merge.c revision 287639
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28/*
29 * This file contains routines that merge one tdata_t tree, called the child,
30 * into another, called the parent.  Note that these names are used mainly for
31 * convenience and to represent the direction of the merge.  They are not meant
32 * to imply any relationship between the tdata_t graphs prior to the merge.
33 *
34 * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
35 * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes.  Simply
36 * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
37 * clean up loose ends.
38 *
39 * The algorithm is as follows:
40 *
41 * 1. Mapping iidesc_t nodes
42 *
43 * For each child iidesc_t node, we first try to map its tdesc_t subgraph
44 * against the tdesc_t graph in the parent.  For each node in the child subgraph
45 * that exists in the parent, a mapping between the two (between their type IDs)
46 * is established.  For the child nodes that cannot be mapped onto existing
47 * parent nodes, a mapping is established between the child node ID and a
48 * newly-allocated ID that the node will use when it is re-created in the
49 * parent.  These unmappable nodes are added to the md_tdtba (tdesc_t To Be
50 * Added) hash, which tracks nodes that need to be created in the parent.
51 *
52 * If all of the nodes in the subgraph for an iidesc_t in the child can be
53 * mapped to existing nodes in the parent, then we can try to map the child
54 * iidesc_t onto an iidesc_t in the parent.  If we cannot find an equivalent
55 * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
56 * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list.  This
57 * list tracks iidesc_t nodes that are to be created in the parent.
58 *
59 * While visiting the tdesc_t nodes, we may discover a forward declaration (a
60 * FORWARD tdesc_t) in the parent that is resolved in the child.  That is, there
61 * may be a structure or union definition in the child with the same name as the
62 * forward declaration in the parent.  If we find such a node, we record an
63 * association in the md_fdida (Forward => Definition ID Association) list
64 * between the parent ID of the forward declaration and the ID that the
65 * definition will use when re-created in the parent.
66 *
67 * 2. Creating new tdesc_t nodes (the md_tdtba hash)
68 *
69 * We have now attempted to map all tdesc_t nodes from the child into the
70 * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
71 * created (or, as we so wittily call it, conjured) in the parent.  We iterate
72 * through this hash, creating the indicated tdesc_t nodes.  For a given tdesc_t
73 * node, conjuring requires two steps - the copying of the common tdesc_t data
74 * (name, type, etc) from the child node, and the creation of links from the
75 * newly-created node to the parent equivalents of other tdesc_t nodes pointed
76 * to by node being conjured.  Note that in some cases, the targets of these
77 * links will be on the md_tdtba hash themselves, and may not have been created
78 * yet.  As such, we can't establish the links from these new nodes into the
79 * parent graph.  We therefore conjure them with links to nodes in the *child*
80 * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
81 * To Be Remapped) hash.  For example, a POINTER tdesc_t that could not be
82 * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
83 *
84 * 3. Creating new iidesc_t nodes (the md_iitba list)
85 *
86 * When we have completed step 2, all tdesc_t nodes have been created (or
87 * already existed) in the parent.  Some of them may have incorrect links (the
88 * members of the md_tdtbr list), but they've all been created.  As such, we can
89 * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
90 * pointers correctly.  We create each node, and attach the pointers to the
91 * appropriate parts of the parent tdesc_t graph.
92 *
93 * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
94 *
95 * As in step 3, we rely on the fact that all of the tdesc_t nodes have been
96 * created.  Each entry in the md_tdtbr list is a pointer to where a link into
97 * the parent will be established.  As saved in the md_tdtbr list, these
98 * pointers point into the child tdesc_t subgraph.  We can thus get the target
99 * type ID from the child, look at the ID mapping to determine the desired link
100 * target, and redirect the link accordingly.
101 *
102 * 5. Parent => child forward declaration resolution
103 *
104 * If entries were made in the md_fdida list in step 1, we have forward
105 * declarations in the parent that need to be resolved to their definitions
106 * re-created in step 2 from the child.  Using the md_fdida list, we can locate
107 * the definition for the forward declaration, and we can redirect all inbound
108 * edges to the forward declaration node to the actual definition.
109 *
110 * A pox on the house of anyone who changes the algorithm without updating
111 * this comment.
112 */
113
114#include <stdio.h>
115#include <strings.h>
116#include <assert.h>
117#include <pthread.h>
118
119#include "ctf_headers.h"
120#include "ctftools.h"
121#include "list.h"
122#include "alist.h"
123#include "memory.h"
124#include "traverse.h"
125
126typedef struct equiv_data equiv_data_t;
127typedef struct merge_cb_data merge_cb_data_t;
128
129/*
130 * There are two traversals in this file, for equivalency and for tdesc_t
131 * re-creation, that do not fit into the tdtraverse() framework.  We have our
132 * own traversal mechanism and ops vector here for those two cases.
133 */
134typedef struct tdesc_ops {
135	const char *name;
136	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
137	tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
138} tdesc_ops_t;
139extern tdesc_ops_t tdesc_ops[];
140
141/*
142 * The workhorse structure of tdata_t merging.  Holds all lists of nodes to be
143 * processed during various phases of the merge algorithm.
144 */
145struct merge_cb_data {
146	tdata_t *md_parent;
147	tdata_t *md_tgt;
148	alist_t *md_ta;		/* Type Association */
149	alist_t *md_fdida;	/* Forward -> Definition ID Association */
150	list_t	**md_iitba;	/* iidesc_t nodes To Be Added to the parent */
151	hash_t	*md_tdtba;	/* tdesc_t nodes To Be Added to the parent */
152	list_t	**md_tdtbr;	/* tdesc_t nodes To Be Remapped */
153	int md_flags;
154}; /* merge_cb_data_t */
155
156/*
157 * When we first create a tdata_t from stabs data, we will have duplicate nodes.
158 * Normal merges, however, assume that the child tdata_t is already self-unique,
159 * and for speed reasons do not attempt to self-uniquify.  If this flag is set,
160 * the merge algorithm will self-uniquify by avoiding the insertion of
161 * duplicates in the md_tdtdba list.
162 */
163#define	MCD_F_SELFUNIQUIFY	0x1
164
165/*
166 * When we merge the CTF data for the modules, we don't want it to contain any
167 * data that can be found in the reference module (usually genunix).  If this
168 * flag is set, we're doing a merge between the fully merged tdata_t for this
169 * module and the tdata_t for the reference module, with the data unique to this
170 * module ending up in a third tdata_t.  It is this third tdata_t that will end
171 * up in the .SUNW_ctf section for the module.
172 */
173#define	MCD_F_REFMERGE	0x2
174
175/*
176 * Mapping of child type IDs to parent type IDs
177 */
178
179static void
180add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
181{
182	debug(3, "Adding mapping %u <%x> => %u <%x>\n", srcid, srcid, tgtid, tgtid);
183
184	assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL));
185	assert(srcid != 0 && tgtid != 0);
186
187	alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid);
188}
189
190static tid_t
191get_mapping(alist_t *ta, int srcid)
192{
193	void *ltgtid;
194
195	if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)&ltgtid))
196		return ((uintptr_t)ltgtid);
197	else
198		return (0);
199}
200
201/*
202 * Determining equivalence of tdesc_t subgraphs
203 */
204
205struct equiv_data {
206	alist_t *ed_ta;
207	tdesc_t *ed_node;
208	tdesc_t *ed_tgt;
209
210	int ed_clear_mark;
211	int ed_cur_mark;
212	int ed_selfuniquify;
213}; /* equiv_data_t */
214
215static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
216
217/*ARGSUSED2*/
218static int
219equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
220{
221	intr_t *si = stdp->t_intr;
222	intr_t *ti = ttdp->t_intr;
223
224	if (si->intr_type != ti->intr_type ||
225	    si->intr_signed != ti->intr_signed ||
226	    si->intr_offset != ti->intr_offset ||
227	    si->intr_nbits != ti->intr_nbits)
228		return (0);
229
230	if (si->intr_type == INTR_INT &&
231	    si->intr_iformat != ti->intr_iformat)
232		return (0);
233	else if (si->intr_type == INTR_REAL &&
234	    si->intr_fformat != ti->intr_fformat)
235		return (0);
236
237	return (1);
238}
239
240static int
241equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
242{
243	return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
244}
245
246static int
247equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
248{
249	fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
250	int i;
251
252	if (fn1->fn_nargs != fn2->fn_nargs ||
253	    fn1->fn_vargs != fn2->fn_vargs)
254		return (0);
255
256	if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
257		return (0);
258
259	for (i = 0; i < (int) fn1->fn_nargs; i++) {
260		if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
261			return (0);
262	}
263
264	return (1);
265}
266
267static int
268equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
269{
270	ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
271
272	if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
273	    !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
274		return (0);
275
276	if (ar1->ad_nelems != ar2->ad_nelems)
277		return (0);
278
279	return (1);
280}
281
282static int
283equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
284{
285	mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
286	mlist_t *olm1 = NULL;
287
288	while (ml1 && ml2) {
289		if (ml1->ml_offset != ml2->ml_offset ||
290		    strcmp(ml1->ml_name, ml2->ml_name) != 0)
291			return (0);
292
293		/*
294		 * Don't do the recursive equivalency checking more than
295		 * we have to.
296		 */
297		if (olm1 == NULL || olm1->ml_type->t_id != ml1->ml_type->t_id) {
298			if (ml1->ml_size != ml2->ml_size ||
299			    !equiv_node(ml1->ml_type, ml2->ml_type, ed))
300				return (0);
301		}
302
303		olm1 = ml1;
304		ml1 = ml1->ml_next;
305		ml2 = ml2->ml_next;
306	}
307
308	if (ml1 || ml2)
309		return (0);
310
311	return (1);
312}
313
314/*ARGSUSED2*/
315static int
316equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
317{
318	elist_t *el1 = stdp->t_emem;
319	elist_t *el2 = ttdp->t_emem;
320
321	while (el1 && el2) {
322		if (el1->el_number != el2->el_number ||
323		    strcmp(el1->el_name, el2->el_name) != 0)
324			return (0);
325
326		el1 = el1->el_next;
327		el2 = el2->el_next;
328	}
329
330	if (el1 || el2)
331		return (0);
332
333	return (1);
334}
335
336/*ARGSUSED*/
337static int
338equiv_assert(tdesc_t *stdp __unused, tdesc_t *ttdp __unused, equiv_data_t *ed __unused)
339{
340	/* foul, evil, and very bad - this is a "shouldn't happen" */
341	assert(1 == 0);
342
343	return (0);
344}
345
346static int
347fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
348{
349	tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
350
351	return (defn->t_type == STRUCT || defn->t_type == UNION);
352}
353
354static int
355equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
356{
357	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
358	int mapping;
359
360	if (ctdp->t_emark > ed->ed_clear_mark &&
361	    mtdp->t_emark > ed->ed_clear_mark)
362		return (ctdp->t_emark == mtdp->t_emark);
363
364	/*
365	 * In normal (non-self-uniquify) mode, we don't want to do equivalency
366	 * checking on a subgraph that has already been checked.  If a mapping
367	 * has already been established for a given child node, we can simply
368	 * compare the mapping for the child node with the ID of the parent
369	 * node.  If we are in self-uniquify mode, then we're comparing two
370	 * subgraphs within the child graph, and thus need to ignore any
371	 * type mappings that have been created, as they are only valid into the
372	 * parent.
373	 */
374	if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
375	    mapping == mtdp->t_id && !ed->ed_selfuniquify)
376		return (1);
377
378	if (!streq(ctdp->t_name, mtdp->t_name))
379		return (0);
380
381	if (ctdp->t_type != mtdp->t_type) {
382		if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
383			return (fwd_equiv(ctdp, mtdp));
384		else
385			return (0);
386	}
387
388	ctdp->t_emark = ed->ed_cur_mark;
389	mtdp->t_emark = ed->ed_cur_mark;
390	ed->ed_cur_mark++;
391
392	if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
393		return (equiv(ctdp, mtdp, ed));
394
395	return (1);
396}
397
398/*
399 * We perform an equivalency check on two subgraphs by traversing through them
400 * in lockstep.  If a given node is equivalent in both the parent and the child,
401 * we mark it in both subgraphs, using the t_emark field, with a monotonically
402 * increasing number.  If, in the course of the traversal, we reach a node that
403 * we have visited and numbered during this equivalency check, we have a cycle.
404 * If the previously-visited nodes don't have the same emark, then the edges
405 * that brought us to these nodes are not equivalent, and so the check ends.
406 * If the emarks are the same, the edges are equivalent.  We then backtrack and
407 * continue the traversal.  If we have exhausted all edges in the subgraph, and
408 * have not found any inequivalent nodes, then the subgraphs are equivalent.
409 */
410static int
411equiv_cb(void *bucket, void *arg)
412{
413	equiv_data_t *ed = arg;
414	tdesc_t *mtdp = bucket;
415	tdesc_t *ctdp = ed->ed_node;
416
417	ed->ed_clear_mark = ed->ed_cur_mark + 1;
418	ed->ed_cur_mark = ed->ed_clear_mark + 1;
419
420	if (equiv_node(ctdp, mtdp, ed)) {
421		debug(3, "equiv_node matched %d <%x> %d <%x>\n",
422		    ctdp->t_id, ctdp->t_id, mtdp->t_id, mtdp->t_id);
423		ed->ed_tgt = mtdp;
424		/* matched.  stop looking */
425		return (-1);
426	}
427
428	return (0);
429}
430
431/*ARGSUSED1*/
432static int
433map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
434{
435	merge_cb_data_t *mcd = private;
436
437	if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
438		return (0);
439
440	return (1);
441}
442
443/*ARGSUSED1*/
444static int
445map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
446{
447	merge_cb_data_t *mcd = private;
448	equiv_data_t ed;
449
450	ed.ed_ta = mcd->md_ta;
451	ed.ed_clear_mark = mcd->md_parent->td_curemark;
452	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
453	ed.ed_node = ctdp;
454	ed.ed_selfuniquify = 0;
455
456	debug(3, "map_td_tree_post on %d <%x> %s\n", ctdp->t_id, ctdp->t_id,tdesc_name(ctdp));
457
458	if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
459	    equiv_cb, &ed) < 0) {
460		/* We found an equivalent node */
461		if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
462			int id = mcd->md_tgt->td_nextid++;
463
464			debug(3, "Creating new defn type %d <%x>\n", id, id);
465			add_mapping(mcd->md_ta, ctdp->t_id, id);
466			alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
467			    (void *)(ulong_t)id);
468			hash_add(mcd->md_tdtba, ctdp);
469		} else
470			add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
471
472	} else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
473	    equiv_cb, &ed) < 0) {
474		/*
475		 * We didn't find an equivalent node by looking through the
476		 * layout hash, but we somehow found it by performing an
477		 * exhaustive search through the entire graph.  This usually
478		 * means that the "name" hash function is broken.
479		 */
480		aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
481		    tdesc_name(ctdp), ed.ed_tgt->t_id);
482	} else {
483		int id = mcd->md_tgt->td_nextid++;
484
485		debug(3, "Creating new type %d <%x>\n", id, id);
486		add_mapping(mcd->md_ta, ctdp->t_id, id);
487		hash_add(mcd->md_tdtba, ctdp);
488	}
489
490	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
491
492	return (1);
493}
494
495/*ARGSUSED1*/
496static int
497map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
498{
499	merge_cb_data_t *mcd = private;
500	equiv_data_t ed;
501
502	ed.ed_ta = mcd->md_ta;
503	ed.ed_clear_mark = mcd->md_parent->td_curemark;
504	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
505	ed.ed_node = ctdp;
506	ed.ed_selfuniquify = 1;
507	ed.ed_tgt = NULL;
508
509	if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
510		debug(3, "Self check found %d <%x> in %d <%x>\n", ctdp->t_id,
511		    ctdp->t_id, ed.ed_tgt->t_id, ed.ed_tgt->t_id);
512		add_mapping(mcd->md_ta, ctdp->t_id,
513		    get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
514	} else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
515	    equiv_cb, &ed) < 0) {
516		/*
517		 * We didn't find an equivalent node using the quick way (going
518		 * through the hash normally), but we did find it by iterating
519		 * through the entire hash.  This usually means that the hash
520		 * function is broken.
521		 */
522		aborterr("Self-unique second pass for %d <%x> (%s) == %d <%x>\n",
523		    ctdp->t_id, ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id,
524		    ed.ed_tgt->t_id);
525	} else {
526		int id = mcd->md_tgt->td_nextid++;
527
528		debug(3, "Creating new type %d <%x>\n", id, id);
529		add_mapping(mcd->md_ta, ctdp->t_id, id);
530		hash_add(mcd->md_tdtba, ctdp);
531	}
532
533	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
534
535	return (1);
536}
537
538static tdtrav_cb_f map_pre[] = {
539	NULL,
540	map_td_tree_pre,	/* intrinsic */
541	map_td_tree_pre,	/* pointer */
542	map_td_tree_pre,	/* array */
543	map_td_tree_pre,	/* function */
544	map_td_tree_pre,	/* struct */
545	map_td_tree_pre,	/* union */
546	map_td_tree_pre,	/* enum */
547	map_td_tree_pre,	/* forward */
548	map_td_tree_pre,	/* typedef */
549	tdtrav_assert,		/* typedef_unres */
550	map_td_tree_pre,	/* volatile */
551	map_td_tree_pre,	/* const */
552	map_td_tree_pre		/* restrict */
553};
554
555static tdtrav_cb_f map_post[] = {
556	NULL,
557	map_td_tree_post,	/* intrinsic */
558	map_td_tree_post,	/* pointer */
559	map_td_tree_post,	/* array */
560	map_td_tree_post,	/* function */
561	map_td_tree_post,	/* struct */
562	map_td_tree_post,	/* union */
563	map_td_tree_post,	/* enum */
564	map_td_tree_post,	/* forward */
565	map_td_tree_post,	/* typedef */
566	tdtrav_assert,		/* typedef_unres */
567	map_td_tree_post,	/* volatile */
568	map_td_tree_post,	/* const */
569	map_td_tree_post	/* restrict */
570};
571
572static tdtrav_cb_f map_self_post[] = {
573	NULL,
574	map_td_tree_self_post,	/* intrinsic */
575	map_td_tree_self_post,	/* pointer */
576	map_td_tree_self_post,	/* array */
577	map_td_tree_self_post,	/* function */
578	map_td_tree_self_post,	/* struct */
579	map_td_tree_self_post,	/* union */
580	map_td_tree_self_post,	/* enum */
581	map_td_tree_self_post,	/* forward */
582	map_td_tree_self_post,	/* typedef */
583	tdtrav_assert,		/* typedef_unres */
584	map_td_tree_self_post,	/* volatile */
585	map_td_tree_self_post,	/* const */
586	map_td_tree_self_post	/* restrict */
587};
588
589/*
590 * Determining equivalence of iidesc_t nodes
591 */
592
593typedef struct iifind_data {
594	iidesc_t *iif_template;
595	alist_t *iif_ta;
596	int iif_newidx;
597	int iif_refmerge;
598} iifind_data_t;
599
600/*
601 * Check to see if this iidesc_t (node) - the current one on the list we're
602 * iterating through - matches the target one (iif->iif_template).  Return -1
603 * if it matches, to stop the iteration.
604 */
605static int
606iidesc_match(void *data, void *arg)
607{
608	iidesc_t *node = data;
609	iifind_data_t *iif = arg;
610	int i;
611
612	if (node->ii_type != iif->iif_template->ii_type ||
613	    !streq(node->ii_name, iif->iif_template->ii_name) ||
614	    node->ii_dtype->t_id != iif->iif_newidx)
615		return (0);
616
617	if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
618	    !streq(node->ii_owner, iif->iif_template->ii_owner))
619		return (0);
620
621	if (node->ii_nargs != iif->iif_template->ii_nargs)
622		return (0);
623
624	for (i = 0; i < node->ii_nargs; i++) {
625		if (get_mapping(iif->iif_ta,
626		    iif->iif_template->ii_args[i]->t_id) !=
627		    node->ii_args[i]->t_id)
628			return (0);
629	}
630
631	if (iif->iif_refmerge) {
632		switch (iif->iif_template->ii_type) {
633		case II_GFUN:
634		case II_SFUN:
635		case II_GVAR:
636		case II_SVAR:
637			debug(3, "suppressing duping of %d %s from %s\n",
638			    iif->iif_template->ii_type,
639			    iif->iif_template->ii_name,
640			    (iif->iif_template->ii_owner ?
641			    iif->iif_template->ii_owner : "NULL"));
642			return (0);
643		case II_NOT:
644		case II_PSYM:
645		case II_SOU:
646		case II_TYPE:
647			break;
648		}
649	}
650
651	return (-1);
652}
653
654static int
655merge_type_cb(void *data, void *arg)
656{
657	iidesc_t *sii = data;
658	merge_cb_data_t *mcd = arg;
659	iifind_data_t iif;
660	tdtrav_cb_f *post;
661
662	post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
663
664	/* Map the tdesc nodes */
665	(void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
666	    mcd);
667
668	/* Map the iidesc nodes */
669	iif.iif_template = sii;
670	iif.iif_ta = mcd->md_ta;
671	iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
672	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
673
674	if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
675	    &iif) == 1)
676		/* successfully mapped */
677		return (1);
678
679	debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
680	    sii->ii_type);
681
682	list_add(mcd->md_iitba, sii);
683
684	return (0);
685}
686
687static int
688remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
689    merge_cb_data_t *mcd)
690{
691	tdesc_t *tgt = NULL;
692	tdesc_t template;
693	int oldid = oldtgt->t_id;
694
695	if (oldid == selftid) {
696		*tgtp = newself;
697		return (1);
698	}
699
700	if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
701		aborterr("failed to get mapping for tid %d <%x>\n", oldid, oldid);
702
703	if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
704	    (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
705	    !hash_find(mcd->md_tgt->td_idhash, (void *)&template,
706	    (void *)&tgt))) {
707		debug(3, "Remap couldn't find %d <%x> (from %d <%x>)\n", template.t_id,
708		    template.t_id, oldid, oldid);
709		*tgtp = oldtgt;
710		list_add(mcd->md_tdtbr, tgtp);
711		return (0);
712	}
713
714	*tgtp = tgt;
715	return (1);
716}
717
718static tdesc_t *
719conjure_template(tdesc_t *old, int newselfid)
720{
721	tdesc_t *new = xcalloc(sizeof (tdesc_t));
722
723	new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
724	new->t_type = old->t_type;
725	new->t_size = old->t_size;
726	new->t_id = newselfid;
727	new->t_flags = old->t_flags;
728
729	return (new);
730}
731
732/*ARGSUSED2*/
733static tdesc_t *
734conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
735{
736	tdesc_t *new = conjure_template(old, newselfid);
737
738	new->t_intr = xmalloc(sizeof (intr_t));
739	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
740
741	return (new);
742}
743
744static tdesc_t *
745conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
746{
747	tdesc_t *new = conjure_template(old, newselfid);
748
749	(void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
750
751	return (new);
752}
753
754static tdesc_t *
755conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
756{
757	tdesc_t *new = conjure_template(old, newselfid);
758	fndef_t *nfn = xmalloc(sizeof (fndef_t));
759	fndef_t *ofn = old->t_fndef;
760	int i;
761
762	(void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
763
764	nfn->fn_nargs = ofn->fn_nargs;
765	nfn->fn_vargs = ofn->fn_vargs;
766
767	if (nfn->fn_nargs > 0)
768		nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
769
770	for (i = 0; i < (int) ofn->fn_nargs; i++) {
771		(void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
772		    new, mcd);
773	}
774
775	new->t_fndef = nfn;
776
777	return (new);
778}
779
780static tdesc_t *
781conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
782{
783	tdesc_t *new = conjure_template(old, newselfid);
784	ardef_t *nar = xmalloc(sizeof (ardef_t));
785	ardef_t *oar = old->t_ardef;
786
787	(void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
788	    mcd);
789	(void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
790	    mcd);
791
792	nar->ad_nelems = oar->ad_nelems;
793
794	new->t_ardef = nar;
795
796	return (new);
797}
798
799static tdesc_t *
800conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
801{
802	tdesc_t *new = conjure_template(old, newselfid);
803	mlist_t *omem, **nmemp;
804
805	for (omem = old->t_members, nmemp = &new->t_members;
806	    omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
807		*nmemp = xmalloc(sizeof (mlist_t));
808		(*nmemp)->ml_offset = omem->ml_offset;
809		(*nmemp)->ml_size = omem->ml_size;
810		(*nmemp)->ml_name = xstrdup(omem->ml_name ? omem->ml_name : "empty omem->ml_name");
811		(void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
812		    old->t_id, new, mcd);
813	}
814	*nmemp = NULL;
815
816	return (new);
817}
818
819/*ARGSUSED2*/
820static tdesc_t *
821conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
822{
823	tdesc_t *new = conjure_template(old, newselfid);
824	elist_t *oel, **nelp;
825
826	for (oel = old->t_emem, nelp = &new->t_emem;
827	    oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
828		*nelp = xmalloc(sizeof (elist_t));
829		(*nelp)->el_name = xstrdup(oel->el_name);
830		(*nelp)->el_number = oel->el_number;
831	}
832	*nelp = NULL;
833
834	return (new);
835}
836
837/*ARGSUSED2*/
838static tdesc_t *
839conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
840{
841	tdesc_t *new = conjure_template(old, newselfid);
842
843	list_add(&mcd->md_tgt->td_fwdlist, new);
844
845	return (new);
846}
847
848/*ARGSUSED*/
849static tdesc_t *
850conjure_assert(tdesc_t *old __unused, int newselfid __unused, merge_cb_data_t *mcd __unused)
851{
852	assert(1 == 0);
853	return (NULL);
854}
855
856static iidesc_t *
857conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
858{
859	iidesc_t *new = iidesc_dup(old);
860	int i;
861
862	(void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
863	for (i = 0; i < new->ii_nargs; i++) {
864		(void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
865		    mcd);
866	}
867
868	return (new);
869}
870
871static int
872fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
873{
874	alist_t *map = private;
875	void *defn;
876
877	if (!alist_find(map, (void *)fwd, (void **)&defn))
878		return (0);
879
880	debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
881
882	*fwdp = defn;
883
884	return (1);
885}
886
887static tdtrav_cb_f fwd_redir_cbs[] = {
888	NULL,
889	NULL,			/* intrinsic */
890	NULL,			/* pointer */
891	NULL,			/* array */
892	NULL,			/* function */
893	NULL,			/* struct */
894	NULL,			/* union */
895	NULL,			/* enum */
896	fwd_redir,		/* forward */
897	NULL,			/* typedef */
898	tdtrav_assert,		/* typedef_unres */
899	NULL,			/* volatile */
900	NULL,			/* const */
901	NULL			/* restrict */
902};
903
904typedef struct redir_mstr_data {
905	tdata_t *rmd_tgt;
906	alist_t *rmd_map;
907} redir_mstr_data_t;
908
909static int
910redir_mstr_fwd_cb(void *name, void *value, void *arg)
911{
912	tdesc_t *fwd = name;
913	int defnid = (uintptr_t)value;
914	redir_mstr_data_t *rmd = arg;
915	tdesc_t template;
916	tdesc_t *defn;
917
918	template.t_id = defnid;
919
920	if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
921	    (void *)&defn)) {
922		aborterr("Couldn't unforward %d (%s)\n", defnid,
923		    tdesc_name(defn));
924	}
925
926	debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
927
928	alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
929
930	return (1);
931}
932
933static void
934redir_mstr_fwds(merge_cb_data_t *mcd)
935{
936	redir_mstr_data_t rmd;
937	alist_t *map = alist_new(NULL, NULL);
938
939	rmd.rmd_tgt = mcd->md_tgt;
940	rmd.rmd_map = map;
941
942	if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
943		(void) iitraverse_hash(mcd->md_tgt->td_iihash,
944		    &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
945	}
946
947	alist_free(map);
948}
949
950static int
951add_iitba_cb(void *data, void *private)
952{
953	merge_cb_data_t *mcd = private;
954	iidesc_t *tba = data;
955	iidesc_t *new;
956	iifind_data_t iif;
957	int newidx;
958
959	newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
960	assert(newidx != -1);
961
962	(void) list_remove(mcd->md_iitba, data, NULL, NULL);
963
964	iif.iif_template = tba;
965	iif.iif_ta = mcd->md_ta;
966	iif.iif_newidx = newidx;
967	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
968
969	if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
970	    &iif) == 1) {
971		debug(3, "iidesc_t %s already exists\n",
972		    (tba->ii_name ? tba->ii_name : "(anon)"));
973		return (1);
974	}
975
976	new = conjure_iidesc(tba, mcd);
977	hash_add(mcd->md_tgt->td_iihash, new);
978
979	return (1);
980}
981
982static int
983add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
984{
985	tdesc_t *newtdp;
986	tdesc_t template;
987
988	template.t_id = newid;
989	assert(hash_find(mcd->md_parent->td_idhash,
990	    (void *)&template, NULL) == 0);
991
992	debug(3, "trying to conjure %d %s (%d, <%x>) as %d, <%x>\n",
993	    oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id,
994	    oldtdp->t_id, newid, newid);
995
996	if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
997	    mcd)) == NULL)
998		/* couldn't map everything */
999		return (0);
1000
1001	debug(3, "succeeded\n");
1002
1003	hash_add(mcd->md_tgt->td_idhash, newtdp);
1004	hash_add(mcd->md_tgt->td_layouthash, newtdp);
1005
1006	return (1);
1007}
1008
1009static int
1010add_tdtba_cb(void *data, void *arg)
1011{
1012	tdesc_t *tdp = data;
1013	merge_cb_data_t *mcd = arg;
1014	int newid;
1015	int rc;
1016
1017	newid = get_mapping(mcd->md_ta, tdp->t_id);
1018	assert(newid != -1);
1019
1020	if ((rc = add_tdesc(tdp, newid, mcd)))
1021		hash_remove(mcd->md_tdtba, (void *)tdp);
1022
1023	return (rc);
1024}
1025
1026static int
1027add_tdtbr_cb(void *data, void *arg)
1028{
1029	tdesc_t **tdpp = data;
1030	merge_cb_data_t *mcd = arg;
1031
1032	debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
1033
1034	if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
1035		return (0);
1036
1037	(void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
1038	return (1);
1039}
1040
1041static void
1042merge_types(hash_t *src, merge_cb_data_t *mcd)
1043{
1044	list_t *iitba = NULL;
1045	list_t *tdtbr = NULL;
1046	int iirc, tdrc;
1047
1048	mcd->md_iitba = &iitba;
1049	mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
1050	    tdesc_layoutcmp);
1051	mcd->md_tdtbr = &tdtbr;
1052
1053	(void) hash_iter(src, merge_type_cb, mcd);
1054
1055	tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, mcd);
1056	debug(3, "add_tdtba_cb added %d items\n", tdrc);
1057
1058	iirc = list_iter(*mcd->md_iitba, add_iitba_cb, mcd);
1059	debug(3, "add_iitba_cb added %d items\n", iirc);
1060
1061	assert(list_count(*mcd->md_iitba) == 0 &&
1062	    hash_count(mcd->md_tdtba) == 0);
1063
1064	tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, mcd);
1065	debug(3, "add_tdtbr_cb added %d items\n", tdrc);
1066
1067	if (list_count(*mcd->md_tdtbr) != 0)
1068		aborterr("Couldn't remap all nodes\n");
1069
1070	/*
1071	 * We now have an alist of master forwards and the ids of the new master
1072	 * definitions for those forwards in mcd->md_fdida.  By this point,
1073	 * we're guaranteed that all of the master definitions referenced in
1074	 * fdida have been added to the master tree.  We now traverse through
1075	 * the master tree, redirecting all edges inbound to forwards that have
1076	 * definitions to those definitions.
1077	 */
1078	if (mcd->md_parent == mcd->md_tgt) {
1079		redir_mstr_fwds(mcd);
1080	}
1081}
1082
1083void
1084merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
1085{
1086	merge_cb_data_t mcd;
1087
1088	cur->td_ref++;
1089	mstr->td_ref++;
1090	if (tgt)
1091		tgt->td_ref++;
1092
1093	assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
1094	    (tgt == NULL || tgt->td_ref == 1));
1095
1096	mcd.md_parent = mstr;
1097	mcd.md_tgt = (tgt ? tgt : mstr);
1098	mcd.md_ta = alist_new(NULL, NULL);
1099	mcd.md_fdida = alist_new(NULL, NULL);
1100	mcd.md_flags = 0;
1101
1102	if (selfuniquify)
1103		mcd.md_flags |= MCD_F_SELFUNIQUIFY;
1104	if (tgt)
1105		mcd.md_flags |= MCD_F_REFMERGE;
1106
1107	mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
1108	mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
1109
1110	merge_types(cur->td_iihash, &mcd);
1111
1112	if (debug_level >= 3) {
1113		debug(3, "Type association stats\n");
1114		alist_stats(mcd.md_ta, 0);
1115		debug(3, "Layout hash stats\n");
1116		hash_stats(mcd.md_tgt->td_layouthash, 1);
1117	}
1118
1119	alist_free(mcd.md_fdida);
1120	alist_free(mcd.md_ta);
1121
1122	cur->td_ref--;
1123	mstr->td_ref--;
1124	if (tgt)
1125		tgt->td_ref--;
1126}
1127
1128tdesc_ops_t tdesc_ops[] = {
1129	{ "ERROR! BAD tdesc TYPE", NULL, NULL },
1130	{ "intrinsic",		equiv_intrinsic,	conjure_intrinsic },
1131	{ "pointer", 		equiv_plain,		conjure_plain },
1132	{ "array", 		equiv_array,		conjure_array },
1133	{ "function", 		equiv_function,		conjure_function },
1134	{ "struct",		equiv_su,		conjure_su },
1135	{ "union",		equiv_su,		conjure_su },
1136	{ "enum",		equiv_enum,		conjure_enum },
1137	{ "forward",		NULL,			conjure_forward },
1138	{ "typedef",		equiv_plain,		conjure_plain },
1139	{ "typedef_unres",	equiv_assert,		conjure_assert },
1140	{ "volatile",		equiv_plain,		conjure_plain },
1141	{ "const", 		equiv_plain,		conjure_plain },
1142	{ "restrict",		equiv_plain,		conjure_plain }
1143};
1144