ctfmerge.c revision 297077
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28/*
29 * Given several files containing CTF data, merge and uniquify that data into
30 * a single CTF section in an output file.
31 *
32 * Merges can proceed independently.  As such, we perform the merges in parallel
33 * using a worker thread model.  A given glob of CTF data (either all of the CTF
34 * data from a single input file, or the result of one or more merges) can only
35 * be involved in a single merge at any given time, so the process decreases in
36 * parallelism, especially towards the end, as more and more files are
37 * consolidated, finally resulting in a single merge of two large CTF graphs.
38 * Unfortunately, the last merge is also the slowest, as the two graphs being
39 * merged are each the product of merges of half of the input files.
40 *
41 * The algorithm consists of two phases, described in detail below.  The first
42 * phase entails the merging of CTF data in groups of eight.  The second phase
43 * takes the results of Phase I, and merges them two at a time.  This disparity
44 * is due to an observation that the merge time increases at least quadratically
45 * with the size of the CTF data being merged.  As such, merges of CTF graphs
46 * newly read from input files are much faster than merges of CTF graphs that
47 * are themselves the results of prior merges.
48 *
49 * A further complication is the need to ensure the repeatability of CTF merges.
50 * That is, a merge should produce the same output every time, given the same
51 * input.  In both phases, this consistency requirement is met by imposing an
52 * ordering on the merge process, thus ensuring that a given set of input files
53 * are merged in the same order every time.
54 *
55 *   Phase I
56 *
57 *   The main thread reads the input files one by one, transforming the CTF
58 *   data they contain into tdata structures.  When a given file has been read
59 *   and parsed, it is placed on the work queue for retrieval by worker threads.
60 *
61 *   Central to Phase I is the Work In Progress (wip) array, which is used to
62 *   merge batches of files in a predictable order.  Files are read by the main
63 *   thread, and are merged into wip array elements in round-robin order.  When
64 *   the number of files merged into a given array slot equals the batch size,
65 *   the merged CTF graph in that array is added to the done slot in order by
66 *   array slot.
67 *
68 *   For example, consider a case where we have five input files, a batch size
69 *   of two, a wip array size of two, and two worker threads (T1 and T2).
70 *
71 *    1. The wip array elements are assigned initial batch numbers 0 and 1.
72 *    2. T1 reads an input file from the input queue (wq_queue).  This is the
73 *       first input file, so it is placed into wip[0].  The second file is
74 *       similarly read and placed into wip[1].  The wip array slots now contain
75 *       one file each (wip_nmerged == 1).
76 *    3. T1 reads the third input file, which it merges into wip[0].  The
77 *       number of files in wip[0] is equal to the batch size.
78 *    4. T2 reads the fourth input file, which it merges into wip[1].  wip[1]
79 *       is now full too.
80 *    5. T2 attempts to place the contents of wip[1] on the done queue
81 *       (wq_done_queue), but it can't, since the batch ID for wip[1] is 1.
82 *       Batch 0 needs to be on the done queue before batch 1 can be added, so
83 *       T2 blocks on wip[1]'s cv.
84 *    6. T1 attempts to place the contents of wip[0] on the done queue, and
85 *       succeeds, updating wq_lastdonebatch to 0.  It clears wip[0], and sets
86 *       its batch ID to 2.  T1 then signals wip[1]'s cv to awaken T2.
87 *    7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that
88 *       batch 1 can now be added.  It adds wip[1] to the done queue, clears
89 *       wip[1], and sets its batch ID to 3.  It signals wip[0]'s cv, and
90 *       restarts.
91 *
92 *   The above process continues until all input files have been consumed.  At
93 *   this point, a pair of barriers are used to allow a single thread to move
94 *   any partial batches from the wip array to the done array in batch ID order.
95 *   When this is complete, wq_done_queue is moved to wq_queue, and Phase II
96 *   begins.
97 *
98 *	Locking Semantics (Phase I)
99 *
100 *	The input queue (wq_queue) and the done queue (wq_done_queue) are
101 *	protected by separate mutexes - wq_queue_lock and wq_done_queue.  wip
102 *	array slots are protected by their own mutexes, which must be grabbed
103 *	before releasing the input queue lock.  The wip array lock is dropped
104 *	when the thread restarts the loop.  If the array slot was full, the
105 *	array lock will be held while the slot contents are added to the done
106 *	queue.  The done queue lock is used to protect the wip slot cv's.
107 *
108 *	The pow number is protected by the queue lock.  The master batch ID
109 *	and last completed batch (wq_lastdonebatch) counters are protected *in
110 *	Phase I* by the done queue lock.
111 *
112 *   Phase II
113 *
114 *   When Phase II begins, the queue consists of the merged batches from the
115 *   first phase.  Assume we have five batches:
116 *
117 *	Q:	a b c d e
118 *
119 *   Using the same batch ID mechanism we used in Phase I, but without the wip
120 *   array, worker threads remove two entries at a time from the beginning of
121 *   the queue.  These two entries are merged, and are added back to the tail
122 *   of the queue, as follows:
123 *
124 *	Q:	a b c d e	# start
125 *	Q:	c d e ab	# a, b removed, merged, added to end
126 *	Q:	e ab cd		# c, d removed, merged, added to end
127 *	Q:	cd eab		# e, ab removed, merged, added to end
128 *	Q:	cdeab		# cd, eab removed, merged, added to end
129 *
130 *   When one entry remains on the queue, with no merges outstanding, Phase II
131 *   finishes.  We pre-determine the stopping point by pre-calculating the
132 *   number of nodes that will appear on the list.  In the example above, the
133 *   number (wq_ninqueue) is 9.  When ninqueue is 1, we conclude Phase II by
134 *   signaling the main thread via wq_done_cv.
135 *
136 *	Locking Semantics (Phase II)
137 *
138 *	The queue (wq_queue), ninqueue, and the master batch ID and last
139 *	completed batch counters are protected by wq_queue_lock.  The done
140 *	queue and corresponding lock are unused in Phase II as is the wip array.
141 *
142 *   Uniquification
143 *
144 *   We want the CTF data that goes into a given module to be as small as
145 *   possible.  For example, we don't want it to contain any type data that may
146 *   be present in another common module.  As such, after creating the master
147 *   tdata_t for a given module, we can, if requested by the user, uniquify it
148 *   against the tdata_t from another module (genunix in the case of the SunOS
149 *   kernel).  We perform a merge between the tdata_t for this module and the
150 *   tdata_t from genunix.  Nodes found in this module that are not present in
151 *   genunix are added to a third tdata_t - the uniquified tdata_t.
152 *
153 *   Additive Merges
154 *
155 *   In some cases, for example if we are issuing a new version of a common
156 *   module in a patch, we need to make sure that the CTF data already present
157 *   in that module does not change.  Changes to this data would void the CTF
158 *   data in any module that uniquified against the common module.  To preserve
159 *   the existing data, we can perform what is known as an additive merge.  In
160 *   this case, a final uniquification is performed against the CTF data in the
161 *   previous version of the module.  The result will be the placement of new
162 *   and changed data after the existing data, thus preserving the existing type
163 *   ID space.
164 *
165 *   Saving the result
166 *
167 *   When the merges are complete, the resulting tdata_t is placed into the
168 *   output file, replacing the .SUNW_ctf section (if any) already in that file.
169 *
170 * The person who changes the merging thread code in this file without updating
171 * this comment will not live to see the stock hit five.
172 */
173
174#include <stdio.h>
175#include <stdlib.h>
176#include <unistd.h>
177#include <pthread.h>
178#include <assert.h>
179#ifdef illumos
180#include <synch.h>
181#endif
182#include <signal.h>
183#include <libgen.h>
184#include <string.h>
185#include <errno.h>
186#ifdef illumos
187#include <alloca.h>
188#endif
189#include <sys/param.h>
190#include <sys/types.h>
191#include <sys/mman.h>
192#ifdef illumos
193#include <sys/sysconf.h>
194#endif
195
196#include "ctf_headers.h"
197#include "ctftools.h"
198#include "ctfmerge.h"
199#include "traverse.h"
200#include "memory.h"
201#include "fifo.h"
202#include "barrier.h"
203
204#pragma init(bigheap)
205
206#define	MERGE_PHASE1_BATCH_SIZE		8
207#define	MERGE_PHASE1_MAX_SLOTS		5
208#define	MERGE_INPUT_THROTTLE_LEN	10
209
210const char *progname;
211static char *outfile = NULL;
212static char *tmpname = NULL;
213static int dynsym;
214int debug_level = DEBUG_LEVEL;
215static size_t maxpgsize = 0x400000;
216
217
218void
219usage(void)
220{
221	(void) fprintf(stderr,
222	    "Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n"
223	    "       %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n"
224	    "       %*s [-g] [-D uniqlabel] file ...\n"
225	    "       %s [-fgstv] -l label | -L labelenv -o outfile -w withfile "
226	    "file ...\n"
227	    "       %s [-g] -c srcfile destfile\n"
228	    "\n"
229	    "  Note: if -L labelenv is specified and labelenv is not set in\n"
230	    "  the environment, a default value is used.\n",
231	    progname, progname, (int)strlen(progname), " ",
232	    progname, progname);
233}
234
235#ifdef illumos
236static void
237bigheap(void)
238{
239	size_t big, *size;
240	int sizes;
241	struct memcntl_mha mha;
242
243	/*
244	 * First, get the available pagesizes.
245	 */
246	if ((sizes = getpagesizes(NULL, 0)) == -1)
247		return;
248
249	if (sizes == 1 || (size = alloca(sizeof (size_t) * sizes)) == NULL)
250		return;
251
252	if (getpagesizes(size, sizes) == -1)
253		return;
254
255	while (size[sizes - 1] > maxpgsize)
256		sizes--;
257
258	/* set big to the largest allowed page size */
259	big = size[sizes - 1];
260	if (big & (big - 1)) {
261		/*
262		 * The largest page size is not a power of two for some
263		 * inexplicable reason; return.
264		 */
265		return;
266	}
267
268	/*
269	 * Now, align our break to the largest page size.
270	 */
271	if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0)
272		return;
273
274	/*
275	 * set the preferred page size for the heap
276	 */
277	mha.mha_cmd = MHA_MAPSIZE_BSSBRK;
278	mha.mha_flags = 0;
279	mha.mha_pagesize = big;
280
281	(void) memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0);
282}
283#endif	/* illumos */
284
285static void
286finalize_phase_one(workqueue_t *wq)
287{
288	int startslot, i;
289
290	/*
291	 * wip slots are cleared out only when maxbatchsz td's have been merged
292	 * into them.  We're not guaranteed that the number of files we're
293	 * merging is a multiple of maxbatchsz, so there will be some partial
294	 * groups in the wip array.  Move them to the done queue in batch ID
295	 * order, starting with the slot containing the next batch that would
296	 * have been placed on the done queue, followed by the others.
297	 * One thread will be doing this while the others wait at the barrier
298	 * back in worker_thread(), so we don't need to worry about pesky things
299	 * like locks.
300	 */
301
302	for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) {
303		if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) {
304			startslot = i;
305			break;
306		}
307	}
308
309	assert(startslot != -1);
310
311	for (i = startslot; i < startslot + wq->wq_nwipslots; i++) {
312		int slotnum = i % wq->wq_nwipslots;
313		wip_t *wipslot = &wq->wq_wip[slotnum];
314
315		if (wipslot->wip_td != NULL) {
316			debug(2, "clearing slot %d (%d) (saving %d)\n",
317			    slotnum, i, wipslot->wip_nmerged);
318		} else
319			debug(2, "clearing slot %d (%d)\n", slotnum, i);
320
321		if (wipslot->wip_td != NULL) {
322			fifo_add(wq->wq_donequeue, wipslot->wip_td);
323			wq->wq_wip[slotnum].wip_td = NULL;
324		}
325	}
326
327	wq->wq_lastdonebatch = wq->wq_next_batchid++;
328
329	debug(2, "phase one done: donequeue has %d items\n",
330	    fifo_len(wq->wq_donequeue));
331}
332
333static void
334init_phase_two(workqueue_t *wq)
335{
336	int num;
337
338	/*
339	 * We're going to continually merge the first two entries on the queue,
340	 * placing the result on the end, until there's nothing left to merge.
341	 * At that point, everything will have been merged into one.  The
342	 * initial value of ninqueue needs to be equal to the total number of
343	 * entries that will show up on the queue, both at the start of the
344	 * phase and as generated by merges during the phase.
345	 */
346	wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue);
347	while (num != 1) {
348		wq->wq_ninqueue += num / 2;
349		num = num / 2 + num % 2;
350	}
351
352	/*
353	 * Move the done queue to the work queue.  We won't be using the done
354	 * queue in phase 2.
355	 */
356	assert(fifo_len(wq->wq_queue) == 0);
357	fifo_free(wq->wq_queue, NULL);
358	wq->wq_queue = wq->wq_donequeue;
359}
360
361static void
362wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum)
363{
364	pthread_mutex_lock(&wq->wq_donequeue_lock);
365
366	while (wq->wq_lastdonebatch + 1 < slot->wip_batchid)
367		pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock);
368	assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid);
369
370	fifo_add(wq->wq_donequeue, slot->wip_td);
371	wq->wq_lastdonebatch++;
372	pthread_cond_signal(&wq->wq_wip[(slotnum + 1) %
373	    wq->wq_nwipslots].wip_cv);
374
375	/* reset the slot for next use */
376	slot->wip_td = NULL;
377	slot->wip_batchid = wq->wq_next_batchid++;
378
379	pthread_mutex_unlock(&wq->wq_donequeue_lock);
380}
381
382static void
383wip_add_work(wip_t *slot, tdata_t *pow)
384{
385	if (slot->wip_td == NULL) {
386		slot->wip_td = pow;
387		slot->wip_nmerged = 1;
388	} else {
389		debug(2, "%d: merging %p into %p\n", pthread_self(),
390		    (void *)pow, (void *)slot->wip_td);
391
392		merge_into_master(pow, slot->wip_td, NULL, 0);
393		tdata_free(pow);
394
395		slot->wip_nmerged++;
396	}
397}
398
399static void
400worker_runphase1(workqueue_t *wq)
401{
402	wip_t *wipslot;
403	tdata_t *pow;
404	int wipslotnum, pownum;
405
406	for (;;) {
407		pthread_mutex_lock(&wq->wq_queue_lock);
408
409		while (fifo_empty(wq->wq_queue)) {
410			if (wq->wq_nomorefiles == 1) {
411				pthread_cond_broadcast(&wq->wq_work_avail);
412				pthread_mutex_unlock(&wq->wq_queue_lock);
413
414				/* on to phase 2 ... */
415				return;
416			}
417
418			pthread_cond_wait(&wq->wq_work_avail,
419			    &wq->wq_queue_lock);
420		}
421
422		/* there's work to be done! */
423		pow = fifo_remove(wq->wq_queue);
424		pownum = wq->wq_nextpownum++;
425		pthread_cond_broadcast(&wq->wq_work_removed);
426
427		assert(pow != NULL);
428
429		/* merge it into the right slot */
430		wipslotnum = pownum % wq->wq_nwipslots;
431		wipslot = &wq->wq_wip[wipslotnum];
432
433		pthread_mutex_lock(&wipslot->wip_lock);
434
435		pthread_mutex_unlock(&wq->wq_queue_lock);
436
437		wip_add_work(wipslot, pow);
438
439		if (wipslot->wip_nmerged == wq->wq_maxbatchsz)
440			wip_save_work(wq, wipslot, wipslotnum);
441
442		pthread_mutex_unlock(&wipslot->wip_lock);
443	}
444}
445
446static void
447worker_runphase2(workqueue_t *wq)
448{
449	tdata_t *pow1, *pow2;
450	int batchid;
451
452	for (;;) {
453		pthread_mutex_lock(&wq->wq_queue_lock);
454
455		if (wq->wq_ninqueue == 1) {
456			pthread_cond_broadcast(&wq->wq_work_avail);
457			pthread_mutex_unlock(&wq->wq_queue_lock);
458
459			debug(2, "%d: entering p2 completion barrier\n",
460			    pthread_self());
461			if (barrier_wait(&wq->wq_bar1)) {
462				pthread_mutex_lock(&wq->wq_queue_lock);
463				wq->wq_alldone = 1;
464				pthread_cond_signal(&wq->wq_alldone_cv);
465				pthread_mutex_unlock(&wq->wq_queue_lock);
466			}
467
468			return;
469		}
470
471		if (fifo_len(wq->wq_queue) < 2) {
472			pthread_cond_wait(&wq->wq_work_avail,
473			    &wq->wq_queue_lock);
474			pthread_mutex_unlock(&wq->wq_queue_lock);
475			continue;
476		}
477
478		/* there's work to be done! */
479		pow1 = fifo_remove(wq->wq_queue);
480		pow2 = fifo_remove(wq->wq_queue);
481		wq->wq_ninqueue -= 2;
482
483		batchid = wq->wq_next_batchid++;
484
485		pthread_mutex_unlock(&wq->wq_queue_lock);
486
487		debug(2, "%d: merging %p into %p\n", pthread_self(),
488		    (void *)pow1, (void *)pow2);
489		merge_into_master(pow1, pow2, NULL, 0);
490		tdata_free(pow1);
491
492		/*
493		 * merging is complete.  place at the tail of the queue in
494		 * proper order.
495		 */
496		pthread_mutex_lock(&wq->wq_queue_lock);
497		while (wq->wq_lastdonebatch + 1 != batchid) {
498			pthread_cond_wait(&wq->wq_done_cv,
499			    &wq->wq_queue_lock);
500		}
501
502		wq->wq_lastdonebatch = batchid;
503
504		fifo_add(wq->wq_queue, pow2);
505		debug(2, "%d: added %p to queue, len now %d, ninqueue %d\n",
506		    pthread_self(), (void *)pow2, fifo_len(wq->wq_queue),
507		    wq->wq_ninqueue);
508		pthread_cond_broadcast(&wq->wq_done_cv);
509		pthread_cond_signal(&wq->wq_work_avail);
510		pthread_mutex_unlock(&wq->wq_queue_lock);
511	}
512}
513
514/*
515 * Main loop for worker threads.
516 */
517static void
518worker_thread(workqueue_t *wq)
519{
520	worker_runphase1(wq);
521
522	debug(2, "%d: entering first barrier\n", pthread_self());
523
524	if (barrier_wait(&wq->wq_bar1)) {
525
526		debug(2, "%d: doing work in first barrier\n", pthread_self());
527
528		finalize_phase_one(wq);
529
530		init_phase_two(wq);
531
532		debug(2, "%d: ninqueue is %d, %d on queue\n", pthread_self(),
533		    wq->wq_ninqueue, fifo_len(wq->wq_queue));
534	}
535
536	debug(2, "%d: entering second barrier\n", pthread_self());
537
538	(void) barrier_wait(&wq->wq_bar2);
539
540	debug(2, "%d: phase 1 complete\n", pthread_self());
541
542	worker_runphase2(wq);
543}
544
545/*
546 * Pass a tdata_t tree, built from an input file, off to the work queue for
547 * consumption by worker threads.
548 */
549static int
550merge_ctf_cb(tdata_t *td, char *name, void *arg)
551{
552	workqueue_t *wq = arg;
553
554	debug(3, "Adding tdata %p for processing\n", (void *)td);
555
556	pthread_mutex_lock(&wq->wq_queue_lock);
557	while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) {
558		debug(2, "Throttling input (len = %d, throttle = %d)\n",
559		    fifo_len(wq->wq_queue), wq->wq_ithrottle);
560		pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock);
561	}
562
563	fifo_add(wq->wq_queue, td);
564	debug(1, "Thread %d announcing %s\n", pthread_self(), name);
565	pthread_cond_broadcast(&wq->wq_work_avail);
566	pthread_mutex_unlock(&wq->wq_queue_lock);
567
568	return (1);
569}
570
571/*
572 * This program is intended to be invoked from a Makefile, as part of the build.
573 * As such, in the event of a failure or user-initiated interrupt (^C), we need
574 * to ensure that a subsequent re-make will cause ctfmerge to be executed again.
575 * Unfortunately, ctfmerge will usually be invoked directly after (and as part
576 * of the same Makefile rule as) a link, and will operate on the linked file
577 * in place.  If we merely exit upon receipt of a SIGINT, a subsequent make
578 * will notice that the *linked* file is newer than the object files, and thus
579 * will not reinvoke ctfmerge.  The only way to ensure that a subsequent make
580 * reinvokes ctfmerge, is to remove the file to which we are adding CTF
581 * data (confusingly named the output file).  This means that the link will need
582 * to happen again, but links are generally fast, and we can't allow the merge
583 * to be skipped.
584 *
585 * Another possibility would be to block SIGINT entirely - to always run to
586 * completion.  The run time of ctfmerge can, however, be measured in minutes
587 * in some cases, so this is not a valid option.
588 */
589static void
590handle_sig(int sig)
591{
592	terminate("Caught signal %d - exiting\n", sig);
593}
594
595static void
596terminate_cleanup(void)
597{
598	int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1;
599
600	if (tmpname != NULL && dounlink)
601		unlink(tmpname);
602
603	if (outfile == NULL)
604		return;
605
606#if !defined(__FreeBSD__)
607	if (dounlink) {
608		fprintf(stderr, "Removing %s\n", outfile);
609		unlink(outfile);
610	}
611#endif
612}
613
614static void
615copy_ctf_data(char *srcfile, char *destfile, int keep_stabs)
616{
617	tdata_t *srctd;
618
619	if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0)
620		terminate("No CTF data found in source file %s\n", srcfile);
621
622	tmpname = mktmpname(destfile, ".ctf");
623	write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | CTF_SWAP_BYTES | keep_stabs);
624	if (rename(tmpname, destfile) != 0) {
625		terminate("Couldn't rename temp file %s to %s", tmpname,
626		    destfile);
627	}
628	free(tmpname);
629	tdata_free(srctd);
630}
631
632static void
633wq_init(workqueue_t *wq, int nfiles)
634{
635	int throttle, nslots, i;
636
637	if (getenv("CTFMERGE_MAX_SLOTS"))
638		nslots = atoi(getenv("CTFMERGE_MAX_SLOTS"));
639	else
640		nslots = MERGE_PHASE1_MAX_SLOTS;
641
642	if (getenv("CTFMERGE_PHASE1_BATCH_SIZE"))
643		wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE"));
644	else
645		wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE;
646
647	nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) /
648	    wq->wq_maxbatchsz);
649
650	wq->wq_wip = xcalloc(sizeof (wip_t) * nslots);
651	wq->wq_nwipslots = nslots;
652	wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots);
653	wq->wq_thread = xmalloc(sizeof (pthread_t) * wq->wq_nthreads);
654
655	if (getenv("CTFMERGE_INPUT_THROTTLE"))
656		throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE"));
657	else
658		throttle = MERGE_INPUT_THROTTLE_LEN;
659	wq->wq_ithrottle = throttle * wq->wq_nthreads;
660
661	debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots,
662	    wq->wq_nthreads);
663
664	wq->wq_next_batchid = 0;
665
666	for (i = 0; i < nslots; i++) {
667		pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL);
668		wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++;
669	}
670
671	pthread_mutex_init(&wq->wq_queue_lock, NULL);
672	wq->wq_queue = fifo_new();
673	pthread_cond_init(&wq->wq_work_avail, NULL);
674	pthread_cond_init(&wq->wq_work_removed, NULL);
675	wq->wq_ninqueue = nfiles;
676	wq->wq_nextpownum = 0;
677
678	pthread_mutex_init(&wq->wq_donequeue_lock, NULL);
679	wq->wq_donequeue = fifo_new();
680	wq->wq_lastdonebatch = -1;
681
682	pthread_cond_init(&wq->wq_done_cv, NULL);
683
684	pthread_cond_init(&wq->wq_alldone_cv, NULL);
685	wq->wq_alldone = 0;
686
687	barrier_init(&wq->wq_bar1, wq->wq_nthreads);
688	barrier_init(&wq->wq_bar2, wq->wq_nthreads);
689
690	wq->wq_nomorefiles = 0;
691}
692
693static void
694start_threads(workqueue_t *wq)
695{
696	sigset_t sets;
697	int i;
698
699	sigemptyset(&sets);
700	sigaddset(&sets, SIGINT);
701	sigaddset(&sets, SIGQUIT);
702	sigaddset(&sets, SIGTERM);
703	pthread_sigmask(SIG_BLOCK, &sets, NULL);
704
705	for (i = 0; i < wq->wq_nthreads; i++) {
706		pthread_create(&wq->wq_thread[i], NULL,
707		    (void *(*)(void *))worker_thread, wq);
708	}
709
710#ifdef illumos
711	sigset(SIGINT, handle_sig);
712	sigset(SIGQUIT, handle_sig);
713	sigset(SIGTERM, handle_sig);
714#else
715	signal(SIGINT, handle_sig);
716	signal(SIGQUIT, handle_sig);
717	signal(SIGTERM, handle_sig);
718#endif
719	pthread_sigmask(SIG_UNBLOCK, &sets, NULL);
720}
721
722static void
723join_threads(workqueue_t *wq)
724{
725	int i;
726
727	for (i = 0; i < wq->wq_nthreads; i++) {
728		pthread_join(wq->wq_thread[i], NULL);
729	}
730}
731
732static int
733strcompare(const void *p1, const void *p2)
734{
735	char *s1 = *((char **)p1);
736	char *s2 = *((char **)p2);
737
738	return (strcmp(s1, s2));
739}
740
741/*
742 * Core work queue structure; passed to worker threads on thread creation
743 * as the main point of coordination.  Allocate as a static structure; we
744 * could have put this into a local variable in main, but passing a pointer
745 * into your stack to another thread is fragile at best and leads to some
746 * hard-to-debug failure modes.
747 */
748static workqueue_t wq;
749
750int
751main(int argc, char **argv)
752{
753	tdata_t *mstrtd, *savetd;
754	char *uniqfile = NULL, *uniqlabel = NULL;
755	char *withfile = NULL;
756	char *label = NULL;
757	char **ifiles, **tifiles;
758	int verbose = 0, docopy = 0;
759	int write_fuzzy_match = 0;
760	int keep_stabs = 0;
761	int require_ctf = 0;
762	int nifiles, nielems;
763	int c, i, idx, tidx, err;
764
765	progname = basename(argv[0]);
766
767	if (getenv("CTFMERGE_DEBUG_LEVEL"))
768		debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL"));
769
770	err = 0;
771	while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) {
772		switch (c) {
773		case 'c':
774			docopy = 1;
775			break;
776		case 'd':
777			/* Uniquify against `uniqfile' */
778			uniqfile = optarg;
779			break;
780		case 'D':
781			/* Uniquify against label `uniqlabel' in `uniqfile' */
782			uniqlabel = optarg;
783			break;
784		case 'f':
785			write_fuzzy_match = CTF_FUZZY_MATCH;
786			break;
787		case 'g':
788			keep_stabs = CTF_KEEP_STABS;
789			break;
790		case 'l':
791			/* Label merged types with `label' */
792			label = optarg;
793			break;
794		case 'L':
795			/* Label merged types with getenv(`label`) */
796			if ((label = getenv(optarg)) == NULL)
797				label = CTF_DEFAULT_LABEL;
798			break;
799		case 'o':
800			/* Place merged types in CTF section in `outfile' */
801			outfile = optarg;
802			break;
803		case 't':
804			/* Insist *all* object files built from C have CTF */
805			require_ctf = 1;
806			break;
807		case 'v':
808			/* More debugging information */
809			verbose = 1;
810			break;
811		case 'w':
812			/* Additive merge with data from `withfile' */
813			withfile = optarg;
814			break;
815		case 's':
816			/* use the dynsym rather than the symtab */
817			dynsym = CTF_USE_DYNSYM;
818			break;
819		default:
820			usage();
821			exit(2);
822		}
823	}
824
825	/* Validate arguments */
826	if (docopy) {
827		if (uniqfile != NULL || uniqlabel != NULL || label != NULL ||
828		    outfile != NULL || withfile != NULL || dynsym != 0)
829			err++;
830
831		if (argc - optind != 2)
832			err++;
833	} else {
834		if (uniqfile != NULL && withfile != NULL)
835			err++;
836
837		if (uniqlabel != NULL && uniqfile == NULL)
838			err++;
839
840		if (outfile == NULL || label == NULL)
841			err++;
842
843		if (argc - optind == 0)
844			err++;
845	}
846
847	if (err) {
848		usage();
849		exit(2);
850	}
851
852	if (getenv("STRIPSTABS_KEEP_STABS") != NULL)
853		keep_stabs = CTF_KEEP_STABS;
854
855	if (uniqfile && access(uniqfile, R_OK) != 0) {
856		warning("Uniquification file %s couldn't be opened and "
857		    "will be ignored.\n", uniqfile);
858		uniqfile = NULL;
859	}
860	if (withfile && access(withfile, R_OK) != 0) {
861		warning("With file %s couldn't be opened and will be "
862		    "ignored.\n", withfile);
863		withfile = NULL;
864	}
865	if (outfile && access(outfile, R_OK|W_OK) != 0)
866		terminate("Cannot open output file %s for r/w", outfile);
867
868	/*
869	 * This is ugly, but we don't want to have to have a separate tool
870	 * (yet) just for copying an ELF section with our specific requirements,
871	 * so we shoe-horn a copier into ctfmerge.
872	 */
873	if (docopy) {
874		copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs);
875
876		exit(0);
877	}
878
879	set_terminate_cleanup(terminate_cleanup);
880
881	/* Sort the input files and strip out duplicates */
882	nifiles = argc - optind;
883	ifiles = xmalloc(sizeof (char *) * nifiles);
884	tifiles = xmalloc(sizeof (char *) * nifiles);
885
886	for (i = 0; i < nifiles; i++)
887		tifiles[i] = argv[optind + i];
888	qsort(tifiles, nifiles, sizeof (char *), (int (*)())strcompare);
889
890	ifiles[0] = tifiles[0];
891	for (idx = 0, tidx = 1; tidx < nifiles; tidx++) {
892		if (strcmp(ifiles[idx], tifiles[tidx]) != 0)
893			ifiles[++idx] = tifiles[tidx];
894	}
895	nifiles = idx + 1;
896
897	/* Make sure they all exist */
898	if ((nielems = count_files(ifiles, nifiles)) < 0)
899		terminate("Some input files were inaccessible\n");
900
901	/* Prepare for the merge */
902	wq_init(&wq, nielems);
903
904	start_threads(&wq);
905
906	/*
907	 * Start the merge
908	 *
909	 * We're reading everything from each of the object files, so we
910	 * don't need to specify labels.
911	 */
912	if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb,
913	    &wq, require_ctf) == 0) {
914		/*
915		 * If we're verifying that C files have CTF, it's safe to
916		 * assume that in this case, we're building only from assembly
917		 * inputs.
918		 */
919		if (require_ctf)
920			exit(0);
921		terminate("No ctf sections found to merge\n");
922	}
923
924	pthread_mutex_lock(&wq.wq_queue_lock);
925	wq.wq_nomorefiles = 1;
926	pthread_cond_broadcast(&wq.wq_work_avail);
927	pthread_mutex_unlock(&wq.wq_queue_lock);
928
929	pthread_mutex_lock(&wq.wq_queue_lock);
930	while (wq.wq_alldone == 0)
931		pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock);
932	pthread_mutex_unlock(&wq.wq_queue_lock);
933
934	join_threads(&wq);
935
936	/*
937	 * All requested files have been merged, with the resulting tree in
938	 * mstrtd.  savetd is the tree that will be placed into the output file.
939	 *
940	 * Regardless of whether we're doing a normal uniquification or an
941	 * additive merge, we need a type tree that has been uniquified
942	 * against uniqfile or withfile, as appropriate.
943	 *
944	 * If we're doing a uniquification, we stuff the resulting tree into
945	 * outfile.  Otherwise, we add the tree to the tree already in withfile.
946	 */
947	assert(fifo_len(wq.wq_queue) == 1);
948	mstrtd = fifo_remove(wq.wq_queue);
949
950	if (verbose || debug_level) {
951		debug(2, "Statistics for td %p\n", (void *)mstrtd);
952
953		iidesc_stats(mstrtd->td_iihash);
954	}
955
956	if (uniqfile != NULL || withfile != NULL) {
957		char *reffile, *reflabel = NULL;
958		tdata_t *reftd;
959
960		if (uniqfile != NULL) {
961			reffile = uniqfile;
962			reflabel = uniqlabel;
963		} else
964			reffile = withfile;
965
966		if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb,
967		    &reftd, require_ctf) == 0) {
968			terminate("No CTF data found in reference file %s\n",
969			    reffile);
970		}
971
972		savetd = tdata_new();
973
974		if (CTF_TYPE_ISCHILD(reftd->td_nextid))
975			terminate("No room for additional types in master\n");
976
977		savetd->td_nextid = withfile ? reftd->td_nextid :
978		    CTF_INDEX_TO_TYPE(1, TRUE);
979		merge_into_master(mstrtd, reftd, savetd, 0);
980
981		tdata_label_add(savetd, label, CTF_LABEL_LASTIDX);
982
983		if (withfile) {
984			/*
985			 * savetd holds the new data to be added to the withfile
986			 */
987			tdata_t *withtd = reftd;
988
989			tdata_merge(withtd, savetd);
990
991			savetd = withtd;
992		} else {
993			char uniqname[MAXPATHLEN];
994			labelent_t *parle;
995
996			parle = tdata_label_top(reftd);
997
998			savetd->td_parlabel = xstrdup(parle->le_name);
999
1000			strncpy(uniqname, reffile, sizeof (uniqname));
1001			uniqname[MAXPATHLEN - 1] = '\0';
1002			savetd->td_parname = xstrdup(basename(uniqname));
1003		}
1004
1005	} else {
1006		/*
1007		 * No post processing.  Write the merged tree as-is into the
1008		 * output file.
1009		 */
1010		tdata_label_free(mstrtd);
1011		tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX);
1012
1013		savetd = mstrtd;
1014	}
1015
1016	tmpname = mktmpname(outfile, ".ctf");
1017	write_ctf(savetd, outfile, tmpname,
1018	    CTF_COMPRESS | CTF_SWAP_BYTES | write_fuzzy_match | dynsym | keep_stabs);
1019	if (rename(tmpname, outfile) != 0)
1020		terminate("Couldn't rename output temp file %s", tmpname);
1021	free(tmpname);
1022
1023	return (0);
1024}
1025