_word_reg ())
2899	    return 0;
2900	}
2901      else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2902	/* Do nothing if the instruction is going to ignore the prefix.  */
2903	;
2904      else
2905	abort ();
2906    }
2907  else if ((i.tm.opcode_modifier & DefaultSize)
2908	   && !i.suffix
2909	   /* exclude fldenv/frstor/fsave/fstenv */
2910	   && (i.tm.opcode_modifier & No_sSuf))
2911    {
2912      i.suffix = stackop_size;
2913    }
2914  else if (intel_syntax
2915	   && !i.suffix
2916	   && ((i.tm.operand_types[0] & JumpAbsolute)
2917	       || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2918	       || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2919		   && i.tm.extension_opcode <= 3)))
2920    {
2921      switch (flag_code)
2922	{
2923	case CODE_64BIT:
2924	  if (!(i.tm.opcode_modifier & No_qSuf))
2925	    {
2926	      i.suffix = QWORD_MNEM_SUFFIX;
2927	      break;
2928	    }
2929	case CODE_32BIT:
2930	  if (!(i.tm.opcode_modifier & No_lSuf))
2931	    i.suffix = LONG_MNEM_SUFFIX;
2932	  break;
2933	case CODE_16BIT:
2934	  if (!(i.tm.opcode_modifier & No_wSuf))
2935	    i.suffix = WORD_MNEM_SUFFIX;
2936	  break;
2937	}
2938    }
2939
2940  if (!i.suffix)
2941    {
2942      if (!intel_syntax)
2943	{
2944	  if (i.tm.opcode_modifier & W)
2945	    {
2946	      as_bad (_("no instruction mnemonic suffix given and "
2947			"no register operands; can't size instruction"));
2948	      return 0;
2949	    }
2950	}
2951      else
2952	{
2953	  unsigned int suffixes = (~i.tm.opcode_modifier
2954				   & (No_bSuf
2955				      | No_wSuf
2956				      | No_lSuf
2957				      | No_sSuf
2958				      | No_xSuf
2959				      | No_qSuf));
2960
2961	  if ((i.tm.opcode_modifier & W)
2962	      || ((suffixes & (suffixes - 1))
2963		  && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2964	    {
2965	      as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2966	      return 0;
2967	    }
2968	}
2969    }
2970
2971  /* Change the opcode based on the operand size given by i.suffix;
2972     We don't need to change things for byte insns.  */
2973
2974  if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2975    {
2976      /* It's not a byte, select word/dword operation.  */
2977      if (i.tm.opcode_modifier & W)
2978	{
2979	  if (i.tm.opcode_modifier & ShortForm)
2980	    i.tm.base_opcode |= 8;
2981	  else
2982	    i.tm.base_opcode |= 1;
2983	}
2984
2985      /* Now select between word & dword operations via the operand
2986	 size prefix, except for instructions that will ignore this
2987	 prefix anyway.  */
2988      if (i.tm.base_opcode == 0x0f01 && i.tm.extension_opcode == 0xc8)
2989	{
2990	  /* monitor in SSE3 is a very special case. The default size
2991	     of AX is the size of mode. The address size override
2992	     prefix will change the size of AX.  */
2993	  if (i.op->regs[0].reg_type &
2994	      (flag_code == CODE_32BIT ? Reg16 : Reg32))
2995	    if (!add_prefix (ADDR_PREFIX_OPCODE))
2996	      return 0;
2997	}
2998      else if (i.suffix != QWORD_MNEM_SUFFIX
2999	       && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
3000	       && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
3001	       && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
3002		   || (flag_code == CODE_64BIT
3003		       && (i.tm.opcode_modifier & JumpByte))))
3004	{
3005	  unsigned int prefix = DATA_PREFIX_OPCODE;
3006
3007	  if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
3008	    prefix = ADDR_PREFIX_OPCODE;
3009
3010	  if (!add_prefix (prefix))
3011	    return 0;
3012	}
3013
3014      /* Set mode64 for an operand.  */
3015      if (i.suffix == QWORD_MNEM_SUFFIX
3016	  && flag_code == CODE_64BIT
3017	  && (i.tm.opcode_modifier & NoRex64) == 0)
3018	{
3019	  /* Special case for xchg %rax,%rax.  It is NOP and doesn't
3020	     need rex64.  */
3021	  if (i.operands != 2
3022	      || i.types [0] != (Acc | Reg64)
3023	      || i.types [1] != (Acc | Reg64)
3024	      || i.tm.base_opcode != 0x90)
3025	    i.rex |= REX_W;
3026	}
3027
3028      /* Size floating point instruction.  */
3029      if (i.suffix == LONG_MNEM_SUFFIX)
3030	if (i.tm.opcode_modifier & FloatMF)
3031	  i.tm.base_opcode ^= 4;
3032    }
3033
3034  return 1;
3035}
3036
3037static int
3038check_byte_reg (void)
3039{
3040  int op;
3041
3042  for (op = i.operands; --op >= 0;)
3043    {
3044      /* If this is an eight bit register, it's OK.  If it's the 16 or
3045	 32 bit version of an eight bit register, we will just use the
3046	 low portion, and that's OK too.  */
3047      if (i.types[op] & Reg8)
3048	continue;
3049
3050      /* movzx and movsx should not generate this warning.  */
3051      if (intel_syntax
3052	  && (i.tm.base_opcode == 0xfb7
3053	      || i.tm.base_opcode == 0xfb6
3054	      || i.tm.base_opcode == 0x63
3055	      || i.tm.base_opcode == 0xfbe
3056	      || i.tm.base_opcode == 0xfbf))
3057	continue;
3058
3059      /* crc32 doesn't generate this warning.  */
3060      if (i.tm.base_opcode == 0xf20f38f0)
3061	continue;
3062
3063      if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
3064	{
3065	  /* Prohibit these changes in the 64bit mode, since the
3066	     lowering is more complicated.  */
3067	  if (flag_code == CODE_64BIT
3068	      && (i.tm.operand_types[op] & InOutPortReg) == 0)
3069	    {
3070	      as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3071		      register_prefix, i.op[op].regs->reg_name,
3072		      i.suffix);
3073	      return 0;
3074	    }
3075#if REGISTER_WARNINGS
3076	  if (!quiet_warnings
3077	      && (i.tm.operand_types[op] & InOutPortReg) == 0)
3078	    as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3079		     register_prefix,
3080		     (i.op[op].regs + (i.types[op] & Reg16
3081				       ? REGNAM_AL - REGNAM_AX
3082				       : REGNAM_AL - REGNAM_EAX))->reg_name,
3083		     register_prefix,
3084		     i.op[op].regs->reg_name,
3085		     i.suffix);
3086#endif
3087	  continue;
3088	}
3089      /* Any other register is bad.  */
3090      if (i.types[op] & (Reg | RegMMX | RegXMM
3091			 | SReg2 | SReg3
3092			 | Control | Debug | Test
3093			 | FloatReg | FloatAcc))
3094	{
3095	  as_bad (_("`%s%s' not allowed with `%s%c'"),
3096		  register_prefix,
3097		  i.op[op].regs->reg_name,
3098		  i.tm.name,
3099		  i.suffix);
3100	  return 0;
3101	}
3102    }
3103  return 1;
3104}
3105
3106static int
3107check_long_reg (void)
3108{
3109  int op;
3110
3111  for (op = i.operands; --op >= 0;)
3112    /* Reject eight bit registers, except where the template requires
3113       them. (eg. movzb)  */
3114    if ((i.types[op] & Reg8) != 0
3115	&& (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3116      {
3117	as_bad (_("`%s%s' not allowed with `%s%c'"),
3118		register_prefix,
3119		i.op[op].regs->reg_name,
3120		i.tm.name,
3121		i.suffix);
3122	return 0;
3123      }
3124  /* Warn if the e prefix on a general reg is missing.  */
3125    else if ((!quiet_warnings || flag_code == CODE_64BIT)
3126	     && (i.types[op] & Reg16) != 0
3127	     && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3128      {
3129	/* Prohibit these changes in the 64bit mode, since the
3130	   lowering is more complicated.  */
3131	if (flag_code == CODE_64BIT)
3132	  {
3133	    as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3134		    register_prefix, i.op[op].regs->reg_name,
3135		    i.suffix);
3136	    return 0;
3137	  }
3138#if REGISTER_WARNINGS
3139	else
3140	  as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3141		   register_prefix,
3142		   (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3143		   register_prefix,
3144		   i.op[op].regs->reg_name,
3145		   i.suffix);
3146#endif
3147      }
3148  /* Warn if the r prefix on a general reg is missing.  */
3149    else if ((i.types[op] & Reg64) != 0
3150	     && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3151      {
3152	as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3153		register_prefix, i.op[op].regs->reg_name,
3154		i.suffix);
3155	return 0;
3156      }
3157  return 1;
3158}
3159
3160static int
3161check_qword_reg (void)
3162{
3163  int op;
3164
3165  for (op = i.operands; --op >= 0; )
3166    /* Reject eight bit registers, except where the template requires
3167       them. (eg. movzb)  */
3168    if ((i.types[op] & Reg8) != 0
3169	&& (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3170      {
3171	as_bad (_("`%s%s' not allowed with `%s%c'"),
3172		register_prefix,
3173		i.op[op].regs->reg_name,
3174		i.tm.name,
3175		i.suffix);
3176	return 0;
3177      }
3178  /* Warn if the e prefix on a general reg is missing.  */
3179    else if (((i.types[op] & Reg16) != 0
3180	      || (i.types[op] & Reg32) != 0)
3181	     && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3182      {
3183	/* Prohibit these changes in the 64bit mode, since the
3184	   lowering is more complicated.  */
3185	as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3186		register_prefix, i.op[op].regs->reg_name,
3187		i.suffix);
3188	return 0;
3189      }
3190  return 1;
3191}
3192
3193static int
3194check_word_reg (void)
3195{
3196  int op;
3197  for (op = i.operands; --op >= 0;)
3198    /* Reject eight bit registers, except where the template requires
3199       them. (eg. movzb)  */
3200    if ((i.types[op] & Reg8) != 0
3201	&& (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3202      {
3203	as_bad (_("`%s%s' not allowed with `%s%c'"),
3204		register_prefix,
3205		i.op[op].regs->reg_name,
3206		i.tm.name,
3207		i.suffix);
3208	return 0;
3209      }
3210  /* Warn if the e prefix on a general reg is present.  */
3211    else if ((!quiet_warnings || flag_code == CODE_64BIT)
3212	     && (i.types[op] & Reg32) != 0
3213	     && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
3214      {
3215	/* Prohibit these changes in the 64bit mode, since the
3216	   lowering is more complicated.  */
3217	if (flag_code == CODE_64BIT)
3218	  {
3219	    as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3220		    register_prefix, i.op[op].regs->reg_name,
3221		    i.suffix);
3222	    return 0;
3223	  }
3224	else
3225#if REGISTER_WARNINGS
3226	  as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3227		   register_prefix,
3228		   (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3229		   register_prefix,
3230		   i.op[op].regs->reg_name,
3231		   i.suffix);
3232#endif
3233      }
3234  return 1;
3235}
3236
3237static int
3238finalize_imm (void)
3239{
3240  unsigned int overlap0, overlap1, overlap2;
3241
3242  overlap0 = i.types[0] & i.tm.operand_types[0];
3243  if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
3244      && overlap0 != Imm8 && overlap0 != Imm8S
3245      && overlap0 != Imm16 && overlap0 != Imm32S
3246      && overlap0 != Imm32 && overlap0 != Imm64)
3247    {
3248      if (i.suffix)
3249	{
3250	  overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
3251		       ? Imm8 | Imm8S
3252		       : (i.suffix == WORD_MNEM_SUFFIX
3253			  ? Imm16
3254			  : (i.suffix == QWORD_MNEM_SUFFIX
3255			     ? Imm64 | Imm32S
3256			     : Imm32)));
3257	}
3258      else if (overlap0 == (Imm16 | Imm32S | Imm32)
3259	       || overlap0 == (Imm16 | Imm32)
3260	       || overlap0 == (Imm16 | Imm32S))
3261	{
3262	  overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3263		      ? Imm16 : Imm32S);
3264	}
3265      if (overlap0 != Imm8 && overlap0 != Imm8S
3266	  && overlap0 != Imm16 && overlap0 != Imm32S
3267	  && overlap0 != Imm32 && overlap0 != Imm64)
3268	{
3269	  as_bad (_("no instruction mnemonic suffix given; "
3270		    "can't determine immediate size"));
3271	  return 0;
3272	}
3273    }
3274  i.types[0] = overlap0;
3275
3276  overlap1 = i.types[1] & i.tm.operand_types[1];
3277  if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
3278      && overlap1 != Imm8 && overlap1 != Imm8S
3279      && overlap1 != Imm16 && overlap1 != Imm32S
3280      && overlap1 != Imm32 && overlap1 != Imm64)
3281    {
3282      if (i.suffix)
3283	{
3284	  overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
3285		       ? Imm8 | Imm8S
3286		       : (i.suffix == WORD_MNEM_SUFFIX
3287			  ? Imm16
3288			  : (i.suffix == QWORD_MNEM_SUFFIX
3289			     ? Imm64 | Imm32S
3290			     : Imm32)));
3291	}
3292      else if (overlap1 == (Imm16 | Imm32 | Imm32S)
3293	       || overlap1 == (Imm16 | Imm32)
3294	       || overlap1 == (Imm16 | Imm32S))
3295	{
3296	  overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3297		      ? Imm16 : Imm32S);
3298	}
3299      if (overlap1 != Imm8 && overlap1 != Imm8S
3300	  && overlap1 != Imm16 && overlap1 != Imm32S
3301	  && overlap1 != Imm32 && overlap1 != Imm64)
3302	{
3303	  as_bad (_("no instruction mnemonic suffix given; "
3304		    "can't determine immediate size %x %c"),
3305		  overlap1, i.suffix);
3306	  return 0;
3307	}
3308    }
3309  i.types[1] = overlap1;
3310
3311  overlap2 = i.types[2] & i.tm.operand_types[2];
3312  assert ((overlap2 & Imm) == 0);
3313  i.types[2] = overlap2;
3314
3315  return 1;
3316}
3317
3318static int
3319process_operands (void)
3320{
3321  /* Default segment register this instruction will use for memory
3322     accesses.  0 means unknown.  This is only for optimizing out
3323     unnecessary segment overrides.  */
3324  const seg_entry *default_seg = 0;
3325
3326  /* The imul $imm, %reg instruction is converted into
3327     imul $imm, %reg, %reg, and the clr %reg instruction
3328     is converted into xor %reg, %reg.  */
3329  if (i.tm.opcode_modifier & RegKludge)
3330    {
3331       if ((i.tm.cpu_flags & CpuSSE4_1))
3332	 {
3333	   /* The first operand in instruction blendvpd, blendvps and
3334	      pblendvb in SSE4.1 is implicit and must be xmm0.  */
3335	   assert (i.operands == 3
3336		   && i.reg_operands >= 2
3337		   && i.types[0] == RegXMM);
3338	   if (i.op[0].regs->reg_num != 0)
3339	     {
3340	       if (intel_syntax)
3341		 as_bad (_("the last operand of `%s' must be `%sxmm0'"),
3342			 i.tm.name, register_prefix);
3343	       else
3344		 as_bad (_("the first operand of `%s' must be `%sxmm0'"),
3345			 i.tm.name, register_prefix);
3346	       return 0;
3347	     }
3348	   i.op[0] = i.op[1];
3349	   i.op[1] = i.op[2];
3350	   i.types[0] = i.types[1];
3351	   i.types[1] = i.types[2];
3352	   i.operands--;
3353	   i.reg_operands--;
3354
3355	   /* We need to adjust fields in i.tm since they are used by
3356	      build_modrm_byte.  */
3357	   i.tm.operand_types [0] = i.tm.operand_types [1];
3358	   i.tm.operand_types [1] = i.tm.operand_types [2];
3359	   i.tm.operands--;
3360	 }
3361       else
3362	 {
3363	   unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
3364	   /* Pretend we saw the extra register operand.  */
3365	   assert (i.reg_operands == 1
3366		   && i.op[first_reg_op + 1].regs == 0);
3367	   i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
3368	   i.types[first_reg_op + 1] = i.types[first_reg_op];
3369	   i.operands++;
3370	   i.reg_operands++;
3371	 }
3372    }
3373
3374  if (i.tm.opcode_modifier & ShortForm)
3375    {
3376      if (i.types[0] & (SReg2 | SReg3))
3377	{
3378	  if (i.tm.base_opcode == POP_SEG_SHORT
3379	      && i.op[0].regs->reg_num == 1)
3380	    {
3381	      as_bad (_("you can't `pop %%cs'"));
3382	      return 0;
3383	    }
3384	  i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3385	  if ((i.op[0].regs->reg_flags & RegRex) != 0)
3386	    i.rex |= REX_B;
3387	}
3388      else
3389	{
3390	  /* The register or float register operand is in operand 0 or 1.  */
3391	  unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
3392	  /* Register goes in low 3 bits of opcode.  */
3393	  i.tm.base_opcode |= i.op[op].regs->reg_num;
3394	  if ((i.op[op].regs->reg_flags & RegRex) != 0)
3395	    i.rex |= REX_B;
3396	  if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
3397	    {
3398	      /* Warn about some common errors, but press on regardless.
3399		 The first case can be generated by gcc (<= 2.8.1).  */
3400	      if (i.operands == 2)
3401		{
3402		  /* Reversed arguments on faddp, fsubp, etc.  */
3403		  as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
3404			   register_prefix, i.op[1].regs->reg_name,
3405			   register_prefix, i.op[0].regs->reg_name);
3406		}
3407	      else
3408		{
3409		  /* Extraneous `l' suffix on fp insn.  */
3410		  as_warn (_("translating to `%s %s%s'"), i.tm.name,
3411			   register_prefix, i.op[0].regs->reg_name);
3412		}
3413	    }
3414	}
3415    }
3416  else if (i.tm.opcode_modifier & Modrm)
3417    {
3418      /* The opcode is completed (modulo i.tm.extension_opcode which
3419	 must be put into the modrm byte).  Now, we make the modrm and
3420	 index base bytes based on all the info we've collected.  */
3421
3422      default_seg = build_modrm_byte ();
3423    }
3424  else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
3425    {
3426      default_seg = &ds;
3427    }
3428  else if ((i.tm.opcode_modifier & IsString) != 0)
3429    {
3430      /* For the string instructions that allow a segment override
3431	 on one of their operands, the default segment is ds.  */
3432      default_seg = &ds;
3433    }
3434
3435  if ((i.tm.base_opcode == 0x8d /* lea */
3436       || (i.tm.cpu_flags & CpuSVME))
3437      && i.seg[0] && !quiet_warnings)
3438    as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
3439
3440  /* If a segment was explicitly specified, and the specified segment
3441     is not the default, use an opcode prefix to select it.  If we
3442     never figured out what the default segment is, then default_seg
3443     will be zero at this point, and the specified segment prefix will
3444     always be used.  */
3445  if ((i.seg[0]) && (i.seg[0] != default_seg))
3446    {
3447      if (!add_prefix (i.seg[0]->seg_prefix))
3448	return 0;
3449    }
3450  return 1;
3451}
3452
3453static const seg_entry *
3454build_modrm_byte (void)
3455{
3456  const seg_entry *default_seg = 0;
3457
3458  /* i.reg_operands MUST be the number of real register operands;
3459     implicit registers do not count.  */
3460  if (i.reg_operands == 2)
3461    {
3462      unsigned int source, dest;
3463
3464      switch (i.operands)
3465	{
3466	case 2:
3467	  source = 0;
3468	  break;
3469	case 3:
3470	  /* When there are 3 operands, one of them may be immediate,
3471	     which may be the first or the last operand.  Otherwise,
3472	     the first operand must be shift count register (cl). */
3473	  assert (i.imm_operands == 1
3474		  || (i.imm_operands == 0
3475		      && (i.types[0] & ShiftCount)));
3476	  source = (i.types[0] & (Imm | ShiftCount)) ? 1 : 0;
3477	  break;
3478	case 4:
3479	  /* When there are 4 operands, the first two must be immediate
3480	     operands. The source operand will be the 3rd one.  */
3481	  assert (i.imm_operands == 2
3482		  && (i.types[0] & Imm)
3483		  && (i.types[1] & Imm));
3484	  source = 2;
3485	  break;
3486	default:
3487	  abort ();
3488	}
3489
3490      dest = source + 1;
3491
3492      i.rm.mode = 3;
3493      /* One of the register operands will be encoded in the i.tm.reg
3494	 field, the other in the combined i.tm.mode and i.tm.regmem
3495	 fields.  If no form of this instruction supports a memory
3496	 destination operand, then we assume the source operand may
3497	 sometimes be a memory operand and so we need to store the
3498	 destination in the i.rm.reg field.  */
3499      if ((i.tm.operand_types[dest] & (AnyMem | RegMem)) == 0)
3500	{
3501	  i.rm.reg = i.op[dest].regs->reg_num;
3502	  i.rm.regmem = i.op[source].regs->reg_num;
3503	  if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3504	    i.rex |= REX_R;
3505	  if ((i.op[source].regs->reg_flags & RegRex) != 0)
3506	    i.rex |= REX_B;
3507	}
3508      else
3509	{
3510	  i.rm.reg = i.op[source].regs->reg_num;
3511	  i.rm.regmem = i.op[dest].regs->reg_num;
3512	  if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3513	    i.rex |= REX_B;
3514	  if ((i.op[source].regs->reg_flags & RegRex) != 0)
3515	    i.rex |= REX_R;
3516	}
3517      if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
3518	{
3519	  if (!((i.types[0] | i.types[1]) & Control))
3520	    abort ();
3521	  i.rex &= ~(REX_R | REX_B);
3522	  add_prefix (LOCK_PREFIX_OPCODE);
3523	}
3524    }
3525  else
3526    {			/* If it's not 2 reg operands...  */
3527      if (i.mem_operands)
3528	{
3529	  unsigned int fake_zero_displacement = 0;
3530	  unsigned int op;
3531
3532	  for (op = 0; op < i.operands; op++)
3533	    if ((i.types[op] & AnyMem))
3534	      break;
3535	  assert (op < i.operands);
3536
3537	  default_seg = &ds;
3538
3539	  if (i.base_reg == 0)
3540	    {
3541	      i.rm.mode = 0;
3542	      if (!i.disp_operands)
3543		fake_zero_displacement = 1;
3544	      if (i.index_reg == 0)
3545		{
3546		  /* Operand is just <disp>  */
3547		  if (flag_code == CODE_64BIT)
3548		    {
3549		      /* 64bit mode overwrites the 32bit absolute
3550			 addressing by RIP relative addressing and
3551			 absolute addressing is encoded by one of the
3552			 redundant SIB forms.  */
3553		      i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3554		      i.sib.base = NO_BASE_REGISTER;
3555		      i.sib.index = NO_INDEX_REGISTER;
3556		      i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
3557				     ? Disp32S : Disp32);
3558		    }
3559		  else if ((flag_code == CODE_16BIT)
3560			   ^ (i.prefix[ADDR_PREFIX] != 0))
3561		    {
3562		      i.rm.regmem = NO_BASE_REGISTER_16;
3563		      i.types[op] = Disp16;
3564		    }
3565		  else
3566		    {
3567		      i.rm.regmem = NO_BASE_REGISTER;
3568		      i.types[op] = Disp32;
3569		    }
3570		}
3571	      else /* !i.base_reg && i.index_reg  */
3572		{
3573		  i.sib.index = i.index_reg->reg_num;
3574		  i.sib.base = NO_BASE_REGISTER;
3575		  i.sib.scale = i.log2_scale_factor;
3576		  i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3577		  i.types[op] &= ~Disp;
3578		  if (flag_code != CODE_64BIT)
3579		    i.types[op] |= Disp32;	/* Must be 32 bit */
3580		  else
3581		    i.types[op] |= Disp32S;
3582		  if ((i.index_reg->reg_flags & RegRex) != 0)
3583		    i.rex |= REX_X;
3584		}
3585	    }
3586	  /* RIP addressing for 64bit mode.  */
3587	  else if (i.base_reg->reg_type == BaseIndex)
3588	    {
3589	      i.rm.regmem = NO_BASE_REGISTER;
3590	      i.types[op] &= ~ Disp;
3591	      i.types[op] |= Disp32S;
3592	      i.flags[op] |= Operand_PCrel;
3593	      if (! i.disp_operands)
3594		fake_zero_displacement = 1;
3595	    }
3596	  else if (i.base_reg->reg_type & Reg16)
3597	    {
3598	      switch (i.base_reg->reg_num)
3599		{
3600		case 3: /* (%bx)  */
3601		  if (i.index_reg == 0)
3602		    i.rm.regmem = 7;
3603		  else /* (%bx,%si) -> 0, or (%bx,%di) -> 1  */
3604		    i.rm.regmem = i.index_reg->reg_num - 6;
3605		  break;
3606		case 5: /* (%bp)  */
3607		  default_seg = &ss;
3608		  if (i.index_reg == 0)
3609		    {
3610		      i.rm.regmem = 6;
3611		      if ((i.types[op] & Disp) == 0)
3612			{
3613			  /* fake (%bp) into 0(%bp)  */
3614			  i.types[op] |= Disp8;
3615			  fake_zero_displacement = 1;
3616			}
3617		    }
3618		  else /* (%bp,%si) -> 2, or (%bp,%di) -> 3  */
3619		    i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3620		  break;
3621		default: /* (%si) -> 4 or (%di) -> 5  */
3622		  i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3623		}
3624	      i.rm.mode = mode_from_disp_size (i.types[op]);
3625	    }
3626	  else /* i.base_reg and 32/64 bit mode  */
3627	    {
3628	      if (flag_code == CODE_64BIT
3629		  && (i.types[op] & Disp))
3630		i.types[op] = ((i.types[op] & Disp8)
3631			       | (i.prefix[ADDR_PREFIX] == 0
3632				  ? Disp32S : Disp32));
3633
3634	      i.rm.regmem = i.base_reg->reg_num;
3635	      if ((i.base_reg->reg_flags & RegRex) != 0)
3636		i.rex |= REX_B;
3637	      i.sib.base = i.base_reg->reg_num;
3638	      /* x86-64 ignores REX prefix bit here to avoid decoder
3639		 complications.  */
3640	      if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3641		{
3642		  default_seg = &ss;
3643		  if (i.disp_operands == 0)
3644		    {
3645		      fake_zero_displacement = 1;
3646		      i.types[op] |= Disp8;
3647		    }
3648		}
3649	      else if (i.base_reg->reg_num == ESP_REG_NUM)
3650		{
3651		  default_seg = &ss;
3652		}
3653	      i.sib.scale = i.log2_scale_factor;
3654	      if (i.index_reg == 0)
3655		{
3656		  /* <disp>(%esp) becomes two byte modrm with no index
3657		     register.  We've already stored the code for esp
3658		     in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3659		     Any base register besides %esp will not use the
3660		     extra modrm byte.  */
3661		  i.sib.index = NO_INDEX_REGISTER;
3662#if !SCALE1_WHEN_NO_INDEX
3663		  /* Another case where we force the second modrm byte.  */
3664		  if (i.log2_scale_factor)
3665		    i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3666#endif
3667		}
3668	      else
3669		{
3670		  i.sib.index = i.index_reg->reg_num;
3671		  i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3672		  if ((i.index_reg->reg_flags & RegRex) != 0)
3673		    i.rex |= REX_X;
3674		}
3675
3676	      if (i.disp_operands
3677		  && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3678		      || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
3679		i.rm.mode = 0;
3680	      else
3681		i.rm.mode = mode_from_disp_size (i.types[op]);
3682	    }
3683
3684	  if (fake_zero_displacement)
3685	    {
3686	      /* Fakes a zero displacement assuming that i.types[op]
3687		 holds the correct displacement size.  */
3688	      expressionS *exp;
3689
3690	      assert (i.op[op].disps == 0);
3691	      exp = &disp_expressions[i.disp_operands++];
3692	      i.op[op].disps = exp;
3693	      exp->X_op = O_constant;
3694	      exp->X_add_number = 0;
3695	      exp->X_add_symbol = (symbolS *) 0;
3696	      exp->X_op_symbol = (symbolS *) 0;
3697	    }
3698	}
3699
3700      /* Fill in i.rm.reg or i.rm.regmem field with register operand
3701	 (if any) based on i.tm.extension_opcode.  Again, we must be
3702	 careful to make sure that segment/control/debug/test/MMX
3703	 registers are coded into the i.rm.reg field.  */
3704      if (i.reg_operands)
3705	{
3706	  unsigned int op;
3707
3708	  for (op = 0; op < i.operands; op++)
3709	    if ((i.types[op] & (Reg | RegMMX | RegXMM
3710				| SReg2 | SReg3
3711				| Control | Debug | Test)))
3712	      break;
3713	  assert (op < i.operands);
3714
3715	  /* If there is an extension opcode to put here, the register
3716	     number must be put into the regmem field.  */
3717	  if (i.tm.extension_opcode != None)
3718	    {
3719	      i.rm.regmem = i.op[op].regs->reg_num;
3720	      if ((i.op[op].regs->reg_flags & RegRex) != 0)
3721		i.rex |= REX_B;
3722	    }
3723	  else
3724	    {
3725	      i.rm.reg = i.op[op].regs->reg_num;
3726	      if ((i.op[op].regs->reg_flags & RegRex) != 0)
3727		i.rex |= REX_R;
3728	    }
3729
3730	  /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3731	     must set it to 3 to indicate this is a register operand
3732	     in the regmem field.  */
3733	  if (!i.mem_operands)
3734	    i.rm.mode = 3;
3735	}
3736
3737      /* Fill in i.rm.reg field with extension opcode (if any).  */
3738      if (i.tm.extension_opcode != None)
3739	i.rm.reg = i.tm.extension_opcode;
3740    }
3741  return default_seg;
3742}
3743
3744static void
3745output_branch (void)
3746{
3747  char *p;
3748  int code16;
3749  int prefix;
3750  relax_substateT subtype;
3751  symbolS *sym;
3752  offsetT off;
3753
3754  code16 = 0;
3755  if (flag_code == CODE_16BIT)
3756    code16 = CODE16;
3757
3758  prefix = 0;
3759  if (i.prefix[DATA_PREFIX] != 0)
3760    {
3761      prefix = 1;
3762      i.prefixes -= 1;
3763      code16 ^= CODE16;
3764    }
3765  /* Pentium4 branch hints.  */
3766  if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3767      || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3768    {
3769      prefix++;
3770      i.prefixes--;
3771    }
3772  if (i.prefix[REX_PREFIX] != 0)
3773    {
3774      prefix++;
3775      i.prefixes--;
3776    }
3777
3778  if (i.prefixes != 0 && !intel_syntax)
3779    as_warn (_("skipping prefixes on this instruction"));
3780
3781  /* It's always a symbol;  End frag & setup for relax.
3782     Make sure there is enough room in this frag for the largest
3783     instruction we may generate in md_convert_frag.  This is 2
3784     bytes for the opcode and room for the prefix and largest
3785     displacement.  */
3786  frag_grow (prefix + 2 + 4);
3787  /* Prefix and 1 opcode byte go in fr_fix.  */
3788  p = frag_more (prefix + 1);
3789  if (i.prefix[DATA_PREFIX] != 0)
3790    *p++ = DATA_PREFIX_OPCODE;
3791  if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3792      || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3793    *p++ = i.prefix[SEG_PREFIX];
3794  if (i.prefix[REX_PREFIX] != 0)
3795    *p++ = i.prefix[REX_PREFIX];
3796  *p = i.tm.base_opcode;
3797
3798  if ((unsigned char) *p == JUMP_PC_RELATIVE)
3799    subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3800  else if ((cpu_arch_flags & Cpu386) != 0)
3801    subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3802  else
3803    subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3804  subtype |= code16;
3805
3806  sym = i.op[0].disps->X_add_symbol;
3807  off = i.op[0].disps->X_add_number;
3808
3809  if (i.op[0].disps->X_op != O_constant
3810      && i.op[0].disps->X_op != O_symbol)
3811    {
3812      /* Handle complex expressions.  */
3813      sym = make_expr_symbol (i.op[0].disps);
3814      off = 0;
3815    }
3816
3817  /* 1 possible extra opcode + 4 byte displacement go in var part.
3818     Pass reloc in fr_var.  */
3819  frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3820}
3821
3822static void
3823output_jump (void)
3824{
3825  char *p;
3826  int size;
3827  fixS *fixP;
3828
3829  if (i.tm.opcode_modifier & JumpByte)
3830    {
3831      /* This is a loop or jecxz type instruction.  */
3832      size = 1;
3833      if (i.prefix[ADDR_PREFIX] != 0)
3834	{
3835	  FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3836	  i.prefixes -= 1;
3837	}
3838      /* Pentium4 branch hints.  */
3839      if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3840	  || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3841	{
3842	  FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3843	  i.prefixes--;
3844	}
3845    }
3846  else
3847    {
3848      int code16;
3849
3850      code16 = 0;
3851      if (flag_code == CODE_16BIT)
3852	code16 = CODE16;
3853
3854      if (i.prefix[DATA_PREFIX] != 0)
3855	{
3856	  FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3857	  i.prefixes -= 1;
3858	  code16 ^= CODE16;
3859	}
3860
3861      size = 4;
3862      if (code16)
3863	size = 2;
3864    }
3865
3866  if (i.prefix[REX_PREFIX] != 0)
3867    {
3868      FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3869      i.prefixes -= 1;
3870    }
3871
3872  if (i.prefixes != 0 && !intel_syntax)
3873    as_warn (_("skipping prefixes on this instruction"));
3874
3875  p = frag_more (1 + size);
3876  *p++ = i.tm.base_opcode;
3877
3878  fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3879		      i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3880
3881  /* All jumps handled here are signed, but don't use a signed limit
3882     check for 32 and 16 bit jumps as we want to allow wrap around at
3883     4G and 64k respectively.  */
3884  if (size == 1)
3885    fixP->fx_signed = 1;
3886}
3887
3888static void
3889output_interseg_jump (void)
3890{
3891  char *p;
3892  int size;
3893  int prefix;
3894  int code16;
3895
3896  code16 = 0;
3897  if (flag_code == CODE_16BIT)
3898    code16 = CODE16;
3899
3900  prefix = 0;
3901  if (i.prefix[DATA_PREFIX] != 0)
3902    {
3903      prefix = 1;
3904      i.prefixes -= 1;
3905      code16 ^= CODE16;
3906    }
3907  if (i.prefix[REX_PREFIX] != 0)
3908    {
3909      prefix++;
3910      i.prefixes -= 1;
3911    }
3912
3913  size = 4;
3914  if (code16)
3915    size = 2;
3916
3917  if (i.prefixes != 0 && !intel_syntax)
3918    as_warn (_("skipping prefixes on this instruction"));
3919
3920  /* 1 opcode; 2 segment; offset  */
3921  p = frag_more (prefix + 1 + 2 + size);
3922
3923  if (i.prefix[DATA_PREFIX] != 0)
3924    *p++ = DATA_PREFIX_OPCODE;
3925
3926  if (i.prefix[REX_PREFIX] != 0)
3927    *p++ = i.prefix[REX_PREFIX];
3928
3929  *p++ = i.tm.base_opcode;
3930  if (i.op[1].imms->X_op == O_constant)
3931    {
3932      offsetT n = i.op[1].imms->X_add_number;
3933
3934      if (size == 2
3935	  && !fits_in_unsigned_word (n)
3936	  && !fits_in_signed_word (n))
3937	{
3938	  as_bad (_("16-bit jump out of range"));
3939	  return;
3940	}
3941      md_number_to_chars (p, n, size);
3942    }
3943  else
3944    fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3945		 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3946  if (i.op[0].imms->X_op != O_constant)
3947    as_bad (_("can't handle non absolute segment in `%s'"),
3948	    i.tm.name);
3949  md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3950}
3951
3952static void
3953output_insn (void)
3954{
3955  fragS *insn_start_frag;
3956  offsetT insn_start_off;
3957
3958  /* Tie dwarf2 debug info to the address at the start of the insn.
3959     We can't do this after the insn has been output as the current
3960     frag may have been closed off.  eg. by frag_var.  */
3961  dwarf2_emit_insn (0);
3962
3963  insn_start_frag = frag_now;
3964  insn_start_off = frag_now_fix ();
3965
3966  /* Output jumps.  */
3967  if (i.tm.opcode_modifier & Jump)
3968    output_branch ();
3969  else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3970    output_jump ();
3971  else if (i.tm.opcode_modifier & JumpInterSegment)
3972    output_interseg_jump ();
3973  else
3974    {
3975      /* Output normal instructions here.  */
3976      char *p;
3977      unsigned char *q;
3978      unsigned int prefix;
3979
3980      /* All opcodes on i386 have either 1 or 2 bytes.  SSSE3 and
3981	 SSE4 instructions have 3 bytes.  We may use one more higher
3982	 byte to specify a prefix the instruction requires.  Exclude
3983	 instructions which are in both SSE4 and ABM.  */
3984      if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4 | CpuAES | CpuPCLMUL)) != 0
3985	  && (i.tm.cpu_flags & CpuABM) == 0)
3986	{
3987	  if (i.tm.base_opcode & 0xff000000)
3988	    {
3989	      prefix = (i.tm.base_opcode >> 24) & 0xff;
3990	      goto check_prefix;
3991	    }
3992	}
3993      else if (i.tm.base_opcode == 0x660f3880 || i.tm.base_opcode == 0x660f3881
3994	  || i.tm.base_opcode == 0x660f3882)
3995	{
3996	  /* invept and invvpid are 3 byte instructions with a
3997	     mandatory prefix. */
3998	  if (i.tm.base_opcode & 0xff000000)
3999	    {
4000	      prefix = (i.tm.base_opcode >> 24) & 0xff;
4001	      add_prefix (prefix);
4002	    }
4003	}
4004      else if ((i.tm.base_opcode & 0xff0000) != 0)
4005	{
4006	  prefix = (i.tm.base_opcode >> 16) & 0xff;
4007	  if ((i.tm.cpu_flags & CpuPadLock) != 0)
4008	    {
4009	    check_prefix:
4010	      if (prefix != REPE_PREFIX_OPCODE
4011		  || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
4012		add_prefix (prefix);
4013	    }
4014	  else
4015	    add_prefix (prefix);
4016	}
4017
4018      /* The prefix bytes.  */
4019      for (q = i.prefix;
4020	   q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
4021	   q++)
4022	{
4023	  if (*q)
4024	    {
4025	      p = frag_more (1);
4026	      md_number_to_chars (p, (valueT) *q, 1);
4027	    }
4028	}
4029
4030      /* Now the opcode; be careful about word order here!  */
4031      if (fits_in_unsigned_byte (i.tm.base_opcode))
4032	{
4033	  FRAG_APPEND_1_CHAR (i.tm.base_opcode);
4034	}
4035      else
4036	{
4037	  if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4 | CpuAES | CpuPCLMUL)) != 0
4038	      && (i.tm.cpu_flags & CpuABM) == 0)
4039	    {
4040	      p = frag_more (3);
4041	      *p++ = (i.tm.base_opcode >> 16) & 0xff;
4042	    }
4043	  else if (i.tm.base_opcode == 0x660f3880 ||
4044		   i.tm.base_opcode == 0x660f3881 ||
4045		   i.tm.base_opcode == 0x660f3882)
4046	    {
4047	      p = frag_more (3);
4048	      *p++ = (i.tm.base_opcode >> 16) & 0xff;
4049	    }
4050	  else
4051	    p = frag_more (2);
4052
4053	  /* Put out high byte first: can't use md_number_to_chars!  */
4054	  *p++ = (i.tm.base_opcode >> 8) & 0xff;
4055	  *p = i.tm.base_opcode & 0xff;
4056	}
4057
4058      /* Now the modrm byte and sib byte (if present).  */
4059      if (i.tm.opcode_modifier & Modrm)
4060	{
4061	  p = frag_more (1);
4062	  md_number_to_chars (p,
4063			      (valueT) (i.rm.regmem << 0
4064					| i.rm.reg << 3
4065					| i.rm.mode << 6),
4066			      1);
4067	  /* If i.rm.regmem == ESP (4)
4068	     && i.rm.mode != (Register mode)
4069	     && not 16 bit
4070	     ==> need second modrm byte.  */
4071	  if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
4072	      && i.rm.mode != 3
4073	      && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
4074	    {
4075	      p = frag_more (1);
4076	      md_number_to_chars (p,
4077				  (valueT) (i.sib.base << 0
4078					    | i.sib.index << 3
4079					    | i.sib.scale << 6),
4080				  1);
4081	    }
4082	}
4083
4084      if (i.disp_operands)
4085	output_disp (insn_start_frag, insn_start_off);
4086
4087      if (i.imm_operands)
4088	output_imm (insn_start_frag, insn_start_off);
4089    }
4090
4091#ifdef DEBUG386
4092  if (flag_debug)
4093    {
4094      pi ("" /*line*/, &i);
4095    }
4096#endif /* DEBUG386  */
4097}
4098
4099/* Return the size of the displacement operand N.  */
4100
4101static int
4102disp_size (unsigned int n)
4103{
4104  int size = 4;
4105  if (i.types[n] & (Disp8 | Disp16 | Disp64))
4106    {
4107      size = 2;
4108      if (i.types[n] & Disp8)
4109	size = 1;
4110      if (i.types[n] & Disp64)
4111	size = 8;
4112    }
4113  return size;
4114}
4115
4116/* Return the size of the immediate operand N.  */
4117
4118static int
4119imm_size (unsigned int n)
4120{
4121  int size = 4;
4122  if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4123    {
4124      size = 2;
4125      if (i.types[n] & (Imm8 | Imm8S))
4126	size = 1;
4127      if (i.types[n] & Imm64)
4128	size = 8;
4129    }
4130  return size;
4131}
4132
4133static void
4134output_disp (fragS *insn_start_frag, offsetT insn_start_off)
4135{
4136  char *p;
4137  unsigned int n;
4138
4139  for (n = 0; n < i.operands; n++)
4140    {
4141      if (i.types[n] & Disp)
4142	{
4143	  if (i.op[n].disps->X_op == O_constant)
4144	    {
4145	      int size = disp_size (n);
4146	      offsetT val;
4147
4148	      val = offset_in_range (i.op[n].disps->X_add_number,
4149				     size);
4150	      p = frag_more (size);
4151	      md_number_to_chars (p, val, size);
4152	    }
4153	  else
4154	    {
4155	      enum bfd_reloc_code_real reloc_type;
4156	      int size = disp_size (n);
4157	      int sign = (i.types[n] & Disp32S) != 0;
4158	      int pcrel = (i.flags[n] & Operand_PCrel) != 0;
4159
4160	      /* We can't have 8 bit displacement here.  */
4161	      assert ((i.types[n] & Disp8) == 0);
4162
4163	      /* The PC relative address is computed relative
4164		 to the instruction boundary, so in case immediate
4165		 fields follows, we need to adjust the value.  */
4166	      if (pcrel && i.imm_operands)
4167		{
4168		  unsigned int n1;
4169		  int sz = 0;
4170
4171		  for (n1 = 0; n1 < i.operands; n1++)
4172		    if (i.types[n1] & Imm)
4173		      {
4174			/* Only one immediate is allowed for PC
4175			   relative address.  */
4176			assert (sz == 0);
4177			sz = imm_size (n1);
4178			i.op[n].disps->X_add_number -= sz;
4179		      }
4180		  /* We should find the immediate.  */
4181		  assert (sz != 0);
4182		}
4183
4184	      p = frag_more (size);
4185	      reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
4186	      if (GOT_symbol
4187		  && GOT_symbol == i.op[n].disps->X_add_symbol
4188		  && (((reloc_type == BFD_RELOC_32
4189			|| reloc_type == BFD_RELOC_X86_64_32S
4190			|| (reloc_type == BFD_RELOC_64
4191			    && object_64bit))
4192		       && (i.op[n].disps->X_op == O_symbol
4193			   || (i.op[n].disps->X_op == O_add
4194			       && ((symbol_get_value_expression
4195				    (i.op[n].disps->X_op_symbol)->X_op)
4196				   == O_subtract))))
4197		      || reloc_type == BFD_RELOC_32_PCREL))
4198		{
4199		  offsetT add;
4200
4201		  if (insn_start_frag == frag_now)
4202		    add = (p - frag_now->fr_literal) - insn_start_off;
4203		  else
4204		    {
4205		      fragS *fr;
4206
4207		      add = insn_start_frag->fr_fix - insn_start_off;
4208		      for (fr = insn_start_frag->fr_next;
4209			   fr && fr != frag_now; fr = fr->fr_next)
4210			add += fr->fr_fix;
4211		      add += p - frag_now->fr_literal;
4212		    }
4213
4214		  if (!object_64bit)
4215		    {
4216		      reloc_type = BFD_RELOC_386_GOTPC;
4217		      i.op[n].imms->X_add_number += add;
4218		    }
4219		  else if (reloc_type == BFD_RELOC_64)
4220		    reloc_type = BFD_RELOC_X86_64_GOTPC64;
4221		  else
4222		    /* Don't do the adjustment for x86-64, as there
4223		       the pcrel addressing is relative to the _next_
4224		       insn, and that is taken care of in other code.  */
4225		    reloc_type = BFD_RELOC_X86_64_GOTPC32;
4226		}
4227	      fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4228			   i.op[n].disps, pcrel, reloc_type);
4229	    }
4230	}
4231    }
4232}
4233
4234static void
4235output_imm (fragS *insn_start_frag, offsetT insn_start_off)
4236{
4237  char *p;
4238  unsigned int n;
4239
4240  for (n = 0; n < i.operands; n++)
4241    {
4242      if (i.types[n] & Imm)
4243	{
4244	  if (i.op[n].imms->X_op == O_constant)
4245	    {
4246	      int size = imm_size (n);
4247	      offsetT val;
4248
4249	      val = offset_in_range (i.op[n].imms->X_add_number,
4250				     size);
4251	      p = frag_more (size);
4252	      md_number_to_chars (p, val, size);
4253	    }
4254	  else
4255	    {
4256	      /* Not absolute_section.
4257		 Need a 32-bit fixup (don't support 8bit
4258		 non-absolute imms).  Try to support other
4259		 sizes ...  */
4260	      enum bfd_reloc_code_real reloc_type;
4261	      int size = imm_size (n);
4262	      int sign;
4263
4264	      if ((i.types[n] & (Imm32S))
4265		  && (i.suffix == QWORD_MNEM_SUFFIX
4266		      || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
4267		sign = 1;
4268	      else
4269		sign = 0;
4270
4271	      p = frag_more (size);
4272	      reloc_type = reloc (size, 0, sign, i.reloc[n]);
4273
4274	      /*   This is tough to explain.  We end up with this one if we
4275	       * have operands that look like
4276	       * "_GLOBAL_OFFSET_TABLE_+[.-.L284]".  The goal here is to
4277	       * obtain the absolute address of the GOT, and it is strongly
4278	       * preferable from a performance point of view to avoid using
4279	       * a runtime relocation for this.  The actual sequence of
4280	       * instructions often look something like:
4281	       *
4282	       *	call	.L66
4283	       * .L66:
4284	       *	popl	%ebx
4285	       *	addl	$_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4286	       *
4287	       *   The call and pop essentially return the absolute address
4288	       * of the label .L66 and store it in %ebx.  The linker itself
4289	       * will ultimately change the first operand of the addl so
4290	       * that %ebx points to the GOT, but to keep things simple, the
4291	       * .o file must have this operand set so that it generates not
4292	       * the absolute address of .L66, but the absolute address of
4293	       * itself.  This allows the linker itself simply treat a GOTPC
4294	       * relocation as asking for a pcrel offset to the GOT to be
4295	       * added in, and the addend of the relocation is stored in the
4296	       * operand field for the instruction itself.
4297	       *
4298	       *   Our job here is to fix the operand so that it would add
4299	       * the correct offset so that %ebx would point to itself.  The
4300	       * thing that is tricky is that .-.L66 will point to the
4301	       * beginning of the instruction, so we need to further modify
4302	       * the operand so that it will point to itself.  There are
4303	       * other cases where you have something like:
4304	       *
4305	       *	.long	$_GLOBAL_OFFSET_TABLE_+[.-.L66]
4306	       *
4307	       * and here no correction would be required.  Internally in
4308	       * the assembler we treat operands of this form as not being
4309	       * pcrel since the '.' is explicitly mentioned, and I wonder
4310	       * whether it would simplify matters to do it this way.  Who
4311	       * knows.  In earlier versions of the PIC patches, the
4312	       * pcrel_adjust field was used to store the correction, but
4313	       * since the expression is not pcrel, I felt it would be
4314	       * confusing to do it this way.  */
4315
4316	      if ((reloc_type == BFD_RELOC_32
4317		   || reloc_type == BFD_RELOC_X86_64_32S
4318		   || reloc_type == BFD_RELOC_64)
4319		  && GOT_symbol
4320		  && GOT_symbol == i.op[n].imms->X_add_symbol
4321		  && (i.op[n].imms->X_op == O_symbol
4322		      || (i.op[n].imms->X_op == O_add
4323			  && ((symbol_get_value_expression
4324			       (i.op[n].imms->X_op_symbol)->X_op)
4325			      == O_subtract))))
4326		{
4327		  offsetT add;
4328
4329		  if (insn_start_frag == frag_now)
4330		    add = (p - frag_now->fr_literal) - insn_start_off;
4331		  else
4332		    {
4333		      fragS *fr;
4334
4335		      add = insn_start_frag->fr_fix - insn_start_off;
4336		      for (fr = insn_start_frag->fr_next;
4337			   fr && fr != frag_now; fr = fr->fr_next)
4338			add += fr->fr_fix;
4339		      add += p - frag_now->fr_literal;
4340		    }
4341
4342		  if (!object_64bit)
4343		    reloc_type = BFD_RELOC_386_GOTPC;
4344		  else if (size == 4)
4345		    reloc_type = BFD_RELOC_X86_64_GOTPC32;
4346		  else if (size == 8)
4347		    reloc_type = BFD_RELOC_X86_64_GOTPC64;
4348		  i.op[n].imms->X_add_number += add;
4349		}
4350	      fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4351			   i.op[n].imms, 0, reloc_type);
4352	    }
4353	}
4354    }
4355}
4356
4357/* x86_cons_fix_new is called via the expression parsing code when a
4358   reloc is needed.  We use this hook to get the correct .got reloc.  */
4359static enum bfd_reloc_code_real got_reloc = NO_RELOC;
4360static int cons_sign = -1;
4361
4362void
4363x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
4364		  expressionS *exp)
4365{
4366  enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
4367
4368  got_reloc = NO_RELOC;
4369
4370#ifdef TE_PE
4371  if (exp->X_op == O_secrel)
4372    {
4373      exp->X_op = O_symbol;
4374      r = BFD_RELOC_32_SECREL;
4375    }
4376#endif
4377
4378  fix_new_exp (frag, off, len, exp, 0, r);
4379}
4380
4381#if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
4382# define lex_got(reloc, adjust, types) NULL
4383#else
4384/* Parse operands of the form
4385   <symbol>@GOTOFF+<nnn>
4386   and similar .plt or .got references.
4387
4388   If we find one, set up the correct relocation in RELOC and copy the
4389   input string, minus the `@GOTOFF' into a malloc'd buffer for
4390   parsing by the calling routine.  Return this buffer, and if ADJUST
4391   is non-null set it to the length of the string we removed from the
4392   input line.  Otherwise return NULL.  */
4393static char *
4394lex_got (enum bfd_reloc_code_real *reloc,
4395	 int *adjust,
4396	 unsigned int *types)
4397{
4398  /* Some of the relocations depend on the size of what field is to
4399     be relocated.  But in our callers i386_immediate and i386_displacement
4400     we don't yet know the operand size (this will be set by insn
4401     matching).  Hence we record the word32 relocation here,
4402     and adjust the reloc according to the real size in reloc().  */
4403  static const struct {
4404    const char *str;
4405    const enum bfd_reloc_code_real rel[2];
4406    const unsigned int types64;
4407  } gotrel[] = {
4408    { "PLTOFF",   { 0,
4409		    BFD_RELOC_X86_64_PLTOFF64 },
4410      Imm64 },
4411    { "PLT",      { BFD_RELOC_386_PLT32,
4412		    BFD_RELOC_X86_64_PLT32    },
4413      Imm32 | Imm32S | Disp32 },
4414    { "GOTPLT",   { 0,
4415		    BFD_RELOC_X86_64_GOTPLT64 },
4416      Imm64 | Disp64 },
4417    { "GOTOFF",   { BFD_RELOC_386_GOTOFF,
4418		    BFD_RELOC_X86_64_GOTOFF64 },
4419      Imm64 | Disp64 },
4420    { "GOTPCREL", { 0,
4421		    BFD_RELOC_X86_64_GOTPCREL },
4422      Imm32 | Imm32S | Disp32 },
4423    { "TLSGD",    { BFD_RELOC_386_TLS_GD,
4424		    BFD_RELOC_X86_64_TLSGD    },
4425      Imm32 | Imm32S | Disp32 },
4426    { "TLSLDM",   { BFD_RELOC_386_TLS_LDM,
4427		    0                         },
4428      0 },
4429    { "TLSLD",    { 0,
4430		    BFD_RELOC_X86_64_TLSLD    },
4431      Imm32 | Imm32S | Disp32 },
4432    { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
4433		    BFD_RELOC_X86_64_GOTTPOFF },
4434      Imm32 | Imm32S | Disp32 },
4435    { "TPOFF",    { BFD_RELOC_386_TLS_LE_32,
4436		    BFD_RELOC_X86_64_TPOFF32  },
4437      Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4438    { "NTPOFF",   { BFD_RELOC_386_TLS_LE,
4439		    0                         },
4440      0 },
4441    { "DTPOFF",   { BFD_RELOC_386_TLS_LDO_32,
4442		    BFD_RELOC_X86_64_DTPOFF32 },
4443      Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4444    { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
4445		    0                         },
4446      0 },
4447    { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
4448		    0                         },
4449      0 },
4450    { "GOT",      { BFD_RELOC_386_GOT32,
4451		    BFD_RELOC_X86_64_GOT32    },
4452      Imm32 | Imm32S | Disp32 | Imm64 },
4453    { "TLSDESC",  { BFD_RELOC_386_TLS_GOTDESC,
4454		    BFD_RELOC_X86_64_GOTPC32_TLSDESC },
4455      Imm32 | Imm32S | Disp32 },
4456    { "TLSCALL",  { BFD_RELOC_386_TLS_DESC_CALL,
4457		    BFD_RELOC_X86_64_TLSDESC_CALL },
4458      Imm32 | Imm32S | Disp32 }
4459  };
4460  char *cp;
4461  unsigned int j;
4462
4463  if (!IS_ELF)
4464    return NULL;
4465
4466  for (cp = input_line_pointer; *cp != '@'; cp++)
4467    if (is_end_of_line[(unsigned char) *cp])
4468      return NULL;
4469
4470  for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
4471    {
4472      int len;
4473
4474      len = strlen (gotrel[j].str);
4475      if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
4476	{
4477	  if (gotrel[j].rel[object_64bit] != 0)
4478	    {
4479	      int first, second;
4480	      char *tmpbuf, *past_reloc;
4481
4482	      *reloc = gotrel[j].rel[object_64bit];
4483	      if (adjust)
4484		*adjust = len;
4485
4486	      if (types)
4487		{
4488		  if (flag_code != CODE_64BIT)
4489		    *types = Imm32 | Disp32;
4490		  else
4491		    *types = gotrel[j].types64;
4492		}
4493
4494	      if (GOT_symbol == NULL)
4495		GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
4496
4497	      /* The length of the first part of our input line.  */
4498	      first = cp - input_line_pointer;
4499
4500	      /* The second part goes from after the reloc token until
4501		 (and including) an end_of_line char.  Don't use strlen
4502		 here as the end_of_line char may not be a NUL.  */
4503	      past_reloc = cp + 1 + len;
4504	      for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
4505		;
4506	      second = cp - past_reloc;
4507
4508	      /* Allocate and copy string.  The trailing NUL shouldn't
4509		 be necessary, but be safe.  */
4510	      tmpbuf = xmalloc (first + second + 2);
4511	      memcpy (tmpbuf, input_line_pointer, first);
4512	      if (second != 0 && *past_reloc != ' ')
4513		/* Replace the relocation token with ' ', so that
4514		   errors like foo@GOTOFF1 will be detected.  */
4515		tmpbuf[first++] = ' ';
4516	      memcpy (tmpbuf + first, past_reloc, second);
4517	      tmpbuf[first + second] = '\0';
4518	      return tmpbuf;
4519	    }
4520
4521	  as_bad (_("@%s reloc is not supported with %d-bit output format"),
4522		  gotrel[j].str, 1 << (5 + object_64bit));
4523	  return NULL;
4524	}
4525    }
4526
4527  /* Might be a symbol version string.  Don't as_bad here.  */
4528  return NULL;
4529}
4530
4531void
4532x86_cons (expressionS *exp, int size)
4533{
4534  if (size == 4 || (object_64bit && size == 8))
4535    {
4536      /* Handle @GOTOFF and the like in an expression.  */
4537      char *save;
4538      char *gotfree_input_line;
4539      int adjust;
4540
4541      save = input_line_pointer;
4542      gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
4543      if (gotfree_input_line)
4544	input_line_pointer = gotfree_input_line;
4545
4546      expression (exp);
4547
4548      if (gotfree_input_line)
4549	{
4550	  /* expression () has merrily parsed up to the end of line,
4551	     or a comma - in the wrong buffer.  Transfer how far
4552	     input_line_pointer has moved to the right buffer.  */
4553	  input_line_pointer = (save
4554				+ (input_line_pointer - gotfree_input_line)
4555				+ adjust);
4556	  free (gotfree_input_line);
4557	}
4558    }
4559  else
4560    expression (exp);
4561}
4562#endif
4563
4564static void signed_cons (int size)
4565{
4566  if (flag_code == CODE_64BIT)
4567    cons_sign = 1;
4568  cons (size);
4569  cons_sign = -1;
4570}
4571
4572#ifdef TE_PE
4573static void
4574pe_directive_secrel (dummy)
4575     int dummy ATTRIBUTE_UNUSED;
4576{
4577  expressionS exp;
4578
4579  do
4580    {
4581      expression (&exp);
4582      if (exp.X_op == O_symbol)
4583	exp.X_op = O_secrel;
4584
4585      emit_expr (&exp, 4);
4586    }
4587  while (*input_line_pointer++ == ',');
4588
4589  input_line_pointer--;
4590  demand_empty_rest_of_line ();
4591}
4592#endif
4593
4594static int
4595i386_immediate (char *imm_start)
4596{
4597  char *save_input_line_pointer;
4598  char *gotfree_input_line;
4599  segT exp_seg = 0;
4600  expressionS *exp;
4601  unsigned int types = ~0U;
4602
4603  if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
4604    {
4605      as_bad (_("at most %d immediate operands are allowed"),
4606	      MAX_IMMEDIATE_OPERANDS);
4607      return 0;
4608    }
4609
4610  exp = &im_expressions[i.imm_operands++];
4611  i.op[this_operand].imms = exp;
4612
4613  if (is_space_char (*imm_start))
4614    ++imm_start;
4615
4616  save_input_line_pointer = input_line_pointer;
4617  input_line_pointer = imm_start;
4618
4619  gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4620  if (gotfree_input_line)
4621    input_line_pointer = gotfree_input_line;
4622
4623  exp_seg = expression (exp);
4624
4625  SKIP_WHITESPACE ();
4626  if (*input_line_pointer)
4627    as_bad (_("junk `%s' after expression"), input_line_pointer);
4628
4629  input_line_pointer = save_input_line_pointer;
4630  if (gotfree_input_line)
4631    free (gotfree_input_line);
4632
4633  if (exp->X_op == O_absent || exp->X_op == O_big)
4634    {
4635      /* Missing or bad expr becomes absolute 0.  */
4636      as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
4637	      imm_start);
4638      exp->X_op = O_constant;
4639      exp->X_add_number = 0;
4640      exp->X_add_symbol = (symbolS *) 0;
4641      exp->X_op_symbol = (symbolS *) 0;
4642    }
4643  else if (exp->X_op == O_constant)
4644    {
4645      /* Size it properly later.  */
4646      i.types[this_operand] |= Imm64;
4647      /* If BFD64, sign extend val.  */
4648      if (!use_rela_relocations
4649	  && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
4650	exp->X_add_number
4651	  = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
4652    }
4653#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4654  else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
4655	   && exp_seg != absolute_section
4656	   && exp_seg != text_section
4657	   && exp_seg != data_section
4658	   && exp_seg != bss_section
4659	   && exp_seg != undefined_section
4660	   && !bfd_is_com_section (exp_seg))
4661    {
4662      as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4663      return 0;
4664    }
4665#endif
4666  else if (!intel_syntax && exp->X_op == O_register)
4667    {
4668      as_bad (_("illegal immediate register operand %s"), imm_start);
4669      return 0;
4670    }
4671  else
4672    {
4673      /* This is an address.  The size of the address will be
4674	 determined later, depending on destination register,
4675	 suffix, or the default for the section.  */
4676      i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
4677      i.types[this_operand] &= types;
4678    }
4679
4680  return 1;
4681}
4682
4683static char *
4684i386_scale (char *scale)
4685{
4686  offsetT val;
4687  char *save = input_line_pointer;
4688
4689  input_line_pointer = scale;
4690  val = get_absolute_expression ();
4691
4692  switch (val)
4693    {
4694    case 1:
4695      i.log2_scale_factor = 0;
4696      break;
4697    case 2:
4698      i.log2_scale_factor = 1;
4699      break;
4700    case 4:
4701      i.log2_scale_factor = 2;
4702      break;
4703    case 8:
4704      i.log2_scale_factor = 3;
4705      break;
4706    default:
4707      {
4708	char sep = *input_line_pointer;
4709
4710	*input_line_pointer = '\0';
4711	as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4712		scale);
4713	*input_line_pointer = sep;
4714	input_line_pointer = save;
4715	return NULL;
4716      }
4717    }
4718  if (i.log2_scale_factor != 0 && i.index_reg == 0)
4719    {
4720      as_warn (_("scale factor of %d without an index register"),
4721	       1 << i.log2_scale_factor);
4722#if SCALE1_WHEN_NO_INDEX
4723      i.log2_scale_factor = 0;
4724#endif
4725    }
4726  scale = input_line_pointer;
4727  input_line_pointer = save;
4728  return scale;
4729}
4730
4731static int
4732i386_displacement (char *disp_start, char *disp_end)
4733{
4734  expressionS *exp;
4735  segT exp_seg = 0;
4736  char *save_input_line_pointer;
4737  char *gotfree_input_line;
4738  int bigdisp, override;
4739  unsigned int types = Disp;
4740
4741  if (i.disp_operands == MAX_MEMORY_OPERANDS)
4742    {
4743      as_bad (_("at most %d displacement operands are allowed"),
4744	      MAX_MEMORY_OPERANDS);
4745      return 0;
4746    }
4747
4748  if ((i.types[this_operand] & JumpAbsolute)
4749      || !(current_templates->start->opcode_modifier & (Jump | JumpDword)))
4750    {
4751      bigdisp = Disp32;
4752      override = (i.prefix[ADDR_PREFIX] != 0);
4753    }
4754  else
4755    {
4756      /* For PC-relative branches, the width of the displacement
4757	 is dependent upon data size, not address size.  */
4758      bigdisp = 0;
4759      override = (i.prefix[DATA_PREFIX] != 0);
4760    }
4761  if (flag_code == CODE_64BIT)
4762    {
4763      if (!bigdisp)
4764	bigdisp = ((override || i.suffix == WORD_MNEM_SUFFIX)
4765		   ? Disp16
4766		   : Disp32S | Disp32);
4767      else if (!override)
4768	bigdisp = Disp64 | Disp32S | Disp32;
4769    }
4770  else
4771    {
4772      if (!bigdisp)
4773	{
4774	  if (!override)
4775	    override = (i.suffix == (flag_code != CODE_16BIT
4776				     ? WORD_MNEM_SUFFIX
4777				     : LONG_MNEM_SUFFIX));
4778	  bigdisp = Disp32;
4779	}
4780      if ((flag_code == CODE_16BIT) ^ override)
4781	bigdisp = Disp16;
4782    }
4783  i.types[this_operand] |= bigdisp;
4784
4785  exp = &disp_expressions[i.disp_operands];
4786  i.op[this_operand].disps = exp;
4787  i.disp_operands++;
4788  save_input_line_pointer = input_line_pointer;
4789  input_line_pointer = disp_start;
4790  END_STRING_AND_SAVE (disp_end);
4791
4792#ifndef GCC_ASM_O_HACK
4793#define GCC_ASM_O_HACK 0
4794#endif
4795#if GCC_ASM_O_HACK
4796  END_STRING_AND_SAVE (disp_end + 1);
4797  if ((i.types[this_operand] & BaseIndex) != 0
4798      && displacement_string_end[-1] == '+')
4799    {
4800      /* This hack is to avoid a warning when using the "o"
4801	 constraint within gcc asm statements.
4802	 For instance:
4803
4804	 #define _set_tssldt_desc(n,addr,limit,type) \
4805	 __asm__ __volatile__ ( \
4806	 "movw %w2,%0\n\t" \
4807	 "movw %w1,2+%0\n\t" \
4808	 "rorl $16,%1\n\t" \
4809	 "movb %b1,4+%0\n\t" \
4810	 "movb %4,5+%0\n\t" \
4811	 "movb $0,6+%0\n\t" \
4812	 "movb %h1,7+%0\n\t" \
4813	 "rorl $16,%1" \
4814	 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4815
4816	 This works great except that the output assembler ends
4817	 up looking a bit weird if it turns out that there is
4818	 no offset.  You end up producing code that looks like:
4819
4820	 #APP
4821	 movw $235,(%eax)
4822	 movw %dx,2+(%eax)
4823	 rorl $16,%edx
4824	 movb %dl,4+(%eax)
4825	 movb $137,5+(%eax)
4826	 movb $0,6+(%eax)
4827	 movb %dh,7+(%eax)
4828	 rorl $16,%edx
4829	 #NO_APP
4830
4831	 So here we provide the missing zero.  */
4832
4833      *displacement_string_end = '0';
4834    }
4835#endif
4836  gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4837  if (gotfree_input_line)
4838    input_line_pointer = gotfree_input_line;
4839
4840  exp_seg = expression (exp);
4841
4842  SKIP_WHITESPACE ();
4843  if (*input_line_pointer)
4844    as_bad (_("junk `%s' after expression"), input_line_pointer);
4845#if GCC_ASM_O_HACK
4846  RESTORE_END_STRING (disp_end + 1);
4847#endif
4848  RESTORE_END_STRING (disp_end);
4849  input_line_pointer = save_input_line_pointer;
4850  if (gotfree_input_line)
4851    free (gotfree_input_line);
4852
4853  /* We do this to make sure that the section symbol is in
4854     the symbol table.  We will ultimately change the relocation
4855     to be relative to the beginning of the section.  */
4856  if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4857      || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4858      || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4859    {
4860      if (exp->X_op != O_symbol)
4861	{
4862	  as_bad (_("bad expression used with @%s"),
4863		  (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4864		   ? "GOTPCREL"
4865		   : "GOTOFF"));
4866	  return 0;
4867	}
4868
4869      if (S_IS_LOCAL (exp->X_add_symbol)
4870	  && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4871	section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4872      exp->X_op = O_subtract;
4873      exp->X_op_symbol = GOT_symbol;
4874      if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4875	i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4876      else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4877	i.reloc[this_operand] = BFD_RELOC_64;
4878      else
4879	i.reloc[this_operand] = BFD_RELOC_32;
4880    }
4881
4882  if (exp->X_op == O_absent || exp->X_op == O_big)
4883    {
4884      /* Missing or bad expr becomes absolute 0.  */
4885      as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4886	      disp_start);
4887      exp->X_op = O_constant;
4888      exp->X_add_number = 0;
4889      exp->X_add_symbol = (symbolS *) 0;
4890      exp->X_op_symbol = (symbolS *) 0;
4891    }
4892
4893#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4894  if (exp->X_op != O_constant
4895      && OUTPUT_FLAVOR == bfd_target_aout_flavour
4896      && exp_seg != absolute_section
4897      && exp_seg != text_section
4898      && exp_seg != data_section
4899      && exp_seg != bss_section
4900      && exp_seg != undefined_section
4901      && !bfd_is_com_section (exp_seg))
4902    {
4903      as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4904      return 0;
4905    }
4906#endif
4907
4908  if (!(i.types[this_operand] & ~Disp))
4909    i.types[this_operand] &= types;
4910
4911  return 1;
4912}
4913
4914/* Make sure the memory operand we've been dealt is valid.
4915   Return 1 on success, 0 on a failure.  */
4916
4917static int
4918i386_index_check (const char *operand_string)
4919{
4920  int ok;
4921#if INFER_ADDR_PREFIX
4922  int fudged = 0;
4923
4924 tryprefix:
4925#endif
4926  ok = 1;
4927  if ((current_templates->start->cpu_flags & CpuSVME)
4928      && current_templates->end[-1].operand_types[0] == AnyMem)
4929    {
4930      /* Memory operands of SVME insns are special in that they only allow
4931	 rAX as their memory address and ignore any segment override.  */
4932      unsigned RegXX;
4933
4934      /* SKINIT is even more restrictive: it always requires EAX.  */
4935      if (strcmp (current_templates->start->name, "skinit") == 0)
4936	RegXX = Reg32;
4937      else if (flag_code == CODE_64BIT)
4938	RegXX = i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32;
4939      else
4940	RegXX = ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
4941		 ? Reg16
4942		 : Reg32);
4943      if (!i.base_reg
4944	  || !(i.base_reg->reg_type & Acc)
4945	  || !(i.base_reg->reg_type & RegXX)
4946	  || i.index_reg
4947	  || (i.types[0] & Disp))
4948	ok = 0;
4949    }
4950  else if (flag_code == CODE_64BIT)
4951    {
4952      unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4953
4954      if ((i.base_reg
4955	   && ((i.base_reg->reg_type & RegXX) == 0)
4956	   && (i.base_reg->reg_type != BaseIndex
4957	       || i.index_reg))
4958	  || (i.index_reg
4959	      && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4960		  != (RegXX | BaseIndex))))
4961	ok = 0;
4962    }
4963  else
4964    {
4965      if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4966	{
4967	  /* 16bit checks.  */
4968	  if ((i.base_reg
4969	       && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4970		   != (Reg16 | BaseIndex)))
4971	      || (i.index_reg
4972		  && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4973		       != (Reg16 | BaseIndex))
4974		      || !(i.base_reg
4975			   && i.base_reg->reg_num < 6
4976			   && i.index_reg->reg_num >= 6
4977			   && i.log2_scale_factor == 0))))
4978	    ok = 0;
4979	}
4980      else
4981	{
4982	  /* 32bit checks.  */
4983	  if ((i.base_reg
4984	       && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4985	      || (i.index_reg
4986		  && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4987		      != (Reg32 | BaseIndex))))
4988	    ok = 0;
4989	}
4990    }
4991  if (!ok)
4992    {
4993#if INFER_ADDR_PREFIX
4994      if (i.prefix[ADDR_PREFIX] == 0)
4995	{
4996	  i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4997	  i.prefixes += 1;
4998	  /* Change the size of any displacement too.  At most one of
4999	     Disp16 or Disp32 is set.
5000	     FIXME.  There doesn't seem to be any real need for separate
5001	     Disp16 and Disp32 flags.  The same goes for Imm16 and Imm32.
5002	     Removing them would probably clean up the code quite a lot.  */
5003	  if (flag_code != CODE_64BIT
5004	      && (i.types[this_operand] & (Disp16 | Disp32)))
5005	    i.types[this_operand] ^= (Disp16 | Disp32);
5006	  fudged = 1;
5007	  goto tryprefix;
5008	}
5009      if (fudged)
5010	as_bad (_("`%s' is not a valid base/index expression"),
5011		operand_string);
5012      else
5013#endif
5014	as_bad (_("`%s' is not a valid %s bit base/index expression"),
5015		operand_string,
5016		flag_code_names[flag_code]);
5017    }
5018  return ok;
5019}
5020
5021/* Parse OPERAND_STRING into the i386_insn structure I.  Returns non-zero
5022   on error.  */
5023
5024static int
5025i386_operand (char *operand_string)
5026{
5027  const reg_entry *r;
5028  char *end_op;
5029  char *op_string = operand_string;
5030
5031  if (is_space_char (*op_string))
5032    ++op_string;
5033
5034  /* We check for an absolute prefix (differentiating,
5035     for example, 'jmp pc_relative_label' from 'jmp *absolute_label'.  */
5036  if (*op_string == ABSOLUTE_PREFIX)
5037    {
5038      ++op_string;
5039      if (is_space_char (*op_string))
5040	++op_string;
5041      i.types[this_operand] |= JumpAbsolute;
5042    }
5043
5044  /* Check if operand is a register.  */
5045  if ((r = parse_register (op_string, &end_op)) != NULL)
5046    {
5047      /* Check for a segment override by searching for ':' after a
5048	 segment register.  */
5049      op_string = end_op;
5050      if (is_space_char (*op_string))
5051	++op_string;
5052      if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
5053	{
5054	  switch (r->reg_num)
5055	    {
5056	    case 0:
5057	      i.seg[i.mem_operands] = &es;
5058	      break;
5059	    case 1:
5060	      i.seg[i.mem_operands] = &cs;
5061	      break;
5062	    case 2:
5063	      i.seg[i.mem_operands] = &ss;
5064	      break;
5065	    case 3:
5066	      i.seg[i.mem_operands] = &ds;
5067	      break;
5068	    case 4:
5069	      i.seg[i.mem_operands] = &fs;
5070	      break;
5071	    case 5:
5072	      i.seg[i.mem_operands] = &gs;
5073	      break;
5074	    }
5075
5076	  /* Skip the ':' and whitespace.  */
5077	  ++op_string;
5078	  if (is_space_char (*op_string))
5079	    ++op_string;
5080
5081	  if (!is_digit_char (*op_string)
5082	      && !is_identifier_char (*op_string)
5083	      && *op_string != '('
5084	      && *op_string != ABSOLUTE_PREFIX)
5085	    {
5086	      as_bad (_("bad memory operand `%s'"), op_string);
5087	      return 0;
5088	    }
5089	  /* Handle case of %es:*foo.  */
5090	  if (*op_string == ABSOLUTE_PREFIX)
5091	    {
5092	      ++op_string;
5093	      if (is_space_char (*op_string))
5094		++op_string;
5095	      i.types[this_operand] |= JumpAbsolute;
5096	    }
5097	  goto do_memory_reference;
5098	}
5099      if (*op_string)
5100	{
5101	  as_bad (_("junk `%s' after register"), op_string);
5102	  return 0;
5103	}
5104      i.types[this_operand] |= r->reg_type & ~BaseIndex;
5105      i.op[this_operand].regs = r;
5106      i.reg_operands++;
5107    }
5108  else if (*op_string == REGISTER_PREFIX)
5109    {
5110      as_bad (_("bad register name `%s'"), op_string);
5111      return 0;
5112    }
5113  else if (*op_string == IMMEDIATE_PREFIX)
5114    {
5115      ++op_string;
5116      if (i.types[this_operand] & JumpAbsolute)
5117	{
5118	  as_bad (_("immediate operand illegal with absolute jump"));
5119	  return 0;
5120	}
5121      if (!i386_immediate (op_string))
5122	return 0;
5123    }
5124  else if (is_digit_char (*op_string)
5125	   || is_identifier_char (*op_string)
5126	   || *op_string == '(')
5127    {
5128      /* This is a memory reference of some sort.  */
5129      char *base_string;
5130
5131      /* Start and end of displacement string expression (if found).  */
5132      char *displacement_string_start;
5133      char *displacement_string_end;
5134
5135    do_memory_reference:
5136      if ((i.mem_operands == 1
5137	   && (current_templates->start->opcode_modifier & IsString) == 0)
5138	  || i.mem_operands == 2)
5139	{
5140	  as_bad (_("too many memory references for `%s'"),
5141		  current_templates->start->name);
5142	  return 0;
5143	}
5144
5145      /* Check for base index form.  We detect the base index form by
5146	 looking for an ')' at the end of the operand, searching
5147	 for the '(' matching it, and finding a REGISTER_PREFIX or ','
5148	 after the '('.  */
5149      base_string = op_string + strlen (op_string);
5150
5151      --base_string;
5152      if (is_space_char (*base_string))
5153	--base_string;
5154
5155      /* If we only have a displacement, set-up for it to be parsed later.  */
5156      displacement_string_start = op_string;
5157      displacement_string_end = base_string + 1;
5158
5159      if (*base_string == ')')
5160	{
5161	  char *temp_string;
5162	  unsigned int parens_balanced = 1;
5163	  /* We've already checked that the number of left & right ()'s are
5164	     equal, so this loop will not be infinite.  */
5165	  do
5166	    {
5167	      base_string--;
5168	      if (*base_string == ')')
5169		parens_balanced++;
5170	      if (*base_string == '(')
5171		parens_balanced--;
5172	    }
5173	  while (parens_balanced);
5174
5175	  temp_string = base_string;
5176
5177	  /* Skip past '(' and whitespace.  */
5178	  ++base_string;
5179	  if (is_space_char (*base_string))
5180	    ++base_string;
5181
5182	  if (*base_string == ','
5183	      || ((i.base_reg = parse_register (base_string, &end_op))
5184		  != NULL))
5185	    {
5186	      displacement_string_end = temp_string;
5187
5188	      i.types[this_operand] |= BaseIndex;
5189
5190	      if (i.base_reg)
5191		{
5192		  base_string = end_op;
5193		  if (is_space_char (*base_string))
5194		    ++base_string;
5195		}
5196
5197	      /* There may be an index reg or scale factor here.  */
5198	      if (*base_string == ',')
5199		{
5200		  ++base_string;
5201		  if (is_space_char (*base_string))
5202		    ++base_string;
5203
5204		  if ((i.index_reg = parse_register (base_string, &end_op))
5205		      != NULL)
5206		    {
5207		      base_string = end_op;
5208		      if (is_space_char (*base_string))
5209			++base_string;
5210		      if (*base_string == ',')
5211			{
5212			  ++base_string;
5213			  if (is_space_char (*base_string))
5214			    ++base_string;
5215			}
5216		      else if (*base_string != ')')
5217			{
5218			  as_bad (_("expecting `,' or `)' "
5219				    "after index register in `%s'"),
5220				  operand_string);
5221			  return 0;
5222			}
5223		    }
5224		  else if (*base_string == REGISTER_PREFIX)
5225		    {
5226		      as_bad (_("bad register name `%s'"), base_string);
5227		      return 0;
5228		    }
5229
5230		  /* Check for scale factor.  */
5231		  if (*base_string != ')')
5232		    {
5233		      char *end_scale = i386_scale (base_string);
5234
5235		      if (!end_scale)
5236			return 0;
5237
5238		      base_string = end_scale;
5239		      if (is_space_char (*base_string))
5240			++base_string;
5241		      if (*base_string != ')')
5242			{
5243			  as_bad (_("expecting `)' "
5244				    "after scale factor in `%s'"),
5245				  operand_string);
5246			  return 0;
5247			}
5248		    }
5249		  else if (!i.index_reg)
5250		    {
5251		      as_bad (_("expecting index register or scale factor "
5252				"after `,'; got '%c'"),
5253			      *base_string);
5254		      return 0;
5255		    }
5256		}
5257	      else if (*base_string != ')')
5258		{
5259		  as_bad (_("expecting `,' or `)' "
5260			    "after base register in `%s'"),
5261			  operand_string);
5262		  return 0;
5263		}
5264	    }
5265	  else if (*base_string == REGISTER_PREFIX)
5266	    {
5267	      as_bad (_("bad register name `%s'"), base_string);
5268	      return 0;
5269	    }
5270	}
5271
5272      /* If there's an expression beginning the operand, parse it,
5273	 assuming displacement_string_start and
5274	 displacement_string_end are meaningful.  */
5275      if (displacement_string_start != displacement_string_end)
5276	{
5277	  if (!i386_displacement (displacement_string_start,
5278				  displacement_string_end))
5279	    return 0;
5280	}
5281
5282      /* Special case for (%dx) while doing input/output op.  */
5283      if (i.base_reg
5284	  && i.base_reg->reg_type == (Reg16 | InOutPortReg)
5285	  && i.index_reg == 0
5286	  && i.log2_scale_factor == 0
5287	  && i.seg[i.mem_operands] == 0
5288	  && (i.types[this_operand] & Disp) == 0)
5289	{
5290	  i.types[this_operand] = InOutPortReg;
5291	  return 1;
5292	}
5293
5294      if (i386_index_check (operand_string) == 0)
5295	return 0;
5296      i.mem_operands++;
5297    }
5298  else
5299    {
5300      /* It's not a memory operand; argh!  */
5301      as_bad (_("invalid char %s beginning operand %d `%s'"),
5302	      output_invalid (*op_string),
5303	      this_operand + 1,
5304	      op_string);
5305      return 0;
5306    }
5307  return 1;			/* Normal return.  */
5308}
5309
5310/* md_estimate_size_before_relax()
5311
5312   Called just before relax() for rs_machine_dependent frags.  The x86
5313   assembler uses these frags to handle variable size jump
5314   instructions.
5315
5316   Any symbol that is now undefined will not become defined.
5317   Return the correct fr_subtype in the frag.
5318   Return the initial "guess for variable size of frag" to caller.
5319   The guess is actually the growth beyond the fixed part.  Whatever
5320   we do to grow the fixed or variable part contributes to our
5321   returned value.  */
5322
5323int
5324md_estimate_size_before_relax (fragP, segment)
5325     fragS *fragP;
5326     segT segment;
5327{
5328  /* We've already got fragP->fr_subtype right;  all we have to do is
5329     check for un-relaxable symbols.  On an ELF system, we can't relax
5330     an externally visible symbol, because it may be overridden by a
5331     shared library.  */
5332  if (S_GET_SEGMENT (fragP->fr_symbol) != segment
5333#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5334      || (IS_ELF
5335	  && (S_IS_EXTERNAL (fragP->fr_symbol)
5336	      || S_IS_WEAK (fragP->fr_symbol)))
5337#endif
5338      )
5339    {
5340      /* Symbol is undefined in this segment, or we need to keep a
5341	 reloc so that weak symbols can be overridden.  */
5342      int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
5343      enum bfd_reloc_code_real reloc_type;
5344      unsigned char *opcode;
5345      int old_fr_fix;
5346
5347      if (fragP->fr_var != NO_RELOC)
5348	reloc_type = fragP->fr_var;
5349      else if (size == 2)
5350	reloc_type = BFD_RELOC_16_PCREL;
5351      else
5352	reloc_type = BFD_RELOC_32_PCREL;
5353
5354      old_fr_fix = fragP->fr_fix;
5355      opcode = (unsigned char *) fragP->fr_opcode;
5356
5357      switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
5358	{
5359	case UNCOND_JUMP:
5360	  /* Make jmp (0xeb) a (d)word displacement jump.  */
5361	  opcode[0] = 0xe9;
5362	  fragP->fr_fix += size;
5363	  fix_new (fragP, old_fr_fix, size,
5364		   fragP->fr_symbol,
5365		   fragP->fr_offset, 1,
5366		   reloc_type);
5367	  break;
5368
5369	case COND_JUMP86:
5370	  if (size == 2
5371	      && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
5372	    {
5373	      /* Negate the condition, and branch past an
5374		 unconditional jump.  */
5375	      opcode[0] ^= 1;
5376	      opcode[1] = 3;
5377	      /* Insert an unconditional jump.  */
5378	      opcode[2] = 0xe9;
5379	      /* We added two extra opcode bytes, and have a two byte
5380		 offset.  */
5381	      fragP->fr_fix += 2 + 2;
5382	      fix_new (fragP, old_fr_fix + 2, 2,
5383		       fragP->fr_symbol,
5384		       fragP->fr_offset, 1,
5385		       reloc_type);
5386	      break;
5387	    }
5388	  /* Fall through.  */
5389
5390	case COND_JUMP:
5391	  if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
5392	    {
5393	      fixS *fixP;
5394
5395	      fragP->fr_fix += 1;
5396	      fixP = fix_new (fragP, old_fr_fix, 1,
5397			      fragP->fr_symbol,
5398			      fragP->fr_offset, 1,
5399			      BFD_RELOC_8_PCREL);
5400	      fixP->fx_signed = 1;
5401	      break;
5402	    }
5403
5404	  /* This changes the byte-displacement jump 0x7N
5405	     to the (d)word-displacement jump 0x0f,0x8N.  */
5406	  opcode[1] = opcode[0] + 0x10;
5407	  opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5408	  /* We've added an opcode byte.  */
5409	  fragP->fr_fix += 1 + size;
5410	  fix_new (fragP, old_fr_fix + 1, size,
5411		   fragP->fr_symbol,
5412		   fragP->fr_offset, 1,
5413		   reloc_type);
5414	  break;
5415
5416	default:
5417	  BAD_CASE (fragP->fr_subtype);
5418	  break;
5419	}
5420      frag_wane (fragP);
5421      return fragP->fr_fix - old_fr_fix;
5422    }
5423
5424  /* Guess size depending on current relax state.  Initially the relax
5425     state will correspond to a short jump and we return 1, because
5426     the variable part of the frag (the branch offset) is one byte
5427     long.  However, we can relax a section more than once and in that
5428     case we must either set fr_subtype back to the unrelaxed state,
5429     or return the value for the appropriate branch.  */
5430  return md_relax_table[fragP->fr_subtype].rlx_length;
5431}
5432
5433/* Called after relax() is finished.
5434
5435   In:	Address of frag.
5436	fr_type == rs_machine_dependent.
5437	fr_subtype is what the address relaxed to.
5438
5439   Out:	Any fixSs and constants are set up.
5440	Caller will turn frag into a ".space 0".  */
5441
5442void
5443md_convert_frag (abfd, sec, fragP)
5444     bfd *abfd ATTRIBUTE_UNUSED;
5445     segT sec ATTRIBUTE_UNUSED;
5446     fragS *fragP;
5447{
5448  unsigned char *opcode;
5449  unsigned char *where_to_put_displacement = NULL;
5450  offsetT target_address;
5451  offsetT opcode_address;
5452  unsigned int extension = 0;
5453  offsetT displacement_from_opcode_start;
5454
5455  opcode = (unsigned char *) fragP->fr_opcode;
5456
5457  /* Address we want to reach in file space.  */
5458  target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
5459
5460  /* Address opcode resides at in file space.  */
5461  opcode_address = fragP->fr_address + fragP->fr_fix;
5462
5463  /* Displacement from opcode start to fill into instruction.  */
5464  displacement_from_opcode_start = target_address - opcode_address;
5465
5466  if ((fragP->fr_subtype & BIG) == 0)
5467    {
5468      /* Don't have to change opcode.  */
5469      extension = 1;		/* 1 opcode + 1 displacement  */
5470      where_to_put_displacement = &opcode[1];
5471    }
5472  else
5473    {
5474      if (no_cond_jump_promotion
5475	  && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
5476	as_warn_where (fragP->fr_file, fragP->fr_line,
5477		       _("long jump required"));
5478
5479      switch (fragP->fr_subtype)
5480	{
5481	case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
5482	  extension = 4;		/* 1 opcode + 4 displacement  */
5483	  opcode[0] = 0xe9;
5484	  where_to_put_displacement = &opcode[1];
5485	  break;
5486
5487	case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
5488	  extension = 2;		/* 1 opcode + 2 displacement  */
5489	  opcode[0] = 0xe9;
5490	  where_to_put_displacement = &opcode[1];
5491	  break;
5492
5493	case ENCODE_RELAX_STATE (COND_JUMP, BIG):
5494	case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
5495	  extension = 5;		/* 2 opcode + 4 displacement  */
5496	  opcode[1] = opcode[0] + 0x10;
5497	  opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5498	  where_to_put_displacement = &opcode[2];
5499	  break;
5500
5501	case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
5502	  extension = 3;		/* 2 opcode + 2 displacement  */
5503	  opcode[1] = opcode[0] + 0x10;
5504	  opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5505	  where_to_put_displacement = &opcode[2];
5506	  break;
5507
5508	case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
5509	  extension = 4;
5510	  opcode[0] ^= 1;
5511	  opcode[1] = 3;
5512	  opcode[2] = 0xe9;
5513	  where_to_put_displacement = &opcode[3];
5514	  break;
5515
5516	default:
5517	  BAD_CASE (fragP->fr_subtype);
5518	  break;
5519	}
5520    }
5521
5522  /* If size if less then four we are sure that the operand fits,
5523     but if it's 4, then it could be that the displacement is larger
5524     then -/+ 2GB.  */
5525  if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
5526      && object_64bit
5527      && ((addressT) (displacement_from_opcode_start - extension
5528		      + ((addressT) 1 << 31))
5529	  > (((addressT) 2 << 31) - 1)))
5530    {
5531      as_bad_where (fragP->fr_file, fragP->fr_line,
5532		    _("jump target out of range"));
5533      /* Make us emit 0.  */
5534      displacement_from_opcode_start = extension;
5535    }
5536  /* Now put displacement after opcode.  */
5537  md_number_to_chars ((char *) where_to_put_displacement,
5538		      (valueT) (displacement_from_opcode_start - extension),
5539		      DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
5540  fragP->fr_fix += extension;
5541}
5542
5543/* Size of byte displacement jmp.  */
5544int md_short_jump_size = 2;
5545
5546/* Size of dword displacement jmp.  */
5547int md_long_jump_size = 5;
5548
5549void
5550md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
5551     char *ptr;
5552     addressT from_addr, to_addr;
5553     fragS *frag ATTRIBUTE_UNUSED;
5554     symbolS *to_symbol ATTRIBUTE_UNUSED;
5555{
5556  offsetT offset;
5557
5558  offset = to_addr - (from_addr + 2);
5559  /* Opcode for byte-disp jump.  */
5560  md_number_to_chars (ptr, (valueT) 0xeb, 1);
5561  md_number_to_chars (ptr + 1, (valueT) offset, 1);
5562}
5563
5564void
5565md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
5566     char *ptr;
5567     addressT from_addr, to_addr;
5568     fragS *frag ATTRIBUTE_UNUSED;
5569     symbolS *to_symbol ATTRIBUTE_UNUSED;
5570{
5571  offsetT offset;
5572
5573  offset = to_addr - (from_addr + 5);
5574  md_number_to_chars (ptr, (valueT) 0xe9, 1);
5575  md_number_to_chars (ptr + 1, (valueT) offset, 4);
5576}
5577
5578/* Apply a fixup (fixS) to segment data, once it has been determined
5579   by our caller that we have all the info we need to fix it up.
5580
5581   On the 386, immediates, displacements, and data pointers are all in
5582   the same (little-endian) format, so we don't need to care about which
5583   we are handling.  */
5584
5585void
5586md_apply_fix (fixP, valP, seg)
5587     /* The fix we're to put in.  */
5588     fixS *fixP;
5589     /* Pointer to the value of the bits.  */
5590     valueT *valP;
5591     /* Segment fix is from.  */
5592     segT seg ATTRIBUTE_UNUSED;
5593{
5594  char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
5595  valueT value = *valP;
5596
5597#if !defined (TE_Mach)
5598  if (fixP->fx_pcrel)
5599    {
5600      switch (fixP->fx_r_type)
5601	{
5602	default:
5603	  break;
5604
5605	case BFD_RELOC_64:
5606	  fixP->fx_r_type = BFD_RELOC_64_PCREL;
5607	  break;
5608	case BFD_RELOC_32:
5609	case BFD_RELOC_X86_64_32S:
5610	  fixP->fx_r_type = BFD_RELOC_32_PCREL;
5611	  break;
5612	case BFD_RELOC_16:
5613	  fixP->fx_r_type = BFD_RELOC_16_PCREL;
5614	  break;
5615	case BFD_RELOC_8:
5616	  fixP->fx_r_type = BFD_RELOC_8_PCREL;
5617	  break;
5618	}
5619    }
5620
5621  if (fixP->fx_addsy != NULL
5622      && (fixP->fx_r_type == BFD_RELOC_32_PCREL
5623	  || fixP->fx_r_type == BFD_RELOC_64_PCREL
5624	  || fixP->fx_r_type == BFD_RELOC_16_PCREL
5625	  || fixP->fx_r_type == BFD_RELOC_8_PCREL)
5626      && !use_rela_relocations)
5627    {
5628      /* This is a hack.  There should be a better way to handle this.
5629	 This covers for the fact that bfd_install_relocation will
5630	 subtract the current location (for partial_inplace, PC relative
5631	 relocations); see more below.  */
5632#ifndef OBJ_AOUT
5633      if (IS_ELF
5634#ifdef TE_PE
5635	  || OUTPUT_FLAVOR == bfd_target_coff_flavour
5636#endif
5637	  )
5638	value += fixP->fx_where + fixP->fx_frag->fr_address;
5639#endif
5640#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5641      if (IS_ELF)
5642	{
5643	  segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
5644
5645	  if ((sym_seg == seg
5646	       || (symbol_section_p (fixP->fx_addsy)
5647		   && sym_seg != absolute_section))
5648	      && !generic_force_reloc (fixP))
5649	    {
5650	      /* Yes, we add the values in twice.  This is because
5651		 bfd_install_relocation subtracts them out again.  I think
5652		 bfd_install_relocation is broken, but I don't dare change
5653		 it.  FIXME.  */
5654	      value += fixP->fx_where + fixP->fx_frag->fr_address;
5655	    }
5656	}
5657#endif
5658#if defined (OBJ_COFF) && defined (TE_PE)
5659      /* For some reason, the PE format does not store a
5660	 section address offset for a PC relative symbol.  */
5661      if (S_GET_SEGMENT (fixP->fx_addsy) != seg
5662	  || S_IS_WEAK (fixP->fx_addsy))
5663	value += md_pcrel_from (fixP);
5664#endif
5665    }
5666
5667  /* Fix a few things - the dynamic linker expects certain values here,
5668     and we must not disappoint it.  */
5669#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5670  if (IS_ELF && fixP->fx_addsy)
5671    switch (fixP->fx_r_type)
5672      {
5673      case BFD_RELOC_386_PLT32:
5674      case BFD_RELOC_X86_64_PLT32:
5675	/* Make the jump instruction point to the address of the operand.  At
5676	   runtime we merely add the offset to the actual PLT entry.  */
5677	value = -4;
5678	break;
5679
5680      case BFD_RELOC_386_TLS_GD:
5681      case BFD_RELOC_386_TLS_LDM:
5682      case BFD_RELOC_386_TLS_IE_32:
5683      case BFD_RELOC_386_TLS_IE:
5684      case BFD_RELOC_386_TLS_GOTIE:
5685      case BFD_RELOC_386_TLS_GOTDESC:
5686      case BFD_RELOC_X86_64_TLSGD:
5687      case BFD_RELOC_X86_64_TLSLD:
5688      case BFD_RELOC_X86_64_GOTTPOFF:
5689      case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5690	value = 0; /* Fully resolved at runtime.  No addend.  */
5691	/* Fallthrough */
5692      case BFD_RELOC_386_TLS_LE:
5693      case BFD_RELOC_386_TLS_LDO_32:
5694      case BFD_RELOC_386_TLS_LE_32:
5695      case BFD_RELOC_X86_64_DTPOFF32:
5696      case BFD_RELOC_X86_64_DTPOFF64:
5697      case BFD_RELOC_X86_64_TPOFF32:
5698      case BFD_RELOC_X86_64_TPOFF64:
5699	S_SET_THREAD_LOCAL (fixP->fx_addsy);
5700	break;
5701
5702      case BFD_RELOC_386_TLS_DESC_CALL:
5703      case BFD_RELOC_X86_64_TLSDESC_CALL:
5704	value = 0; /* Fully resolved at runtime.  No addend.  */
5705	S_SET_THREAD_LOCAL (fixP->fx_addsy);
5706	fixP->fx_done = 0;
5707	return;
5708
5709      case BFD_RELOC_386_GOT32:
5710      case BFD_RELOC_X86_64_GOT32:
5711	value = 0; /* Fully resolved at runtime.  No addend.  */
5712	break;
5713
5714      case BFD_RELOC_VTABLE_INHERIT:
5715      case BFD_RELOC_VTABLE_ENTRY:
5716	fixP->fx_done = 0;
5717	return;
5718
5719      default:
5720	break;
5721      }
5722#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)  */
5723  *valP = value;
5724#endif /* !defined (TE_Mach)  */
5725
5726  /* Are we finished with this relocation now?  */
5727  if (fixP->fx_addsy == NULL)
5728    fixP->fx_done = 1;
5729  else if (use_rela_relocations)
5730    {
5731      fixP->fx_no_overflow = 1;
5732      /* Remember value for tc_gen_reloc.  */
5733      fixP->fx_addnumber = value;
5734      value = 0;
5735    }
5736
5737  md_number_to_chars (p, value, fixP->fx_size);
5738}
5739
5740#define MAX_LITTLENUMS 6
5741
5742/* Turn the string pointed to by litP into a floating point constant
5743   of type TYPE, and emit the appropriate bytes.  The number of
5744   LITTLENUMS emitted is stored in *SIZEP.  An error message is
5745   returned, or NULL on OK.  */
5746
5747char *
5748md_atof (type, litP, sizeP)
5749     int type;
5750     char *litP;
5751     int *sizeP;
5752{
5753  int prec;
5754  LITTLENUM_TYPE words[MAX_LITTLENUMS];
5755  LITTLENUM_TYPE *wordP;
5756  char *t;
5757
5758  switch (type)
5759    {
5760    case 'f':
5761    case 'F':
5762      prec = 2;
5763      break;
5764
5765    case 'd':
5766    case 'D':
5767      prec = 4;
5768      break;
5769
5770    case 'x':
5771    case 'X':
5772      prec = 5;
5773      break;
5774
5775    default:
5776      *sizeP = 0;
5777      return _("Bad call to md_atof ()");
5778    }
5779  t = atof_ieee (input_line_pointer, type, words);
5780  if (t)
5781    input_line_pointer = t;
5782
5783  *sizeP = prec * sizeof (LITTLENUM_TYPE);
5784  /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5785     the bigendian 386.  */
5786  for (wordP = words + prec - 1; prec--;)
5787    {
5788      md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5789      litP += sizeof (LITTLENUM_TYPE);
5790    }
5791  return 0;
5792}
5793
5794static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
5795
5796static char *
5797output_invalid (int c)
5798{
5799  if (ISPRINT (c))
5800    snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5801	      "'%c'", c);
5802  else
5803    snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5804	      "(0x%x)", (unsigned char) c);
5805  return output_invalid_buf;
5806}
5807
5808/* REG_STRING starts *before* REGISTER_PREFIX.  */
5809
5810static const reg_entry *
5811parse_real_register (char *reg_string, char **end_op)
5812{
5813  char *s = reg_string;
5814  char *p;
5815  char reg_name_given[MAX_REG_NAME_SIZE + 1];
5816  const reg_entry *r;
5817
5818  /* Skip possible REGISTER_PREFIX and possible whitespace.  */
5819  if (*s == REGISTER_PREFIX)
5820    ++s;
5821
5822  if (is_space_char (*s))
5823    ++s;
5824
5825  p = reg_name_given;
5826  while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
5827    {
5828      if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5829	return (const reg_entry *) NULL;
5830      s++;
5831    }
5832
5833  /* For naked regs, make sure that we are not dealing with an identifier.
5834     This prevents confusing an identifier like `eax_var' with register
5835     `eax'.  */
5836  if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5837    return (const reg_entry *) NULL;
5838
5839  *end_op = s;
5840
5841  r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5842
5843  /* Handle floating point regs, allowing spaces in the (i) part.  */
5844  if (r == i386_regtab /* %st is first entry of table  */)
5845    {
5846      if (is_space_char (*s))
5847	++s;
5848      if (*s == '(')
5849	{
5850	  ++s;
5851	  if (is_space_char (*s))
5852	    ++s;
5853	  if (*s >= '0' && *s <= '7')
5854	    {
5855	      int fpr = *s - '0';
5856	      ++s;
5857	      if (is_space_char (*s))
5858		++s;
5859	      if (*s == ')')
5860		{
5861		  *end_op = s + 1;
5862		  r = hash_find (reg_hash, "st(0)");
5863		  know (r);
5864		  return r + fpr;
5865		}
5866	    }
5867	  /* We have "%st(" then garbage.  */
5868	  return (const reg_entry *) NULL;
5869	}
5870    }
5871
5872  if (r != NULL
5873      && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5874      && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
5875      && flag_code != CODE_64BIT)
5876    return (const reg_entry *) NULL;
5877
5878  return r;
5879}
5880
5881/* REG_STRING starts *before* REGISTER_PREFIX.  */
5882
5883static const reg_entry *
5884parse_register (char *reg_string, char **end_op)
5885{
5886  const reg_entry *r;
5887
5888  if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
5889    r = parse_real_register (reg_string, end_op);
5890  else
5891    r = NULL;
5892  if (!r)
5893    {
5894      char *save = input_line_pointer;
5895      char c;
5896      symbolS *symbolP;
5897
5898      input_line_pointer = reg_string;
5899      c = get_symbol_end ();
5900      symbolP = symbol_find (reg_string);
5901      if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
5902	{
5903	  const expressionS *e = symbol_get_value_expression (symbolP);
5904
5905	  know (e->X_op == O_register);
5906	  know (e->X_add_number >= 0
5907		&& (valueT) e->X_add_number < i386_regtab_size);
5908	  r = i386_regtab + e->X_add_number;
5909	  *end_op = input_line_pointer;
5910	}
5911      *input_line_pointer = c;
5912      input_line_pointer = save;
5913    }
5914  return r;
5915}
5916
5917int
5918i386_parse_name (char *name, expressionS *e, char *nextcharP)
5919{
5920  const reg_entry *r;
5921  char *end = input_line_pointer;
5922
5923  *end = *nextcharP;
5924  r = parse_register (name, &input_line_pointer);
5925  if (r && end <= input_line_pointer)
5926    {
5927      *nextcharP = *input_line_pointer;
5928      *input_line_pointer = 0;
5929      e->X_op = O_register;
5930      e->X_add_number = r - i386_regtab;
5931      return 1;
5932    }
5933  input_line_pointer = end;
5934  *end = 0;
5935  return 0;
5936}
5937
5938void
5939md_operand (expressionS *e)
5940{
5941  if (*input_line_pointer == REGISTER_PREFIX)
5942    {
5943      char *end;
5944      const reg_entry *r = parse_real_register (input_line_pointer, &end);
5945
5946      if (r)
5947	{
5948	  e->X_op = O_register;
5949	  e->X_add_number = r - i386_regtab;
5950	  input_line_pointer = end;
5951	}
5952    }
5953}
5954
5955
5956#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5957const char *md_shortopts = "kVQ:sqn";
5958#else
5959const char *md_shortopts = "qn";
5960#endif
5961
5962#define OPTION_32 (OPTION_MD_BASE + 0)
5963#define OPTION_64 (OPTION_MD_BASE + 1)
5964#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
5965#define OPTION_MARCH (OPTION_MD_BASE + 3)
5966#define OPTION_MTUNE (OPTION_MD_BASE + 4)
5967
5968struct option md_longopts[] =
5969{
5970  {"32", no_argument, NULL, OPTION_32},
5971#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
5972  {"64", no_argument, NULL, OPTION_64},
5973#endif
5974  {"divide", no_argument, NULL, OPTION_DIVIDE},
5975  {"march", required_argument, NULL, OPTION_MARCH},
5976  {"mtune", required_argument, NULL, OPTION_MTUNE},
5977  {NULL, no_argument, NULL, 0}
5978};
5979size_t md_longopts_size = sizeof (md_longopts);
5980
5981int
5982md_parse_option (int c, char *arg)
5983{
5984  unsigned int i;
5985
5986  switch (c)
5987    {
5988    case 'n':
5989      optimize_align_code = 0;
5990      break;
5991
5992    case 'q':
5993      quiet_warnings = 1;
5994      break;
5995
5996#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5997      /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5998	 should be emitted or not.  FIXME: Not implemented.  */
5999    case 'Q':
6000      break;
6001
6002      /* -V: SVR4 argument to print version ID.  */
6003    case 'V':
6004      print_version_id ();
6005      break;
6006
6007      /* -k: Ignore for FreeBSD compatibility.  */
6008    case 'k':
6009      break;
6010
6011    case 's':
6012      /* -s: On i386 Solaris, this tells the native assembler to use
6013	 .stab instead of .stab.excl.  We always use .stab anyhow.  */
6014      break;
6015#endif
6016#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6017    case OPTION_64:
6018      {
6019	const char **list, **l;
6020
6021	list = bfd_target_list ();
6022	for (l = list; *l != NULL; l++)
6023	  if (CONST_STRNEQ (*l, "elf64-x86-64")
6024	      || strcmp (*l, "coff-x86-64") == 0
6025	      || strcmp (*l, "pe-x86-64") == 0
6026	      || strcmp (*l, "pei-x86-64") == 0)
6027	    {
6028	      default_arch = "x86_64";
6029	      break;
6030	    }
6031	if (*l == NULL)
6032	  as_fatal (_("No compiled in support for x86_64"));
6033	free (list);
6034      }
6035      break;
6036#endif
6037
6038    case OPTION_32:
6039      default_arch = "i386";
6040      break;
6041
6042    case OPTION_DIVIDE:
6043#ifdef SVR4_COMMENT_CHARS
6044      {
6045	char *n, *t;
6046	const char *s;
6047
6048	n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
6049	t = n;
6050	for (s = i386_comment_chars; *s != '\0'; s++)
6051	  if (*s != '/')
6052	    *t++ = *s;
6053	*t = '\0';
6054	i386_comment_chars = n;
6055      }
6056#endif
6057      break;
6058
6059    case OPTION_MARCH:
6060      if (*arg == '.')
6061	as_fatal (_("Invalid -march= option: `%s'"), arg);
6062      for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6063	{
6064	  if (strcmp (arg, cpu_arch [i].name) == 0)
6065	    {
6066	      cpu_arch_isa = cpu_arch[i].type;
6067	      cpu_arch_isa_flags = cpu_arch[i].flags;
6068	      if (!cpu_arch_tune_set)
6069		{
6070		  cpu_arch_tune = cpu_arch_isa;
6071		  cpu_arch_tune_flags = cpu_arch_isa_flags;
6072		}
6073	      break;
6074	    }
6075	}
6076      if (i >= ARRAY_SIZE (cpu_arch))
6077	as_fatal (_("Invalid -march= option: `%s'"), arg);
6078      break;
6079
6080    case OPTION_MTUNE:
6081      if (*arg == '.')
6082	as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6083      for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6084	{
6085	  if (strcmp (arg, cpu_arch [i].name) == 0)
6086	    {
6087	      cpu_arch_tune_set = 1;
6088	      cpu_arch_tune = cpu_arch [i].type;
6089	      cpu_arch_tune_flags = cpu_arch[i].flags;
6090	      break;
6091	    }
6092	}
6093      if (i >= ARRAY_SIZE (cpu_arch))
6094	as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6095      break;
6096
6097    default:
6098      return 0;
6099    }
6100  return 1;
6101}
6102
6103void
6104md_show_usage (stream)
6105     FILE *stream;
6106{
6107#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6108  fprintf (stream, _("\
6109  -Q                      ignored\n\
6110  -V                      print assembler version number\n\
6111  -k                      ignored\n"));
6112#endif
6113  fprintf (stream, _("\
6114  -n                      Do not optimize code alignment\n\
6115  -q                      quieten some warnings\n"));
6116#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6117  fprintf (stream, _("\
6118  -s                      ignored\n"));
6119#endif
6120#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6121  fprintf (stream, _("\
6122  --32/--64               generate 32bit/64bit code\n"));
6123#endif
6124#ifdef SVR4_COMMENT_CHARS
6125  fprintf (stream, _("\
6126  --divide                do not treat `/' as a comment character\n"));
6127#else
6128  fprintf (stream, _("\
6129  --divide                ignored\n"));
6130#endif
6131  fprintf (stream, _("\
6132  -march=CPU/-mtune=CPU   generate code/optimize for CPU, where CPU is one of:\n\
6133                           i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
6134                           core, core2, k6, athlon, k8, generic32, generic64\n"));
6135
6136}
6137
6138#if defined(TE_PEP)
6139const char *
6140x86_64_target_format (void)
6141{
6142  if (strcmp (default_arch, "x86_64") == 0)
6143    {
6144      set_code_flag (CODE_64BIT);
6145      return COFF_TARGET_FORMAT;
6146    }
6147  else if (strcmp (default_arch, "i386") == 0)
6148    {
6149      set_code_flag (CODE_32BIT);
6150      return "coff-i386";
6151    }
6152
6153  as_fatal (_("Unknown architecture"));
6154  return NULL;
6155}
6156#endif
6157
6158#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
6159     || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6160
6161/* Pick the target format to use.  */
6162
6163const char *
6164i386_target_format (void)
6165{
6166  if (!strcmp (default_arch, "x86_64"))
6167    {
6168      set_code_flag (CODE_64BIT);
6169      if (cpu_arch_isa_flags == 0)
6170	cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386|Cpu486
6171			     |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6172			     |CpuSSE|CpuSSE2;
6173      if (cpu_arch_tune_flags == 0)
6174	cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386|Cpu486
6175			      |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6176			      |CpuSSE|CpuSSE2;
6177    }
6178  else if (!strcmp (default_arch, "i386"))
6179    {
6180      set_code_flag (CODE_32BIT);
6181      if (cpu_arch_isa_flags == 0)
6182	cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386;
6183      if (cpu_arch_tune_flags == 0)
6184	cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386;
6185    }
6186  else
6187    as_fatal (_("Unknown architecture"));
6188  switch (OUTPUT_FLAVOR)
6189    {
6190#ifdef OBJ_MAYBE_AOUT
6191    case bfd_target_aout_flavour:
6192      return AOUT_TARGET_FORMAT;
6193#endif
6194#ifdef OBJ_MAYBE_COFF
6195    case bfd_target_coff_flavour:
6196      return "coff-i386";
6197#endif
6198#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6199    case bfd_target_elf_flavour:
6200      {
6201	if (flag_code == CODE_64BIT)
6202	  {
6203	    object_64bit = 1;
6204	    use_rela_relocations = 1;
6205	  }
6206	return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
6207      }
6208#endif
6209    default:
6210      abort ();
6211      return NULL;
6212    }
6213}
6214
6215#endif /* OBJ_MAYBE_ more than one  */
6216
6217#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6218void
6219i386_elf_emit_arch_note (void)
6220{
6221  if (IS_ELF && cpu_arch_name != NULL)
6222    {
6223      char *p;
6224      asection *seg = now_seg;
6225      subsegT subseg = now_subseg;
6226      Elf_Internal_Note i_note;
6227      Elf_External_Note e_note;
6228      asection *note_secp;
6229      int len;
6230
6231      /* Create the .note section.  */
6232      note_secp = subseg_new (".note", 0);
6233      bfd_set_section_flags (stdoutput,
6234			     note_secp,
6235			     SEC_HAS_CONTENTS | SEC_READONLY);
6236
6237      /* Process the arch string.  */
6238      len = strlen (cpu_arch_name);
6239
6240      i_note.namesz = len + 1;
6241      i_note.descsz = 0;
6242      i_note.type = NT_ARCH;
6243      p = frag_more (sizeof (e_note.namesz));
6244      md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
6245      p = frag_more (sizeof (e_note.descsz));
6246      md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
6247      p = frag_more (sizeof (e_note.type));
6248      md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
6249      p = frag_more (len + 1);
6250      strcpy (p, cpu_arch_name);
6251
6252      frag_align (2, 0, 0);
6253
6254      subseg_set (seg, subseg);
6255    }
6256}
6257#endif
6258
6259symbolS *
6260md_undefined_symbol (name)
6261     char *name;
6262{
6263  if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
6264      && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
6265      && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
6266      && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
6267    {
6268      if (!GOT_symbol)
6269	{
6270	  if (symbol_find (name))
6271	    as_bad (_("GOT already in symbol table"));
6272	  GOT_symbol = symbol_new (name, undefined_section,
6273				   (valueT) 0, &zero_address_frag);
6274	};
6275      return GOT_symbol;
6276    }
6277  return 0;
6278}
6279
6280/* Round up a section size to the appropriate boundary.  */
6281
6282valueT
6283md_section_align (segment, size)
6284     segT segment ATTRIBUTE_UNUSED;
6285     valueT size;
6286{
6287#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6288  if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
6289    {
6290      /* For a.out, force the section size to be aligned.  If we don't do
6291	 this, BFD will align it for us, but it will not write out the
6292	 final bytes of the section.  This may be a bug in BFD, but it is
6293	 easier to fix it here since that is how the other a.out targets
6294	 work.  */
6295      int align;
6296
6297      align = bfd_get_section_alignment (stdoutput, segment);
6298      size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
6299    }
6300#endif
6301
6302  return size;
6303}
6304
6305/* On the i386, PC-relative offsets are relative to the start of the
6306   next instruction.  That is, the address of the offset, plus its
6307   size, since the offset is always the last part of the insn.  */
6308
6309long
6310md_pcrel_from (fixS *fixP)
6311{
6312  return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
6313}
6314
6315#ifndef I386COFF
6316
6317static void
6318s_bss (int ignore ATTRIBUTE_UNUSED)
6319{
6320  int temp;
6321
6322#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6323  if (IS_ELF)
6324    obj_elf_section_change_hook ();
6325#endif
6326  temp = get_absolute_expression ();
6327  subseg_set (bss_section, (subsegT) temp);
6328  demand_empty_rest_of_line ();
6329}
6330
6331#endif
6332
6333void
6334i386_validate_fix (fixS *fixp)
6335{
6336  if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
6337    {
6338      if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
6339	{
6340	  if (!object_64bit)
6341	    abort ();
6342	  fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
6343	}
6344      else
6345	{
6346	  if (!object_64bit)
6347	    fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
6348	  else
6349	    fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
6350	}
6351      fixp->fx_subsy = 0;
6352    }
6353}
6354
6355arelent *
6356tc_gen_reloc (section, fixp)
6357     asection *section ATTRIBUTE_UNUSED;
6358     fixS *fixp;
6359{
6360  arelent *rel;
6361  bfd_reloc_code_real_type code;
6362
6363  switch (fixp->fx_r_type)
6364    {
6365    case BFD_RELOC_X86_64_PLT32:
6366    case BFD_RELOC_X86_64_GOT32:
6367    case BFD_RELOC_X86_64_GOTPCREL:
6368    case BFD_RELOC_386_PLT32:
6369    case BFD_RELOC_386_GOT32:
6370    case BFD_RELOC_386_GOTOFF:
6371    case BFD_RELOC_386_GOTPC:
6372    case BFD_RELOC_386_TLS_GD:
6373    case BFD_RELOC_386_TLS_LDM:
6374    case BFD_RELOC_386_TLS_LDO_32:
6375    case BFD_RELOC_386_TLS_IE_32:
6376    case BFD_RELOC_386_TLS_IE:
6377    case BFD_RELOC_386_TLS_GOTIE:
6378    case BFD_RELOC_386_TLS_LE_32:
6379    case BFD_RELOC_386_TLS_LE:
6380    case BFD_RELOC_386_TLS_GOTDESC:
6381    case BFD_RELOC_386_TLS_DESC_CALL:
6382    case BFD_RELOC_X86_64_TLSGD:
6383    case BFD_RELOC_X86_64_TLSLD:
6384    case BFD_RELOC_X86_64_DTPOFF32:
6385    case BFD_RELOC_X86_64_DTPOFF64:
6386    case BFD_RELOC_X86_64_GOTTPOFF:
6387    case BFD_RELOC_X86_64_TPOFF32:
6388    case BFD_RELOC_X86_64_TPOFF64:
6389    case BFD_RELOC_X86_64_GOTOFF64:
6390    case BFD_RELOC_X86_64_GOTPC32:
6391    case BFD_RELOC_X86_64_GOT64:
6392    case BFD_RELOC_X86_64_GOTPCREL64:
6393    case BFD_RELOC_X86_64_GOTPC64:
6394    case BFD_RELOC_X86_64_GOTPLT64:
6395    case BFD_RELOC_X86_64_PLTOFF64:
6396    case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6397    case BFD_RELOC_X86_64_TLSDESC_CALL:
6398    case BFD_RELOC_RVA:
6399    case BFD_RELOC_VTABLE_ENTRY:
6400    case BFD_RELOC_VTABLE_INHERIT:
6401#ifdef TE_PE
6402    case BFD_RELOC_32_SECREL:
6403#endif
6404      code = fixp->fx_r_type;
6405      break;
6406    case BFD_RELOC_X86_64_32S:
6407      if (!fixp->fx_pcrel)
6408	{
6409	  /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32.  */
6410	  code = fixp->fx_r_type;
6411	  break;
6412	}
6413    default:
6414      if (fixp->fx_pcrel)
6415	{
6416	  switch (fixp->fx_size)
6417	    {
6418	    default:
6419	      as_bad_where (fixp->fx_file, fixp->fx_line,
6420			    _("can not do %d byte pc-relative relocation"),
6421			    fixp->fx_size);
6422	      code = BFD_RELOC_32_PCREL;
6423	      break;
6424	    case 1: code = BFD_RELOC_8_PCREL;  break;
6425	    case 2: code = BFD_RELOC_16_PCREL; break;
6426	    case 4: code = BFD_RELOC_32_PCREL; break;
6427#ifdef BFD64
6428	    case 8: code = BFD_RELOC_64_PCREL; break;
6429#endif
6430	    }
6431	}
6432      else
6433	{
6434	  switch (fixp->fx_size)
6435	    {
6436	    default:
6437	      as_bad_where (fixp->fx_file, fixp->fx_line,
6438			    _("can not do %d byte relocation"),
6439			    fixp->fx_size);
6440	      code = BFD_RELOC_32;
6441	      break;
6442	    case 1: code = BFD_RELOC_8;  break;
6443	    case 2: code = BFD_RELOC_16; break;
6444	    case 4: code = BFD_RELOC_32; break;
6445#ifdef BFD64
6446	    case 8: code = BFD_RELOC_64; break;
6447#endif
6448	    }
6449	}
6450      break;
6451    }
6452
6453  if ((code == BFD_RELOC_32
6454       || code == BFD_RELOC_32_PCREL
6455       || code == BFD_RELOC_X86_64_32S)
6456      && GOT_symbol
6457      && fixp->fx_addsy == GOT_symbol)
6458    {
6459      if (!object_64bit)
6460	code = BFD_RELOC_386_GOTPC;
6461      else
6462	code = BFD_RELOC_X86_64_GOTPC32;
6463    }
6464  if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
6465      && GOT_symbol
6466      && fixp->fx_addsy == GOT_symbol)
6467    {
6468      code = BFD_RELOC_X86_64_GOTPC64;
6469    }
6470
6471  rel = (arelent *) xmalloc (sizeof (arelent));
6472  rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
6473  *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6474
6475  rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
6476
6477  if (!use_rela_relocations)
6478    {
6479      /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
6480	 vtable entry to be used in the relocation's section offset.  */
6481      if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
6482	rel->address = fixp->fx_offset;
6483
6484      rel->addend = 0;
6485    }
6486  /* Use the rela in 64bit mode.  */
6487  else
6488    {
6489      if (!fixp->fx_pcrel)
6490	rel->addend = fixp->fx_offset;
6491      else
6492	switch (code)
6493	  {
6494	  case BFD_RELOC_X86_64_PLT32:
6495	  case BFD_RELOC_X86_64_GOT32:
6496	  case BFD_RELOC_X86_64_GOTPCREL:
6497	  case BFD_RELOC_X86_64_TLSGD:
6498	  case BFD_RELOC_X86_64_TLSLD:
6499	  case BFD_RELOC_X86_64_GOTTPOFF:
6500	  case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6501	  case BFD_RELOC_X86_64_TLSDESC_CALL:
6502	    rel->addend = fixp->fx_offset - fixp->fx_size;
6503	    break;
6504	  default:
6505	    rel->addend = (section->vma
6506			   - fixp->fx_size
6507			   + fixp->fx_addnumber
6508			   + md_pcrel_from (fixp));
6509	    break;
6510	  }
6511    }
6512
6513  rel->howto = bfd_reloc_type_lookup (stdoutput, code);
6514  if (rel->howto == NULL)
6515    {
6516      as_bad_where (fixp->fx_file, fixp->fx_line,
6517		    _("cannot represent relocation type %s"),
6518		    bfd_get_reloc_code_name (code));
6519      /* Set howto to a garbage value so that we can keep going.  */
6520      rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
6521      assert (rel->howto != NULL);
6522    }
6523
6524  return rel;
6525}
6526
6527
6528/* Parse operands using Intel syntax. This implements a recursive descent
6529   parser based on the BNF grammar published in Appendix B of the MASM 6.1
6530   Programmer's Guide.
6531
6532   FIXME: We do not recognize the full operand grammar defined in the MASM
6533	  documentation.  In particular, all the structure/union and
6534	  high-level macro operands are missing.
6535
6536   Uppercase words are terminals, lower case words are non-terminals.
6537   Objects surrounded by double brackets '[[' ']]' are optional. Vertical
6538   bars '|' denote choices. Most grammar productions are implemented in
6539   functions called 'intel_<production>'.
6540
6541   Initial production is 'expr'.
6542
6543    addOp		+ | -
6544
6545    alpha		[a-zA-Z]
6546
6547    binOp		& | AND | \| | OR | ^ | XOR
6548
6549    byteRegister	AL | AH | BL | BH | CL | CH | DL | DH
6550
6551    constant		digits [[ radixOverride ]]
6552
6553    dataType		BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
6554
6555    digits		decdigit
6556			| digits decdigit
6557			| digits hexdigit
6558
6559    decdigit		[0-9]
6560
6561    e04			e04 addOp e05
6562			| e05
6563
6564    e05			e05 binOp e06
6565			| e06
6566
6567    e06			e06 mulOp e09
6568			| e09
6569
6570    e09			OFFSET e10
6571			| SHORT e10
6572			| + e10
6573			| - e10
6574			| ~ e10
6575			| NOT e10
6576			| e09 PTR e10
6577			| e09 : e10
6578			| e10
6579
6580    e10			e10 [ expr ]
6581			| e11
6582
6583    e11			( expr )
6584			| [ expr ]
6585			| constant
6586			| dataType
6587			| id
6588			| $
6589			| register
6590
6591 => expr		expr cmpOp e04
6592			| e04
6593
6594    gpRegister		AX | EAX | BX | EBX | CX | ECX | DX | EDX
6595			| BP | EBP | SP | ESP | DI | EDI | SI | ESI
6596
6597    hexdigit		a | b | c | d | e | f
6598			| A | B | C | D | E | F
6599
6600    id			alpha
6601			| id alpha
6602			| id decdigit
6603
6604    mulOp		* | / | % | MOD | << | SHL | >> | SHR
6605
6606    quote		" | '
6607
6608    register		specialRegister
6609			| gpRegister
6610			| byteRegister
6611
6612    segmentRegister	CS | DS | ES | FS | GS | SS
6613
6614    specialRegister	CR0 | CR2 | CR3 | CR4
6615			| DR0 | DR1 | DR2 | DR3 | DR6 | DR7
6616			| TR3 | TR4 | TR5 | TR6 | TR7
6617
6618    We simplify the grammar in obvious places (e.g., register parsing is
6619    done by calling parse_register) and eliminate immediate left recursion
6620    to implement a recursive-descent parser.
6621
6622    expr	e04 expr'
6623
6624    expr'	cmpOp e04 expr'
6625		| Empty
6626
6627    e04		e05 e04'
6628
6629    e04'	addOp e05 e04'
6630		| Empty
6631
6632    e05		e06 e05'
6633
6634    e05'	binOp e06 e05'
6635		| Empty
6636
6637    e06		e09 e06'
6638
6639    e06'	mulOp e09 e06'
6640		| Empty
6641
6642    e09		OFFSET e10 e09'
6643		| SHORT e10'
6644		| + e10'
6645		| - e10'
6646		| ~ e10'
6647		| NOT e10'
6648		| e10 e09'
6649
6650    e09'	PTR e10 e09'
6651		| : e10 e09'
6652		| Empty
6653
6654    e10		e11 e10'
6655
6656    e10'	[ expr ] e10'
6657		| Empty
6658
6659    e11		( expr )
6660		| [ expr ]
6661		| BYTE
6662		| WORD
6663		| DWORD
6664		| FWORD
6665		| QWORD
6666		| TBYTE
6667		| OWORD
6668		| XMMWORD
6669		| .
6670		| $
6671		| register
6672		| id
6673		| constant  */
6674
6675/* Parsing structure for the intel syntax parser. Used to implement the
6676   semantic actions for the operand grammar.  */
6677struct intel_parser_s
6678  {
6679    char *op_string;		/* The string being parsed.  */
6680    int got_a_float;		/* Whether the operand is a float.  */
6681    int op_modifier;		/* Operand modifier.  */
6682    int is_mem;			/* 1 if operand is memory reference.  */
6683    int in_offset;		/* >=1 if parsing operand of offset.  */
6684    int in_bracket;		/* >=1 if parsing operand in brackets.  */
6685    const reg_entry *reg;	/* Last register reference found.  */
6686    char *disp;			/* Displacement string being built.  */
6687    char *next_operand;		/* Resume point when splitting operands.  */
6688  };
6689
6690static struct intel_parser_s intel_parser;
6691
6692/* Token structure for parsing intel syntax.  */
6693struct intel_token
6694  {
6695    int code;			/* Token code.  */
6696    const reg_entry *reg;	/* Register entry for register tokens.  */
6697    char *str;			/* String representation.  */
6698  };
6699
6700static struct intel_token cur_token, prev_token;
6701
6702/* Token codes for the intel parser. Since T_SHORT is already used
6703   by COFF, undefine it first to prevent a warning.  */
6704#define T_NIL		-1
6705#define T_CONST		1
6706#define T_REG		2
6707#define T_BYTE		3
6708#define T_WORD		4
6709#define T_DWORD		5
6710#define T_FWORD		6
6711#define T_QWORD		7
6712#define T_TBYTE		8
6713#define T_XMMWORD	9
6714#undef  T_SHORT
6715#define T_SHORT		10
6716#define T_OFFSET	11
6717#define T_PTR		12
6718#define T_ID		13
6719#define T_SHL		14
6720#define T_SHR		15
6721
6722/* Prototypes for intel parser functions.  */
6723static int intel_match_token (int);
6724static void intel_putback_token	(void);
6725static void intel_get_token (void);
6726static int intel_expr (void);
6727static int intel_e04 (void);
6728static int intel_e05 (void);
6729static int intel_e06 (void);
6730static int intel_e09 (void);
6731static int intel_e10 (void);
6732static int intel_e11 (void);
6733
6734static int
6735i386_intel_operand (char *operand_string, int got_a_float)
6736{
6737  int ret;
6738  char *p;
6739
6740  p = intel_parser.op_string = xstrdup (operand_string);
6741  intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
6742
6743  for (;;)
6744    {
6745      /* Initialize token holders.  */
6746      cur_token.code = prev_token.code = T_NIL;
6747      cur_token.reg = prev_token.reg = NULL;
6748      cur_token.str = prev_token.str = NULL;
6749
6750      /* Initialize parser structure.  */
6751      intel_parser.got_a_float = got_a_float;
6752      intel_parser.op_modifier = 0;
6753      intel_parser.is_mem = 0;
6754      intel_parser.in_offset = 0;
6755      intel_parser.in_bracket = 0;
6756      intel_parser.reg = NULL;
6757      intel_parser.disp[0] = '\0';
6758      intel_parser.next_operand = NULL;
6759
6760      /* Read the first token and start the parser.  */
6761      intel_get_token ();
6762      ret = intel_expr ();
6763
6764      if (!ret)
6765	break;
6766
6767      if (cur_token.code != T_NIL)
6768	{
6769	  as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
6770		  current_templates->start->name, cur_token.str);
6771	  ret = 0;
6772	}
6773      /* If we found a memory reference, hand it over to i386_displacement
6774	 to fill in the rest of the operand fields.  */
6775      else if (intel_parser.is_mem)
6776	{
6777	  if ((i.mem_operands == 1
6778	       && (current_templates->start->opcode_modifier & IsString) == 0)
6779	      || i.mem_operands == 2)
6780	    {
6781	      as_bad (_("too many memory references for '%s'"),
6782		      current_templates->start->name);
6783	      ret = 0;
6784	    }
6785	  else
6786	    {
6787	      char *s = intel_parser.disp;
6788	      i.mem_operands++;
6789
6790	      if (!quiet_warnings && intel_parser.is_mem < 0)
6791		/* See the comments in intel_bracket_expr.  */
6792		as_warn (_("Treating `%s' as memory reference"), operand_string);
6793
6794	      /* Add the displacement expression.  */
6795	      if (*s != '\0')
6796		ret = i386_displacement (s, s + strlen (s));
6797	      if (ret)
6798		{
6799		  /* Swap base and index in 16-bit memory operands like
6800		     [si+bx]. Since i386_index_check is also used in AT&T
6801		     mode we have to do that here.  */
6802		  if (i.base_reg
6803		      && i.index_reg
6804		      && (i.base_reg->reg_type & Reg16)
6805		      && (i.index_reg->reg_type & Reg16)
6806		      && i.base_reg->reg_num >= 6
6807		      && i.index_reg->reg_num < 6)
6808		    {
6809		      const reg_entry *base = i.index_reg;
6810
6811		      i.index_reg = i.base_reg;
6812		      i.base_reg = base;
6813		    }
6814		  ret = i386_index_check (operand_string);
6815		}
6816	    }
6817	}
6818
6819      /* Constant and OFFSET expressions are handled by i386_immediate.  */
6820      else if ((intel_parser.op_modifier & (1 << T_OFFSET))
6821	       || intel_parser.reg == NULL)
6822	ret = i386_immediate (intel_parser.disp);
6823
6824      if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
6825	ret = 0;
6826      if (!ret || !intel_parser.next_operand)
6827	break;
6828      intel_parser.op_string = intel_parser.next_operand;
6829      this_operand = i.operands++;
6830    }
6831
6832  free (p);
6833  free (intel_parser.disp);
6834
6835  return ret;
6836}
6837
6838#define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
6839
6840/* expr	e04 expr'
6841
6842   expr'  cmpOp e04 expr'
6843	| Empty  */
6844static int
6845intel_expr (void)
6846{
6847  /* XXX Implement the comparison operators.  */
6848  return intel_e04 ();
6849}
6850
6851/* e04	e05 e04'
6852
6853   e04'	addOp e05 e04'
6854	| Empty  */
6855static int
6856intel_e04 (void)
6857{
6858  int nregs = -1;
6859
6860  for (;;)
6861    {
6862      if (!intel_e05())
6863	return 0;
6864
6865      if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6866	i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
6867
6868      if (cur_token.code == '+')
6869	nregs = -1;
6870      else if (cur_token.code == '-')
6871	nregs = NUM_ADDRESS_REGS;
6872      else
6873	return 1;
6874
6875      strcat (intel_parser.disp, cur_token.str);
6876      intel_match_token (cur_token.code);
6877    }
6878}
6879
6880/* e05	e06 e05'
6881
6882   e05'	binOp e06 e05'
6883	| Empty  */
6884static int
6885intel_e05 (void)
6886{
6887  int nregs = ~NUM_ADDRESS_REGS;
6888
6889  for (;;)
6890    {
6891      if (!intel_e06())
6892	return 0;
6893
6894      if (cur_token.code == '&'
6895	  || cur_token.code == '|'
6896	  || cur_token.code == '^')
6897	{
6898	  char str[2];
6899
6900	  str[0] = cur_token.code;
6901	  str[1] = 0;
6902	  strcat (intel_parser.disp, str);
6903	}
6904      else
6905	break;
6906
6907      intel_match_token (cur_token.code);
6908
6909      if (nregs < 0)
6910	nregs = ~nregs;
6911    }
6912  if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6913    i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
6914  return 1;
6915}
6916
6917/* e06	e09 e06'
6918
6919   e06'	mulOp e09 e06'
6920	| Empty  */
6921static int
6922intel_e06 (void)
6923{
6924  int nregs = ~NUM_ADDRESS_REGS;
6925
6926  for (;;)
6927    {
6928      if (!intel_e09())
6929	return 0;
6930
6931      if (cur_token.code == '*'
6932	  || cur_token.code == '/'
6933	  || cur_token.code == '%')
6934	{
6935	  char str[2];
6936
6937	  str[0] = cur_token.code;
6938	  str[1] = 0;
6939	  strcat (intel_parser.disp, str);
6940	}
6941      else if (cur_token.code == T_SHL)
6942	strcat (intel_parser.disp, "<<");
6943      else if (cur_token.code == T_SHR)
6944	strcat (intel_parser.disp, ">>");
6945      else
6946	break;
6947
6948      intel_match_token (cur_token.code);
6949
6950      if (nregs < 0)
6951	nregs = ~nregs;
6952    }
6953  if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6954    i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
6955  return 1;
6956}
6957
6958/* e09	OFFSET e09
6959	| SHORT e09
6960	| + e09
6961	| - e09
6962	| ~ e09
6963	| NOT e09
6964	| e10 e09'
6965
6966   e09'	PTR e10 e09'
6967	| : e10 e09'
6968	| Empty */
6969static int
6970intel_e09 (void)
6971{
6972  int nregs = ~NUM_ADDRESS_REGS;
6973  int in_offset = 0;
6974
6975  for (;;)
6976    {
6977      /* Don't consume constants here.  */
6978      if (cur_token.code == '+' || cur_token.code == '-')
6979	{
6980	  /* Need to look one token ahead - if the next token
6981	     is a constant, the current token is its sign.  */
6982	  int next_code;
6983
6984	  intel_match_token (cur_token.code);
6985	  next_code = cur_token.code;
6986	  intel_putback_token ();
6987	  if (next_code == T_CONST)
6988	    break;
6989	}
6990
6991      /* e09  OFFSET e09  */
6992      if (cur_token.code == T_OFFSET)
6993	{
6994	  if (!in_offset++)
6995	    ++intel_parser.in_offset;
6996	}
6997
6998      /* e09  SHORT e09  */
6999      else if (cur_token.code == T_SHORT)
7000	intel_parser.op_modifier |= 1 << T_SHORT;
7001
7002      /* e09  + e09  */
7003      else if (cur_token.code == '+')
7004	strcat (intel_parser.disp, "+");
7005
7006      /* e09  - e09
7007	      | ~ e09
7008	      | NOT e09  */
7009      else if (cur_token.code == '-' || cur_token.code == '~')
7010	{
7011	  char str[2];
7012
7013	  if (nregs < 0)
7014	    nregs = ~nregs;
7015	  str[0] = cur_token.code;
7016	  str[1] = 0;
7017	  strcat (intel_parser.disp, str);
7018	}
7019
7020      /* e09  e10 e09'  */
7021      else
7022	break;
7023
7024      intel_match_token (cur_token.code);
7025    }
7026
7027  for (;;)
7028    {
7029      if (!intel_e10 ())
7030	return 0;
7031
7032      /* e09'  PTR e10 e09' */
7033      if (cur_token.code == T_PTR)
7034	{
7035	  char suffix;
7036
7037	  if (prev_token.code == T_BYTE)
7038	    suffix = BYTE_MNEM_SUFFIX;
7039
7040	  else if (prev_token.code == T_WORD)
7041	    {
7042	      if (current_templates->start->name[0] == 'l'
7043		  && current_templates->start->name[2] == 's'
7044		  && current_templates->start->name[3] == 0)
7045		suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7046	      else if (intel_parser.got_a_float == 2)	/* "fi..." */
7047		suffix = SHORT_MNEM_SUFFIX;
7048	      else
7049		suffix = WORD_MNEM_SUFFIX;
7050	    }
7051
7052	  else if (prev_token.code == T_DWORD)
7053	    {
7054	      if (current_templates->start->name[0] == 'l'
7055		  && current_templates->start->name[2] == 's'
7056		  && current_templates->start->name[3] == 0)
7057		suffix = WORD_MNEM_SUFFIX;
7058	      else if (flag_code == CODE_16BIT
7059		       && (current_templates->start->opcode_modifier
7060			   & (Jump | JumpDword)))
7061		suffix = LONG_DOUBLE_MNEM_SUFFIX;
7062	      else if (intel_parser.got_a_float == 1)	/* "f..." */
7063		suffix = SHORT_MNEM_SUFFIX;
7064	      else
7065		suffix = LONG_MNEM_SUFFIX;
7066	    }
7067
7068	  else if (prev_token.code == T_FWORD)
7069	    {
7070	      if (current_templates->start->name[0] == 'l'
7071		  && current_templates->start->name[2] == 's'
7072		  && current_templates->start->name[3] == 0)
7073		suffix = LONG_MNEM_SUFFIX;
7074	      else if (!intel_parser.got_a_float)
7075		{
7076		  if (flag_code == CODE_16BIT)
7077		    add_prefix (DATA_PREFIX_OPCODE);
7078		  suffix = LONG_DOUBLE_MNEM_SUFFIX;
7079		}
7080	      else
7081		suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7082	    }
7083
7084	  else if (prev_token.code == T_QWORD)
7085	    {
7086	      if (intel_parser.got_a_float == 1)	/* "f..." */
7087		suffix = LONG_MNEM_SUFFIX;
7088	      else
7089		suffix = QWORD_MNEM_SUFFIX;
7090	    }
7091
7092	  else if (prev_token.code == T_TBYTE)
7093	    {
7094	      if (intel_parser.got_a_float == 1)
7095		suffix = LONG_DOUBLE_MNEM_SUFFIX;
7096	      else
7097		suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7098	    }
7099
7100	  else if (prev_token.code == T_XMMWORD)
7101	    {
7102	      /* XXX ignored for now, but accepted since gcc uses it */
7103	      suffix = 0;
7104	    }
7105
7106	  else
7107	    {
7108	      as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
7109	      return 0;
7110	    }
7111
7112	  /* Operands for jump/call using 'ptr' notation denote absolute
7113	     addresses.  */
7114	  if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7115	    i.types[this_operand] |= JumpAbsolute;
7116
7117	  if (current_templates->start->base_opcode == 0x8d /* lea */)
7118	    ;
7119	  else if (!i.suffix)
7120	    i.suffix = suffix;
7121	  else if (i.suffix != suffix)
7122	    {
7123	      as_bad (_("Conflicting operand modifiers"));
7124	      return 0;
7125	    }
7126
7127	}
7128
7129      /* e09'  : e10 e09'  */
7130      else if (cur_token.code == ':')
7131	{
7132	  if (prev_token.code != T_REG)
7133	    {
7134	      /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
7135		 segment/group identifier (which we don't have), using comma
7136		 as the operand separator there is even less consistent, since
7137		 there all branches only have a single operand.  */
7138	      if (this_operand != 0
7139		  || intel_parser.in_offset
7140		  || intel_parser.in_bracket
7141		  || (!(current_templates->start->opcode_modifier
7142			& (Jump|JumpDword|JumpInterSegment))
7143		      && !(current_templates->start->operand_types[0]
7144			   & JumpAbsolute)))
7145		return intel_match_token (T_NIL);
7146	      /* Remember the start of the 2nd operand and terminate 1st
7147		 operand here.
7148		 XXX This isn't right, yet (when SSSS:OOOO is right operand of
7149		 another expression), but it gets at least the simplest case
7150		 (a plain number or symbol on the left side) right.  */
7151	      intel_parser.next_operand = intel_parser.op_string;
7152	      *--intel_parser.op_string = '\0';
7153	      return intel_match_token (':');
7154	    }
7155	}
7156
7157      /* e09'  Empty  */
7158      else
7159	break;
7160
7161      intel_match_token (cur_token.code);
7162
7163    }
7164
7165  if (in_offset)
7166    {
7167      --intel_parser.in_offset;
7168      if (nregs < 0)
7169	nregs = ~nregs;
7170      if (NUM_ADDRESS_REGS > nregs)
7171	{
7172	  as_bad (_("Invalid operand to `OFFSET'"));
7173	  return 0;
7174	}
7175      intel_parser.op_modifier |= 1 << T_OFFSET;
7176    }
7177
7178  if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7179    i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
7180  return 1;
7181}
7182
7183static int
7184intel_bracket_expr (void)
7185{
7186  int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
7187  const char *start = intel_parser.op_string;
7188  int len;
7189
7190  if (i.op[this_operand].regs)
7191    return intel_match_token (T_NIL);
7192
7193  intel_match_token ('[');
7194
7195  /* Mark as a memory operand only if it's not already known to be an
7196     offset expression.  If it's an offset expression, we need to keep
7197     the brace in.  */
7198  if (!intel_parser.in_offset)
7199    {
7200      ++intel_parser.in_bracket;
7201
7202      /* Operands for jump/call inside brackets denote absolute addresses.  */
7203      if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7204	i.types[this_operand] |= JumpAbsolute;
7205
7206      /* Unfortunately gas always diverged from MASM in a respect that can't
7207	 be easily fixed without risking to break code sequences likely to be
7208	 encountered (the testsuite even check for this): MASM doesn't consider
7209	 an expression inside brackets unconditionally as a memory reference.
7210	 When that is e.g. a constant, an offset expression, or the sum of the
7211	 two, this is still taken as a constant load. gas, however, always
7212	 treated these as memory references. As a compromise, we'll try to make
7213	 offset expressions inside brackets work the MASM way (since that's
7214	 less likely to be found in real world code), but make constants alone
7215	 continue to work the traditional gas way. In either case, issue a
7216	 warning.  */
7217      intel_parser.op_modifier &= ~was_offset;
7218    }
7219  else
7220    strcat (intel_parser.disp, "[");
7221
7222  /* Add a '+' to the displacement string if necessary.  */
7223  if (*intel_parser.disp != '\0'
7224      && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
7225    strcat (intel_parser.disp, "+");
7226
7227  if (intel_expr ()
7228      && (len = intel_parser.op_string - start - 1,
7229	  intel_match_token (']')))
7230    {
7231      /* Preserve brackets when the operand is an offset expression.  */
7232      if (intel_parser.in_offset)
7233	strcat (intel_parser.disp, "]");
7234      else
7235	{
7236	  --intel_parser.in_bracket;
7237	  if (i.base_reg || i.index_reg)
7238	    intel_parser.is_mem = 1;
7239	  if (!intel_parser.is_mem)
7240	    {
7241	      if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
7242		/* Defer the warning until all of the operand was parsed.  */
7243		intel_parser.is_mem = -1;
7244	      else if (!quiet_warnings)
7245		as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
7246			 len, start, len, start);
7247	    }
7248	}
7249      intel_parser.op_modifier |= was_offset;
7250
7251      return 1;
7252    }
7253  return 0;
7254}
7255
7256/* e10	e11 e10'
7257
7258   e10'	[ expr ] e10'
7259	| Empty  */
7260static int
7261intel_e10 (void)
7262{
7263  if (!intel_e11 ())
7264    return 0;
7265
7266  while (cur_token.code == '[')
7267    {
7268      if (!intel_bracket_expr ())
7269	return 0;
7270    }
7271
7272  return 1;
7273}
7274
7275/* e11	( expr )
7276	| [ expr ]
7277	| BYTE
7278	| WORD
7279	| DWORD
7280	| FWORD
7281	| QWORD
7282	| TBYTE
7283	| OWORD
7284	| XMMWORD
7285	| $
7286	| .
7287	| register
7288	| id
7289	| constant  */
7290static int
7291intel_e11 (void)
7292{
7293  switch (cur_token.code)
7294    {
7295    /* e11  ( expr ) */
7296    case '(':
7297      intel_match_token ('(');
7298      strcat (intel_parser.disp, "(");
7299
7300      if (intel_expr () && intel_match_token (')'))
7301	{
7302	  strcat (intel_parser.disp, ")");
7303	  return 1;
7304	}
7305      return 0;
7306
7307    /* e11  [ expr ] */
7308    case '[':
7309      return intel_bracket_expr ();
7310
7311    /* e11  $
7312	    | .  */
7313    case '.':
7314      strcat (intel_parser.disp, cur_token.str);
7315      intel_match_token (cur_token.code);
7316
7317      /* Mark as a memory operand only if it's not already known to be an
7318	 offset expression.  */
7319      if (!intel_parser.in_offset)
7320	intel_parser.is_mem = 1;
7321
7322      return 1;
7323
7324    /* e11  register  */
7325    case T_REG:
7326      {
7327	const reg_entry *reg = intel_parser.reg = cur_token.reg;
7328
7329	intel_match_token (T_REG);
7330
7331	/* Check for segment change.  */
7332	if (cur_token.code == ':')
7333	  {
7334	    if (!(reg->reg_type & (SReg2 | SReg3)))
7335	      {
7336		as_bad (_("`%s' is not a valid segment register"),
7337			reg->reg_name);
7338		return 0;
7339	      }
7340	    else if (i.seg[i.mem_operands])
7341	      as_warn (_("Extra segment override ignored"));
7342	    else
7343	      {
7344		if (!intel_parser.in_offset)
7345		  intel_parser.is_mem = 1;
7346		switch (reg->reg_num)
7347		  {
7348		  case 0:
7349		    i.seg[i.mem_operands] = &es;
7350		    break;
7351		  case 1:
7352		    i.seg[i.mem_operands] = &cs;
7353		    break;
7354		  case 2:
7355		    i.seg[i.mem_operands] = &ss;
7356		    break;
7357		  case 3:
7358		    i.seg[i.mem_operands] = &ds;
7359		    break;
7360		  case 4:
7361		    i.seg[i.mem_operands] = &fs;
7362		    break;
7363		  case 5:
7364		    i.seg[i.mem_operands] = &gs;
7365		    break;
7366		  }
7367	      }
7368	  }
7369
7370	/* Not a segment register. Check for register scaling.  */
7371	else if (cur_token.code == '*')
7372	  {
7373	    if (!intel_parser.in_bracket)
7374	      {
7375		as_bad (_("Register scaling only allowed in memory operands"));
7376		return 0;
7377	      }
7378
7379	    if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
7380	      reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
7381	    else if (i.index_reg)
7382	      reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
7383
7384	    /* What follows must be a valid scale.  */
7385	    intel_match_token ('*');
7386	    i.index_reg = reg;
7387	    i.types[this_operand] |= BaseIndex;
7388
7389	    /* Set the scale after setting the register (otherwise,
7390	       i386_scale will complain)  */
7391	    if (cur_token.code == '+' || cur_token.code == '-')
7392	      {
7393		char *str, sign = cur_token.code;
7394		intel_match_token (cur_token.code);
7395		if (cur_token.code != T_CONST)
7396		  {
7397		    as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7398			    cur_token.str);
7399		    return 0;
7400		  }
7401		str = (char *) xmalloc (strlen (cur_token.str) + 2);
7402		strcpy (str + 1, cur_token.str);
7403		*str = sign;
7404		if (!i386_scale (str))
7405		  return 0;
7406		free (str);
7407	      }
7408	    else if (!i386_scale (cur_token.str))
7409	      return 0;
7410	    intel_match_token (cur_token.code);
7411	  }
7412
7413	/* No scaling. If this is a memory operand, the register is either a
7414	   base register (first occurrence) or an index register (second
7415	   occurrence).  */
7416	else if (intel_parser.in_bracket)
7417	  {
7418
7419	    if (!i.base_reg)
7420	      i.base_reg = reg;
7421	    else if (!i.index_reg)
7422	      i.index_reg = reg;
7423	    else
7424	      {
7425		as_bad (_("Too many register references in memory operand"));
7426		return 0;
7427	      }
7428
7429	    i.types[this_operand] |= BaseIndex;
7430	  }
7431
7432	/* It's neither base nor index.  */
7433	else if (!intel_parser.in_offset && !intel_parser.is_mem)
7434	  {
7435	    i.types[this_operand] |= reg->reg_type & ~BaseIndex;
7436	    i.op[this_operand].regs = reg;
7437	    i.reg_operands++;
7438	  }
7439	else
7440	  {
7441	    as_bad (_("Invalid use of register"));
7442	    return 0;
7443	  }
7444
7445	/* Since registers are not part of the displacement string (except
7446	   when we're parsing offset operands), we may need to remove any
7447	   preceding '+' from the displacement string.  */
7448	if (*intel_parser.disp != '\0'
7449	    && !intel_parser.in_offset)
7450	  {
7451	    char *s = intel_parser.disp;
7452	    s += strlen (s) - 1;
7453	    if (*s == '+')
7454	      *s = '\0';
7455	  }
7456
7457	return 1;
7458      }
7459
7460    /* e11  BYTE
7461	    | WORD
7462	    | DWORD
7463	    | FWORD
7464	    | QWORD
7465	    | TBYTE
7466	    | OWORD
7467	    | XMMWORD  */
7468    case T_BYTE:
7469    case T_WORD:
7470    case T_DWORD:
7471    case T_FWORD:
7472    case T_QWORD:
7473    case T_TBYTE:
7474    case T_XMMWORD:
7475      intel_match_token (cur_token.code);
7476
7477      if (cur_token.code == T_PTR)
7478	return 1;
7479
7480      /* It must have been an identifier.  */
7481      intel_putback_token ();
7482      cur_token.code = T_ID;
7483      /* FALLTHRU */
7484
7485    /* e11  id
7486	    | constant  */
7487    case T_ID:
7488      if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
7489	{
7490	  symbolS *symbolP;
7491
7492	  /* The identifier represents a memory reference only if it's not
7493	     preceded by an offset modifier and if it's not an equate.  */
7494	  symbolP = symbol_find(cur_token.str);
7495	  if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
7496	    intel_parser.is_mem = 1;
7497	}
7498	/* FALLTHRU */
7499
7500    case T_CONST:
7501    case '-':
7502    case '+':
7503      {
7504	char *save_str, sign = 0;
7505
7506	/* Allow constants that start with `+' or `-'.  */
7507	if (cur_token.code == '-' || cur_token.code == '+')
7508	  {
7509	    sign = cur_token.code;
7510	    intel_match_token (cur_token.code);
7511	    if (cur_token.code != T_CONST)
7512	      {
7513		as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7514			cur_token.str);
7515		return 0;
7516	      }
7517	  }
7518
7519	save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
7520	strcpy (save_str + !!sign, cur_token.str);
7521	if (sign)
7522	  *save_str = sign;
7523
7524	/* Get the next token to check for register scaling.  */
7525	intel_match_token (cur_token.code);
7526
7527	/* Check if this constant is a scaling factor for an
7528	   index register.  */
7529	if (cur_token.code == '*')
7530	  {
7531	    if (intel_match_token ('*') && cur_token.code == T_REG)
7532	      {
7533		const reg_entry *reg = cur_token.reg;
7534
7535		if (!intel_parser.in_bracket)
7536		  {
7537		    as_bad (_("Register scaling only allowed "
7538			      "in memory operands"));
7539		    return 0;
7540		  }
7541
7542		 /* Disallow things like [1*si].
7543		    sp and esp are invalid as index.  */
7544		if (reg->reg_type & Reg16)
7545		  reg = i386_regtab + REGNAM_AX + 4;
7546		else if (i.index_reg)
7547		  reg = i386_regtab + REGNAM_EAX + 4;
7548
7549		/* The constant is followed by `* reg', so it must be
7550		   a valid scale.  */
7551		i.index_reg = reg;
7552		i.types[this_operand] |= BaseIndex;
7553
7554		/* Set the scale after setting the register (otherwise,
7555		   i386_scale will complain)  */
7556		if (!i386_scale (save_str))
7557		  return 0;
7558		intel_match_token (T_REG);
7559
7560		/* Since registers are not part of the displacement
7561		   string, we may need to remove any preceding '+' from
7562		   the displacement string.  */
7563		if (*intel_parser.disp != '\0')
7564		  {
7565		    char *s = intel_parser.disp;
7566		    s += strlen (s) - 1;
7567		    if (*s == '+')
7568		      *s = '\0';
7569		  }
7570
7571		free (save_str);
7572
7573		return 1;
7574	      }
7575
7576	    /* The constant was not used for register scaling. Since we have
7577	       already consumed the token following `*' we now need to put it
7578	       back in the stream.  */
7579	    intel_putback_token ();
7580	  }
7581
7582	/* Add the constant to the displacement string.  */
7583	strcat (intel_parser.disp, save_str);
7584	free (save_str);
7585
7586	return 1;
7587      }
7588    }
7589
7590  as_bad (_("Unrecognized token '%s'"), cur_token.str);
7591  return 0;
7592}
7593
7594/* Match the given token against cur_token. If they match, read the next
7595   token from the operand string.  */
7596static int
7597intel_match_token (int code)
7598{
7599  if (cur_token.code == code)
7600    {
7601      intel_get_token ();
7602      return 1;
7603    }
7604  else
7605    {
7606      as_bad (_("Unexpected token `%s'"), cur_token.str);
7607      return 0;
7608    }
7609}
7610
7611/* Read a new token from intel_parser.op_string and store it in cur_token.  */
7612static void
7613intel_get_token (void)
7614{
7615  char *end_op;
7616  const reg_entry *reg;
7617  struct intel_token new_token;
7618
7619  new_token.code = T_NIL;
7620  new_token.reg = NULL;
7621  new_token.str = NULL;
7622
7623  /* Free the memory allocated to the previous token and move
7624     cur_token to prev_token.  */
7625  if (prev_token.str)
7626    free (prev_token.str);
7627
7628  prev_token = cur_token;
7629
7630  /* Skip whitespace.  */
7631  while (is_space_char (*intel_parser.op_string))
7632    intel_parser.op_string++;
7633
7634  /* Return an empty token if we find nothing else on the line.  */
7635  if (*intel_parser.op_string == '\0')
7636    {
7637      cur_token = new_token;
7638      return;
7639    }
7640
7641  /* The new token cannot be larger than the remainder of the operand
7642     string.  */
7643  new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
7644  new_token.str[0] = '\0';
7645
7646  if (strchr ("0123456789", *intel_parser.op_string))
7647    {
7648      char *p = new_token.str;
7649      char *q = intel_parser.op_string;
7650      new_token.code = T_CONST;
7651
7652      /* Allow any kind of identifier char to encompass floating point and
7653	 hexadecimal numbers.  */
7654      while (is_identifier_char (*q))
7655	*p++ = *q++;
7656      *p = '\0';
7657
7658      /* Recognize special symbol names [0-9][bf].  */
7659      if (strlen (intel_parser.op_string) == 2
7660	  && (intel_parser.op_string[1] == 'b'
7661	      || intel_parser.op_string[1] == 'f'))
7662	new_token.code = T_ID;
7663    }
7664
7665  else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
7666    {
7667      size_t len = end_op - intel_parser.op_string;
7668
7669      new_token.code = T_REG;
7670      new_token.reg = reg;
7671
7672      memcpy (new_token.str, intel_parser.op_string, len);
7673      new_token.str[len] = '\0';
7674    }
7675
7676  else if (is_identifier_char (*intel_parser.op_string))
7677    {
7678      char *p = new_token.str;
7679      char *q = intel_parser.op_string;
7680
7681      /* A '.' or '$' followed by an identifier char is an identifier.
7682	 Otherwise, it's operator '.' followed by an expression.  */
7683      if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
7684	{
7685	  new_token.code = '.';
7686	  new_token.str[0] = '.';
7687	  new_token.str[1] = '\0';
7688	}
7689      else
7690	{
7691	  while (is_identifier_char (*q) || *q == '@')
7692	    *p++ = *q++;
7693	  *p = '\0';
7694
7695	  if (strcasecmp (new_token.str, "NOT") == 0)
7696	    new_token.code = '~';
7697
7698	  else if (strcasecmp (new_token.str, "MOD") == 0)
7699	    new_token.code = '%';
7700
7701	  else if (strcasecmp (new_token.str, "AND") == 0)
7702	    new_token.code = '&';
7703
7704	  else if (strcasecmp (new_token.str, "OR") == 0)
7705	    new_token.code = '|';
7706
7707	  else if (strcasecmp (new_token.str, "XOR") == 0)
7708	    new_token.code = '^';
7709
7710	  else if (strcasecmp (new_token.str, "SHL") == 0)
7711	    new_token.code = T_SHL;
7712
7713	  else if (strcasecmp (new_token.str, "SHR") == 0)
7714	    new_token.code = T_SHR;
7715
7716	  else if (strcasecmp (new_token.str, "BYTE") == 0)
7717	    new_token.code = T_BYTE;
7718
7719	  else if (strcasecmp (new_token.str, "WORD") == 0)
7720	    new_token.code = T_WORD;
7721
7722	  else if (strcasecmp (new_token.str, "DWORD") == 0)
7723	    new_token.code = T_DWORD;
7724
7725	  else if (strcasecmp (new_token.str, "FWORD") == 0)
7726	    new_token.code = T_FWORD;
7727
7728	  else if (strcasecmp (new_token.str, "QWORD") == 0)
7729	    new_token.code = T_QWORD;
7730
7731	  else if (strcasecmp (new_token.str, "TBYTE") == 0
7732		   /* XXX remove (gcc still uses it) */
7733		   || strcasecmp (new_token.str, "XWORD") == 0)
7734	    new_token.code = T_TBYTE;
7735
7736	  else if (strcasecmp (new_token.str, "XMMWORD") == 0
7737		   || strcasecmp (new_token.str, "OWORD") == 0)
7738	    new_token.code = T_XMMWORD;
7739
7740	  else if (strcasecmp (new_token.str, "PTR") == 0)
7741	    new_token.code = T_PTR;
7742
7743	  else if (strcasecmp (new_token.str, "SHORT") == 0)
7744	    new_token.code = T_SHORT;
7745
7746	  else if (strcasecmp (new_token.str, "OFFSET") == 0)
7747	    {
7748	      new_token.code = T_OFFSET;
7749
7750	      /* ??? This is not mentioned in the MASM grammar but gcc
7751		     makes use of it with -mintel-syntax.  OFFSET may be
7752		     followed by FLAT:  */
7753	      if (strncasecmp (q, " FLAT:", 6) == 0)
7754		strcat (new_token.str, " FLAT:");
7755	    }
7756
7757	  /* ??? This is not mentioned in the MASM grammar.  */
7758	  else if (strcasecmp (new_token.str, "FLAT") == 0)
7759	    {
7760	      new_token.code = T_OFFSET;
7761	      if (*q == ':')
7762		strcat (new_token.str, ":");
7763	      else
7764		as_bad (_("`:' expected"));
7765	    }
7766
7767	  else
7768	    new_token.code = T_ID;
7769	}
7770    }
7771
7772  else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
7773    {
7774      new_token.code = *intel_parser.op_string;
7775      new_token.str[0] = *intel_parser.op_string;
7776      new_token.str[1] = '\0';
7777    }
7778
7779  else if (strchr ("<>", *intel_parser.op_string)
7780	   && *intel_parser.op_string == *(intel_parser.op_string + 1))
7781    {
7782      new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
7783      new_token.str[0] = *intel_parser.op_string;
7784      new_token.str[1] = *intel_parser.op_string;
7785      new_token.str[2] = '\0';
7786    }
7787
7788  else
7789    as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
7790
7791  intel_parser.op_string += strlen (new_token.str);
7792  cur_token = new_token;
7793}
7794
7795/* Put cur_token back into the token stream and make cur_token point to
7796   prev_token.  */
7797static void
7798intel_putback_token (void)
7799{
7800  if (cur_token.code != T_NIL)
7801    {
7802      intel_parser.op_string -= strlen (cur_token.str);
7803      free (cur_token.str);
7804    }
7805  cur_token = prev_token;
7806
7807  /* Forget prev_token.  */
7808  prev_token.code = T_NIL;
7809  prev_token.reg = NULL;
7810  prev_token.str = NULL;
7811}
7812
7813int
7814tc_x86_regname_to_dw2regnum (char *regname)
7815{
7816  unsigned int regnum;
7817  unsigned int regnames_count;
7818  static const char *const regnames_32[] =
7819    {
7820      "eax", "ecx", "edx", "ebx",
7821      "esp", "ebp", "esi", "edi",
7822      "eip", "eflags", NULL,
7823      "st0", "st1", "st2", "st3",
7824      "st4", "st5", "st6", "st7",
7825      NULL, NULL,
7826      "xmm0", "xmm1", "xmm2", "xmm3",
7827      "xmm4", "xmm5", "xmm6", "xmm7",
7828      "mm0", "mm1", "mm2", "mm3",
7829      "mm4", "mm5", "mm6", "mm7",
7830      "fcw", "fsw", "mxcsr",
7831      "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7832      "tr", "ldtr"
7833    };
7834  static const char *const regnames_64[] =
7835    {
7836      "rax", "rdx", "rcx", "rbx",
7837      "rsi", "rdi", "rbp", "rsp",
7838      "r8",  "r9",  "r10", "r11",
7839      "r12", "r13", "r14", "r15",
7840      "rip",
7841      "xmm0",  "xmm1",  "xmm2",  "xmm3",
7842      "xmm4",  "xmm5",  "xmm6",  "xmm7",
7843      "xmm8",  "xmm9",  "xmm10", "xmm11",
7844      "xmm12", "xmm13", "xmm14", "xmm15",
7845      "st0", "st1", "st2", "st3",
7846      "st4", "st5", "st6", "st7",
7847      "mm0", "mm1", "mm2", "mm3",
7848      "mm4", "mm5", "mm6", "mm7",
7849      "rflags",
7850      "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7851      "fs.base", "gs.base", NULL, NULL,
7852      "tr", "ldtr",
7853      "mxcsr", "fcw", "fsw"
7854    };
7855  const char *const *regnames;
7856
7857  if (flag_code == CODE_64BIT)
7858    {
7859      regnames = regnames_64;
7860      regnames_count = ARRAY_SIZE (regnames_64);
7861    }
7862  else
7863    {
7864      regnames = regnames_32;
7865      regnames_count = ARRAY_SIZE (regnames_32);
7866    }
7867
7868  for (regnum = 0; regnum < regnames_count; regnum++)
7869    if (regnames[regnum] != NULL
7870	&& strcmp (regname, regnames[regnum]) == 0)
7871      return regnum;
7872
7873  return -1;
7874}
7875
7876void
7877tc_x86_frame_initial_instructions (void)
7878{
7879  static unsigned int sp_regno;
7880
7881  if (!sp_regno)
7882    sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
7883					    ? "rsp" : "esp");
7884
7885  cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
7886  cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
7887}
7888
7889int
7890i386_elf_section_type (const char *str, size_t len)
7891{
7892  if (flag_code == CODE_64BIT
7893      && len == sizeof ("unwind") - 1
7894      && strncmp (str, "unwind", 6) == 0)
7895    return SHT_X86_64_UNWIND;
7896
7897  return -1;
7898}
7899
7900#ifdef TE_PE
7901void
7902tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
7903{
7904  expressionS expr;
7905
7906  expr.X_op = O_secrel;
7907  expr.X_add_symbol = symbol;
7908  expr.X_add_number = 0;
7909  emit_expr (&expr, size);
7910}
7911#endif
7912
7913#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7914/* For ELF on x86-64, add support for SHF_X86_64_LARGE.  */
7915
7916int
7917x86_64_section_letter (int letter, char **ptr_msg)
7918{
7919  if (flag_code == CODE_64BIT)
7920    {
7921      if (letter == 'l')
7922	return SHF_X86_64_LARGE;
7923
7924      *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
7925    }
7926  else
7927    *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
7928  return -1;
7929}
7930
7931int
7932x86_64_section_word (char *str, size_t len)
7933{
7934  if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
7935    return SHF_X86_64_LARGE;
7936
7937  return -1;
7938}
7939
7940static void
7941handle_large_common (int small ATTRIBUTE_UNUSED)
7942{
7943  if (flag_code != CODE_64BIT)
7944    {
7945      s_comm_internal (0, elf_common_parse);
7946      as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7947    }
7948  else
7949    {
7950      static segT lbss_section;
7951      asection *saved_com_section_ptr = elf_com_section_ptr;
7952      asection *saved_bss_section = bss_section;
7953
7954      if (lbss_section == NULL)
7955	{
7956	  flagword applicable;
7957	  segT seg = now_seg;
7958	  subsegT subseg = now_subseg;
7959
7960	  /* The .lbss section is for local .largecomm symbols.  */
7961	  lbss_section = subseg_new (".lbss", 0);
7962	  applicable = bfd_applicable_section_flags (stdoutput);
7963	  bfd_set_section_flags (stdoutput, lbss_section,
7964				 applicable & SEC_ALLOC);
7965	  seg_info (lbss_section)->bss = 1;
7966
7967	  subseg_set (seg, subseg);
7968	}
7969
7970      elf_com_section_ptr = &_bfd_elf_large_com_section;
7971      bss_section = lbss_section;
7972
7973      s_comm_internal (0, elf_common_parse);
7974
7975      elf_com_section_ptr = saved_com_section_ptr;
7976      bss_section = saved_bss_section;
7977    }
7978}
7979#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
7980