dwarf.c revision 263915
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * DWARF to tdata conversion
28 *
29 * For the most part, conversion is straightforward, proceeding in two passes.
30 * On the first pass, we iterate through every die, creating new type nodes as
31 * necessary.  Referenced tdesc_t's are created in an uninitialized state, thus
32 * allowing type reference pointers to be filled in.  If the tdesc_t
33 * corresponding to a given die can be completely filled out (sizes and offsets
34 * calculated, and so forth) without using any referenced types, the tdesc_t is
35 * marked as resolved.  Consider an array type.  If the type corresponding to
36 * the array contents has not yet been processed, we will create a blank tdesc
37 * for the contents type (only the type ID will be filled in, relying upon the
38 * later portion of the first pass to encounter and complete the referenced
39 * type).  We will then attempt to determine the size of the array.  If the
40 * array has a byte size attribute, we will have completely characterized the
41 * array type, and will be able to mark it as resolved.  The lack of a byte
42 * size attribute, on the other hand, will prevent us from fully resolving the
43 * type, as the size will only be calculable with reference to the contents
44 * type, which has not, as yet, been encountered.  The array type will thus be
45 * left without the resolved flag, and the first pass will continue.
46 *
47 * When we begin the second pass, we will have created tdesc_t nodes for every
48 * type in the section.  We will traverse the tree, from the iidescs down,
49 * processing each unresolved node.  As the referenced nodes will have been
50 * populated, the array type used in our example above will be able to use the
51 * size of the referenced types (if available) to determine its own type.  The
52 * traversal will be repeated until all types have been resolved or we have
53 * failed to make progress.  When all tdescs have been resolved, the conversion
54 * is complete.
55 *
56 * There are, as always, a few special cases that are handled during the first
57 * and second passes:
58 *
59 *  1. Empty enums - GCC will occasionally emit an enum without any members.
60 *     Later on in the file, it will emit the same enum type, though this time
61 *     with the full complement of members.  All references to the memberless
62 *     enum need to be redirected to the full definition.  During the first
63 *     pass, each enum is entered in dm_enumhash, along with a pointer to its
64 *     corresponding tdesc_t.  If, during the second pass, we encounter a
65 *     memberless enum, we use the hash to locate the full definition.  All
66 *     tdescs referencing the empty enum are then redirected.
67 *
68 *  2. Forward declarations - If the compiler sees a forward declaration for
69 *     a structure, followed by the definition of that structure, it will emit
70 *     DWARF data for both the forward declaration and the definition.  We need
71 *     to resolve the forward declarations when possible, by redirecting
72 *     forward-referencing tdescs to the actual struct/union definitions.  This
73 *     redirection is done completely within the first pass.  We begin by
74 *     recording all forward declarations in dw_fwdhash.  When we define a
75 *     structure, we check to see if there have been any corresponding forward
76 *     declarations.  If so, we redirect the tdescs which referenced the forward
77 *     declarations to the structure or union definition.
78 *
79 * XXX see if a post traverser will allow the elimination of repeated pass 2
80 * traversals.
81 */
82
83#include <stdio.h>
84#include <stdlib.h>
85#include <string.h>
86#include <strings.h>
87#include <errno.h>
88#include <libelf.h>
89#include <libdwarf.h>
90#include <libgen.h>
91#include <dwarf.h>
92
93#include "ctf_headers.h"
94#include "ctftools.h"
95#include "memory.h"
96#include "list.h"
97#include "traverse.h"
98
99/* The version of DWARF which we support. */
100#define	DWARF_VERSION	2
101
102/*
103 * We need to define a couple of our own intrinsics, to smooth out some of the
104 * differences between the GCC and DevPro DWARF emitters.  See the referenced
105 * routines and the special cases in the file comment for more details.
106 *
107 * Type IDs are 32 bits wide.  We're going to use the top of that field to
108 * indicate types that we've created ourselves.
109 */
110#define	TID_FILEMAX		0x3fffffff	/* highest tid from file */
111#define	TID_VOID		0x40000001	/* see die_void() */
112#define	TID_LONG		0x40000002	/* see die_array() */
113
114#define	TID_MFGTID_BASE		0x40000003	/* first mfg'd tid */
115
116/*
117 * To reduce the staggering amount of error-handling code that would otherwise
118 * be required, the attribute-retrieval routines handle most of their own
119 * errors.  If the following flag is supplied as the value of the `req'
120 * argument, they will also handle the absence of a requested attribute by
121 * terminating the program.
122 */
123#define	DW_ATTR_REQ	1
124
125#define	TDESC_HASH_BUCKETS	511
126
127typedef struct dwarf {
128	Dwarf_Debug dw_dw;		/* for libdwarf */
129	Dwarf_Error dw_err;		/* for libdwarf */
130	Dwarf_Off dw_maxoff;		/* highest legal offset in this cu */
131	tdata_t *dw_td;			/* root of the tdesc/iidesc tree */
132	hash_t *dw_tidhash;		/* hash of tdescs by t_id */
133	hash_t *dw_fwdhash;		/* hash of fwd decls by name */
134	hash_t *dw_enumhash;		/* hash of memberless enums by name */
135	tdesc_t *dw_void;		/* manufactured void type */
136	tdesc_t *dw_long;		/* manufactured long type for arrays */
137	size_t dw_ptrsz;		/* size of a pointer in this file */
138	tid_t dw_mfgtid_last;		/* last mfg'd type ID used */
139	uint_t dw_nunres;		/* count of unresolved types */
140	char *dw_cuname;		/* name of compilation unit */
141} dwarf_t;
142
143static void die_create_one(dwarf_t *, Dwarf_Die);
144static void die_create(dwarf_t *, Dwarf_Die);
145
146static tid_t
147mfgtid_next(dwarf_t *dw)
148{
149	return (++dw->dw_mfgtid_last);
150}
151
152static void
153tdesc_add(dwarf_t *dw, tdesc_t *tdp)
154{
155	hash_add(dw->dw_tidhash, tdp);
156}
157
158static tdesc_t *
159tdesc_lookup(dwarf_t *dw, int tid)
160{
161	tdesc_t tmpl;
162	void *tdp;
163
164	tmpl.t_id = tid;
165
166	if (hash_find(dw->dw_tidhash, &tmpl, &tdp))
167		return (tdp);
168	else
169		return (NULL);
170}
171
172/*
173 * Resolve a tdesc down to a node which should have a size.  Returns the size,
174 * zero if the size hasn't yet been determined.
175 */
176static size_t
177tdesc_size(tdesc_t *tdp)
178{
179	for (;;) {
180		switch (tdp->t_type) {
181		case INTRINSIC:
182		case POINTER:
183		case ARRAY:
184		case FUNCTION:
185		case STRUCT:
186		case UNION:
187		case ENUM:
188			return (tdp->t_size);
189
190		case FORWARD:
191			return (0);
192
193		case TYPEDEF:
194		case VOLATILE:
195		case CONST:
196		case RESTRICT:
197			tdp = tdp->t_tdesc;
198			continue;
199
200		case 0: /* not yet defined */
201			return (0);
202
203		default:
204			terminate("tdp %u: tdesc_size on unknown type %d\n",
205			    tdp->t_id, tdp->t_type);
206		}
207	}
208}
209
210static size_t
211tdesc_bitsize(tdesc_t *tdp)
212{
213	for (;;) {
214		switch (tdp->t_type) {
215		case INTRINSIC:
216			return (tdp->t_intr->intr_nbits);
217
218		case ARRAY:
219		case FUNCTION:
220		case STRUCT:
221		case UNION:
222		case ENUM:
223		case POINTER:
224			return (tdp->t_size * NBBY);
225
226		case FORWARD:
227			return (0);
228
229		case TYPEDEF:
230		case VOLATILE:
231		case RESTRICT:
232		case CONST:
233			tdp = tdp->t_tdesc;
234			continue;
235
236		case 0: /* not yet defined */
237			return (0);
238
239		default:
240			terminate("tdp %u: tdesc_bitsize on unknown type %d\n",
241			    tdp->t_id, tdp->t_type);
242		}
243	}
244}
245
246static tdesc_t *
247tdesc_basetype(tdesc_t *tdp)
248{
249	for (;;) {
250		switch (tdp->t_type) {
251		case TYPEDEF:
252		case VOLATILE:
253		case RESTRICT:
254		case CONST:
255			tdp = tdp->t_tdesc;
256			break;
257		case 0: /* not yet defined */
258			return (NULL);
259		default:
260			return (tdp);
261		}
262	}
263}
264
265static Dwarf_Off
266die_off(dwarf_t *dw, Dwarf_Die die)
267{
268	Dwarf_Off off;
269
270	if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK)
271		return (off);
272
273	terminate("failed to get offset for die: %s\n",
274	    dwarf_errmsg(&dw->dw_err));
275	/*NOTREACHED*/
276	return (0);
277}
278
279static Dwarf_Die
280die_sibling(dwarf_t *dw, Dwarf_Die die)
281{
282	Dwarf_Die sib;
283	int rc;
284
285	if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) ==
286	    DW_DLV_OK)
287		return (sib);
288	else if (rc == DW_DLV_NO_ENTRY)
289		return (NULL);
290
291	terminate("die %llu: failed to find type sibling: %s\n",
292	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
293	/*NOTREACHED*/
294	return (NULL);
295}
296
297static Dwarf_Die
298die_child(dwarf_t *dw, Dwarf_Die die)
299{
300	Dwarf_Die child;
301	int rc;
302
303	if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK)
304		return (child);
305	else if (rc == DW_DLV_NO_ENTRY)
306		return (NULL);
307
308	terminate("die %llu: failed to find type child: %s\n",
309	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
310	/*NOTREACHED*/
311	return (NULL);
312}
313
314static Dwarf_Half
315die_tag(dwarf_t *dw, Dwarf_Die die)
316{
317	Dwarf_Half tag;
318
319	if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK)
320		return (tag);
321
322	terminate("die %llu: failed to get tag for type: %s\n",
323	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
324	/*NOTREACHED*/
325	return (0);
326}
327
328static Dwarf_Attribute
329die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req)
330{
331	Dwarf_Attribute attr;
332	int rc;
333
334	if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) {
335		return (attr);
336	} else if (rc == DW_DLV_NO_ENTRY) {
337		if (req) {
338			terminate("die %llu: no attr 0x%x\n", die_off(dw, die),
339			    name);
340		} else {
341			return (NULL);
342		}
343	}
344
345	terminate("die %llu: failed to get attribute for type: %s\n",
346	    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
347	/*NOTREACHED*/
348	return (NULL);
349}
350
351static int
352die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp,
353    int req)
354{
355	*valp = 0;
356	if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
357		if (req)
358			terminate("die %llu: failed to get signed: %s\n",
359			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
360		return (0);
361	}
362
363	return (1);
364}
365
366static int
367die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp,
368    int req)
369{
370	*valp = 0;
371	if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
372		if (req)
373			terminate("die %llu: failed to get unsigned: %s\n",
374			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
375		return (0);
376	}
377
378	return (1);
379}
380
381static int
382die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req)
383{
384	*valp = 0;
385
386	if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DWARF_E_NONE) {
387		if (req)
388			terminate("die %llu: failed to get flag: %s\n",
389			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
390		return (0);
391	}
392
393	return (1);
394}
395
396static int
397die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req)
398{
399	const char *str = NULL;
400
401	if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DWARF_E_NONE ||
402	    str == NULL) {
403		if (req)
404			terminate("die %llu: failed to get string: %s\n",
405			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
406		else
407			*strp = NULL;
408		return (0);
409	} else
410		*strp = xstrdup(str);
411
412	return (1);
413}
414
415static Dwarf_Off
416die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
417{
418	Dwarf_Off off;
419
420	if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DWARF_E_NONE) {
421		terminate("die %llu: failed to get ref: %s\n",
422		    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
423	}
424
425	return (off);
426}
427
428static char *
429die_name(dwarf_t *dw, Dwarf_Die die)
430{
431	char *str = NULL;
432
433	(void) die_string(dw, die, DW_AT_name, &str, 0);
434
435	return (str);
436}
437
438static int
439die_isdecl(dwarf_t *dw, Dwarf_Die die)
440{
441	Dwarf_Bool val;
442
443	return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val);
444}
445
446static int
447die_isglobal(dwarf_t *dw, Dwarf_Die die)
448{
449	Dwarf_Signed vis;
450	Dwarf_Bool ext;
451
452	/*
453	 * Some compilers (gcc) use DW_AT_external to indicate function
454	 * visibility.  Others (Sun) use DW_AT_visibility.
455	 */
456	if (die_signed(dw, die, DW_AT_visibility, &vis, 0))
457		return (vis == DW_VIS_exported);
458	else
459		return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext);
460}
461
462static tdesc_t *
463die_add(dwarf_t *dw, Dwarf_Off off)
464{
465	tdesc_t *tdp = xcalloc(sizeof (tdesc_t));
466
467	tdp->t_id = off;
468
469	tdesc_add(dw, tdp);
470
471	return (tdp);
472}
473
474static tdesc_t *
475die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name)
476{
477	Dwarf_Off ref = die_attr_ref(dw, die, name);
478	tdesc_t *tdp;
479
480	if ((tdp = tdesc_lookup(dw, ref)) != NULL)
481		return (tdp);
482
483	return (die_add(dw, ref));
484}
485
486static int
487die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name,
488    Dwarf_Unsigned *valp, int req __unused)
489{
490	Dwarf_Locdesc *loc = NULL;
491	Dwarf_Signed locnum = 0;
492	Dwarf_Attribute at;
493	Dwarf_Half form;
494
495	if (name != DW_AT_data_member_location)
496		terminate("die %llu: can only process attribute "
497		    "DW_AT_data_member_location\n", die_off(dw, die));
498
499	if ((at = die_attr(dw, die, name, 0)) == NULL)
500		return (0);
501
502	if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK)
503		return (0);
504
505	switch (form) {
506	case DW_FORM_block:
507	case DW_FORM_block1:
508	case DW_FORM_block2:
509	case DW_FORM_block4:
510		/*
511		 * GCC in base and Clang (3.3 or below) generates
512		 * DW_AT_data_member_location attribute with DW_FORM_block*
513		 * form. The attribute contains one DW_OP_plus_uconst
514		 * operator. The member offset stores in the operand.
515		 */
516		if (dwarf_locdesc(die, name, &loc, &locnum, &dw->dw_err) !=
517		    DW_DLV_OK)
518			return (0);
519		if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) {
520			terminate("die %llu: cannot parse member offset\n",
521			    die_off(dw, die));
522		}
523		*valp = loc->ld_s->lr_number;
524		break;
525
526	case DW_FORM_data1:
527	case DW_FORM_data2:
528	case DW_FORM_data4:
529	case DW_FORM_data8:
530	case DW_FORM_udata:
531		/*
532		 * Clang 3.4 generates DW_AT_data_member_location attribute
533		 * with DW_FORM_data* form (constant class). The attribute
534		 * stores a contant value which is the member offset.
535		 */
536		if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) !=
537		    DW_DLV_OK)
538			return (0);
539		break;
540
541	default:
542		terminate("die %llu: cannot parse member offset with form "
543		    "%u\n", die_off(dw, die), form);
544	}
545
546	if (loc != NULL)
547		if (dwarf_locdesc_free(loc, &dw->dw_err) != DW_DLV_OK)
548			terminate("die %llu: cannot free location descriptor: %s\n",
549			    die_off(dw, die), dwarf_errmsg(&dw->dw_err));
550
551	return (1);
552}
553
554static tdesc_t *
555tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz)
556{
557	tdesc_t *tdp;
558	intr_t *intr;
559
560	intr = xcalloc(sizeof (intr_t));
561	intr->intr_type = INTR_INT;
562	intr->intr_signed = 1;
563	intr->intr_nbits = sz * NBBY;
564
565	tdp = xcalloc(sizeof (tdesc_t));
566	tdp->t_name = xstrdup(name);
567	tdp->t_size = sz;
568	tdp->t_id = tid;
569	tdp->t_type = INTRINSIC;
570	tdp->t_intr = intr;
571	tdp->t_flags = TDESC_F_RESOLVED;
572
573	tdesc_add(dw, tdp);
574
575	return (tdp);
576}
577
578/*
579 * Manufacture a void type.  Used for gcc-emitted stabs, where the lack of a
580 * type reference implies a reference to a void type.  A void *, for example
581 * will be represented by a pointer die without a DW_AT_type.  CTF requires
582 * that pointer nodes point to something, so we'll create a void for use as
583 * the target.  Note that the DWARF data may already create a void type.  Ours
584 * would then be a duplicate, but it'll be removed in the self-uniquification
585 * merge performed at the completion of DWARF->tdesc conversion.
586 */
587static tdesc_t *
588tdesc_intr_void(dwarf_t *dw)
589{
590	if (dw->dw_void == NULL)
591		dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0);
592
593	return (dw->dw_void);
594}
595
596static tdesc_t *
597tdesc_intr_long(dwarf_t *dw)
598{
599	if (dw->dw_long == NULL) {
600		dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long",
601		    dw->dw_ptrsz);
602	}
603
604	return (dw->dw_long);
605}
606
607/*
608 * Used for creating bitfield types.  We create a copy of an existing intrinsic,
609 * adjusting the size of the copy to match what the caller requested.  The
610 * caller can then use the copy as the type for a bitfield structure member.
611 */
612static tdesc_t *
613tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz)
614{
615	tdesc_t *new = xcalloc(sizeof (tdesc_t));
616
617	if (!(old->t_flags & TDESC_F_RESOLVED)) {
618		terminate("tdp %u: attempt to make a bit field from an "
619		    "unresolved type\n", old->t_id);
620	}
621
622	new->t_name = xstrdup(old->t_name);
623	new->t_size = old->t_size;
624	new->t_id = mfgtid_next(dw);
625	new->t_type = INTRINSIC;
626	new->t_flags = TDESC_F_RESOLVED;
627
628	new->t_intr = xcalloc(sizeof (intr_t));
629	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
630	new->t_intr->intr_nbits = bitsz;
631
632	tdesc_add(dw, new);
633
634	return (new);
635}
636
637static void
638tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp,
639    tdesc_t *dimtdp)
640{
641	Dwarf_Unsigned uval;
642	Dwarf_Signed sval;
643	tdesc_t *ctdp = NULL;
644	Dwarf_Die dim2;
645	ardef_t *ar;
646
647	if ((dim2 = die_sibling(dw, dim)) == NULL) {
648		ctdp = arrtdp;
649	} else if (die_tag(dw, dim2) == DW_TAG_subrange_type) {
650		ctdp = xcalloc(sizeof (tdesc_t));
651		ctdp->t_id = mfgtid_next(dw);
652		debug(3, "die %llu: creating new type %u for sub-dimension\n",
653		    die_off(dw, dim2), ctdp->t_id);
654		tdesc_array_create(dw, dim2, arrtdp, ctdp);
655	} else {
656		terminate("die %llu: unexpected non-subrange node in array\n",
657		    die_off(dw, dim2));
658	}
659
660	dimtdp->t_type = ARRAY;
661	dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t));
662
663	/*
664	 * Array bounds can be signed or unsigned, but there are several kinds
665	 * of signless forms (data1, data2, etc) that take their sign from the
666	 * routine that is trying to interpret them.  That is, data1 can be
667	 * either signed or unsigned, depending on whether you use the signed or
668	 * unsigned accessor function.  GCC will use the signless forms to store
669	 * unsigned values which have their high bit set, so we need to try to
670	 * read them first as unsigned to get positive values.  We could also
671	 * try signed first, falling back to unsigned if we got a negative
672	 * value.
673	 */
674	if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0))
675		ar->ad_nelems = uval + 1;
676	else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0))
677		ar->ad_nelems = sval + 1;
678	else
679		ar->ad_nelems = 0;
680
681	/*
682	 * Different compilers use different index types.  Force the type to be
683	 * a common, known value (long).
684	 */
685	ar->ad_idxtype = tdesc_intr_long(dw);
686	ar->ad_contents = ctdp;
687
688	if (ar->ad_contents->t_size != 0) {
689		dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems;
690		dimtdp->t_flags |= TDESC_F_RESOLVED;
691	}
692}
693
694/*
695 * Create a tdesc from an array node.  Some arrays will come with byte size
696 * attributes, and thus can be resolved immediately.  Others don't, and will
697 * need to wait until the second pass for resolution.
698 */
699static void
700die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp)
701{
702	tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type);
703	Dwarf_Unsigned uval;
704	Dwarf_Die dim;
705
706	debug(3, "die %llu <%llx>: creating array\n", off, off);
707
708	if ((dim = die_child(dw, arr)) == NULL ||
709	    die_tag(dw, dim) != DW_TAG_subrange_type)
710		terminate("die %llu: failed to retrieve array bounds\n", off);
711
712	tdesc_array_create(dw, dim, arrtdp, tdp);
713
714	if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) {
715		tdesc_t *dimtdp;
716		int flags;
717
718		/* Check for bogus gcc DW_AT_byte_size attribute */
719		if (uval == (unsigned)-1) {
720			printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
721			    __func__);
722			uval = 0;
723		}
724
725		tdp->t_size = uval;
726
727		/*
728		 * Ensure that sub-dimensions have sizes too before marking
729		 * as resolved.
730		 */
731		flags = TDESC_F_RESOLVED;
732		for (dimtdp = tdp->t_ardef->ad_contents;
733		    dimtdp->t_type == ARRAY;
734		    dimtdp = dimtdp->t_ardef->ad_contents) {
735			if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) {
736				flags = 0;
737				break;
738			}
739		}
740
741		tdp->t_flags |= flags;
742	}
743
744	debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off,
745	    tdp->t_ardef->ad_nelems, tdp->t_size);
746}
747
748/*ARGSUSED1*/
749static int
750die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
751{
752	dwarf_t *dw = private;
753	size_t sz;
754
755	if (tdp->t_flags & TDESC_F_RESOLVED)
756		return (1);
757
758	debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id,
759	    tdp->t_ardef->ad_contents->t_id);
760
761	if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0) {
762		debug(3, "unable to resolve array %s (%d) contents %d\n",
763		    tdesc_name(tdp), tdp->t_id,
764		    tdp->t_ardef->ad_contents->t_id);
765
766		dw->dw_nunres++;
767		return (1);
768	}
769
770	tdp->t_size = sz * tdp->t_ardef->ad_nelems;
771	tdp->t_flags |= TDESC_F_RESOLVED;
772
773	debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size);
774
775	return (1);
776}
777
778/*ARGSUSED1*/
779static int
780die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
781{
782	tdesc_t *cont = tdp->t_ardef->ad_contents;
783
784	if (tdp->t_flags & TDESC_F_RESOLVED)
785		return (1);
786
787	fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n",
788	    tdp->t_id, tdesc_name(cont), cont->t_id);
789
790	return (1);
791}
792
793/*
794 * Most enums (those with members) will be resolved during this first pass.
795 * Others - those without members (see the file comment) - won't be, and will
796 * need to wait until the second pass when they can be matched with their full
797 * definitions.
798 */
799static void
800die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
801{
802	Dwarf_Die mem;
803	Dwarf_Unsigned uval;
804	Dwarf_Signed sval;
805
806	debug(3, "die %llu: creating enum\n", off);
807
808	tdp->t_type = ENUM;
809
810	(void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ);
811	/* Check for bogus gcc DW_AT_byte_size attribute */
812	if (uval == (unsigned)-1) {
813		printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
814		    __func__);
815		uval = 0;
816	}
817	tdp->t_size = uval;
818
819	if ((mem = die_child(dw, die)) != NULL) {
820		elist_t **elastp = &tdp->t_emem;
821
822		do {
823			elist_t *el;
824
825			if (die_tag(dw, mem) != DW_TAG_enumerator) {
826				/* Nested type declaration */
827				die_create_one(dw, mem);
828				continue;
829			}
830
831			el = xcalloc(sizeof (elist_t));
832			el->el_name = die_name(dw, mem);
833
834			if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) {
835				el->el_number = sval;
836			} else if (die_unsigned(dw, mem, DW_AT_const_value,
837			    &uval, 0)) {
838				el->el_number = uval;
839			} else {
840				terminate("die %llu: enum %llu: member without "
841				    "value\n", off, die_off(dw, mem));
842			}
843
844			debug(3, "die %llu: enum %llu: created %s = %d\n", off,
845			    die_off(dw, mem), el->el_name, el->el_number);
846
847			*elastp = el;
848			elastp = &el->el_next;
849
850		} while ((mem = die_sibling(dw, mem)) != NULL);
851
852		hash_add(dw->dw_enumhash, tdp);
853
854		tdp->t_flags |= TDESC_F_RESOLVED;
855
856		if (tdp->t_name != NULL) {
857			iidesc_t *ii = xcalloc(sizeof (iidesc_t));
858			ii->ii_type = II_SOU;
859			ii->ii_name = xstrdup(tdp->t_name);
860			ii->ii_dtype = tdp;
861
862			iidesc_add(dw->dw_td->td_iihash, ii);
863		}
864	}
865}
866
867static int
868die_enum_match(void *arg1, void *arg2)
869{
870	tdesc_t *tdp = arg1, **fullp = arg2;
871
872	if (tdp->t_emem != NULL) {
873		*fullp = tdp;
874		return (-1); /* stop the iteration */
875	}
876
877	return (0);
878}
879
880/*ARGSUSED1*/
881static int
882die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
883{
884	dwarf_t *dw = private;
885	tdesc_t *full = NULL;
886
887	if (tdp->t_flags & TDESC_F_RESOLVED)
888		return (1);
889
890	(void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full);
891
892	/*
893	 * The answer to this one won't change from iteration to iteration,
894	 * so don't even try.
895	 */
896	if (full == NULL) {
897		terminate("tdp %u: enum %s has no members\n", tdp->t_id,
898		    tdesc_name(tdp));
899	}
900
901	debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id,
902	    tdesc_name(tdp), full->t_id);
903
904	tdp->t_flags |= TDESC_F_RESOLVED;
905
906	return (1);
907}
908
909static int
910die_fwd_map(void *arg1, void *arg2)
911{
912	tdesc_t *fwd = arg1, *sou = arg2;
913
914	debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id,
915	    tdesc_name(fwd), sou->t_id);
916	fwd->t_tdesc = sou;
917
918	return (0);
919}
920
921/*
922 * Structures and unions will never be resolved during the first pass, as we
923 * won't be able to fully determine the member sizes.  The second pass, which
924 * have access to sizing information, will be able to complete the resolution.
925 */
926static void
927die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp,
928    int type, const char *typename)
929{
930	Dwarf_Unsigned sz, bitsz, bitoff, maxsz=0;
931#if BYTE_ORDER == _LITTLE_ENDIAN
932	Dwarf_Unsigned bysz;
933#endif
934	Dwarf_Die mem;
935	mlist_t *ml, **mlastp;
936	iidesc_t *ii;
937
938	tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type);
939
940	debug(3, "die %llu: creating %s %s\n", off,
941	    (tdp->t_type == FORWARD ? "forward decl" : typename),
942	    tdesc_name(tdp));
943
944	if (tdp->t_type == FORWARD) {
945		hash_add(dw->dw_fwdhash, tdp);
946		return;
947	}
948
949	(void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp);
950
951	(void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ);
952	tdp->t_size = sz;
953
954	/*
955	 * GCC allows empty SOUs as an extension.
956	 */
957	if ((mem = die_child(dw, str)) == NULL) {
958		goto out;
959	}
960
961	mlastp = &tdp->t_members;
962
963	do {
964		Dwarf_Off memoff = die_off(dw, mem);
965		Dwarf_Half tag = die_tag(dw, mem);
966		Dwarf_Unsigned mloff;
967
968		if (tag != DW_TAG_member) {
969			/* Nested type declaration */
970			die_create_one(dw, mem);
971			continue;
972		}
973
974		debug(3, "die %llu: mem %llu: creating member\n", off, memoff);
975
976		ml = xcalloc(sizeof (mlist_t));
977
978		/*
979		 * This could be a GCC anon struct/union member, so we'll allow
980		 * an empty name, even though nothing can really handle them
981		 * properly.  Note that some versions of GCC miss out debug
982		 * info for anon structs, though recent versions are fixed (gcc
983		 * bug 11816).
984		 */
985		if ((ml->ml_name = die_name(dw, mem)) == NULL)
986			ml->ml_name = NULL;
987
988		ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type);
989		debug(3, "die_sou_create(): ml_type = %p t_id = %d\n",
990		    ml->ml_type, ml->ml_type->t_id);
991
992		if (die_mem_offset(dw, mem, DW_AT_data_member_location,
993		    &mloff, 0)) {
994			debug(3, "die %llu: got mloff %llx\n", off,
995			    (u_longlong_t)mloff);
996			ml->ml_offset = mloff * 8;
997		}
998
999		if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0))
1000			ml->ml_size = bitsz;
1001		else
1002			ml->ml_size = tdesc_bitsize(ml->ml_type);
1003
1004		if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) {
1005#if BYTE_ORDER == _BIG_ENDIAN
1006			ml->ml_offset += bitoff;
1007#else
1008			/*
1009			 * Note that Clang 3.4 will sometimes generate
1010			 * member DIE before generating the DIE for the
1011			 * member's type. The code can not handle this
1012			 * properly so that tdesc_bitsize(ml->ml_type) will
1013			 * return 0 because ml->ml_type is unknown. As a
1014			 * result, a wrong member offset will be calculated.
1015			 * To workaround this, we can instead try to
1016			 * retrieve the value of DW_AT_byte_size attribute
1017			 * which stores the byte size of the space occupied
1018			 * by the type. If this attribute exists, its value
1019			 * should equal to tdesc_bitsize(ml->ml_type)/NBBY.
1020			 */
1021			if (die_unsigned(dw, mem, DW_AT_byte_size, &bysz, 0) &&
1022			    bysz > 0)
1023				ml->ml_offset += bysz * NBBY - bitoff -
1024					ml->ml_size;
1025			else
1026				ml->ml_offset += tdesc_bitsize(ml->ml_type) -
1027					bitoff - ml->ml_size;
1028#endif
1029		}
1030
1031		debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n",
1032		    off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size);
1033
1034		*mlastp = ml;
1035		mlastp = &ml->ml_next;
1036
1037		/* Find the size of the largest member to work around a gcc
1038		 * bug.  See GCC Bugzilla 35998.
1039		 */
1040		if (maxsz < ml->ml_size)
1041			maxsz = ml->ml_size;
1042
1043	} while ((mem = die_sibling(dw, mem)) != NULL);
1044
1045	/* See if we got a bogus DW_AT_byte_size.  GCC will sometimes
1046	 * emit this.
1047	 */
1048	if (sz == (unsigned)-1) {
1049		 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
1050		     __func__);
1051		 tdp->t_size = maxsz / 8;  /* maxsz is in bits, t_size is bytes */
1052	}
1053
1054	/*
1055	 * GCC will attempt to eliminate unused types, thus decreasing the
1056	 * size of the emitted dwarf.  That is, if you declare a foo_t in your
1057	 * header, include said header in your source file, and neglect to
1058	 * actually use (directly or indirectly) the foo_t in the source file,
1059	 * the foo_t won't make it into the emitted DWARF.  So, at least, goes
1060	 * the theory.
1061	 *
1062	 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t,
1063	 * and then neglect to emit the members.  Strangely, the loner struct
1064	 * tag will always be followed by a proper nested declaration of
1065	 * something else.  This is clearly a bug, but we're not going to have
1066	 * time to get it fixed before this goo goes back, so we'll have to work
1067	 * around it.  If we see a no-membered struct with a nested declaration
1068	 * (i.e. die_child of the struct tag won't be null), we'll ignore it.
1069	 * Being paranoid, we won't simply remove it from the hash.  Instead,
1070	 * we'll decline to create an iidesc for it, thus ensuring that this
1071	 * type won't make it into the output file.  To be safe, we'll also
1072	 * change the name.
1073	 */
1074	if (tdp->t_members == NULL) {
1075		const char *old = tdesc_name(tdp);
1076		size_t newsz = 7 + strlen(old) + 1;
1077		char *new = xmalloc(newsz);
1078		(void) snprintf(new, newsz, "orphan %s", old);
1079
1080		debug(3, "die %llu: worked around %s %s\n", off, typename, old);
1081
1082		if (tdp->t_name != NULL)
1083			free(tdp->t_name);
1084		tdp->t_name = new;
1085		return;
1086	}
1087
1088out:
1089	if (tdp->t_name != NULL) {
1090		ii = xcalloc(sizeof (iidesc_t));
1091		ii->ii_type = II_SOU;
1092		ii->ii_name = xstrdup(tdp->t_name);
1093		ii->ii_dtype = tdp;
1094
1095		iidesc_add(dw->dw_td->td_iihash, ii);
1096	}
1097}
1098
1099static void
1100die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1101{
1102	die_sou_create(dw, die, off, tdp, STRUCT, "struct");
1103}
1104
1105static void
1106die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1107{
1108	die_sou_create(dw, die, off, tdp, UNION, "union");
1109}
1110
1111/*ARGSUSED1*/
1112static int
1113die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private)
1114{
1115	dwarf_t *dw = private;
1116	mlist_t *ml;
1117	tdesc_t *mt;
1118
1119	if (tdp->t_flags & TDESC_F_RESOLVED)
1120		return (1);
1121
1122	debug(3, "resolving sou %s\n", tdesc_name(tdp));
1123
1124	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1125		if (ml->ml_size == 0) {
1126			mt = tdesc_basetype(ml->ml_type);
1127
1128			if ((ml->ml_size = tdesc_bitsize(mt)) != 0)
1129				continue;
1130
1131			/*
1132			 * For empty members, or GCC/C99 flexible array
1133			 * members, a size of 0 is correct.
1134			 */
1135			if (mt->t_members == NULL)
1136				continue;
1137			if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0)
1138				continue;
1139
1140			dw->dw_nunres++;
1141			return (1);
1142		}
1143
1144		if ((mt = tdesc_basetype(ml->ml_type)) == NULL) {
1145			dw->dw_nunres++;
1146			return (1);
1147		}
1148
1149		if (ml->ml_size != 0 && mt->t_type == INTRINSIC &&
1150		    mt->t_intr->intr_nbits != (int)ml->ml_size) {
1151			/*
1152			 * This member is a bitfield, and needs to reference
1153			 * an intrinsic type with the same width.  If the
1154			 * currently-referenced type isn't of the same width,
1155			 * we'll copy it, adjusting the width of the copy to
1156			 * the size we'd like.
1157			 */
1158			debug(3, "tdp %u: creating bitfield for %d bits\n",
1159			    tdp->t_id, ml->ml_size);
1160
1161			ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size);
1162		}
1163	}
1164
1165	tdp->t_flags |= TDESC_F_RESOLVED;
1166
1167	return (1);
1168}
1169
1170/*ARGSUSED1*/
1171static int
1172die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused)
1173{
1174	const char *typename = (tdp->t_type == STRUCT ? "struct" : "union");
1175	mlist_t *ml;
1176
1177	if (tdp->t_flags & TDESC_F_RESOLVED)
1178		return (1);
1179
1180	for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) {
1181		if (ml->ml_size == 0) {
1182			fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" "
1183			    "of type %s (%d <%x>)\n", typename, tdp->t_id,
1184			    tdp->t_id,
1185			    ml->ml_name, tdesc_name(ml->ml_type),
1186			    ml->ml_type->t_id, ml->ml_type->t_id);
1187		}
1188	}
1189
1190	return (1);
1191}
1192
1193static void
1194die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1195{
1196	Dwarf_Attribute attr;
1197	Dwarf_Half tag;
1198	Dwarf_Die arg;
1199	fndef_t *fn;
1200	int i;
1201
1202	debug(3, "die %llu <%llx>: creating function pointer\n", off, off);
1203
1204	/*
1205	 * We'll begin by processing any type definition nodes that may be
1206	 * lurking underneath this one.
1207	 */
1208	for (arg = die_child(dw, die); arg != NULL;
1209	    arg = die_sibling(dw, arg)) {
1210		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1211		    tag != DW_TAG_unspecified_parameters) {
1212			/* Nested type declaration */
1213			die_create_one(dw, arg);
1214		}
1215	}
1216
1217	if (die_isdecl(dw, die)) {
1218		/*
1219		 * This is a prototype.  We don't add prototypes to the
1220		 * tree, so we're going to drop the tdesc.  Unfortunately,
1221		 * it has already been added to the tree.  Nobody will reference
1222		 * it, though, and it will be leaked.
1223		 */
1224		return;
1225	}
1226
1227	fn = xcalloc(sizeof (fndef_t));
1228
1229	tdp->t_type = FUNCTION;
1230
1231	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1232		fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type);
1233	} else {
1234		fn->fn_ret = tdesc_intr_void(dw);
1235	}
1236
1237	/*
1238	 * Count the arguments to the function, then read them in.
1239	 */
1240	for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL;
1241	    arg = die_sibling(dw, arg)) {
1242		if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter)
1243			fn->fn_nargs++;
1244		else if (tag == DW_TAG_unspecified_parameters &&
1245		    fn->fn_nargs > 0)
1246			fn->fn_vargs = 1;
1247	}
1248
1249	if (fn->fn_nargs != 0) {
1250		debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs,
1251		    (fn->fn_nargs > 1 ? "s" : ""));
1252
1253		fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs);
1254		for (i = 0, arg = die_child(dw, die);
1255		    arg != NULL && i < (int) fn->fn_nargs;
1256		    arg = die_sibling(dw, arg)) {
1257			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1258				continue;
1259
1260			fn->fn_args[i++] = die_lookup_pass1(dw, arg,
1261			    DW_AT_type);
1262		}
1263	}
1264
1265	tdp->t_fndef = fn;
1266	tdp->t_flags |= TDESC_F_RESOLVED;
1267}
1268
1269/*
1270 * GCC and DevPro use different names for the base types.  While the terms are
1271 * the same, they are arranged in a different order.  Some terms, such as int,
1272 * are implied in one, and explicitly named in the other.  Given a base type
1273 * as input, this routine will return a common name, along with an intr_t
1274 * that reflects said name.
1275 */
1276static intr_t *
1277die_base_name_parse(const char *name, char **newp)
1278{
1279	char buf[100];
1280	char const *base;
1281	char *c;
1282	int nlong = 0, nshort = 0, nchar = 0, nint = 0;
1283	int sign = 1;
1284	char fmt = '\0';
1285	intr_t *intr;
1286
1287	if (strlen(name) > sizeof (buf) - 1)
1288		terminate("base type name \"%s\" is too long\n", name);
1289
1290	strncpy(buf, name, sizeof (buf));
1291
1292	for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) {
1293		if (strcmp(c, "signed") == 0)
1294			sign = 1;
1295		else if (strcmp(c, "unsigned") == 0)
1296			sign = 0;
1297		else if (strcmp(c, "long") == 0)
1298			nlong++;
1299		else if (strcmp(c, "char") == 0) {
1300			nchar++;
1301			fmt = 'c';
1302		} else if (strcmp(c, "short") == 0)
1303			nshort++;
1304		else if (strcmp(c, "int") == 0)
1305			nint++;
1306		else {
1307			/*
1308			 * If we don't recognize any of the tokens, we'll tell
1309			 * the caller to fall back to the dwarf-provided
1310			 * encoding information.
1311			 */
1312			return (NULL);
1313		}
1314	}
1315
1316	if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2)
1317		return (NULL);
1318
1319	if (nchar > 0) {
1320		if (nlong > 0 || nshort > 0 || nint > 0)
1321			return (NULL);
1322
1323		base = "char";
1324
1325	} else if (nshort > 0) {
1326		if (nlong > 0)
1327			return (NULL);
1328
1329		base = "short";
1330
1331	} else if (nlong > 0) {
1332		base = "long";
1333
1334	} else {
1335		base = "int";
1336	}
1337
1338	intr = xcalloc(sizeof (intr_t));
1339	intr->intr_type = INTR_INT;
1340	intr->intr_signed = sign;
1341	intr->intr_iformat = fmt;
1342
1343	snprintf(buf, sizeof (buf), "%s%s%s",
1344	    (sign ? "" : "unsigned "),
1345	    (nlong > 1 ? "long " : ""),
1346	    base);
1347
1348	*newp = xstrdup(buf);
1349	return (intr);
1350}
1351
1352typedef struct fp_size_map {
1353	size_t fsm_typesz[2];	/* size of {32,64} type */
1354	uint_t fsm_enc[3];	/* CTF_FP_* for {bare,cplx,imagry} type */
1355} fp_size_map_t;
1356
1357static const fp_size_map_t fp_encodings[] = {
1358	{ { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } },
1359	{ { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } },
1360#ifdef __sparc
1361	{ { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1362#else
1363	{ { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } },
1364#endif
1365	{ { 0, 0 }, { 0, 0, 0 } }
1366};
1367
1368static uint_t
1369die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz)
1370{
1371	const fp_size_map_t *map = fp_encodings;
1372	uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t);
1373	uint_t mult = 1, col = 0;
1374
1375	if (enc == DW_ATE_complex_float) {
1376		mult = 2;
1377		col = 1;
1378	} else if (enc == DW_ATE_imaginary_float
1379#if defined(sun)
1380	    || enc == DW_ATE_SUN_imaginary_float
1381#endif
1382	    )
1383		col = 2;
1384
1385	while (map->fsm_typesz[szidx] != 0) {
1386		if (map->fsm_typesz[szidx] * mult == sz)
1387			return (map->fsm_enc[col]);
1388		map++;
1389	}
1390
1391	terminate("die %llu: unrecognized real type size %u\n", off, sz);
1392	/*NOTREACHED*/
1393	return (0);
1394}
1395
1396static intr_t *
1397die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz)
1398{
1399	intr_t *intr = xcalloc(sizeof (intr_t));
1400	Dwarf_Signed enc;
1401
1402	(void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ);
1403
1404	switch (enc) {
1405	case DW_ATE_unsigned:
1406	case DW_ATE_address:
1407		intr->intr_type = INTR_INT;
1408		break;
1409	case DW_ATE_unsigned_char:
1410		intr->intr_type = INTR_INT;
1411		intr->intr_iformat = 'c';
1412		break;
1413	case DW_ATE_signed:
1414		intr->intr_type = INTR_INT;
1415		intr->intr_signed = 1;
1416		break;
1417	case DW_ATE_signed_char:
1418		intr->intr_type = INTR_INT;
1419		intr->intr_signed = 1;
1420		intr->intr_iformat = 'c';
1421		break;
1422	case DW_ATE_boolean:
1423		intr->intr_type = INTR_INT;
1424		intr->intr_signed = 1;
1425		intr->intr_iformat = 'b';
1426		break;
1427	case DW_ATE_float:
1428	case DW_ATE_complex_float:
1429	case DW_ATE_imaginary_float:
1430#if defined(sun)
1431	case DW_ATE_SUN_imaginary_float:
1432	case DW_ATE_SUN_interval_float:
1433#endif
1434		intr->intr_type = INTR_REAL;
1435		intr->intr_signed = 1;
1436		intr->intr_fformat = die_base_type2enc(dw, off, enc, sz);
1437		break;
1438	default:
1439		terminate("die %llu: unknown base type encoding 0x%llx\n",
1440		    off, enc);
1441	}
1442
1443	return (intr);
1444}
1445
1446static void
1447die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp)
1448{
1449	Dwarf_Unsigned sz;
1450	intr_t *intr;
1451	char *new;
1452
1453	debug(3, "die %llu: creating base type\n", off);
1454
1455	/*
1456	 * The compilers have their own clever (internally inconsistent) ideas
1457	 * as to what base types should look like.  Some times gcc will, for
1458	 * example, use DW_ATE_signed_char for char.  Other times, however, it
1459	 * will use DW_ATE_signed.  Needless to say, this causes some problems
1460	 * down the road, particularly with merging.  We do, however, use the
1461	 * DWARF idea of type sizes, as this allows us to avoid caring about
1462	 * the data model.
1463	 */
1464	(void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ);
1465
1466	/* Check for bogus gcc DW_AT_byte_size attribute */
1467	if (sz == (unsigned)-1) {
1468		printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n",
1469		    __func__);
1470		sz = 0;
1471	}
1472
1473	if (tdp->t_name == NULL)
1474		terminate("die %llu: base type without name\n", off);
1475
1476	/* XXX make a name parser for float too */
1477	if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) {
1478		/* Found it.  We'll use the parsed version */
1479		debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off,
1480		    tdesc_name(tdp), new);
1481
1482		free(tdp->t_name);
1483		tdp->t_name = new;
1484	} else {
1485		/*
1486		 * We didn't recognize the type, so we'll create an intr_t
1487		 * based on the DWARF data.
1488		 */
1489		debug(3, "die %llu: using dwarf data for base \"%s\"\n", off,
1490		    tdesc_name(tdp));
1491
1492		intr = die_base_from_dwarf(dw, base, off, sz);
1493	}
1494
1495	intr->intr_nbits = sz * 8;
1496
1497	tdp->t_type = INTRINSIC;
1498	tdp->t_intr = intr;
1499	tdp->t_size = sz;
1500
1501	tdp->t_flags |= TDESC_F_RESOLVED;
1502}
1503
1504static void
1505die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp,
1506    int type, const char *typename)
1507{
1508	Dwarf_Attribute attr;
1509
1510	debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type);
1511
1512	tdp->t_type = type;
1513
1514	if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) {
1515		tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type);
1516	} else {
1517		tdp->t_tdesc = tdesc_intr_void(dw);
1518	}
1519
1520	if (type == POINTER)
1521		tdp->t_size = dw->dw_ptrsz;
1522
1523	tdp->t_flags |= TDESC_F_RESOLVED;
1524
1525	if (type == TYPEDEF) {
1526		iidesc_t *ii = xcalloc(sizeof (iidesc_t));
1527		ii->ii_type = II_TYPE;
1528		ii->ii_name = xstrdup(tdp->t_name);
1529		ii->ii_dtype = tdp;
1530
1531		iidesc_add(dw->dw_td->td_iihash, ii);
1532	}
1533}
1534
1535static void
1536die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1537{
1538	die_through_create(dw, die, off, tdp, TYPEDEF, "typedef");
1539}
1540
1541static void
1542die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1543{
1544	die_through_create(dw, die, off, tdp, CONST, "const");
1545}
1546
1547static void
1548die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1549{
1550	die_through_create(dw, die, off, tdp, POINTER, "pointer");
1551}
1552
1553static void
1554die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1555{
1556	die_through_create(dw, die, off, tdp, RESTRICT, "restrict");
1557}
1558
1559static void
1560die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp)
1561{
1562	die_through_create(dw, die, off, tdp, VOLATILE, "volatile");
1563}
1564
1565/*ARGSUSED3*/
1566static void
1567die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1568{
1569	Dwarf_Die arg;
1570	Dwarf_Half tag;
1571	iidesc_t *ii;
1572	char *name;
1573
1574	debug(3, "die %llu <%llx>: creating function definition\n", off, off);
1575
1576	/*
1577	 * We'll begin by processing any type definition nodes that may be
1578	 * lurking underneath this one.
1579	 */
1580	for (arg = die_child(dw, die); arg != NULL;
1581	    arg = die_sibling(dw, arg)) {
1582		if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter &&
1583		    tag != DW_TAG_variable) {
1584			/* Nested type declaration */
1585			die_create_one(dw, arg);
1586		}
1587	}
1588
1589	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) {
1590		/*
1591		 * We process neither prototypes nor subprograms without
1592		 * names.
1593		 */
1594		return;
1595	}
1596
1597	ii = xcalloc(sizeof (iidesc_t));
1598	ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN;
1599	ii->ii_name = name;
1600	if (ii->ii_type == II_SFUN)
1601		ii->ii_owner = xstrdup(dw->dw_cuname);
1602
1603	debug(3, "die %llu: function %s is %s\n", off, ii->ii_name,
1604	    (ii->ii_type == II_GFUN ? "global" : "static"));
1605
1606	if (die_attr(dw, die, DW_AT_type, 0) != NULL)
1607		ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1608	else
1609		ii->ii_dtype = tdesc_intr_void(dw);
1610
1611	for (arg = die_child(dw, die); arg != NULL;
1612	    arg = die_sibling(dw, arg)) {
1613		char *name1;
1614
1615		debug(3, "die %llu: looking at sub member at %llu\n",
1616		    off, die_off(dw, die));
1617
1618		if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1619			continue;
1620
1621		if ((name1 = die_name(dw, arg)) == NULL) {
1622			terminate("die %llu: func arg %d has no name\n",
1623			    off, ii->ii_nargs + 1);
1624		}
1625
1626		if (strcmp(name1, "...") == 0) {
1627			free(name1);
1628			ii->ii_vargs = 1;
1629			continue;
1630		}
1631
1632		ii->ii_nargs++;
1633	}
1634
1635	if (ii->ii_nargs > 0) {
1636		int i;
1637
1638		debug(3, "die %llu: function has %d argument%s\n", off,
1639		    ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s"));
1640
1641		ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs);
1642
1643		for (arg = die_child(dw, die), i = 0;
1644		    arg != NULL && i < ii->ii_nargs;
1645		    arg = die_sibling(dw, arg)) {
1646			if (die_tag(dw, arg) != DW_TAG_formal_parameter)
1647				continue;
1648
1649			ii->ii_args[i++] = die_lookup_pass1(dw, arg,
1650			    DW_AT_type);
1651		}
1652	}
1653
1654	iidesc_add(dw->dw_td->td_iihash, ii);
1655}
1656
1657/*ARGSUSED3*/
1658static void
1659die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused)
1660{
1661	iidesc_t *ii;
1662	char *name;
1663
1664	debug(3, "die %llu: creating object definition\n", off);
1665
1666	if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL)
1667		return; /* skip prototypes and nameless objects */
1668
1669	ii = xcalloc(sizeof (iidesc_t));
1670	ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR;
1671	ii->ii_name = name;
1672	ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type);
1673	if (ii->ii_type == II_SVAR)
1674		ii->ii_owner = xstrdup(dw->dw_cuname);
1675
1676	iidesc_add(dw->dw_td->td_iihash, ii);
1677}
1678
1679/*ARGSUSED2*/
1680static int
1681die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused)
1682{
1683	if (fwd->t_flags & TDESC_F_RESOLVED)
1684		return (1);
1685
1686	if (fwd->t_tdesc != NULL) {
1687		debug(3, "tdp %u: unforwarded %s\n", fwd->t_id,
1688		    tdesc_name(fwd));
1689		*fwdp = fwd->t_tdesc;
1690	}
1691
1692	fwd->t_flags |= TDESC_F_RESOLVED;
1693
1694	return (1);
1695}
1696
1697/*ARGSUSED*/
1698static void
1699die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused)
1700{
1701	Dwarf_Die child = die_child(dw, die);
1702
1703	if (child != NULL)
1704		die_create(dw, child);
1705}
1706
1707/*
1708 * Used to map the die to a routine which can parse it, using the tag to do the
1709 * mapping.  While the processing of most tags entails the creation of a tdesc,
1710 * there are a few which don't - primarily those which result in the creation of
1711 * iidescs which refer to existing tdescs.
1712 */
1713
1714#define	DW_F_NOTDP	0x1	/* Don't create a tdesc for the creator */
1715
1716typedef struct die_creator {
1717	Dwarf_Half dc_tag;
1718	uint16_t dc_flags;
1719	void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *);
1720} die_creator_t;
1721
1722static const die_creator_t die_creators[] = {
1723	{ DW_TAG_array_type,		0,		die_array_create },
1724	{ DW_TAG_enumeration_type,	0,		die_enum_create },
1725	{ DW_TAG_lexical_block,		DW_F_NOTDP,	die_lexblk_descend },
1726	{ DW_TAG_pointer_type,		0,		die_pointer_create },
1727	{ DW_TAG_structure_type,	0,		die_struct_create },
1728	{ DW_TAG_subroutine_type,	0,		die_funcptr_create },
1729	{ DW_TAG_typedef,		0,		die_typedef_create },
1730	{ DW_TAG_union_type,		0,		die_union_create },
1731	{ DW_TAG_base_type,		0,		die_base_create },
1732	{ DW_TAG_const_type,		0,		die_const_create },
1733	{ DW_TAG_subprogram,		DW_F_NOTDP,	die_function_create },
1734	{ DW_TAG_variable,		DW_F_NOTDP,	die_variable_create },
1735	{ DW_TAG_volatile_type,		0,		die_volatile_create },
1736	{ DW_TAG_restrict_type,		0,		die_restrict_create },
1737	{ 0, 0, NULL }
1738};
1739
1740static const die_creator_t *
1741die_tag2ctor(Dwarf_Half tag)
1742{
1743	const die_creator_t *dc;
1744
1745	for (dc = die_creators; dc->dc_create != NULL; dc++) {
1746		if (dc->dc_tag == tag)
1747			return (dc);
1748	}
1749
1750	return (NULL);
1751}
1752
1753static void
1754die_create_one(dwarf_t *dw, Dwarf_Die die)
1755{
1756	Dwarf_Off off = die_off(dw, die);
1757	const die_creator_t *dc;
1758	Dwarf_Half tag;
1759	tdesc_t *tdp;
1760
1761	debug(3, "die %llu <%llx>: create_one\n", off, off);
1762
1763	if (off > dw->dw_maxoff) {
1764		terminate("illegal die offset %llu (max %llu)\n", off,
1765		    dw->dw_maxoff);
1766	}
1767
1768	tag = die_tag(dw, die);
1769
1770	if ((dc = die_tag2ctor(tag)) == NULL) {
1771		debug(2, "die %llu: ignoring tag type %x\n", off, tag);
1772		return;
1773	}
1774
1775	if ((tdp = tdesc_lookup(dw, off)) == NULL &&
1776	    !(dc->dc_flags & DW_F_NOTDP)) {
1777		tdp = xcalloc(sizeof (tdesc_t));
1778		tdp->t_id = off;
1779		tdesc_add(dw, tdp);
1780	}
1781
1782	if (tdp != NULL)
1783		tdp->t_name = die_name(dw, die);
1784
1785	dc->dc_create(dw, die, off, tdp);
1786}
1787
1788static void
1789die_create(dwarf_t *dw, Dwarf_Die die)
1790{
1791	do {
1792		die_create_one(dw, die);
1793	} while ((die = die_sibling(dw, die)) != NULL);
1794}
1795
1796static tdtrav_cb_f die_resolvers[] = {
1797	NULL,
1798	NULL,			/* intrinsic */
1799	NULL,			/* pointer */
1800	die_array_resolve,	/* array */
1801	NULL,			/* function */
1802	die_sou_resolve,	/* struct */
1803	die_sou_resolve,	/* union */
1804	die_enum_resolve,	/* enum */
1805	die_fwd_resolve,	/* forward */
1806	NULL,			/* typedef */
1807	NULL,			/* typedef unres */
1808	NULL,			/* volatile */
1809	NULL,			/* const */
1810	NULL,			/* restrict */
1811};
1812
1813static tdtrav_cb_f die_fail_reporters[] = {
1814	NULL,
1815	NULL,			/* intrinsic */
1816	NULL,			/* pointer */
1817	die_array_failed,	/* array */
1818	NULL,			/* function */
1819	die_sou_failed,		/* struct */
1820	die_sou_failed,		/* union */
1821	NULL,			/* enum */
1822	NULL,			/* forward */
1823	NULL,			/* typedef */
1824	NULL,			/* typedef unres */
1825	NULL,			/* volatile */
1826	NULL,			/* const */
1827	NULL,			/* restrict */
1828};
1829
1830static void
1831die_resolve(dwarf_t *dw)
1832{
1833	int last = -1;
1834	int pass = 0;
1835
1836	do {
1837		pass++;
1838		dw->dw_nunres = 0;
1839
1840		(void) iitraverse_hash(dw->dw_td->td_iihash,
1841		    &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw);
1842
1843		debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres);
1844
1845		if ((int) dw->dw_nunres == last) {
1846			fprintf(stderr, "%s: failed to resolve the following "
1847			    "types:\n", progname);
1848
1849			(void) iitraverse_hash(dw->dw_td->td_iihash,
1850			    &dw->dw_td->td_curvgen, NULL, NULL,
1851			    die_fail_reporters, dw);
1852
1853			terminate("failed to resolve types\n");
1854		}
1855
1856		last = dw->dw_nunres;
1857
1858	} while (dw->dw_nunres != 0);
1859}
1860
1861/*
1862 * Any object containing a function or object symbol at any scope should also
1863 * contain DWARF data.
1864 */
1865static boolean_t
1866should_have_dwarf(Elf *elf)
1867{
1868	Elf_Scn *scn = NULL;
1869	Elf_Data *data = NULL;
1870	GElf_Shdr shdr;
1871	GElf_Sym sym;
1872	uint32_t symdx = 0;
1873	size_t nsyms = 0;
1874	boolean_t found = B_FALSE;
1875
1876	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1877		gelf_getshdr(scn, &shdr);
1878
1879		if (shdr.sh_type == SHT_SYMTAB) {
1880			found = B_TRUE;
1881			break;
1882		}
1883	}
1884
1885	if (!found)
1886		terminate("cannot convert stripped objects\n");
1887
1888	data = elf_getdata(scn, NULL);
1889	nsyms = shdr.sh_size / shdr.sh_entsize;
1890
1891	for (symdx = 0; symdx < nsyms; symdx++) {
1892		gelf_getsym(data, symdx, &sym);
1893
1894		if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) ||
1895		    (GELF_ST_TYPE(sym.st_info) == STT_TLS) ||
1896		    (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) {
1897			char *name;
1898
1899			name = elf_strptr(elf, shdr.sh_link, sym.st_name);
1900
1901			/* Studio emits these local symbols regardless */
1902			if ((strcmp(name, "Bbss.bss") != 0) &&
1903			    (strcmp(name, "Ttbss.bss") != 0) &&
1904			    (strcmp(name, "Ddata.data") != 0) &&
1905			    (strcmp(name, "Ttdata.data") != 0) &&
1906			    (strcmp(name, "Drodata.rodata") != 0))
1907				return (B_TRUE);
1908		}
1909	}
1910
1911	return (B_FALSE);
1912}
1913
1914/*ARGSUSED*/
1915int
1916dw_read(tdata_t *td, Elf *elf, char *filename __unused)
1917{
1918	Dwarf_Unsigned abboff, hdrlen, nxthdr;
1919	Dwarf_Half vers, addrsz;
1920	Dwarf_Die cu = 0;
1921	Dwarf_Die child = 0;
1922	dwarf_t dw;
1923	char *prod = NULL;
1924	int rc;
1925
1926	bzero(&dw, sizeof (dwarf_t));
1927	dw.dw_td = td;
1928	dw.dw_ptrsz = elf_ptrsz(elf);
1929	dw.dw_mfgtid_last = TID_MFGTID_BASE;
1930	dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp);
1931	dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1932	    tdesc_namecmp);
1933	dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash,
1934	    tdesc_namecmp);
1935
1936	if ((rc = dwarf_elf_init(elf, DW_DLC_READ, &dw.dw_dw,
1937	    &dw.dw_err)) == DW_DLV_NO_ENTRY) {
1938		if (should_have_dwarf(elf)) {
1939			errno = ENOENT;
1940			return (-1);
1941		} else {
1942			return (0);
1943		}
1944	} else if (rc != DW_DLV_OK) {
1945		if (dwarf_errno(&dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) {
1946			/*
1947			 * There's no type data in the DWARF section, but
1948			 * libdwarf is too clever to handle that properly.
1949			 */
1950			return (0);
1951		}
1952
1953		terminate("failed to initialize DWARF: %s\n",
1954		    dwarf_errmsg(&dw.dw_err));
1955	}
1956
1957	if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff,
1958	    &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_OK)
1959		terminate("rc = %d %s\n", rc, dwarf_errmsg(&dw.dw_err));
1960
1961	if ((cu = die_sibling(&dw, NULL)) == NULL ||
1962	    (((child = die_child(&dw, cu)) == NULL) &&
1963	    should_have_dwarf(elf))) {
1964		terminate("file does not contain dwarf type data "
1965		    "(try compiling with -g)\n");
1966	} else if (child == NULL) {
1967		return (0);
1968	}
1969
1970	dw.dw_maxoff = nxthdr - 1;
1971
1972	if (dw.dw_maxoff > TID_FILEMAX)
1973		terminate("file contains too many types\n");
1974
1975	debug(1, "DWARF version: %d\n", vers);
1976	if (vers != DWARF_VERSION) {
1977		terminate("file contains incompatible version %d DWARF code "
1978		    "(version 2 required)\n", vers);
1979	}
1980
1981	if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) {
1982		debug(1, "DWARF emitter: %s\n", prod);
1983		free(prod);
1984	}
1985
1986	if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) {
1987		char *base = xstrdup(basename(dw.dw_cuname));
1988		free(dw.dw_cuname);
1989		dw.dw_cuname = base;
1990
1991		debug(1, "CU name: %s\n", dw.dw_cuname);
1992	}
1993
1994	if ((child = die_child(&dw, cu)) != NULL)
1995		die_create(&dw, child);
1996
1997	if ((rc = dwarf_next_cu_header(dw.dw_dw, &hdrlen, &vers, &abboff,
1998	    &addrsz, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY)
1999		terminate("multiple compilation units not supported\n");
2000
2001	(void) dwarf_finish(&dw.dw_dw, &dw.dw_err);
2002
2003	die_resolve(&dw);
2004
2005	cvt_fixups(td, dw.dw_ptrsz);
2006
2007	/* leak the dwarf_t */
2008
2009	return (0);
2010}
2011