kernel.c revision 290765
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
25 */
26
27#include <assert.h>
28#include <fcntl.h>
29#include <poll.h>
30#include <stdio.h>
31#include <stdlib.h>
32#include <string.h>
33#include <zlib.h>
34#include <libgen.h>
35#include <sys/spa.h>
36#include <sys/stat.h>
37#include <sys/processor.h>
38#include <sys/zfs_context.h>
39#include <sys/rrwlock.h>
40#include <sys/zmod.h>
41#include <sys/utsname.h>
42#include <sys/systeminfo.h>
43
44/*
45 * Emulation of kernel services in userland.
46 */
47
48#ifndef __FreeBSD__
49int aok;
50#endif
51uint64_t physmem;
52vnode_t *rootdir = (vnode_t *)0xabcd1234;
53char hw_serial[HW_HOSTID_LEN];
54#ifdef illumos
55kmutex_t cpu_lock;
56#endif
57
58/* If set, all blocks read will be copied to the specified directory. */
59char *vn_dumpdir = NULL;
60
61struct utsname utsname = {
62	"userland", "libzpool", "1", "1", "na"
63};
64
65/* this only exists to have its address taken */
66struct proc p0;
67
68/*
69 * =========================================================================
70 * threads
71 * =========================================================================
72 */
73/*ARGSUSED*/
74kthread_t *
75zk_thread_create(void (*func)(), void *arg)
76{
77	thread_t tid;
78
79	VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED,
80	    &tid) == 0);
81
82	return ((void *)(uintptr_t)tid);
83}
84
85/*
86 * =========================================================================
87 * kstats
88 * =========================================================================
89 */
90/*ARGSUSED*/
91kstat_t *
92kstat_create(char *module, int instance, char *name, char *class,
93    uchar_t type, ulong_t ndata, uchar_t ks_flag)
94{
95	return (NULL);
96}
97
98/*ARGSUSED*/
99void
100kstat_install(kstat_t *ksp)
101{}
102
103/*ARGSUSED*/
104void
105kstat_delete(kstat_t *ksp)
106{}
107
108/*
109 * =========================================================================
110 * mutexes
111 * =========================================================================
112 */
113void
114zmutex_init(kmutex_t *mp)
115{
116	mp->m_owner = NULL;
117	mp->initialized = B_TRUE;
118	(void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL);
119}
120
121void
122zmutex_destroy(kmutex_t *mp)
123{
124	ASSERT(mp->initialized == B_TRUE);
125	ASSERT(mp->m_owner == NULL);
126	(void) _mutex_destroy(&(mp)->m_lock);
127	mp->m_owner = (void *)-1UL;
128	mp->initialized = B_FALSE;
129}
130
131int
132zmutex_owned(kmutex_t *mp)
133{
134	ASSERT(mp->initialized == B_TRUE);
135
136	return (mp->m_owner == curthread);
137}
138
139void
140mutex_enter(kmutex_t *mp)
141{
142	ASSERT(mp->initialized == B_TRUE);
143	ASSERT(mp->m_owner != (void *)-1UL);
144	ASSERT(mp->m_owner != curthread);
145	VERIFY(mutex_lock(&mp->m_lock) == 0);
146	ASSERT(mp->m_owner == NULL);
147	mp->m_owner = curthread;
148}
149
150int
151mutex_tryenter(kmutex_t *mp)
152{
153	ASSERT(mp->initialized == B_TRUE);
154	ASSERT(mp->m_owner != (void *)-1UL);
155	if (0 == mutex_trylock(&mp->m_lock)) {
156		ASSERT(mp->m_owner == NULL);
157		mp->m_owner = curthread;
158		return (1);
159	} else {
160		return (0);
161	}
162}
163
164void
165mutex_exit(kmutex_t *mp)
166{
167	ASSERT(mp->initialized == B_TRUE);
168	ASSERT(mutex_owner(mp) == curthread);
169	mp->m_owner = NULL;
170	VERIFY(mutex_unlock(&mp->m_lock) == 0);
171}
172
173void *
174mutex_owner(kmutex_t *mp)
175{
176	ASSERT(mp->initialized == B_TRUE);
177	return (mp->m_owner);
178}
179
180/*
181 * =========================================================================
182 * rwlocks
183 * =========================================================================
184 */
185/*ARGSUSED*/
186void
187rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
188{
189	rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL);
190	rwlp->rw_owner = NULL;
191	rwlp->initialized = B_TRUE;
192	rwlp->rw_count = 0;
193}
194
195void
196rw_destroy(krwlock_t *rwlp)
197{
198	ASSERT(rwlp->rw_count == 0);
199	rwlock_destroy(&rwlp->rw_lock);
200	rwlp->rw_owner = (void *)-1UL;
201	rwlp->initialized = B_FALSE;
202}
203
204void
205rw_enter(krwlock_t *rwlp, krw_t rw)
206{
207	//ASSERT(!RW_LOCK_HELD(rwlp));
208	ASSERT(rwlp->initialized == B_TRUE);
209	ASSERT(rwlp->rw_owner != (void *)-1UL);
210	ASSERT(rwlp->rw_owner != curthread);
211
212	if (rw == RW_READER) {
213		VERIFY(rw_rdlock(&rwlp->rw_lock) == 0);
214		ASSERT(rwlp->rw_count >= 0);
215		atomic_add_int(&rwlp->rw_count, 1);
216	} else {
217		VERIFY(rw_wrlock(&rwlp->rw_lock) == 0);
218		ASSERT(rwlp->rw_count == 0);
219		rwlp->rw_count = -1;
220		rwlp->rw_owner = curthread;
221	}
222}
223
224void
225rw_exit(krwlock_t *rwlp)
226{
227	ASSERT(rwlp->initialized == B_TRUE);
228	ASSERT(rwlp->rw_owner != (void *)-1UL);
229
230	if (rwlp->rw_owner == curthread) {
231		/* Write locked. */
232		ASSERT(rwlp->rw_count == -1);
233		rwlp->rw_count = 0;
234		rwlp->rw_owner = NULL;
235	} else {
236		/* Read locked. */
237		ASSERT(rwlp->rw_count > 0);
238		atomic_add_int(&rwlp->rw_count, -1);
239	}
240	VERIFY(rw_unlock(&rwlp->rw_lock) == 0);
241}
242
243int
244rw_tryenter(krwlock_t *rwlp, krw_t rw)
245{
246	int rv;
247
248	ASSERT(rwlp->initialized == B_TRUE);
249	ASSERT(rwlp->rw_owner != (void *)-1UL);
250	ASSERT(rwlp->rw_owner != curthread);
251
252	if (rw == RW_READER)
253		rv = rw_tryrdlock(&rwlp->rw_lock);
254	else
255		rv = rw_trywrlock(&rwlp->rw_lock);
256
257	if (rv == 0) {
258		ASSERT(rwlp->rw_owner == NULL);
259		if (rw == RW_READER) {
260			ASSERT(rwlp->rw_count >= 0);
261			atomic_add_int(&rwlp->rw_count, 1);
262		} else {
263			ASSERT(rwlp->rw_count == 0);
264			rwlp->rw_count = -1;
265			rwlp->rw_owner = curthread;
266		}
267		return (1);
268	}
269
270	return (0);
271}
272
273/*ARGSUSED*/
274int
275rw_tryupgrade(krwlock_t *rwlp)
276{
277	ASSERT(rwlp->initialized == B_TRUE);
278	ASSERT(rwlp->rw_owner != (void *)-1UL);
279
280	return (0);
281}
282
283int
284rw_lock_held(krwlock_t *rwlp)
285{
286
287	return (rwlp->rw_count != 0);
288}
289
290/*
291 * =========================================================================
292 * condition variables
293 * =========================================================================
294 */
295/*ARGSUSED*/
296void
297cv_init(kcondvar_t *cv, char *name, int type, void *arg)
298{
299	VERIFY(cond_init(cv, name, NULL) == 0);
300}
301
302void
303cv_destroy(kcondvar_t *cv)
304{
305	VERIFY(cond_destroy(cv) == 0);
306}
307
308void
309cv_wait(kcondvar_t *cv, kmutex_t *mp)
310{
311	ASSERT(mutex_owner(mp) == curthread);
312	mp->m_owner = NULL;
313	int ret = cond_wait(cv, &mp->m_lock);
314	VERIFY(ret == 0 || ret == EINTR);
315	mp->m_owner = curthread;
316}
317
318clock_t
319cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
320{
321	int error;
322	struct timespec ts;
323	struct timeval tv;
324	clock_t delta;
325
326	abstime += ddi_get_lbolt();
327top:
328	delta = abstime - ddi_get_lbolt();
329	if (delta <= 0)
330		return (-1);
331
332	if (gettimeofday(&tv, NULL) != 0)
333		assert(!"gettimeofday() failed");
334
335	ts.tv_sec = tv.tv_sec + delta / hz;
336	ts.tv_nsec = tv.tv_usec * 1000 + (delta % hz) * (NANOSEC / hz);
337	ASSERT(ts.tv_nsec >= 0);
338
339	if (ts.tv_nsec >= NANOSEC) {
340		ts.tv_sec++;
341		ts.tv_nsec -= NANOSEC;
342	}
343
344	ASSERT(mutex_owner(mp) == curthread);
345	mp->m_owner = NULL;
346	error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
347	mp->m_owner = curthread;
348
349	if (error == EINTR)
350		goto top;
351
352	if (error == ETIMEDOUT)
353		return (-1);
354
355	ASSERT(error == 0);
356
357	return (1);
358}
359
360/*ARGSUSED*/
361clock_t
362cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
363    int flag)
364{
365	int error;
366	timestruc_t ts;
367	hrtime_t delta;
368
369	ASSERT(flag == 0);
370
371top:
372	delta = tim - gethrtime();
373	if (delta <= 0)
374		return (-1);
375
376	ts.tv_sec = delta / NANOSEC;
377	ts.tv_nsec = delta % NANOSEC;
378
379	ASSERT(mutex_owner(mp) == curthread);
380	mp->m_owner = NULL;
381	error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
382	mp->m_owner = curthread;
383
384	if (error == ETIMEDOUT)
385		return (-1);
386
387	if (error == EINTR)
388		goto top;
389
390	ASSERT(error == 0);
391
392	return (1);
393}
394
395void
396cv_signal(kcondvar_t *cv)
397{
398	VERIFY(cond_signal(cv) == 0);
399}
400
401void
402cv_broadcast(kcondvar_t *cv)
403{
404	VERIFY(cond_broadcast(cv) == 0);
405}
406
407/*
408 * =========================================================================
409 * vnode operations
410 * =========================================================================
411 */
412/*
413 * Note: for the xxxat() versions of these functions, we assume that the
414 * starting vp is always rootdir (which is true for spa_directory.c, the only
415 * ZFS consumer of these interfaces).  We assert this is true, and then emulate
416 * them by adding '/' in front of the path.
417 */
418
419/*ARGSUSED*/
420int
421vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
422{
423	int fd;
424	int dump_fd;
425	vnode_t *vp;
426	int old_umask;
427	char realpath[MAXPATHLEN];
428	struct stat64 st;
429
430	/*
431	 * If we're accessing a real disk from userland, we need to use
432	 * the character interface to avoid caching.  This is particularly
433	 * important if we're trying to look at a real in-kernel storage
434	 * pool from userland, e.g. via zdb, because otherwise we won't
435	 * see the changes occurring under the segmap cache.
436	 * On the other hand, the stupid character device returns zero
437	 * for its size.  So -- gag -- we open the block device to get
438	 * its size, and remember it for subsequent VOP_GETATTR().
439	 */
440	if (strncmp(path, "/dev/", 5) == 0) {
441		char *dsk;
442		fd = open64(path, O_RDONLY);
443		if (fd == -1)
444			return (errno);
445		if (fstat64(fd, &st) == -1) {
446			close(fd);
447			return (errno);
448		}
449		close(fd);
450		(void) sprintf(realpath, "%s", path);
451		dsk = strstr(path, "/dsk/");
452		if (dsk != NULL)
453			(void) sprintf(realpath + (dsk - path) + 1, "r%s",
454			    dsk + 1);
455	} else {
456		(void) sprintf(realpath, "%s", path);
457		if (!(flags & FCREAT) && stat64(realpath, &st) == -1)
458			return (errno);
459	}
460
461	if (flags & FCREAT)
462		old_umask = umask(0);
463
464	/*
465	 * The construct 'flags - FREAD' conveniently maps combinations of
466	 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
467	 */
468	fd = open64(realpath, flags - FREAD, mode);
469
470	if (flags & FCREAT)
471		(void) umask(old_umask);
472
473	if (vn_dumpdir != NULL) {
474		char dumppath[MAXPATHLEN];
475		(void) snprintf(dumppath, sizeof (dumppath),
476		    "%s/%s", vn_dumpdir, basename(realpath));
477		dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
478		if (dump_fd == -1)
479			return (errno);
480	} else {
481		dump_fd = -1;
482	}
483
484	if (fd == -1)
485		return (errno);
486
487	if (fstat64(fd, &st) == -1) {
488		close(fd);
489		return (errno);
490	}
491
492	(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
493
494	*vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
495
496	vp->v_fd = fd;
497	vp->v_size = st.st_size;
498	vp->v_path = spa_strdup(path);
499	vp->v_dump_fd = dump_fd;
500
501	return (0);
502}
503
504/*ARGSUSED*/
505int
506vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
507    int x3, vnode_t *startvp, int fd)
508{
509	char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
510	int ret;
511
512	ASSERT(startvp == rootdir);
513	(void) sprintf(realpath, "/%s", path);
514
515	/* fd ignored for now, need if want to simulate nbmand support */
516	ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
517
518	umem_free(realpath, strlen(path) + 2);
519
520	return (ret);
521}
522
523/*ARGSUSED*/
524int
525vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
526    int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
527{
528	ssize_t iolen, split;
529
530	if (uio == UIO_READ) {
531		iolen = pread64(vp->v_fd, addr, len, offset);
532		if (vp->v_dump_fd != -1) {
533			int status =
534			    pwrite64(vp->v_dump_fd, addr, iolen, offset);
535			ASSERT(status != -1);
536		}
537	} else {
538		/*
539		 * To simulate partial disk writes, we split writes into two
540		 * system calls so that the process can be killed in between.
541		 */
542		int sectors = len >> SPA_MINBLOCKSHIFT;
543		split = (sectors > 0 ? rand() % sectors : 0) <<
544		    SPA_MINBLOCKSHIFT;
545		iolen = pwrite64(vp->v_fd, addr, split, offset);
546		iolen += pwrite64(vp->v_fd, (char *)addr + split,
547		    len - split, offset + split);
548	}
549
550	if (iolen == -1)
551		return (errno);
552	if (residp)
553		*residp = len - iolen;
554	else if (iolen != len)
555		return (EIO);
556	return (0);
557}
558
559void
560vn_close(vnode_t *vp, int openflag, cred_t *cr, kthread_t *td)
561{
562	close(vp->v_fd);
563	if (vp->v_dump_fd != -1)
564		close(vp->v_dump_fd);
565	spa_strfree(vp->v_path);
566	umem_free(vp, sizeof (vnode_t));
567}
568
569/*
570 * At a minimum we need to update the size since vdev_reopen()
571 * will no longer call vn_openat().
572 */
573int
574fop_getattr(vnode_t *vp, vattr_t *vap)
575{
576	struct stat64 st;
577
578	if (fstat64(vp->v_fd, &st) == -1) {
579		close(vp->v_fd);
580		return (errno);
581	}
582
583	vap->va_size = st.st_size;
584	return (0);
585}
586
587#ifdef ZFS_DEBUG
588
589/*
590 * =========================================================================
591 * Figure out which debugging statements to print
592 * =========================================================================
593 */
594
595static char *dprintf_string;
596static int dprintf_print_all;
597
598int
599dprintf_find_string(const char *string)
600{
601	char *tmp_str = dprintf_string;
602	int len = strlen(string);
603
604	/*
605	 * Find out if this is a string we want to print.
606	 * String format: file1.c,function_name1,file2.c,file3.c
607	 */
608
609	while (tmp_str != NULL) {
610		if (strncmp(tmp_str, string, len) == 0 &&
611		    (tmp_str[len] == ',' || tmp_str[len] == '\0'))
612			return (1);
613		tmp_str = strchr(tmp_str, ',');
614		if (tmp_str != NULL)
615			tmp_str++; /* Get rid of , */
616	}
617	return (0);
618}
619
620void
621dprintf_setup(int *argc, char **argv)
622{
623	int i, j;
624
625	/*
626	 * Debugging can be specified two ways: by setting the
627	 * environment variable ZFS_DEBUG, or by including a
628	 * "debug=..."  argument on the command line.  The command
629	 * line setting overrides the environment variable.
630	 */
631
632	for (i = 1; i < *argc; i++) {
633		int len = strlen("debug=");
634		/* First look for a command line argument */
635		if (strncmp("debug=", argv[i], len) == 0) {
636			dprintf_string = argv[i] + len;
637			/* Remove from args */
638			for (j = i; j < *argc; j++)
639				argv[j] = argv[j+1];
640			argv[j] = NULL;
641			(*argc)--;
642		}
643	}
644
645	if (dprintf_string == NULL) {
646		/* Look for ZFS_DEBUG environment variable */
647		dprintf_string = getenv("ZFS_DEBUG");
648	}
649
650	/*
651	 * Are we just turning on all debugging?
652	 */
653	if (dprintf_find_string("on"))
654		dprintf_print_all = 1;
655}
656
657int
658sysctl_handle_64(SYSCTL_HANDLER_ARGS)
659{
660	return (0);
661}
662
663/*
664 * =========================================================================
665 * debug printfs
666 * =========================================================================
667 */
668void
669__dprintf(const char *file, const char *func, int line, const char *fmt, ...)
670{
671	const char *newfile;
672	va_list adx;
673
674	/*
675	 * Get rid of annoying "../common/" prefix to filename.
676	 */
677	newfile = strrchr(file, '/');
678	if (newfile != NULL) {
679		newfile = newfile + 1; /* Get rid of leading / */
680	} else {
681		newfile = file;
682	}
683
684	if (dprintf_print_all ||
685	    dprintf_find_string(newfile) ||
686	    dprintf_find_string(func)) {
687		/* Print out just the function name if requested */
688		flockfile(stdout);
689		if (dprintf_find_string("pid"))
690			(void) printf("%d ", getpid());
691		if (dprintf_find_string("tid"))
692			(void) printf("%ul ", thr_self());
693#if 0
694		if (dprintf_find_string("cpu"))
695			(void) printf("%u ", getcpuid());
696#endif
697		if (dprintf_find_string("time"))
698			(void) printf("%llu ", gethrtime());
699		if (dprintf_find_string("long"))
700			(void) printf("%s, line %d: ", newfile, line);
701		(void) printf("%s: ", func);
702		va_start(adx, fmt);
703		(void) vprintf(fmt, adx);
704		va_end(adx);
705		funlockfile(stdout);
706	}
707}
708
709#endif /* ZFS_DEBUG */
710
711/*
712 * =========================================================================
713 * cmn_err() and panic()
714 * =========================================================================
715 */
716static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
717static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
718
719void
720vpanic(const char *fmt, va_list adx)
721{
722	(void) fprintf(stderr, "error: ");
723	(void) vfprintf(stderr, fmt, adx);
724	(void) fprintf(stderr, "\n");
725
726	abort();	/* think of it as a "user-level crash dump" */
727}
728
729void
730panic(const char *fmt, ...)
731{
732	va_list adx;
733
734	va_start(adx, fmt);
735	vpanic(fmt, adx);
736	va_end(adx);
737}
738
739void
740vcmn_err(int ce, const char *fmt, va_list adx)
741{
742	if (ce == CE_PANIC)
743		vpanic(fmt, adx);
744	if (ce != CE_NOTE) {	/* suppress noise in userland stress testing */
745		(void) fprintf(stderr, "%s", ce_prefix[ce]);
746		(void) vfprintf(stderr, fmt, adx);
747		(void) fprintf(stderr, "%s", ce_suffix[ce]);
748	}
749}
750
751/*PRINTFLIKE2*/
752void
753cmn_err(int ce, const char *fmt, ...)
754{
755	va_list adx;
756
757	va_start(adx, fmt);
758	vcmn_err(ce, fmt, adx);
759	va_end(adx);
760}
761
762/*
763 * =========================================================================
764 * kobj interfaces
765 * =========================================================================
766 */
767struct _buf *
768kobj_open_file(char *name)
769{
770	struct _buf *file;
771	vnode_t *vp;
772
773	/* set vp as the _fd field of the file */
774	if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
775	    -1) != 0)
776		return ((void *)-1UL);
777
778	file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
779	file->_fd = (intptr_t)vp;
780	return (file);
781}
782
783int
784kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
785{
786	ssize_t resid;
787
788	vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
789	    UIO_SYSSPACE, 0, 0, 0, &resid);
790
791	return (size - resid);
792}
793
794void
795kobj_close_file(struct _buf *file)
796{
797	vn_close((vnode_t *)file->_fd, 0, NULL, NULL);
798	umem_free(file, sizeof (struct _buf));
799}
800
801int
802kobj_get_filesize(struct _buf *file, uint64_t *size)
803{
804	struct stat64 st;
805	vnode_t *vp = (vnode_t *)file->_fd;
806
807	if (fstat64(vp->v_fd, &st) == -1) {
808		vn_close(vp, 0, NULL, NULL);
809		return (errno);
810	}
811	*size = st.st_size;
812	return (0);
813}
814
815/*
816 * =========================================================================
817 * misc routines
818 * =========================================================================
819 */
820
821void
822delay(clock_t ticks)
823{
824	poll(0, 0, ticks * (1000 / hz));
825}
826
827#if 0
828/*
829 * Find highest one bit set.
830 *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
831 */
832int
833highbit64(uint64_t i)
834{
835	int h = 1;
836
837	if (i == 0)
838		return (0);
839	if (i & 0xffffffff00000000ULL) {
840		h += 32; i >>= 32;
841	}
842	if (i & 0xffff0000) {
843		h += 16; i >>= 16;
844	}
845	if (i & 0xff00) {
846		h += 8; i >>= 8;
847	}
848	if (i & 0xf0) {
849		h += 4; i >>= 4;
850	}
851	if (i & 0xc) {
852		h += 2; i >>= 2;
853	}
854	if (i & 0x2) {
855		h += 1;
856	}
857	return (h);
858}
859#endif
860
861static int random_fd = -1, urandom_fd = -1;
862
863static int
864random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
865{
866	size_t resid = len;
867	ssize_t bytes;
868
869	ASSERT(fd != -1);
870
871	while (resid != 0) {
872		bytes = read(fd, ptr, resid);
873		ASSERT3S(bytes, >=, 0);
874		ptr += bytes;
875		resid -= bytes;
876	}
877
878	return (0);
879}
880
881int
882random_get_bytes(uint8_t *ptr, size_t len)
883{
884	return (random_get_bytes_common(ptr, len, random_fd));
885}
886
887int
888random_get_pseudo_bytes(uint8_t *ptr, size_t len)
889{
890	return (random_get_bytes_common(ptr, len, urandom_fd));
891}
892
893int
894ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
895{
896	char *end;
897
898	*result = strtoul(hw_serial, &end, base);
899	if (*result == 0)
900		return (errno);
901	return (0);
902}
903
904int
905ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
906{
907	char *end;
908
909	*result = strtoull(str, &end, base);
910	if (*result == 0)
911		return (errno);
912	return (0);
913}
914
915#ifdef illumos
916/* ARGSUSED */
917cyclic_id_t
918cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when)
919{
920	return (1);
921}
922
923/* ARGSUSED */
924void
925cyclic_remove(cyclic_id_t id)
926{
927}
928
929/* ARGSUSED */
930int
931cyclic_reprogram(cyclic_id_t id, hrtime_t expiration)
932{
933	return (1);
934}
935#endif
936
937/*
938 * =========================================================================
939 * kernel emulation setup & teardown
940 * =========================================================================
941 */
942static int
943umem_out_of_memory(void)
944{
945	char errmsg[] = "out of memory -- generating core dump\n";
946
947	write(fileno(stderr), errmsg, sizeof (errmsg));
948	abort();
949	return (0);
950}
951
952void
953kernel_init(int mode)
954{
955	extern uint_t rrw_tsd_key;
956
957	umem_nofail_callback(umem_out_of_memory);
958
959	physmem = sysconf(_SC_PHYS_PAGES);
960
961	dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
962	    (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
963
964	(void) snprintf(hw_serial, sizeof (hw_serial), "%lu",
965	    (mode & FWRITE) ? (unsigned long)gethostid() : 0);
966
967	VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
968	VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
969
970	system_taskq_init();
971
972#ifdef illumos
973	mutex_init(&cpu_lock, NULL, MUTEX_DEFAULT, NULL);
974#endif
975
976	spa_init(mode);
977
978	tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
979}
980
981void
982kernel_fini(void)
983{
984	spa_fini();
985
986	system_taskq_fini();
987
988	close(random_fd);
989	close(urandom_fd);
990
991	random_fd = -1;
992	urandom_fd = -1;
993}
994
995int
996z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
997{
998	int ret;
999	uLongf len = *dstlen;
1000
1001	if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK)
1002		*dstlen = (size_t)len;
1003
1004	return (ret);
1005}
1006
1007int
1008z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen,
1009    int level)
1010{
1011	int ret;
1012	uLongf len = *dstlen;
1013
1014	if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK)
1015		*dstlen = (size_t)len;
1016
1017	return (ret);
1018}
1019
1020uid_t
1021crgetuid(cred_t *cr)
1022{
1023	return (0);
1024}
1025
1026uid_t
1027crgetruid(cred_t *cr)
1028{
1029	return (0);
1030}
1031
1032gid_t
1033crgetgid(cred_t *cr)
1034{
1035	return (0);
1036}
1037
1038int
1039crgetngroups(cred_t *cr)
1040{
1041	return (0);
1042}
1043
1044gid_t *
1045crgetgroups(cred_t *cr)
1046{
1047	return (NULL);
1048}
1049
1050int
1051zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
1052{
1053	return (0);
1054}
1055
1056int
1057zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
1058{
1059	return (0);
1060}
1061
1062int
1063zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
1064{
1065	return (0);
1066}
1067
1068ksiddomain_t *
1069ksid_lookupdomain(const char *dom)
1070{
1071	ksiddomain_t *kd;
1072
1073	kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1074	kd->kd_name = spa_strdup(dom);
1075	return (kd);
1076}
1077
1078void
1079ksiddomain_rele(ksiddomain_t *ksid)
1080{
1081	spa_strfree(ksid->kd_name);
1082	umem_free(ksid, sizeof (ksiddomain_t));
1083}
1084
1085/*
1086 * Do not change the length of the returned string; it must be freed
1087 * with strfree().
1088 */
1089char *
1090kmem_asprintf(const char *fmt, ...)
1091{
1092	int size;
1093	va_list adx;
1094	char *buf;
1095
1096	va_start(adx, fmt);
1097	size = vsnprintf(NULL, 0, fmt, adx) + 1;
1098	va_end(adx);
1099
1100	buf = kmem_alloc(size, KM_SLEEP);
1101
1102	va_start(adx, fmt);
1103	size = vsnprintf(buf, size, fmt, adx);
1104	va_end(adx);
1105
1106	return (buf);
1107}
1108
1109/* ARGSUSED */
1110int
1111zfs_onexit_fd_hold(int fd, minor_t *minorp)
1112{
1113	*minorp = 0;
1114	return (0);
1115}
1116
1117/* ARGSUSED */
1118void
1119zfs_onexit_fd_rele(int fd)
1120{
1121}
1122
1123/* ARGSUSED */
1124int
1125zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1126    uint64_t *action_handle)
1127{
1128	return (0);
1129}
1130
1131/* ARGSUSED */
1132int
1133zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
1134{
1135	return (0);
1136}
1137
1138/* ARGSUSED */
1139int
1140zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
1141{
1142	return (0);
1143}
1144
1145#ifdef __FreeBSD__
1146/* ARGSUSED */
1147int
1148zvol_create_minors(const char *name)
1149{
1150	return (0);
1151}
1152#endif
1153
1154#ifdef illumos
1155void
1156bioinit(buf_t *bp)
1157{
1158	bzero(bp, sizeof (buf_t));
1159}
1160
1161void
1162biodone(buf_t *bp)
1163{
1164	if (bp->b_iodone != NULL) {
1165		(*(bp->b_iodone))(bp);
1166		return;
1167	}
1168	ASSERT((bp->b_flags & B_DONE) == 0);
1169	bp->b_flags |= B_DONE;
1170}
1171
1172void
1173bioerror(buf_t *bp, int error)
1174{
1175	ASSERT(bp != NULL);
1176	ASSERT(error >= 0);
1177
1178	if (error != 0) {
1179		bp->b_flags |= B_ERROR;
1180	} else {
1181		bp->b_flags &= ~B_ERROR;
1182	}
1183	bp->b_error = error;
1184}
1185
1186
1187int
1188geterror(struct buf *bp)
1189{
1190	int error = 0;
1191
1192	if (bp->b_flags & B_ERROR) {
1193		error = bp->b_error;
1194		if (!error)
1195			error = EIO;
1196	}
1197	return (error);
1198}
1199#endif
1200