dwarf.c revision 297077
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * DWARF to tdata conversion
28 *
29 * For the most part, conversion is straightforward, proceeding in two passes.
30 * On the first pass, we iterate through every die, creating new type nodes as
31 * necessary.  Referenced tdesc_t's are created in an uninitialized state, thus
32 * allowing type reference pointers to be filled in.  If the tdesc_t
33 * corresponding to a given die can be completely filled out (sizes and offsets
34 * calculated, and so forth) without using any referenced types, the tdesc_t is
35 * marked as resolved.  Consider an array type.  If the type corresponding to
36 * the array contents has not yet been processed, we will create a blank tdesc
37 * for the contents type (only the type ID will be filled in, relying upon the
38 * later portion of the first pass to encounter and complete the referenced
39 * type).  We will then attempt to determine the size of the array.  If the
40 * array has a byte size attribute, we will have completely characterized the
41 * array type, and will be able to mark it as resolved.  The lack of a byte
42 * size attribute, on the other hand, will prevent us from fully resolving the
43 * type, as the size will only be calculable with reference to the contents
44 * type, which has not, as yet, been encountered.  The array type will thus be
45 * left without the resolved flag, and the first pass will continue.
46 *
47 * When we begin the second pass, we will have created tdesc_t nodes for every
48 * type in the section.  We will traverse the tree, from the iidescs down,
49 * processing each unresolved node.  As the referenced nodes will have been
50 * populated, the array type used in our example above will be able to use the
51 * size of the referenced types (if available) to determine its own type.  The
52 * traversal will be repeated until all types have been resolved or we have
53 * failed to make progress.  When all tdescs have been resolved, the conversion
54 * is complete.
55 *
56 * There are, as always, a few special cases that are handled during the first
57 * and second passes:
58 *
59 *  1. Empty enums - GCC will occasionally emit an enum without any members.
60 *     Later on in the file, it will emit the same enum type, though this time
61 *     with the full complement of members.  All references to the memberless
62 *     enum need to be redirected to the full definition.  During the first
63 *     pass, each enum is entered in dm_enumhash, along with a pointer to its
64 *     corresponding tdesc_t.  If, during the second pass, we encounter a
65 *     memberless enum, we use the hash to locate the full definition.  All
66 *     tdescs referencing the empty enum are then redirected.
67 *
68 *  2. Forward declarations - If the compiler sees a forward declaration for
69 *     a structure, followed by the definition of that structure, it will emit
70 *     DWARF data for both the forward declaration and the definition.  We need
71 *     to resolve the forward declarations when possible, by redirecting
72 *     forward-referencing tdescs to the actual struct/union definitions.  This
73 *     redirection is done completely within the first pass.  We begin by
74 *     recording all forward declarations in dw_fwdhash.  When we define a
75 *     structure, we check to see if there have been any corresponding forward
76 *     declarations.  If so, we redirect the tdescs which referenced the forward
77 *     declarations to the structure or union definition.
78 *
79 * XXX see if a post traverser will allow the elimination of repeated pass 2
80 * traversals.
81 */
82
83#include <stdio.h>
84#include <stdlib.h>
85#include <string.h>
86#include <strings.h>
87#include <errno.h>
88#include <libelf.h>
89#include <libdwarf.h>
90#include <libgen.h>
91#include <dwarf.h>
92
93#include "ctf_headers.h"
94#include "ctftools.h"
95#include "memory.h"
96#include "list.h"
97#include "traverse.h"
98
99/* The version of DWARF which we support. */
100#define	DWARF_VERSION	2
101
102/*
103 * We need to define a couple of our own intrinsics, to smooth out some of the
104 * differences between the GCC and DevPro DWARF emitters.  See the referenced
105 * routines and the special cases in the file comment for more details.
106 *
107 * Type IDs are 32 bits wide.  We're going to use the top of that field to
108 * indicate types that we've created ourselves.
109 */
110#define	TID_FILEMAX		0x3fffffff	/* highest tid from file */
111#define	TID_VOID		0x40000001	/* see die_void() */
112#define	TID_LONG		0x40000002	/* see die_array() */
113
114#define	TID_MFGTID_BASE		0x40000003	/* first mfg'd tid */
115
116/*
117 * To reduce the staggering amount of error-handling code that would otherwise
118 * be required, the attribute-retrieval routines handle most of their own
119 * errors.  If the following flag is supplied as the value of the `req'
120 * argument, they will also handle the absence of a requested attribute by
121 * terminating the program.
122 */
123#define	DW_ATTR_REQ	1
124
125#define	TDESC_HASH_BUCKETS	511
126
127typedef struct dwarf {
128	Dwarf_Debug dw_dw;		/* for libdwarf */
129	Dwarf_Error dw_err;		/* for libdwarf */
130	Dwarf_Off dw_maxoff;		/* highest legal offset in this cu */
131	tdata_t *dw_td;			/* root of the tdesc/iidesc tree */
132	hash_t *dw_tidhash;		/* hash of tdescs by t_id */
133	hash_t *dw_fwdhash;		/* hash of fwd decls by name */
134	hash_t *dw_enumhash;		/* hash of memberless enums by name */
135	tdesc_t *dw_void;		/* manufactured void type */
136	tdesc_t *dw_long;		/* manufactured long type for arrays */
137	size_t dw_ptrsz;		/* size of a pointer in this file */
138	tid_t dw_mfgtid_last;		/* last mfg'd type ID used */
139	uint_t dw_nunres;		/* count of unresolved types */
140	char *dw_cuname;		/* name of compilation unit */
141} dwarf_t;
142
143static void die_create_one(dwarf_t *, Dwarf_Die);
144static void die_create(dwarf_t *, Dwarf_Die);
145
146static tid_t
147mfgtid_next(dwarf_t *dw)
148{
149	return (++dw->dw_mfgtid_last);
150}
151
152static void
153tdesc_add(dwarf_t *dw, tdesc_t *tdp)
154{
155	hash_add(dw->dw_tidhash, tdp);
156}
157
158static tdesc_t *
159tdesc_lookup(dwarf_t *dw, int tid)
160{
161	tdesc_t tmpl;
162	void *tdp;
163
164	tmpl.t_id = tid;
165
166	if (hash_find(dw->dw_tidhash, &tmpl, &tdp))
167		return (tdp);
168	else
169		return (NULL);
170}
171
172/*
173 * Resolve a tdesc down to a node which should have a size.  Returns the size,
174 * zero if the size hasn't yet been determined.
175 */
176static size_t
177tdesc_size(tdesc_t *tdp)
178{
179	for (;;) {
180		switch (tdp->t_type) {
181		case INTRINSIC:
182		case POINTER:
183		case ARRAY:
184		case FUNCTION:
185		case STRUCT:
186		case UNION:
187		case ENUM:
188			return (tdp->t_size);
189
190		case FORWARD:
191			return (0);
192
193		case TYPEDEF:
194		case VOLATILE:
195		case CONST:
196		case RESTRICT:
197			tdp = tdp->t_tdesc;
198			continue;
199
200		case 0: /* not yet defined */
201			return (0);
202
203		default:
204			terminate("tdp %u: tdesc_size on unknown type %d\n",
205			    tdp->t_id, tdp->t_type);
206		}
207	}
208}
209
210static size_t
211tdesc_bitsize(tdesc_t *tdp)
212{
213	for (;;) {
214		switch (tdp->t_type) {
215		case INTRINSIC:
216			return (tdp->t_intr->intr_nbits);
217
218		case ARRAY:
219		case FUNCTION:
220		case STRUCT:
221		case UNION:
222		case ENUM:
223		case POINTER:
224			return (tdp->t_size * NBBY);
225
226		case FORWARD:
227			return (0);
228
229		case TYPEDEF:
230		case VOLATILE:
231		case RESTRICT:
232		case CONST:
233			tdp = tdp->t_tdesc;
234			continue;
235
236		case 0: /* not yet defined */
237			return (0);
238
239		default:
240			terminate("tdp %u: tdesc_bitsize on unknown type %d\n",
241			    tdp->t_id, tdp->t_type);
242		}
243	}
244}
245
246static tdesc_t *
247tdesc_basetype(tdesc_t *tdp)
248{
249	for (;;) {
250		switch (tdp->t_type) {
251		case TYPEDEF:
252		case VOLATILE:
253		case RESTRICT:
254		case CONST:
255			tdp = tdp->t_tdesc;
256			break;
257		case 0: /* not yet defined */
258			return (NULL);
259		default:
260			return (tdp);
261		}
262	}
263}
264
265static Dwarf_Off
266die_off(dwarf_t *dw, Dwarf_Die die)
267{
268	Dwarf_Off off;
269
270	if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK)
271		return (off);
272
273	terminate("failed to get offset for die: %s\n",
274	    dwarf_errmsg(&dw->dw_err));
275	/*NOTREACHED*/
276	return (0);
277}
278
279static Dwarf_Die
280die_sibling(dwarf_t *dw, Dwarf_Die die)
281{
282	Dwarf_Die sib;
283	int rc;
284
285	if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) ==
286	    DW_DLV_OK)
287		return (sib);
288	else if (rc == DW_DLV_NO_ENTRY)
289		return (NULL);
290
291	terminate("die %llu: failed to find type sibling: %s\n",
292	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
293	/*NOTREACHED*/
294	return (NULL);
295}
296
297static Dwarf_Die
298die_child(dwarf_t *dw, Dwarf_Die die)
299{
300	Dwarf_Die child;
301	int rc;
302
303	if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK)
304		return (child);
305	else if (rc == DW_DLV_NO_ENTRY)
306		return (NULL);
307
308	terminate("die %llu: failed to find type child: %s\n",
309	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
310	/*NOTREACHED*/
311	return (NULL);
312}
313
314static Dwarf_Half
315die_tag(dwarf_t *dw, Dwarf_Die die)
316{
317	Dwarf_Half tag;
318
319	if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK)
320		return (tag);
321
322	terminate("die %llu: failed to get tag for type: %s\n",
323	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
324	/*NOTREACHED*/
325	return (0);
326}
327
328static Dwarf_Attribute
329die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req)
330{
331	Dwarf_Attribute attr;
332	int rc;
333
334	if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) {
335		return (attr);
336	} else if (rc == DW_DLV_NO_ENTRY) {
337		if (req) {
338			terminate("die %llu: no attr 0x%x\n", die_off(dw, die),
339			    name);
340		} else {
341			return (NULL);
342		}
343	}
344
345	terminate("die %llu: failed to get attribute for type: %s\n",
346	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
347	/*NOTREACHED*/
348	return (NULL);
349}
350
351static int
352die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp,
353    int req)
354{
355	*valp = 0;
356	if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
357		if (req)
358			terminate("die %llu: failed to get signed: %s\n",
359			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
360		return (0);
361	}
362
363	return (1);
364}
365
366static int
367die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp,
368    int req)
369{
370	*valp = 0;
371	if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
372		if (req)
373			terminate("die %llu: failed to get unsigned: %s\n",
374			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
375		return (0);
376	}
377
378	return (1);
379}
380
381static int
382die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req)
383{
384	*valp = 0;
385
386	if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
387		if (req)
388			terminate("die %llu: failed to get flag: %s\n",
389			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
390		return (0);
391	}
392
393	return (1);
394}
395
396static int
397die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req)
398{
399	const char *str = NULL;
400
401	if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DWARF_E_NONE ||
402	    str == NULL) {
403		if (req)
404			terminate("die %llu: failed to get string: %s\n",
405			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
406		else
407			*strp = NULL;
408		return (0);
409	} else
410		*strp = xstrdup(str);
411
412	return (1);
413}
414
415static Dwarf_Off
416die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
417{
418	Dwarf_Off off;
419
420	if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DWARF_E_NONE) {
421		terminate("die %llu: failed to get ref: %s\n",
422		    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
423	}
424
425	return (off);
426}
427
428static char *
429die_name(dwarf_t *dw, Dwarf_Die die)
430{
431	char *str = NULL;
432
433	(void) die_string(dw, die, DW_AT_name, &str, 0);
434
435	return (str);
436}
437
438static int
439die_isdecl(dwarf_t *dw, Dwarf_Die die)
440{
441	Dwarf_Bool val;
442
443	return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val);
444}
445
446static int
447die_isglobal(dwarf_t *dw, Dwarf_Die die)
448{
449	Dwarf_Signed vis;
450	Dwarf_Bool ext;
451
452	/*
453	 * Some compilers (gcc) use DW_AT_external to indicate function
454	 * visibility.  Others (Sun) use DW_AT_visibility.
455	 */
456	if (die_signed(dw, die, DW_AT_visibility, &vis, 0))
457		return (vis == DW_VIS_exported);
458	else
459		return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext);
460}
461
462static tdesc_t *
463die_add(dwarf_t *dw, Dwarf_Off off)
464{
465	tdesc_t *tdp = xcalloc(sizeof (tdesc_t));
466
467	tdp->t_id = off;
468
469	tdesc_add(dw, tdp);
470
471	return (tdp);
472}
473
474static tdesc_t *
475die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
476{
477	Dwarf_Off ref = die_attr_ref(dw, die, name);
478	tdesc_t *tdp;
479
480	if ((tdp = tdesc_lookup(dw, ref)) != NULL)
481		return (tdp);
482
483	return (die_add(dw, ref));
484}
485
486static int
487die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name,
488    Dwarf_Unsigned *valp, int req __unused)
489{
490	Dwarf_Locdesc *loc = NULL;
491	Dwarf_Signed locnum = 0;
492	Dwarf_Attribute at;
493	Dwarf_Half form;
494
495	if (name != DW_AT_data_member_location)
496		terminate("die %llu: can only process attribute "
497		    "DW_AT_data_member_location\n", die_off(dw, die));
498
499	if ((at = die_attr(dw, die, name, 0)) == NULL)
500		return (0);
501
502	if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK)
503		return (0);
504
505	switch (form) {
506	case DW_FORM_block:
507	case DW_FORM_block1:
508	case DW_FORM_block2:
509	case DW_FORM_block4:
510		/*
511		 * GCC in base and Clang (3.3 or below) generates
512		 * DW_AT_data_member_location attribute with DW_FORM_block*
513		 * form. The attribute contains one DW_OP_plus_uconst
514		 * operator. The member offset stores in the operand.
515		 */
516		if (dwarf_locdesc(die, name, &loc, &locnum, &dw->dw_err) !=
517		    DW_DLV_OK)
518			return (0);
519		if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
520			terminate("die %llu: cannot parse member offset\n",
521			    die_off(dw, die));
522		}
523		*valp = loc->ld_s->lr_number;
524		break;
525
526	case DW_FORM_data1:
527	case DW_FORM_data2:
528	case DW_FORM_data4:
529	case DW_FORM_data8:
530	case DW_FORM_udata:
531		/*
532		 * Clang 3.4 generates DW_AT_data_member_location attribute
533		 * with DW_FORM_data* form (constant class). The attribute
534		 * stores a contant value which is the member offset.
535		 */
536		if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) !=
537		    DW_DLV_OK)
538			return (0);
539		break;
540
541	default:
542		terminate("die %llu: cannot parse member offset with form "
543		    "%u\n", die_off(dw, die), form);
544	}
545
546	if (loc != NULL)
547		if (dwarf_locdesc_free(loc, &dw->dw_err) != DW_DLV_OK)
548			terminate("die %llu: cannot free location descriptor: %s\n",
549			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
550
551	return (1);
552}
553
554static tdesc_t *
555tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz)
556{
557	tdesc_t *tdp;
558	intr_t *intr;
559
560	intr = xcalloc(sizeof (intr_t));
561	intr->intr_type = INTR_INT;
562	intr->intr_signed = 1;
563	intr->intr_nbits = sz * NBBY;
564
565	tdp = xcalloc(sizeof (tdesc_t));
566	tdp->t_name = xstrdup(name);
567	tdp->t_size = sz;
568	tdp->t_id = tid;
569	tdp->t_type = INTRINSIC;
570	tdp->t_intr = intr;
571	tdp->t_flags = TDESC_F_RESOLVED;
572
573	tdesc_add(dw, tdp);
574
575	return (tdp);
576}
577
578/*
579 * Manufacture a void type.  Used for gcc-emitted stabs, where the lack of a
580 * type reference implies a reference to a void type.  A void *, for example
581 * will be represented by a pointer die without a DW_AT_type.  CTF requires
582 * that pointer nodes point to something, so we'll create a void for use as
583 * the target.  Note that the DWARF data may already create a void type.  Ours
584 * would then be a duplicate, but it'll be removed in the self-uniquification
585 * merge performed at the completion of DWARF->tdesc conversion.
586 */
587static tdesc_t *
588tdesc_intr_void(dwarf_t *dw)
589{
590	if (dw->dw_void == NULL)
591		dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0);
592
593	return (dw->dw_void);
594}
595
596static tdesc_t *
597tdesc_intr_long(dwarf_t *dw)
598{
599	if (dw->dw_long == NULL) {
600		dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long",
601		    dw->dw_ptrsz);
602	}
603
604	return (dw->dw_long);
605}
606
607/*
608 * Used for creating bitfield types.  We create a copy of an existing intrinsic,
609 * adjusting the size of the copy to match what the caller requested.  The
610 * caller can then use the copy as the type for a bitfield structure member.
611 */
612static tdesc_t *
613tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz)
614{
615	tdesc_t *new = xcalloc(sizeof (tdesc_t));
616
617	if (!(old->t_flags & TDESC_F_RESOLVED)) {
618		terminate("tdp %u: attempt to make a bit field from an "
619		    "unresolved type\n", old->t_id);
620	}
621
622	new->t_name = xstrdup(old->t_name);
623	new->t_size = old->t_size;
624	new->t_id = mfgtid_next(dw);
625	new->t_type = INTRINSIC;
626	new->t_flags = TDESC_F_RESOLVED;
627
628	new->t_intr = xcalloc(sizeof (intr_t));
629	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
630	new->t_intr->intr_nbits = bitsz;
631
632	tdesc_add(dw, new);
633
634	return (new);
635}
636
637static void
638tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp,
639    tdesc_t *dimtdp)
640{
641	Dwarf_Unsigned uval;
642	Dwarf_Signed sval;
643	tdesc_t *ctdp = NULL;
644	Dwarf_Die dim2;
645	ardef_t *ar;
646
647	if ((dim2 = die_sibling(dw, dim)) == NULL) {
648		ctdp = arrtdp;
649	} else if (die_tag(dw, dim2) == DW_TAG_subrange_type) {
650		ctdp = xcalloc(sizeof (tdesc_t));
651		ctdp->t_id = mfgtid_next(dw);
652		debug(3, "die %llu: creating new type %u for sub-dimension\n",
653		    die_off(dw, dim2), ctdp->t_id);
654		tdesc_array_create(dw, dim2, arrtdp, ctdp);
655	} else {
656		terminate("die %llu: unexpected non-subrange node in array\n",
657		    die_off(dw, dim2));
658	}
659
660	dimtdp->t_type = ARRAY;
661	dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t));
662
663	/*
664	 * Array bounds can be signed or unsigned, but there are several kinds
665	 * of signless forms (data1, data2, etc) that take their sign from the
666	 * routine that is trying to interpret them.  That is, data1 can be
667	 * either signed or unsigned, depending on whether you use the signed or
668	 * unsigned accessor function.  GCC will use the signless forms to store
669	 * unsigned values which have their high bit set, so we need to try to
670	 * read them first as unsigned to get positive values.  We could also
671	 * try signed first, falling back to unsigned if we got a negative
672	 * value.
673	 */
674	if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0))
675		ar->ad_nelems = uval + 1;
676	else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0))
677		ar->ad_nelems = sval + 1;
678	else if (die_unsigned(dw, dim, DW_AT_count, &uval, 0))
679		ar->ad_nelems = uval;
680	else if (die_signed(dw, dim, DW_AT_count, &sval, 0))
681		ar->ad_nelems = sval;
682	else
683		ar->ad_nelems = 0;
684
685	/*
686	 * Different compilers use different index types.  Force the type to be
687	 * a common, known value (long).
688	 */
689	ar->ad_idxtype = tdesc_intr_long(dw);
690	ar->ad_contents = ctdp;
691
692	if (ar->ad_contents->t_size != 0) {
693		dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems;
694		dimtdp->t_flags |= TDESC_F_RESOLVED;
695	}
696}
697
698/*
699 * Create a tdesc from an array node.  Some arrays will come with byte size
700 * attributes, and thus can be resolved immediately.  Others don't, and will
701 * need to wait until the second pass for resolution.
702 */
703static void
704die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp)
705{
706	tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type);
707	Dwarf_Unsigned uval;
708	Dwarf_Die dim;
709
710	debug(3, "die %llu <%llx>: creating array\n", off, off);
711
712	if ((dim = die_child(dw, arr)) == NULL ||
713	    die_tag(dw, dim) != DW_TAG_subrange_type)
714		terminate("die %llu: failed to retrieve array bounds\n", off);
715
716	tdesc_array_create(dw, dim, arrtdp, tdp);
717
718	if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) {
719		tdesc_t *dimtdp;
720		int flags;
721
722		/* Check for bogus gcc DW_AT_byte_size attribute */
723		if (uval == (unsigned)-1) {
724			printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
725			    __func__);
726			uval = 0;
727		}
728
729		tdp->t_size = uval;
730
731		/*
732		 * Ensure that sub-dimensions have sizes too before marking
733		 * as resolved.
734		 */
735		flags = TDESC_F_RESOLVED;
736		for (dimtdp = tdp->t_ardef->ad_contents;
737		    dimtdp->t_type == ARRAY;
738		    dimtdp = dimtdp->t_ardef->ad_contents) {
739			if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) {
740				flags = 0;
741				break;
742			}
743		}
744
745		tdp->t_flags |= flags;
746	}
747
748	debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off,
749	    tdp->t_ardef->ad_nelems, tdp->t_size);
750}
751
752/*ARGSUSED1*/
753static int
754die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
755{
756	dwarf_t *dw = private;
757	size_t sz;
758
759	if (tdp->t_flags & TDESC_F_RESOLVED)
760		return (1);
761
762	debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id,
763	    tdp->t_ardef->ad_contents->t_id);
764
765	if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0) {
766		debug(3, "unable to resolve array %s (%d) contents %d\n",
767		    tdesc_name(tdp), tdp->t_id,
768		    tdp->t_ardef->ad_contents->t_id);
769
770		dw->dw_nunres++;
771		return (1);
772	}
773
774	tdp->t_size = sz * tdp->t_ardef->ad_nelems;
775	tdp->t_flags |= TDESC_F_RESOLVED;
776
777	debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size);
778
779	return (1);
780}
781
782/*ARGSUSED1*/
783static int
784die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
785{
786	tdesc_t *cont = tdp->t_ardef->ad_contents;
787
788	if (tdp->t_flags & TDESC_F_RESOLVED)
789		return (1);
790
791	fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n",
792	    tdp->t_id, tdesc_name(cont), cont->t_id);
793
794	return (1);
795}
796
797/*
798 * Most enums (those with members) will be resolved during this first pass.
799 * Others - those without members (see the file comment) - won't be, and will
800 * need to wait until the second pass when they can be matched with their full
801 * definitions.
802 */
803static void
804die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
805{
806	Dwarf_Die mem;
807	Dwarf_Unsigned uval;
808	Dwarf_Signed sval;
809
810	debug(3, "die %llu: creating enum\n", off);
811
812	tdp->t_type = ENUM;
813
814	(void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ);
815	/* Check for bogus gcc DW_AT_byte_size attribute */
816	if (uval == (unsigned)-1) {
817		printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
818		    __func__);
819		uval = 0;
820	}
821	tdp->t_size = uval;
822
823	if ((mem = die_child(dw, die)) != NULL) {
824		elist_t **elastp = &tdp->t_emem;
825
826		do {
827			elist_t *el;
828
829			if (die_tag(dw, mem) != DW_TAG_enumerator) {
830				/* Nested type declaration */
831				die_create_one(dw, mem);
832				continue;
833			}
834
835			el = xcalloc(sizeof (elist_t));
836			el->el_name = die_name(dw, mem);
837
838			if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) {
839				el->el_number = sval;
840			} else if (die_unsigned(dw, mem, DW_AT_const_value,
841			    &uval, 0)) {
842				el->el_number = uval;
843			} else {
844				terminate("die %llu: enum %llu: member without "
845				    "value\n", off, die_off(dw, mem));
846			}
847
848			debug(3, "die %llu: enum %llu: created %s = %d\n", off,
849			    die_off(dw, mem), el->el_name, el->el_number);
850
851			*elastp = el;
852			elastp = &el->el_next;
853
854		} while ((mem = die_sibling(dw, mem)) != NULL);
855
856		hash_add(dw->dw_enumhash, tdp);
857
858		tdp->t_flags |= TDESC_F_RESOLVED;
859
860		if (tdp->t_name != NULL) {
861			iidesc_t *ii = xcalloc(sizeof (iidesc_t));
862			ii->ii_type = II_SOU;
863			ii->ii_name = xstrdup(tdp->t_name);
864			ii->ii_dtype = tdp;
865
866			iidesc_add(dw->dw_td->td_iihash, ii);
867		}
868	}
869}
870
871static int
872die_enum_match(void *arg1, void *arg2)
873{
874	tdesc_t *tdp = arg1, **fullp = arg2;
875
876	if (tdp->t_emem != NULL) {
877		*fullp = tdp;
878		return (-1); /* stop the iteration */
879	}
880
881	return (0);
882}
883
884/*ARGSUSED1*/
885static int
886die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
887{
888	dwarf_t *dw = private;
889	tdesc_t *full = NULL;
890
891	if (tdp->t_flags & TDESC_F_RESOLVED)
892		return (1);
893
894	(void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full);
895
896	/*
897	 * The answer to this one won't change from iteration to iteration,
898	 * so don't even try.
899	 */
900	if (full == NULL) {
901		terminate("tdp %u: enum %s has no members\n", tdp->t_id,
902		    tdesc_name(tdp));
903	}
904
905	debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id,
906	    tdesc_name(tdp), full->t_id);
907
908	tdp->t_flags |= TDESC_F_RESOLVED;
909
910	return (1);
911}
912
913static int
914die_fwd_map(void *arg1, void *arg2)
915{
916	tdesc_t *fwd = arg1, *sou = arg2;
917
918	debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id,
919	    tdesc_name(fwd), sou->t_id);
920	fwd->t_tdesc = sou;
921
922	return (0);
923}
924
925/*
926 * Structures and unions will never be resolved during the first pass, as we
927 * won't be able to fully determine the member sizes.  The second pass, which
928 * have access to sizing information, will be able to complete the resolution.
929 */
930static void
931die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp,
932    int type, const char *typename)
933{
934	Dwarf_Unsigned sz, bitsz, bitoff, maxsz=0;
935#if BYTE_ORDER == _LITTLE_ENDIAN
936	Dwarf_Unsigned bysz;
937#endif
938	Dwarf_Die mem;
939	mlist_t *ml, **mlastp;
940	iidesc_t *ii;
941
942	tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type);
943
944	debug(3, "die %llu: creating %s %s\n", off,
945	    (tdp->t_type == FORWARD ? "forward decl" : typename),
946	    tdesc_name(tdp));
947
948	if (tdp->t_type == FORWARD) {
949		hash_add(dw->dw_fwdhash, tdp);
950		return;
951	}
952
953	(void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp);
954
955	(void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ);
956	tdp->t_size = sz;
957
958	/*
959	 * GCC allows empty SOUs as an extension.
960	 */
961	if ((mem = die_child(dw, str)) == NULL) {
962		goto out;
963	}
964
965	mlastp = &tdp->t_members;
966
967	do {
968		Dwarf_Off memoff = die_off(dw, mem);
969		Dwarf_Half tag = die_tag(dw, mem);
970		Dwarf_Unsigned mloff;
971
972		if (tag != DW_TAG_member) {
973			/* Nested type declaration */
974			die_create_one(dw, mem);
975			continue;
976		}
977
978		debug(3, "die %llu: mem %llu: creating member\n", off, memoff);
979
980		ml = xcalloc(sizeof (mlist_t));
981
982		/*
983		 * This could be a GCC anon struct/union member, so we'll allow
984		 * an empty name, even though nothing can really handle them
985		 * properly.  Note that some versions of GCC miss out debug
986		 * info for anon structs, though recent versions are fixed (gcc
987		 * bug 11816).
988		 */
989		if ((ml->ml_name = die_name(dw, mem)) == NULL)
990			ml->ml_name = NULL;
991
992		ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type);
993		debug(3, "die_sou_create(): ml_type = %p t_id = %d\n",
994		    ml->ml_type, ml->ml_type->t_id);
995
996		if (die_mem_offset(dw, mem, DW_AT_data_member_location,
997		    &mloff, 0)) {
998			debug(3, "die %llu: got mloff %llx\n", off,
999			    (u_longlong_t)mloff);
1000			ml->ml_offset = mloff * 8;
1001		}
1002
1003		if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0))
1004			ml->ml_size = bitsz;
1005		else
1006			ml->ml_size = tdesc_bitsize(ml->ml_type);
1007
1008		if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) {
1009#if BYTE_ORDER == _BIG_ENDIAN
1010			ml->ml_offset += bitoff;
1011#else
1012			/*
1013			 * Note that Clang 3.4 will sometimes generate
1014			 * member DIE before generating the DIE for the
1015			 * member's type. The code can not handle this
1016			 * properly so that tdesc_bitsize(ml->ml_type) will
1017			 * return 0 because ml->ml_type is unknown. As a
1018			 * result, a wrong member offset will be calculated.
1019			 * To workaround this, we can instead try to
1020			 * retrieve the value of DW_AT_byte_size attribute
1021			 * which stores the byte size of the space occupied
1022			 * by the type. If this attribute exists, its value
1023			 * should equal to tdesc_bitsize(ml->ml_type)/NBBY.
1024			 */
1025			if (die_unsigned(dw, mem, DW_AT_byte_size, &bysz, 0) &&
1026			    bysz > 0)
1027				ml->ml_offset += bysz * NBBY - bitoff -
1028					ml->ml_size;
1029			else
1030				ml->ml_offset += tdesc_bitsize(ml->ml_type) -
1031					bitoff - ml->ml_size;
1032#endif
1033		}
1034
1035		debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n",
1036		    off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size);
1037
1038		*mlastp = ml;
1039		mlastp = &ml->ml_next;
1040
1041		/* Find the size of the largest member to work around a gcc
1042		 * bug.  See GCC Bugzilla 35998.
1043		 */
1044		if (maxsz < ml->ml_size)
1045			maxsz = ml->ml_size;
1046
1047	} while ((mem = die_sibling(dw, mem)) != NULL);
1048
1049	/* See if we got a bogus DW_AT_byte_size.  GCC will sometimes
1050	 * emit this.
1051	 */
1052	if (sz == (unsigned)-1) {
1053		 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
1054		     __func__);
1055		 tdp->t_size = maxsz / 8;  /* maxsz is in bits, t_size is bytes */
1056	}
1057
1058	/*
1059	 * GCC will attempt to eliminate unused types, thus decreasing the
1060	 * size of the emitted dwarf.  That is, if you declare a foo_t in your
1061	 * header, include said header in your source file, and neglect to
1062	 * actually use (directly or indirectly) the foo_t in the source file,
1063	 * the foo_t won't make it into the emitted DWARF.  So, at least, goes
1064	 * the theory.
1065	 *
1066	 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t,
1067	 * and then neglect to emit the members.  Strangely, the loner struct
1068	 * tag will always be followed by a proper nested declaration of
1069	 * something else.  This is clearly a bug, but we're not going to have
1070	 * time to get it fixed before this goo goes back, so we'll have to work
1071	 * around it.  If we see a no-membered struct with a nested declaration
1072	 * (i.e. die_child of the struct tag won't be null), we'll ignore it.
1073	 * Being paranoid, we won't simply remove it from the hash.  Instead,
1074	 * we'll decline to create an iidesc for it, thus ensuring that this
1075	 * type won't make it into the output file.  To be safe, we'll also
1076	 * change the name.
1077	 */
1078	if (tdp->t_members == NULL) {
1079		const char *old = tdesc_name(tdp);
1080		size_t newsz = 7 + strlen(old) + 1;
1081		char *new = xmalloc(newsz);
1082		(void) snprintf(new, newsz, "orphan %s", old);
1083
1084		debug(3, "die %llu: worked around %s %s\n", off, typename, old);
1085
1086		if (tdp->t_name != NULL)
1087			free(tdp->t_name);
1088		tdp->t_name = new;
1089		return;
1090	}
1091
1092out:
1093	if (tdp->t_name != NULL) {
1094		ii = xcalloc(sizeof (iidesc_t));
1095		ii->ii_type = II_SOU;
1096		ii->ii_name = xstrdup(tdp->t_name);
1097		ii->ii_dtype = tdp;
1098
1099		iidesc_add(dw->dw_td->td_iihash, ii);
1100	}
1101}
1102
1103static void
1104die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1105{
1106	die_sou_create(dw, die, off, tdp, STRUCT, "struct");
1107}
1108
1109static void
1110die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1111{
1112	die_sou_create(dw, die, off, tdp, UNION, "union");
1113}
1114
1115/*ARGSUSED1*/
1116static int
1117die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
1118{
1119	dwarf_t *dw = private;
1120	mlist_t *ml;
1121	tdesc_t *mt;
1122
1123	if (tdp->t_flags & TDESC_F_RESOLVED)
1124		return (1);
1125
1126	debug(3, "resolving sou %s\n", tdesc_name(tdp));
1127
1128	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1129		if (ml->ml_size == 0) {
1130			mt = tdesc_basetype(ml->ml_type);
1131
1132			if ((ml->ml_size = tdesc_bitsize(mt)) != 0)
1133				continue;
1134
1135			/*
1136			 * For empty members, or GCC/C99 flexible array
1137			 * members, a size of 0 is correct.
1138			 */
1139			if (mt->t_members == NULL)
1140				continue;
1141			if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0)
1142				continue;
1143
1144			dw->dw_nunres++;
1145			return (1);
1146		}
1147
1148		if ((mt = tdesc_basetype(ml->ml_type)) == NULL) {
1149			dw->dw_nunres++;
1150			return (1);
1151		}
1152
1153		if (ml->ml_size != 0 && mt->t_type == INTRINSIC &&
1154		    mt->t_intr->intr_nbits != (int)ml->ml_size) {
1155			/*
1156			 * This member is a bitfield, and needs to reference
1157			 * an intrinsic type with the same width.  If the
1158			 * currently-referenced type isn't of the same width,
1159			 * we'll copy it, adjusting the width of the copy to
1160			 * the size we'd like.
1161			 */
1162			debug(3, "tdp %u: creating bitfield for %d bits\n",
1163			    tdp->t_id, ml->ml_size);
1164
1165			ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size);
1166		}
1167	}
1168
1169	tdp->t_flags |= TDESC_F_RESOLVED;
1170
1171	return (1);
1172}
1173
1174/*ARGSUSED1*/
1175static int
1176die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
1177{
1178	const char *typename = (tdp->t_type == STRUCT ? "struct" : "union");
1179	mlist_t *ml;
1180
1181	if (tdp->t_flags & TDESC_F_RESOLVED)
1182		return (1);
1183
1184	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1185		if (ml->ml_size == 0) {
1186			fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" "
1187			    "of type %s (%d <%x>)\n", typename, tdp->t_id,
1188			    tdp->t_id,
1189			    ml->ml_name, tdesc_name(ml->ml_type),
1190			    ml->ml_type->t_id, ml->ml_type->t_id);
1191		}
1192	}
1193
1194	return (1);
1195}
1196
1197static void
1198die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1199{
1200	Dwarf_Attribute attr;
1201	Dwarf_Half tag;
1202	Dwarf_Die arg;
1203	fndef_t *fn;
1204	int i;
1205
1206	debug(3, "die %llu <%llx>: creating function pointer\n", off, off);
1207
1208	/*
1209	 * We'll begin by processing any type definition nodes that may be
1210	 * lurking underneath this one.
1211	 */
1212	for (arg = die_child(dw, die); arg != NULL;
1213	    arg = die_sibling(dw, arg)) {
1214		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1215		    tag != DW_TAG_unspecified_parameters) {
1216			/* Nested type declaration */
1217			die_create_one(dw, arg);
1218		}
1219	}
1220
1221	if (die_isdecl(dw, die)) {
1222		/*
1223		 * This is a prototype.  We don't add prototypes to the
1224		 * tree, so we're going to drop the tdesc.  Unfortunately,
1225		 * it has already been added to the tree.  Nobody will reference
1226		 * it, though, and it will be leaked.
1227		 */
1228		return;
1229	}
1230
1231	fn = xcalloc(sizeof (fndef_t));
1232
1233	tdp->t_type = FUNCTION;
1234
1235	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1236		fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type);
1237	} else {
1238		fn->fn_ret = tdesc_intr_void(dw);
1239	}
1240
1241	/*
1242	 * Count the arguments to the function, then read them in.
1243	 */
1244	for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL;
1245	    arg = die_sibling(dw, arg)) {
1246		if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter)
1247			fn->fn_nargs++;
1248		else if (tag == DW_TAG_unspecified_parameters &&
1249		    fn->fn_nargs > 0)
1250			fn->fn_vargs = 1;
1251	}
1252
1253	if (fn->fn_nargs != 0) {
1254		debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs,
1255		    (fn->fn_nargs > 1 ? "s" : ""));
1256
1257		fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs);
1258		for (i = 0, arg = die_child(dw, die);
1259		    arg != NULL && i < (int) fn->fn_nargs;
1260		    arg = die_sibling(dw, arg)) {
1261			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1262				continue;
1263
1264			fn->fn_args[i++] = die_lookup_pass1(dw, arg,
1265			    DW_AT_type);
1266		}
1267	}
1268
1269	tdp->t_fndef = fn;
1270	tdp->t_flags |= TDESC_F_RESOLVED;
1271}
1272
1273/*
1274 * GCC and DevPro use different names for the base types.  While the terms are
1275 * the same, they are arranged in a different order.  Some terms, such as int,
1276 * are implied in one, and explicitly named in the other.  Given a base type
1277 * as input, this routine will return a common name, along with an intr_t
1278 * that reflects said name.
1279 */
1280static intr_t *
1281die_base_name_parse(const char *name, char **newp)
1282{
1283	char buf[100];
1284	char const *base;
1285	char *c;
1286	int nlong = 0, nshort = 0, nchar = 0, nint = 0;
1287	int sign = 1;
1288	char fmt = '\0';
1289	intr_t *intr;
1290
1291	if (strlen(name) > sizeof (buf) - 1)
1292		terminate("base type name \"%s\" is too long\n", name);
1293
1294	strncpy(buf, name, sizeof (buf));
1295
1296	for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) {
1297		if (strcmp(c, "signed") == 0)
1298			sign = 1;
1299		else if (strcmp(c, "unsigned") == 0)
1300			sign = 0;
1301		else if (strcmp(c, "long") == 0)
1302			nlong++;
1303		else if (strcmp(c, "char") == 0) {
1304			nchar++;
1305			fmt = 'c';
1306		} else if (strcmp(c, "short") == 0)
1307			nshort++;
1308		else if (strcmp(c, "int") == 0)
1309			nint++;
1310		else {
1311			/*
1312			 * If we don't recognize any of the tokens, we'll tell
1313			 * the caller to fall back to the dwarf-provided
1314			 * encoding information.
1315			 */
1316			return (NULL);
1317		}
1318	}
1319
1320	if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
1321		return (NULL);
1322
1323	if (nchar > 0) {
1324		if (nlong > 0 || nshort > 0 || nint > 0)
1325			return (NULL);
1326
1327		base = "char";
1328
1329	} else if (nshort > 0) {
1330		if (nlong > 0)
1331			return (NULL);
1332
1333		base = "short";
1334
1335	} else if (nlong > 0) {
1336		base = "long";
1337
1338	} else {
1339		base = "int";
1340	}
1341
1342	intr = xcalloc(sizeof (intr_t));
1343	intr->intr_type = INTR_INT;
1344	intr->intr_signed = sign;
1345	intr->intr_iformat = fmt;
1346
1347	snprintf(buf, sizeof (buf), "%s%s%s",
1348	    (sign ? "" : "unsigned "),
1349	    (nlong > 1 ? "long " : ""),
1350	    base);
1351
1352	*newp = xstrdup(buf);
1353	return (intr);
1354}
1355
1356typedef struct fp_size_map {
1357	size_t fsm_typesz[2];	/* size of {32,64} type */
1358	uint_t fsm_enc[3];	/* CTF_FP_* for {bare,cplx,imagry} type */
1359} fp_size_map_t;
1360
1361static const fp_size_map_t fp_encodings[] = {
1362	{ { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
1363	{ { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
1364#ifdef __sparc
1365	{ { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1366#else
1367	{ { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1368#endif
1369	{ { 0, 0 }, { 0, 0, 0 } }
1370};
1371
1372static uint_t
1373die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz)
1374{
1375	const fp_size_map_t *map = fp_encodings;
1376	uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t);
1377	uint_t mult = 1, col = 0;
1378
1379	if (enc == DW_ATE_complex_float) {
1380		mult = 2;
1381		col = 1;
1382	} else if (enc == DW_ATE_imaginary_float
1383#ifdef illumos
1384	    || enc == DW_ATE_SUN_imaginary_float
1385#endif
1386	    )
1387		col = 2;
1388
1389	while (map->fsm_typesz[szidx] != 0) {
1390		if (map->fsm_typesz[szidx] * mult == sz)
1391			return (map->fsm_enc[col]);
1392		map++;
1393	}
1394
1395	terminate("die %llu: unrecognized real type size %u\n", off, sz);
1396	/*NOTREACHED*/
1397	return (0);
1398}
1399
1400static intr_t *
1401die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz)
1402{
1403	intr_t *intr = xcalloc(sizeof (intr_t));
1404	Dwarf_Signed enc;
1405
1406	(void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ);
1407
1408	switch (enc) {
1409	case DW_ATE_unsigned:
1410	case DW_ATE_address:
1411		intr->intr_type = INTR_INT;
1412		break;
1413	case DW_ATE_unsigned_char:
1414		intr->intr_type = INTR_INT;
1415		intr->intr_iformat = 'c';
1416		break;
1417	case DW_ATE_signed:
1418		intr->intr_type = INTR_INT;
1419		intr->intr_signed = 1;
1420		break;
1421	case DW_ATE_signed_char:
1422		intr->intr_type = INTR_INT;
1423		intr->intr_signed = 1;
1424		intr->intr_iformat = 'c';
1425		break;
1426	case DW_ATE_boolean:
1427		intr->intr_type = INTR_INT;
1428		intr->intr_signed = 1;
1429		intr->intr_iformat = 'b';
1430		break;
1431	case DW_ATE_float:
1432	case DW_ATE_complex_float:
1433	case DW_ATE_imaginary_float:
1434#ifdef illumos
1435	case DW_ATE_SUN_imaginary_float:
1436	case DW_ATE_SUN_interval_float:
1437#endif
1438		intr->intr_type = INTR_REAL;
1439		intr->intr_signed = 1;
1440		intr->intr_fformat = die_base_type2enc(dw, off, enc, sz);
1441		break;
1442	default:
1443		terminate("die %llu: unknown base type encoding 0x%llx\n",
1444		    off, enc);
1445	}
1446
1447	return (intr);
1448}
1449
1450static void
1451die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp)
1452{
1453	Dwarf_Unsigned sz;
1454	intr_t *intr;
1455	char *new;
1456
1457	debug(3, "die %llu: creating base type\n", off);
1458
1459	/*
1460	 * The compilers have their own clever (internally inconsistent) ideas
1461	 * as to what base types should look like.  Some times gcc will, for
1462	 * example, use DW_ATE_signed_char for char.  Other times, however, it
1463	 * will use DW_ATE_signed.  Needless to say, this causes some problems
1464	 * down the road, particularly with merging.  We do, however, use the
1465	 * DWARF idea of type sizes, as this allows us to avoid caring about
1466	 * the data model.
1467	 */
1468	(void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ);
1469
1470	/* Check for bogus gcc DW_AT_byte_size attribute */
1471	if (sz == (unsigned)-1) {
1472		printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
1473		    __func__);
1474		sz = 0;
1475	}
1476
1477	if (tdp->t_name == NULL)
1478		terminate("die %llu: base type without name\n", off);
1479
1480	/* XXX make a name parser for float too */
1481	if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) {
1482		/* Found it.  We'll use the parsed version */
1483		debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off,
1484		    tdesc_name(tdp), new);
1485
1486		free(tdp->t_name);
1487		tdp->t_name = new;
1488	} else {
1489		/*
1490		 * We didn't recognize the type, so we'll create an intr_t
1491		 * based on the DWARF data.
1492		 */
1493		debug(3, "die %llu: using dwarf data for base \"%s\"\n", off,
1494		    tdesc_name(tdp));
1495
1496		intr = die_base_from_dwarf(dw, base, off, sz);
1497	}
1498
1499	intr->intr_nbits = sz * 8;
1500
1501	tdp->t_type = INTRINSIC;
1502	tdp->t_intr = intr;
1503	tdp->t_size = sz;
1504
1505	tdp->t_flags |= TDESC_F_RESOLVED;
1506}
1507
1508static void
1509die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp,
1510    int type, const char *typename)
1511{
1512	Dwarf_Attribute attr;
1513
1514	debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type);
1515
1516	tdp->t_type = type;
1517
1518	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1519		tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type);
1520	} else {
1521		tdp->t_tdesc = tdesc_intr_void(dw);
1522	}
1523
1524	if (type == POINTER)
1525		tdp->t_size = dw->dw_ptrsz;
1526
1527	tdp->t_flags |= TDESC_F_RESOLVED;
1528
1529	if (type == TYPEDEF) {
1530		iidesc_t *ii = xcalloc(sizeof (iidesc_t));
1531		ii->ii_type = II_TYPE;
1532		ii->ii_name = xstrdup(tdp->t_name);
1533		ii->ii_dtype = tdp;
1534
1535		iidesc_add(dw->dw_td->td_iihash, ii);
1536	}
1537}
1538
1539static void
1540die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1541{
1542	die_through_create(dw, die, off, tdp, TYPEDEF, "typedef");
1543}
1544
1545static void
1546die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1547{
1548	die_through_create(dw, die, off, tdp, CONST, "const");
1549}
1550
1551static void
1552die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1553{
1554	die_through_create(dw, die, off, tdp, POINTER, "pointer");
1555}
1556
1557static void
1558die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1559{
1560	die_through_create(dw, die, off, tdp, RESTRICT, "restrict");
1561}
1562
1563static void
1564die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1565{
1566	die_through_create(dw, die, off, tdp, VOLATILE, "volatile");
1567}
1568
1569/*ARGSUSED3*/
1570static void
1571die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1572{
1573	Dwarf_Die arg;
1574	Dwarf_Half tag;
1575	iidesc_t *ii;
1576	char *name;
1577
1578	debug(3, "die %llu <%llx>: creating function definition\n", off, off);
1579
1580	/*
1581	 * We'll begin by processing any type definition nodes that may be
1582	 * lurking underneath this one.
1583	 */
1584	for (arg = die_child(dw, die); arg != NULL;
1585	    arg = die_sibling(dw, arg)) {
1586		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1587		    tag != DW_TAG_variable) {
1588			/* Nested type declaration */
1589			die_create_one(dw, arg);
1590		}
1591	}
1592
1593	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) {
1594		/*
1595		 * We process neither prototypes nor subprograms without
1596		 * names.
1597		 */
1598		return;
1599	}
1600
1601	ii = xcalloc(sizeof (iidesc_t));
1602	ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN;
1603	ii->ii_name = name;
1604	if (ii->ii_type == II_SFUN)
1605		ii->ii_owner = xstrdup(dw->dw_cuname);
1606
1607	debug(3, "die %llu: function %s is %s\n", off, ii->ii_name,
1608	    (ii->ii_type == II_GFUN ? "global" : "static"));
1609
1610	if (die_attr(dw, die, DW_AT_type, 0) != NULL)
1611		ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1612	else
1613		ii->ii_dtype = tdesc_intr_void(dw);
1614
1615	for (arg = die_child(dw, die); arg != NULL;
1616	    arg = die_sibling(dw, arg)) {
1617		char *name1;
1618
1619		debug(3, "die %llu: looking at sub member at %llu\n",
1620		    off, die_off(dw, die));
1621
1622		if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1623			continue;
1624
1625		if ((name1 = die_name(dw, arg)) == NULL) {
1626			terminate("die %llu: func arg %d has no name\n",
1627			    off, ii->ii_nargs + 1);
1628		}
1629
1630		if (strcmp(name1, "...") == 0) {
1631			free(name1);
1632			ii->ii_vargs = 1;
1633			continue;
1634		}
1635
1636		ii->ii_nargs++;
1637	}
1638
1639	if (ii->ii_nargs > 0) {
1640		int i;
1641
1642		debug(3, "die %llu: function has %d argument%s\n", off,
1643		    ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s"));
1644
1645		ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs);
1646
1647		for (arg = die_child(dw, die), i = 0;
1648		    arg != NULL && i < ii->ii_nargs;
1649		    arg = die_sibling(dw, arg)) {
1650			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1651				continue;
1652
1653			ii->ii_args[i++] = die_lookup_pass1(dw, arg,
1654			    DW_AT_type);
1655		}
1656	}
1657
1658	iidesc_add(dw->dw_td->td_iihash, ii);
1659}
1660
1661/*ARGSUSED3*/
1662static void
1663die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1664{
1665	iidesc_t *ii;
1666	char *name;
1667
1668	debug(3, "die %llu: creating object definition\n", off);
1669
1670	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL)
1671		return; /* skip prototypes and nameless objects */
1672
1673	ii = xcalloc(sizeof (iidesc_t));
1674	ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR;
1675	ii->ii_name = name;
1676	ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1677	if (ii->ii_type == II_SVAR)
1678		ii->ii_owner = xstrdup(dw->dw_cuname);
1679
1680	iidesc_add(dw->dw_td->td_iihash, ii);
1681}
1682
1683/*ARGSUSED2*/
1684static int
1685die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused)
1686{
1687	if (fwd->t_flags & TDESC_F_RESOLVED)
1688		return (1);
1689
1690	if (fwd->t_tdesc != NULL) {
1691		debug(3, "tdp %u: unforwarded %s\n", fwd->t_id,
1692		    tdesc_name(fwd));
1693		*fwdp = fwd->t_tdesc;
1694	}
1695
1696	fwd->t_flags |= TDESC_F_RESOLVED;
1697
1698	return (1);
1699}
1700
1701/*ARGSUSED*/
1702static void
1703die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused)
1704{
1705	Dwarf_Die child = die_child(dw, die);
1706
1707	if (child != NULL)
1708		die_create(dw, child);
1709}
1710
1711/*
1712 * Used to map the die to a routine which can parse it, using the tag to do the
1713 * mapping.  While the processing of most tags entails the creation of a tdesc,
1714 * there are a few which don't - primarily those which result in the creation of
1715 * iidescs which refer to existing tdescs.
1716 */
1717
1718#define	DW_F_NOTDP	0x1	/* Don't create a tdesc for the creator */
1719
1720typedef struct die_creator {
1721	Dwarf_Half dc_tag;
1722	uint16_t dc_flags;
1723	void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *);
1724} die_creator_t;
1725
1726static const die_creator_t die_creators[] = {
1727	{ DW_TAG_array_type,		0,		die_array_create },
1728	{ DW_TAG_enumeration_type,	0,		die_enum_create },
1729	{ DW_TAG_lexical_block,		DW_F_NOTDP,	die_lexblk_descend },
1730	{ DW_TAG_pointer_type,		0,		die_pointer_create },
1731	{ DW_TAG_structure_type,	0,		die_struct_create },
1732	{ DW_TAG_subroutine_type,	0,		die_funcptr_create },
1733	{ DW_TAG_typedef,		0,		die_typedef_create },
1734	{ DW_TAG_union_type,		0,		die_union_create },
1735	{ DW_TAG_base_type,		0,		die_base_create },
1736	{ DW_TAG_const_type,		0,		die_const_create },
1737	{ DW_TAG_subprogram,		DW_F_NOTDP,	die_function_create },
1738	{ DW_TAG_variable,		DW_F_NOTDP,	die_variable_create },
1739	{ DW_TAG_volatile_type,		0,		die_volatile_create },
1740	{ DW_TAG_restrict_type,		0,		die_restrict_create },
1741	{ 0, 0, NULL }
1742};
1743
1744static const die_creator_t *
1745die_tag2ctor(Dwarf_Half tag)
1746{
1747	const die_creator_t *dc;
1748
1749	for (dc = die_creators; dc->dc_create != NULL; dc++) {
1750		if (dc->dc_tag == tag)
1751			return (dc);
1752	}
1753
1754	return (NULL);
1755}
1756
1757static void
1758die_create_one(dwarf_t *dw, Dwarf_Die die)
1759{
1760	Dwarf_Off off = die_off(dw, die);
1761	const die_creator_t *dc;
1762	Dwarf_Half tag;
1763	tdesc_t *tdp;
1764
1765	debug(3, "die %llu <%llx>: create_one\n", off, off);
1766
1767	if (off > dw->dw_maxoff) {
1768		terminate("illegal die offset %llu (max %llu)\n", off,
1769		    dw->dw_maxoff);
1770	}
1771
1772	tag = die_tag(dw, die);
1773
1774	if ((dc = die_tag2ctor(tag)) == NULL) {
1775		debug(2, "die %llu: ignoring tag type %x\n", off, tag);
1776		return;
1777	}
1778
1779	if ((tdp = tdesc_lookup(dw, off)) == NULL &&
1780	    !(dc->dc_flags & DW_F_NOTDP)) {
1781		tdp = xcalloc(sizeof (tdesc_t));
1782		tdp->t_id = off;
1783		tdesc_add(dw, tdp);
1784	}
1785
1786	if (tdp != NULL)
1787		tdp->t_name = die_name(dw, die);
1788
1789	dc->dc_create(dw, die, off, tdp);
1790}
1791
1792static void
1793die_create(dwarf_t *dw, Dwarf_Die die)
1794{
1795	do {
1796		die_create_one(dw, die);
1797	} while ((die = die_sibling(dw, die)) != NULL);
1798}
1799
1800static tdtrav_cb_f die_resolvers[] = {
1801	NULL,
1802	NULL,			/* intrinsic */
1803	NULL,			/* pointer */
1804	die_array_resolve,	/* array */
1805	NULL,			/* function */
1806	die_sou_resolve,	/* struct */
1807	die_sou_resolve,	/* union */
1808	die_enum_resolve,	/* enum */
1809	die_fwd_resolve,	/* forward */
1810	NULL,			/* typedef */
1811	NULL,			/* typedef unres */
1812	NULL,			/* volatile */
1813	NULL,			/* const */
1814	NULL,			/* restrict */
1815};
1816
1817static tdtrav_cb_f die_fail_reporters[] = {
1818	NULL,
1819	NULL,			/* intrinsic */
1820	NULL,			/* pointer */
1821	die_array_failed,	/* array */
1822	NULL,			/* function */
1823	die_sou_failed,		/* struct */
1824	die_sou_failed,		/* union */
1825	NULL,			/* enum */
1826	NULL,			/* forward */
1827	NULL,			/* typedef */
1828	NULL,			/* typedef unres */
1829	NULL,			/* volatile */
1830	NULL,			/* const */
1831	NULL,			/* restrict */
1832};
1833
1834static void
1835die_resolve(dwarf_t *dw)
1836{
1837	int last = -1;
1838	int pass = 0;
1839
1840	do {
1841		pass++;
1842		dw->dw_nunres = 0;
1843
1844		(void) iitraverse_hash(dw->dw_td->td_iihash,
1845		    &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw);
1846
1847		debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres);
1848
1849		if ((int) dw->dw_nunres == last) {
1850			fprintf(stderr, "%s: failed to resolve the following "
1851			    "types:\n", progname);
1852
1853			(void) iitraverse_hash(dw->dw_td->td_iihash,
1854			    &dw->dw_td->td_curvgen, NULL, NULL,
1855			    die_fail_reporters, dw);
1856
1857			terminate("failed to resolve types\n");
1858		}
1859
1860		last = dw->dw_nunres;
1861
1862	} while (dw->dw_nunres != 0);
1863}
1864
1865/*
1866 * Any object containing a function or object symbol at any scope should also
1867 * contain DWARF data.
1868 */
1869static boolean_t
1870should_have_dwarf(Elf *elf)
1871{
1872	Elf_Scn *scn = NULL;
1873	Elf_Data *data = NULL;
1874	GElf_Shdr shdr;
1875	GElf_Sym sym;
1876	uint32_t symdx = 0;
1877	size_t nsyms = 0;
1878	boolean_t found = B_FALSE;
1879
1880	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1881		gelf_getshdr(scn, &shdr);
1882
1883		if (shdr.sh_type == SHT_SYMTAB) {
1884			found = B_TRUE;
1885			break;
1886		}
1887	}
1888
1889	if (!found)
1890		terminate("cannot convert stripped objects\n");
1891
1892	data = elf_getdata(scn, NULL);
1893	nsyms = shdr.sh_size / shdr.sh_entsize;
1894
1895	for (symdx = 0; symdx < nsyms; symdx++) {
1896		gelf_getsym(data, symdx, &sym);
1897
1898		if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) ||
1899		    (GELF_ST_TYPE(sym.st_info) == STT_TLS) ||
1900		    (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) {
1901			char *name;
1902
1903			name = elf_strptr(elf, shdr.sh_link, sym.st_name);
1904
1905			/* Studio emits these local symbols regardless */
1906			if ((strcmp(name, "Bbss.bss") != 0) &&
1907			    (strcmp(name, "Ttbss.bss") != 0) &&
1908			    (strcmp(name, "Ddata.data") != 0) &&
1909			    (strcmp(name, "Ttdata.data") != 0) &&
1910			    (strcmp(name, "Drodata.rodata") != 0))
1911				return (B_TRUE);
1912		}
1913	}
1914
1915	return (B_FALSE);
1916}
1917
1918/*ARGSUSED*/
1919int
1920dw_read(tdata_t *td, Elf *elf, char *filename __unused)
1921{
1922	Dwarf_Unsigned abboff, hdrlen, nxthdr;
1923	Dwarf_Half vers, addrsz;
1924	Dwarf_Die cu = 0;
1925	Dwarf_Die child = 0;
1926	dwarf_t dw;
1927	char *prod = NULL;
1928	int rc;
1929
1930	bzero(&dw, sizeof (dwarf_t));
1931	dw.dw_td = td;
1932	dw.dw_ptrsz = elf_ptrsz(elf);
1933	dw.dw_mfgtid_last = TID_MFGTID_BASE;
1934	dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp);
1935	dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1936	    tdesc_namecmp);
1937	dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1938	    tdesc_namecmp);
1939
1940	if ((rc = dwarf_elf_init(elf, DW_DLC_READ, &dw.dw_dw,
1941	    &dw.dw_err)) == DW_DLV_NO_ENTRY) {
1942		if (should_have_dwarf(elf)) {
1943			errno = ENOENT;
1944			return (-1);
1945		} else {
1946			return (0);
1947		}
1948	} else if (rc != DW_DLV_OK) {
1949		if (dwarf_errno(&dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
1950			/*
1951			 * There's no type data in the DWARF section, but
1952			 * libdwarf is too clever to handle that properly.
1953			 */
1954			return (0);
1955		}
1956
1957		terminate("failed to initialize DWARF: %s\n",
1958		    dwarf_errmsg(&dw.dw_err));
1959	}
1960
1961	if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff,
1962	    &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_OK)
1963		terminate("rc = %d %s\n", rc, dwarf_errmsg(&dw.dw_err));
1964
1965	if ((cu = die_sibling(&dw, NULL)) == NULL ||
1966	    (((child = die_child(&dw, cu)) == NULL) &&
1967	    should_have_dwarf(elf))) {
1968		terminate("file does not contain dwarf type data "
1969		    "(try compiling with -g)\n");
1970	} else if (child == NULL) {
1971		return (0);
1972	}
1973
1974	dw.dw_maxoff = nxthdr - 1;
1975
1976	if (dw.dw_maxoff > TID_FILEMAX)
1977		terminate("file contains too many types\n");
1978
1979	debug(1, "DWARF version: %d\n", vers);
1980	if (vers != DWARF_VERSION) {
1981		terminate("file contains incompatible version %d DWARF code "
1982		    "(version 2 required)\n", vers);
1983	}
1984
1985	if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) {
1986		debug(1, "DWARF emitter: %s\n", prod);
1987		free(prod);
1988	}
1989
1990	if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) {
1991		char *base = xstrdup(basename(dw.dw_cuname));
1992		free(dw.dw_cuname);
1993		dw.dw_cuname = base;
1994
1995		debug(1, "CU name: %s\n", dw.dw_cuname);
1996	}
1997
1998	if ((child = die_child(&dw, cu)) != NULL)
1999		die_create(&dw, child);
2000
2001	if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff,
2002	    &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY)
2003		terminate("multiple compilation units not supported\n");
2004
2005	(void) dwarf_finish(&dw.dw_dw, &dw.dw_err);
2006
2007	die_resolve(&dw);
2008
2009	cvt_fixups(td, dw.dw_ptrsz);
2010
2011	/* leak the dwarf_t */
2012
2013	return (0);
2014}
2015