libzfs_import.c revision 324256
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright 2015 RackTop Systems.
26 * Copyright 2016 Nexenta Systems, Inc.
27 */
28
29/*
30 * Pool import support functions.
31 *
32 * To import a pool, we rely on reading the configuration information from the
33 * ZFS label of each device.  If we successfully read the label, then we
34 * organize the configuration information in the following hierarchy:
35 *
36 * 	pool guid -> toplevel vdev guid -> label txg
37 *
38 * Duplicate entries matching this same tuple will be discarded.  Once we have
39 * examined every device, we pick the best label txg config for each toplevel
40 * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
41 * update any paths that have changed.  Finally, we attempt to import the pool
42 * using our derived config, and record the results.
43 */
44
45#include <ctype.h>
46#include <devid.h>
47#include <dirent.h>
48#include <errno.h>
49#include <libintl.h>
50#include <stddef.h>
51#include <stdlib.h>
52#include <string.h>
53#include <sys/stat.h>
54#include <unistd.h>
55#include <fcntl.h>
56#include <thread_pool.h>
57#include <libgeom.h>
58
59#include <sys/vdev_impl.h>
60
61#include "libzfs.h"
62#include "libzfs_impl.h"
63
64/*
65 * Intermediate structures used to gather configuration information.
66 */
67typedef struct config_entry {
68	uint64_t		ce_txg;
69	nvlist_t		*ce_config;
70	struct config_entry	*ce_next;
71} config_entry_t;
72
73typedef struct vdev_entry {
74	uint64_t		ve_guid;
75	config_entry_t		*ve_configs;
76	struct vdev_entry	*ve_next;
77} vdev_entry_t;
78
79typedef struct pool_entry {
80	uint64_t		pe_guid;
81	vdev_entry_t		*pe_vdevs;
82	struct pool_entry	*pe_next;
83} pool_entry_t;
84
85typedef struct name_entry {
86	char			*ne_name;
87	uint64_t		ne_guid;
88	struct name_entry	*ne_next;
89} name_entry_t;
90
91typedef struct pool_list {
92	pool_entry_t		*pools;
93	name_entry_t		*names;
94} pool_list_t;
95
96static char *
97get_devid(const char *path)
98{
99#ifdef have_devid
100	int fd;
101	ddi_devid_t devid;
102	char *minor, *ret;
103
104	if ((fd = open(path, O_RDONLY)) < 0)
105		return (NULL);
106
107	minor = NULL;
108	ret = NULL;
109	if (devid_get(fd, &devid) == 0) {
110		if (devid_get_minor_name(fd, &minor) == 0)
111			ret = devid_str_encode(devid, minor);
112		if (minor != NULL)
113			devid_str_free(minor);
114		devid_free(devid);
115	}
116	(void) close(fd);
117
118	return (ret);
119#else
120	return (NULL);
121#endif
122}
123
124
125/*
126 * Go through and fix up any path and/or devid information for the given vdev
127 * configuration.
128 */
129static int
130fix_paths(nvlist_t *nv, name_entry_t *names)
131{
132	nvlist_t **child;
133	uint_t c, children;
134	uint64_t guid;
135	name_entry_t *ne, *best;
136	char *path, *devid;
137	int matched;
138
139	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
140	    &child, &children) == 0) {
141		for (c = 0; c < children; c++)
142			if (fix_paths(child[c], names) != 0)
143				return (-1);
144		return (0);
145	}
146
147	/*
148	 * This is a leaf (file or disk) vdev.  In either case, go through
149	 * the name list and see if we find a matching guid.  If so, replace
150	 * the path and see if we can calculate a new devid.
151	 *
152	 * There may be multiple names associated with a particular guid, in
153	 * which case we have overlapping slices or multiple paths to the same
154	 * disk.  If this is the case, then we want to pick the path that is
155	 * the most similar to the original, where "most similar" is the number
156	 * of matching characters starting from the end of the path.  This will
157	 * preserve slice numbers even if the disks have been reorganized, and
158	 * will also catch preferred disk names if multiple paths exist.
159	 */
160	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
161	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
162		path = NULL;
163
164	matched = 0;
165	best = NULL;
166	for (ne = names; ne != NULL; ne = ne->ne_next) {
167		if (ne->ne_guid == guid) {
168			const char *src, *dst;
169			int count;
170
171			if (path == NULL) {
172				best = ne;
173				break;
174			}
175
176			src = ne->ne_name + strlen(ne->ne_name) - 1;
177			dst = path + strlen(path) - 1;
178			for (count = 0; src >= ne->ne_name && dst >= path;
179			    src--, dst--, count++)
180				if (*src != *dst)
181					break;
182
183			/*
184			 * At this point, 'count' is the number of characters
185			 * matched from the end.
186			 */
187			if (count > matched || best == NULL) {
188				best = ne;
189				matched = count;
190			}
191		}
192	}
193
194	if (best == NULL)
195		return (0);
196
197	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
198		return (-1);
199
200	if ((devid = get_devid(best->ne_name)) == NULL) {
201		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
202	} else {
203		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
204			devid_str_free(devid);
205			return (-1);
206		}
207		devid_str_free(devid);
208	}
209
210	return (0);
211}
212
213/*
214 * Add the given configuration to the list of known devices.
215 */
216static int
217add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
218    nvlist_t *config)
219{
220	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
221	pool_entry_t *pe;
222	vdev_entry_t *ve;
223	config_entry_t *ce;
224	name_entry_t *ne;
225
226	/*
227	 * If this is a hot spare not currently in use or level 2 cache
228	 * device, add it to the list of names to translate, but don't do
229	 * anything else.
230	 */
231	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
232	    &state) == 0 &&
233	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
234	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
235		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
236			return (-1);
237
238		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
239			free(ne);
240			return (-1);
241		}
242		ne->ne_guid = vdev_guid;
243		ne->ne_next = pl->names;
244		pl->names = ne;
245		return (0);
246	}
247
248	/*
249	 * If we have a valid config but cannot read any of these fields, then
250	 * it means we have a half-initialized label.  In vdev_label_init()
251	 * we write a label with txg == 0 so that we can identify the device
252	 * in case the user refers to the same disk later on.  If we fail to
253	 * create the pool, we'll be left with a label in this state
254	 * which should not be considered part of a valid pool.
255	 */
256	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
257	    &pool_guid) != 0 ||
258	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
259	    &vdev_guid) != 0 ||
260	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
261	    &top_guid) != 0 ||
262	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
263	    &txg) != 0 || txg == 0) {
264		nvlist_free(config);
265		return (0);
266	}
267
268	/*
269	 * First, see if we know about this pool.  If not, then add it to the
270	 * list of known pools.
271	 */
272	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
273		if (pe->pe_guid == pool_guid)
274			break;
275	}
276
277	if (pe == NULL) {
278		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
279			nvlist_free(config);
280			return (-1);
281		}
282		pe->pe_guid = pool_guid;
283		pe->pe_next = pl->pools;
284		pl->pools = pe;
285	}
286
287	/*
288	 * Second, see if we know about this toplevel vdev.  Add it if its
289	 * missing.
290	 */
291	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
292		if (ve->ve_guid == top_guid)
293			break;
294	}
295
296	if (ve == NULL) {
297		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
298			nvlist_free(config);
299			return (-1);
300		}
301		ve->ve_guid = top_guid;
302		ve->ve_next = pe->pe_vdevs;
303		pe->pe_vdevs = ve;
304	}
305
306	/*
307	 * Third, see if we have a config with a matching transaction group.  If
308	 * so, then we do nothing.  Otherwise, add it to the list of known
309	 * configs.
310	 */
311	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
312		if (ce->ce_txg == txg)
313			break;
314	}
315
316	if (ce == NULL) {
317		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
318			nvlist_free(config);
319			return (-1);
320		}
321		ce->ce_txg = txg;
322		ce->ce_config = config;
323		ce->ce_next = ve->ve_configs;
324		ve->ve_configs = ce;
325	} else {
326		nvlist_free(config);
327	}
328
329	/*
330	 * At this point we've successfully added our config to the list of
331	 * known configs.  The last thing to do is add the vdev guid -> path
332	 * mappings so that we can fix up the configuration as necessary before
333	 * doing the import.
334	 */
335	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
336		return (-1);
337
338	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
339		free(ne);
340		return (-1);
341	}
342
343	ne->ne_guid = vdev_guid;
344	ne->ne_next = pl->names;
345	pl->names = ne;
346
347	return (0);
348}
349
350/*
351 * Returns true if the named pool matches the given GUID.
352 */
353static int
354pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
355    boolean_t *isactive)
356{
357	zpool_handle_t *zhp;
358	uint64_t theguid;
359
360	if (zpool_open_silent(hdl, name, &zhp) != 0)
361		return (-1);
362
363	if (zhp == NULL) {
364		*isactive = B_FALSE;
365		return (0);
366	}
367
368	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
369	    &theguid) == 0);
370
371	zpool_close(zhp);
372
373	*isactive = (theguid == guid);
374	return (0);
375}
376
377static nvlist_t *
378refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
379{
380	nvlist_t *nvl;
381	zfs_cmd_t zc = { 0 };
382	int err;
383
384	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
385		return (NULL);
386
387	if (zcmd_alloc_dst_nvlist(hdl, &zc,
388	    zc.zc_nvlist_conf_size * 2) != 0) {
389		zcmd_free_nvlists(&zc);
390		return (NULL);
391	}
392
393	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
394	    &zc)) != 0 && errno == ENOMEM) {
395		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
396			zcmd_free_nvlists(&zc);
397			return (NULL);
398		}
399	}
400
401	if (err) {
402		zcmd_free_nvlists(&zc);
403		return (NULL);
404	}
405
406	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
407		zcmd_free_nvlists(&zc);
408		return (NULL);
409	}
410
411	zcmd_free_nvlists(&zc);
412	return (nvl);
413}
414
415/*
416 * Determine if the vdev id is a hole in the namespace.
417 */
418boolean_t
419vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
420{
421	for (int c = 0; c < holes; c++) {
422
423		/* Top-level is a hole */
424		if (hole_array[c] == id)
425			return (B_TRUE);
426	}
427	return (B_FALSE);
428}
429
430/*
431 * Convert our list of pools into the definitive set of configurations.  We
432 * start by picking the best config for each toplevel vdev.  Once that's done,
433 * we assemble the toplevel vdevs into a full config for the pool.  We make a
434 * pass to fix up any incorrect paths, and then add it to the main list to
435 * return to the user.
436 */
437static nvlist_t *
438get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
439{
440	pool_entry_t *pe;
441	vdev_entry_t *ve;
442	config_entry_t *ce;
443	nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
444	nvlist_t **spares, **l2cache;
445	uint_t i, nspares, nl2cache;
446	boolean_t config_seen;
447	uint64_t best_txg;
448	char *name, *hostname = NULL;
449	uint64_t guid;
450	uint_t children = 0;
451	nvlist_t **child = NULL;
452	uint_t holes;
453	uint64_t *hole_array, max_id;
454	uint_t c;
455	boolean_t isactive;
456	uint64_t hostid;
457	nvlist_t *nvl;
458	boolean_t found_one = B_FALSE;
459	boolean_t valid_top_config = B_FALSE;
460
461	if (nvlist_alloc(&ret, 0, 0) != 0)
462		goto nomem;
463
464	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
465		uint64_t id, max_txg = 0;
466
467		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
468			goto nomem;
469		config_seen = B_FALSE;
470
471		/*
472		 * Iterate over all toplevel vdevs.  Grab the pool configuration
473		 * from the first one we find, and then go through the rest and
474		 * add them as necessary to the 'vdevs' member of the config.
475		 */
476		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
477
478			/*
479			 * Determine the best configuration for this vdev by
480			 * selecting the config with the latest transaction
481			 * group.
482			 */
483			best_txg = 0;
484			for (ce = ve->ve_configs; ce != NULL;
485			    ce = ce->ce_next) {
486
487				if (ce->ce_txg > best_txg) {
488					tmp = ce->ce_config;
489					best_txg = ce->ce_txg;
490				}
491			}
492
493			/*
494			 * We rely on the fact that the max txg for the
495			 * pool will contain the most up-to-date information
496			 * about the valid top-levels in the vdev namespace.
497			 */
498			if (best_txg > max_txg) {
499				(void) nvlist_remove(config,
500				    ZPOOL_CONFIG_VDEV_CHILDREN,
501				    DATA_TYPE_UINT64);
502				(void) nvlist_remove(config,
503				    ZPOOL_CONFIG_HOLE_ARRAY,
504				    DATA_TYPE_UINT64_ARRAY);
505
506				max_txg = best_txg;
507				hole_array = NULL;
508				holes = 0;
509				max_id = 0;
510				valid_top_config = B_FALSE;
511
512				if (nvlist_lookup_uint64(tmp,
513				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
514					verify(nvlist_add_uint64(config,
515					    ZPOOL_CONFIG_VDEV_CHILDREN,
516					    max_id) == 0);
517					valid_top_config = B_TRUE;
518				}
519
520				if (nvlist_lookup_uint64_array(tmp,
521				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
522				    &holes) == 0) {
523					verify(nvlist_add_uint64_array(config,
524					    ZPOOL_CONFIG_HOLE_ARRAY,
525					    hole_array, holes) == 0);
526				}
527			}
528
529			if (!config_seen) {
530				/*
531				 * Copy the relevant pieces of data to the pool
532				 * configuration:
533				 *
534				 *	version
535				 *	pool guid
536				 *	name
537				 *	comment (if available)
538				 *	pool state
539				 *	hostid (if available)
540				 *	hostname (if available)
541				 */
542				uint64_t state, version;
543				char *comment = NULL;
544
545				version = fnvlist_lookup_uint64(tmp,
546				    ZPOOL_CONFIG_VERSION);
547				fnvlist_add_uint64(config,
548				    ZPOOL_CONFIG_VERSION, version);
549				guid = fnvlist_lookup_uint64(tmp,
550				    ZPOOL_CONFIG_POOL_GUID);
551				fnvlist_add_uint64(config,
552				    ZPOOL_CONFIG_POOL_GUID, guid);
553				name = fnvlist_lookup_string(tmp,
554				    ZPOOL_CONFIG_POOL_NAME);
555				fnvlist_add_string(config,
556				    ZPOOL_CONFIG_POOL_NAME, name);
557
558				if (nvlist_lookup_string(tmp,
559				    ZPOOL_CONFIG_COMMENT, &comment) == 0)
560					fnvlist_add_string(config,
561					    ZPOOL_CONFIG_COMMENT, comment);
562
563				state = fnvlist_lookup_uint64(tmp,
564				    ZPOOL_CONFIG_POOL_STATE);
565				fnvlist_add_uint64(config,
566				    ZPOOL_CONFIG_POOL_STATE, state);
567
568				hostid = 0;
569				if (nvlist_lookup_uint64(tmp,
570				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
571					fnvlist_add_uint64(config,
572					    ZPOOL_CONFIG_HOSTID, hostid);
573					hostname = fnvlist_lookup_string(tmp,
574					    ZPOOL_CONFIG_HOSTNAME);
575					fnvlist_add_string(config,
576					    ZPOOL_CONFIG_HOSTNAME, hostname);
577				}
578
579				config_seen = B_TRUE;
580			}
581
582			/*
583			 * Add this top-level vdev to the child array.
584			 */
585			verify(nvlist_lookup_nvlist(tmp,
586			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
587			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
588			    &id) == 0);
589
590			if (id >= children) {
591				nvlist_t **newchild;
592
593				newchild = zfs_alloc(hdl, (id + 1) *
594				    sizeof (nvlist_t *));
595				if (newchild == NULL)
596					goto nomem;
597
598				for (c = 0; c < children; c++)
599					newchild[c] = child[c];
600
601				free(child);
602				child = newchild;
603				children = id + 1;
604			}
605			if (nvlist_dup(nvtop, &child[id], 0) != 0)
606				goto nomem;
607
608		}
609
610		/*
611		 * If we have information about all the top-levels then
612		 * clean up the nvlist which we've constructed. This
613		 * means removing any extraneous devices that are
614		 * beyond the valid range or adding devices to the end
615		 * of our array which appear to be missing.
616		 */
617		if (valid_top_config) {
618			if (max_id < children) {
619				for (c = max_id; c < children; c++)
620					nvlist_free(child[c]);
621				children = max_id;
622			} else if (max_id > children) {
623				nvlist_t **newchild;
624
625				newchild = zfs_alloc(hdl, (max_id) *
626				    sizeof (nvlist_t *));
627				if (newchild == NULL)
628					goto nomem;
629
630				for (c = 0; c < children; c++)
631					newchild[c] = child[c];
632
633				free(child);
634				child = newchild;
635				children = max_id;
636			}
637		}
638
639		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
640		    &guid) == 0);
641
642		/*
643		 * The vdev namespace may contain holes as a result of
644		 * device removal. We must add them back into the vdev
645		 * tree before we process any missing devices.
646		 */
647		if (holes > 0) {
648			ASSERT(valid_top_config);
649
650			for (c = 0; c < children; c++) {
651				nvlist_t *holey;
652
653				if (child[c] != NULL ||
654				    !vdev_is_hole(hole_array, holes, c))
655					continue;
656
657				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
658				    0) != 0)
659					goto nomem;
660
661				/*
662				 * Holes in the namespace are treated as
663				 * "hole" top-level vdevs and have a
664				 * special flag set on them.
665				 */
666				if (nvlist_add_string(holey,
667				    ZPOOL_CONFIG_TYPE,
668				    VDEV_TYPE_HOLE) != 0 ||
669				    nvlist_add_uint64(holey,
670				    ZPOOL_CONFIG_ID, c) != 0 ||
671				    nvlist_add_uint64(holey,
672				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
673					nvlist_free(holey);
674					goto nomem;
675				}
676				child[c] = holey;
677			}
678		}
679
680		/*
681		 * Look for any missing top-level vdevs.  If this is the case,
682		 * create a faked up 'missing' vdev as a placeholder.  We cannot
683		 * simply compress the child array, because the kernel performs
684		 * certain checks to make sure the vdev IDs match their location
685		 * in the configuration.
686		 */
687		for (c = 0; c < children; c++) {
688			if (child[c] == NULL) {
689				nvlist_t *missing;
690				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
691				    0) != 0)
692					goto nomem;
693				if (nvlist_add_string(missing,
694				    ZPOOL_CONFIG_TYPE,
695				    VDEV_TYPE_MISSING) != 0 ||
696				    nvlist_add_uint64(missing,
697				    ZPOOL_CONFIG_ID, c) != 0 ||
698				    nvlist_add_uint64(missing,
699				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
700					nvlist_free(missing);
701					goto nomem;
702				}
703				child[c] = missing;
704			}
705		}
706
707		/*
708		 * Put all of this pool's top-level vdevs into a root vdev.
709		 */
710		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
711			goto nomem;
712		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
713		    VDEV_TYPE_ROOT) != 0 ||
714		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
715		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
716		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
717		    child, children) != 0) {
718			nvlist_free(nvroot);
719			goto nomem;
720		}
721
722		for (c = 0; c < children; c++)
723			nvlist_free(child[c]);
724		free(child);
725		children = 0;
726		child = NULL;
727
728		/*
729		 * Go through and fix up any paths and/or devids based on our
730		 * known list of vdev GUID -> path mappings.
731		 */
732		if (fix_paths(nvroot, pl->names) != 0) {
733			nvlist_free(nvroot);
734			goto nomem;
735		}
736
737		/*
738		 * Add the root vdev to this pool's configuration.
739		 */
740		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
741		    nvroot) != 0) {
742			nvlist_free(nvroot);
743			goto nomem;
744		}
745		nvlist_free(nvroot);
746
747		/*
748		 * zdb uses this path to report on active pools that were
749		 * imported or created using -R.
750		 */
751		if (active_ok)
752			goto add_pool;
753
754		/*
755		 * Determine if this pool is currently active, in which case we
756		 * can't actually import it.
757		 */
758		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
759		    &name) == 0);
760		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
761		    &guid) == 0);
762
763		if (pool_active(hdl, name, guid, &isactive) != 0)
764			goto error;
765
766		if (isactive) {
767			nvlist_free(config);
768			config = NULL;
769			continue;
770		}
771
772		if ((nvl = refresh_config(hdl, config)) == NULL) {
773			nvlist_free(config);
774			config = NULL;
775			continue;
776		}
777
778		nvlist_free(config);
779		config = nvl;
780
781		/*
782		 * Go through and update the paths for spares, now that we have
783		 * them.
784		 */
785		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
786		    &nvroot) == 0);
787		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
788		    &spares, &nspares) == 0) {
789			for (i = 0; i < nspares; i++) {
790				if (fix_paths(spares[i], pl->names) != 0)
791					goto nomem;
792			}
793		}
794
795		/*
796		 * Update the paths for l2cache devices.
797		 */
798		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
799		    &l2cache, &nl2cache) == 0) {
800			for (i = 0; i < nl2cache; i++) {
801				if (fix_paths(l2cache[i], pl->names) != 0)
802					goto nomem;
803			}
804		}
805
806		/*
807		 * Restore the original information read from the actual label.
808		 */
809		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
810		    DATA_TYPE_UINT64);
811		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
812		    DATA_TYPE_STRING);
813		if (hostid != 0) {
814			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
815			    hostid) == 0);
816			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
817			    hostname) == 0);
818		}
819
820add_pool:
821		/*
822		 * Add this pool to the list of configs.
823		 */
824		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
825		    &name) == 0);
826		if (nvlist_add_nvlist(ret, name, config) != 0)
827			goto nomem;
828
829		found_one = B_TRUE;
830		nvlist_free(config);
831		config = NULL;
832	}
833
834	if (!found_one) {
835		nvlist_free(ret);
836		ret = NULL;
837	}
838
839	return (ret);
840
841nomem:
842	(void) no_memory(hdl);
843error:
844	nvlist_free(config);
845	nvlist_free(ret);
846	for (c = 0; c < children; c++)
847		nvlist_free(child[c]);
848	free(child);
849
850	return (NULL);
851}
852
853/*
854 * Return the offset of the given label.
855 */
856static uint64_t
857label_offset(uint64_t size, int l)
858{
859	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
860	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
861	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
862}
863
864/*
865 * Given a file descriptor, read the label information and return an nvlist
866 * describing the configuration, if there is one.
867 * Return 0 on success, or -1 on failure
868 */
869int
870zpool_read_label(int fd, nvlist_t **config)
871{
872	struct stat64 statbuf;
873	int l;
874	vdev_label_t *label;
875	uint64_t state, txg, size;
876
877	*config = NULL;
878
879	if (fstat64(fd, &statbuf) == -1)
880		return (-1);
881	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
882
883	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
884		return (-1);
885
886	for (l = 0; l < VDEV_LABELS; l++) {
887		if (pread64(fd, label, sizeof (vdev_label_t),
888		    label_offset(size, l)) != sizeof (vdev_label_t))
889			continue;
890
891		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
892		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
893			continue;
894
895		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
896		    &state) != 0 || state > POOL_STATE_L2CACHE) {
897			nvlist_free(*config);
898			continue;
899		}
900
901		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
902		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
903		    &txg) != 0 || txg == 0)) {
904			nvlist_free(*config);
905			continue;
906		}
907
908		free(label);
909		return (0);
910	}
911
912	free(label);
913	*config = NULL;
914	return (-1);
915}
916
917typedef struct rdsk_node {
918	char *rn_name;
919	int rn_dfd;
920	libzfs_handle_t *rn_hdl;
921	nvlist_t *rn_config;
922	avl_tree_t *rn_avl;
923	avl_node_t rn_node;
924	boolean_t rn_nozpool;
925} rdsk_node_t;
926
927static int
928slice_cache_compare(const void *arg1, const void *arg2)
929{
930	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
931	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
932	char *nm1slice, *nm2slice;
933	int rv;
934
935	/*
936	 * slices zero and two are the most likely to provide results,
937	 * so put those first
938	 */
939	nm1slice = strstr(nm1, "s0");
940	nm2slice = strstr(nm2, "s0");
941	if (nm1slice && !nm2slice) {
942		return (-1);
943	}
944	if (!nm1slice && nm2slice) {
945		return (1);
946	}
947	nm1slice = strstr(nm1, "s2");
948	nm2slice = strstr(nm2, "s2");
949	if (nm1slice && !nm2slice) {
950		return (-1);
951	}
952	if (!nm1slice && nm2slice) {
953		return (1);
954	}
955
956	rv = strcmp(nm1, nm2);
957	if (rv == 0)
958		return (0);
959	return (rv > 0 ? 1 : -1);
960}
961
962#ifdef illumos
963static void
964check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
965    diskaddr_t size, uint_t blksz)
966{
967	rdsk_node_t tmpnode;
968	rdsk_node_t *node;
969	char sname[MAXNAMELEN];
970
971	tmpnode.rn_name = &sname[0];
972	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
973	    diskname, partno);
974	/*
975	 * protect against division by zero for disk labels that
976	 * contain a bogus sector size
977	 */
978	if (blksz == 0)
979		blksz = DEV_BSIZE;
980	/* too small to contain a zpool? */
981	if ((size < (SPA_MINDEVSIZE / blksz)) &&
982	    (node = avl_find(r, &tmpnode, NULL)))
983		node->rn_nozpool = B_TRUE;
984}
985#endif	/* illumos */
986
987static void
988nozpool_all_slices(avl_tree_t *r, const char *sname)
989{
990#ifdef illumos
991	char diskname[MAXNAMELEN];
992	char *ptr;
993	int i;
994
995	(void) strncpy(diskname, sname, MAXNAMELEN);
996	if (((ptr = strrchr(diskname, 's')) == NULL) &&
997	    ((ptr = strrchr(diskname, 'p')) == NULL))
998		return;
999	ptr[0] = 's';
1000	ptr[1] = '\0';
1001	for (i = 0; i < NDKMAP; i++)
1002		check_one_slice(r, diskname, i, 0, 1);
1003	ptr[0] = 'p';
1004	for (i = 0; i <= FD_NUMPART; i++)
1005		check_one_slice(r, diskname, i, 0, 1);
1006#endif	/* illumos */
1007}
1008
1009#ifdef illumos
1010static void
1011check_slices(avl_tree_t *r, int fd, const char *sname)
1012{
1013	struct extvtoc vtoc;
1014	struct dk_gpt *gpt;
1015	char diskname[MAXNAMELEN];
1016	char *ptr;
1017	int i;
1018
1019	(void) strncpy(diskname, sname, MAXNAMELEN);
1020	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1021		return;
1022	ptr[1] = '\0';
1023
1024	if (read_extvtoc(fd, &vtoc) >= 0) {
1025		for (i = 0; i < NDKMAP; i++)
1026			check_one_slice(r, diskname, i,
1027			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1028	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1029		/*
1030		 * on x86 we'll still have leftover links that point
1031		 * to slices s[9-15], so use NDKMAP instead
1032		 */
1033		for (i = 0; i < NDKMAP; i++)
1034			check_one_slice(r, diskname, i,
1035			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1036		/* nodes p[1-4] are never used with EFI labels */
1037		ptr[0] = 'p';
1038		for (i = 1; i <= FD_NUMPART; i++)
1039			check_one_slice(r, diskname, i, 0, 1);
1040		efi_free(gpt);
1041	}
1042}
1043#endif	/* illumos */
1044
1045static void
1046zpool_open_func(void *arg)
1047{
1048	rdsk_node_t *rn = arg;
1049	struct stat64 statbuf;
1050	nvlist_t *config;
1051	int fd;
1052
1053	if (rn->rn_nozpool)
1054		return;
1055	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1056		/* symlink to a device that's no longer there */
1057		if (errno == ENOENT)
1058			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1059		return;
1060	}
1061	/*
1062	 * Ignore failed stats.  We only want regular
1063	 * files, character devs and block devs.
1064	 */
1065	if (fstat64(fd, &statbuf) != 0 ||
1066	    (!S_ISREG(statbuf.st_mode) &&
1067	    !S_ISCHR(statbuf.st_mode) &&
1068	    !S_ISBLK(statbuf.st_mode))) {
1069		(void) close(fd);
1070		return;
1071	}
1072	/* this file is too small to hold a zpool */
1073#ifdef illumos
1074	if (S_ISREG(statbuf.st_mode) &&
1075	    statbuf.st_size < SPA_MINDEVSIZE) {
1076		(void) close(fd);
1077		return;
1078	} else if (!S_ISREG(statbuf.st_mode)) {
1079		/*
1080		 * Try to read the disk label first so we don't have to
1081		 * open a bunch of minor nodes that can't have a zpool.
1082		 */
1083		check_slices(rn->rn_avl, fd, rn->rn_name);
1084	}
1085#else	/* !illumos */
1086	if (statbuf.st_size < SPA_MINDEVSIZE) {
1087		(void) close(fd);
1088		return;
1089	}
1090#endif	/* illumos */
1091
1092	if ((zpool_read_label(fd, &config)) != 0 && errno == ENOMEM) {
1093		(void) close(fd);
1094		(void) no_memory(rn->rn_hdl);
1095		return;
1096	}
1097	(void) close(fd);
1098
1099	rn->rn_config = config;
1100}
1101
1102/*
1103 * Given a file descriptor, clear (zero) the label information.
1104 */
1105int
1106zpool_clear_label(int fd)
1107{
1108	struct stat64 statbuf;
1109	int l;
1110	vdev_label_t *label;
1111	uint64_t size;
1112
1113	if (fstat64(fd, &statbuf) == -1)
1114		return (0);
1115	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1116
1117	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1118		return (-1);
1119
1120	for (l = 0; l < VDEV_LABELS; l++) {
1121		if (pwrite64(fd, label, sizeof (vdev_label_t),
1122		    label_offset(size, l)) != sizeof (vdev_label_t)) {
1123			free(label);
1124			return (-1);
1125		}
1126	}
1127
1128	free(label);
1129	return (0);
1130}
1131
1132/*
1133 * Given a list of directories to search, find all pools stored on disk.  This
1134 * includes partial pools which are not available to import.  If no args are
1135 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1136 * poolname or guid (but not both) are provided by the caller when trying
1137 * to import a specific pool.
1138 */
1139static nvlist_t *
1140zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1141{
1142	int i, dirs = iarg->paths;
1143	struct dirent64 *dp;
1144	char path[MAXPATHLEN];
1145	char *end, **dir = iarg->path;
1146	size_t pathleft;
1147	nvlist_t *ret = NULL;
1148	static char *default_dir = "/dev";
1149	pool_list_t pools = { 0 };
1150	pool_entry_t *pe, *penext;
1151	vdev_entry_t *ve, *venext;
1152	config_entry_t *ce, *cenext;
1153	name_entry_t *ne, *nenext;
1154	avl_tree_t slice_cache;
1155	rdsk_node_t *slice;
1156	void *cookie;
1157
1158	if (dirs == 0) {
1159		dirs = 1;
1160		dir = &default_dir;
1161	}
1162
1163	/*
1164	 * Go through and read the label configuration information from every
1165	 * possible device, organizing the information according to pool GUID
1166	 * and toplevel GUID.
1167	 */
1168	for (i = 0; i < dirs; i++) {
1169		tpool_t *t;
1170		char rdsk[MAXPATHLEN];
1171		int dfd;
1172		boolean_t config_failed = B_FALSE;
1173		DIR *dirp;
1174
1175		/* use realpath to normalize the path */
1176		if (realpath(dir[i], path) == 0) {
1177			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1178			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1179			goto error;
1180		}
1181		end = &path[strlen(path)];
1182		*end++ = '/';
1183		*end = 0;
1184		pathleft = &path[sizeof (path)] - end;
1185
1186#ifdef illumos
1187		/*
1188		 * Using raw devices instead of block devices when we're
1189		 * reading the labels skips a bunch of slow operations during
1190		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1191		 */
1192		if (strcmp(path, ZFS_DISK_ROOTD) == 0)
1193			(void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
1194		else
1195#endif
1196			(void) strlcpy(rdsk, path, sizeof (rdsk));
1197
1198		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1199		    (dirp = fdopendir(dfd)) == NULL) {
1200			if (dfd >= 0)
1201				(void) close(dfd);
1202			zfs_error_aux(hdl, strerror(errno));
1203			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1204			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1205			    rdsk);
1206			goto error;
1207		}
1208
1209		avl_create(&slice_cache, slice_cache_compare,
1210		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1211
1212		if (strcmp(rdsk, "/dev/") == 0) {
1213			struct gmesh mesh;
1214			struct gclass *mp;
1215			struct ggeom *gp;
1216			struct gprovider *pp;
1217
1218			errno = geom_gettree(&mesh);
1219			if (errno != 0) {
1220				zfs_error_aux(hdl, strerror(errno));
1221				(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1222				    dgettext(TEXT_DOMAIN, "cannot get GEOM tree"));
1223				goto error;
1224			}
1225
1226			LIST_FOREACH(mp, &mesh.lg_class, lg_class) {
1227		        	LIST_FOREACH(gp, &mp->lg_geom, lg_geom) {
1228					LIST_FOREACH(pp, &gp->lg_provider, lg_provider) {
1229						slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1230						slice->rn_name = zfs_strdup(hdl, pp->lg_name);
1231						slice->rn_avl = &slice_cache;
1232						slice->rn_dfd = dfd;
1233						slice->rn_hdl = hdl;
1234						slice->rn_nozpool = B_FALSE;
1235						avl_add(&slice_cache, slice);
1236					}
1237				}
1238			}
1239
1240			geom_deletetree(&mesh);
1241			goto skipdir;
1242		}
1243
1244		/*
1245		 * This is not MT-safe, but we have no MT consumers of libzfs
1246		 */
1247		while ((dp = readdir64(dirp)) != NULL) {
1248			const char *name = dp->d_name;
1249			if (name[0] == '.' &&
1250			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1251				continue;
1252
1253			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1254			slice->rn_name = zfs_strdup(hdl, name);
1255			slice->rn_avl = &slice_cache;
1256			slice->rn_dfd = dfd;
1257			slice->rn_hdl = hdl;
1258			slice->rn_nozpool = B_FALSE;
1259			avl_add(&slice_cache, slice);
1260		}
1261skipdir:
1262		/*
1263		 * create a thread pool to do all of this in parallel;
1264		 * rn_nozpool is not protected, so this is racy in that
1265		 * multiple tasks could decide that the same slice can
1266		 * not hold a zpool, which is benign.  Also choose
1267		 * double the number of processors; we hold a lot of
1268		 * locks in the kernel, so going beyond this doesn't
1269		 * buy us much.
1270		 */
1271		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1272		    0, NULL);
1273		for (slice = avl_first(&slice_cache); slice;
1274		    (slice = avl_walk(&slice_cache, slice,
1275		    AVL_AFTER)))
1276			(void) tpool_dispatch(t, zpool_open_func, slice);
1277		tpool_wait(t);
1278		tpool_destroy(t);
1279
1280		cookie = NULL;
1281		while ((slice = avl_destroy_nodes(&slice_cache,
1282		    &cookie)) != NULL) {
1283			if (slice->rn_config != NULL && !config_failed) {
1284				nvlist_t *config = slice->rn_config;
1285				boolean_t matched = B_TRUE;
1286
1287				if (iarg->poolname != NULL) {
1288					char *pname;
1289
1290					matched = nvlist_lookup_string(config,
1291					    ZPOOL_CONFIG_POOL_NAME,
1292					    &pname) == 0 &&
1293					    strcmp(iarg->poolname, pname) == 0;
1294				} else if (iarg->guid != 0) {
1295					uint64_t this_guid;
1296
1297					matched = nvlist_lookup_uint64(config,
1298					    ZPOOL_CONFIG_POOL_GUID,
1299					    &this_guid) == 0 &&
1300					    iarg->guid == this_guid;
1301				}
1302				if (!matched) {
1303					nvlist_free(config);
1304				} else {
1305					/*
1306					 * use the non-raw path for the config
1307					 */
1308					(void) strlcpy(end, slice->rn_name,
1309					    pathleft);
1310					if (add_config(hdl, &pools, path,
1311					    config) != 0)
1312						config_failed = B_TRUE;
1313				}
1314			}
1315			free(slice->rn_name);
1316			free(slice);
1317		}
1318		avl_destroy(&slice_cache);
1319
1320		(void) closedir(dirp);
1321
1322		if (config_failed)
1323			goto error;
1324	}
1325
1326	ret = get_configs(hdl, &pools, iarg->can_be_active);
1327
1328error:
1329	for (pe = pools.pools; pe != NULL; pe = penext) {
1330		penext = pe->pe_next;
1331		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1332			venext = ve->ve_next;
1333			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1334				cenext = ce->ce_next;
1335				nvlist_free(ce->ce_config);
1336				free(ce);
1337			}
1338			free(ve);
1339		}
1340		free(pe);
1341	}
1342
1343	for (ne = pools.names; ne != NULL; ne = nenext) {
1344		nenext = ne->ne_next;
1345		free(ne->ne_name);
1346		free(ne);
1347	}
1348
1349	return (ret);
1350}
1351
1352nvlist_t *
1353zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1354{
1355	importargs_t iarg = { 0 };
1356
1357	iarg.paths = argc;
1358	iarg.path = argv;
1359
1360	return (zpool_find_import_impl(hdl, &iarg));
1361}
1362
1363/*
1364 * Given a cache file, return the contents as a list of importable pools.
1365 * poolname or guid (but not both) are provided by the caller when trying
1366 * to import a specific pool.
1367 */
1368nvlist_t *
1369zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1370    char *poolname, uint64_t guid)
1371{
1372	char *buf;
1373	int fd;
1374	struct stat64 statbuf;
1375	nvlist_t *raw, *src, *dst;
1376	nvlist_t *pools;
1377	nvpair_t *elem;
1378	char *name;
1379	uint64_t this_guid;
1380	boolean_t active;
1381
1382	verify(poolname == NULL || guid == 0);
1383
1384	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1385		zfs_error_aux(hdl, "%s", strerror(errno));
1386		(void) zfs_error(hdl, EZFS_BADCACHE,
1387		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1388		return (NULL);
1389	}
1390
1391	if (fstat64(fd, &statbuf) != 0) {
1392		zfs_error_aux(hdl, "%s", strerror(errno));
1393		(void) close(fd);
1394		(void) zfs_error(hdl, EZFS_BADCACHE,
1395		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1396		return (NULL);
1397	}
1398
1399	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1400		(void) close(fd);
1401		return (NULL);
1402	}
1403
1404	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1405		(void) close(fd);
1406		free(buf);
1407		(void) zfs_error(hdl, EZFS_BADCACHE,
1408		    dgettext(TEXT_DOMAIN,
1409		    "failed to read cache file contents"));
1410		return (NULL);
1411	}
1412
1413	(void) close(fd);
1414
1415	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1416		free(buf);
1417		(void) zfs_error(hdl, EZFS_BADCACHE,
1418		    dgettext(TEXT_DOMAIN,
1419		    "invalid or corrupt cache file contents"));
1420		return (NULL);
1421	}
1422
1423	free(buf);
1424
1425	/*
1426	 * Go through and get the current state of the pools and refresh their
1427	 * state.
1428	 */
1429	if (nvlist_alloc(&pools, 0, 0) != 0) {
1430		(void) no_memory(hdl);
1431		nvlist_free(raw);
1432		return (NULL);
1433	}
1434
1435	elem = NULL;
1436	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1437		src = fnvpair_value_nvlist(elem);
1438
1439		name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1440		if (poolname != NULL && strcmp(poolname, name) != 0)
1441			continue;
1442
1443		this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1444		if (guid != 0 && guid != this_guid)
1445			continue;
1446
1447		if (pool_active(hdl, name, this_guid, &active) != 0) {
1448			nvlist_free(raw);
1449			nvlist_free(pools);
1450			return (NULL);
1451		}
1452
1453		if (active)
1454			continue;
1455
1456		if ((dst = refresh_config(hdl, src)) == NULL) {
1457			nvlist_free(raw);
1458			nvlist_free(pools);
1459			return (NULL);
1460		}
1461
1462		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1463			(void) no_memory(hdl);
1464			nvlist_free(dst);
1465			nvlist_free(raw);
1466			nvlist_free(pools);
1467			return (NULL);
1468		}
1469		nvlist_free(dst);
1470	}
1471
1472	nvlist_free(raw);
1473	return (pools);
1474}
1475
1476static int
1477name_or_guid_exists(zpool_handle_t *zhp, void *data)
1478{
1479	importargs_t *import = data;
1480	int found = 0;
1481
1482	if (import->poolname != NULL) {
1483		char *pool_name;
1484
1485		verify(nvlist_lookup_string(zhp->zpool_config,
1486		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1487		if (strcmp(pool_name, import->poolname) == 0)
1488			found = 1;
1489	} else {
1490		uint64_t pool_guid;
1491
1492		verify(nvlist_lookup_uint64(zhp->zpool_config,
1493		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1494		if (pool_guid == import->guid)
1495			found = 1;
1496	}
1497
1498	zpool_close(zhp);
1499	return (found);
1500}
1501
1502nvlist_t *
1503zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1504{
1505	verify(import->poolname == NULL || import->guid == 0);
1506
1507	if (import->unique)
1508		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1509
1510	if (import->cachefile != NULL)
1511		return (zpool_find_import_cached(hdl, import->cachefile,
1512		    import->poolname, import->guid));
1513
1514	return (zpool_find_import_impl(hdl, import));
1515}
1516
1517boolean_t
1518find_guid(nvlist_t *nv, uint64_t guid)
1519{
1520	uint64_t tmp;
1521	nvlist_t **child;
1522	uint_t c, children;
1523
1524	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1525	if (tmp == guid)
1526		return (B_TRUE);
1527
1528	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1529	    &child, &children) == 0) {
1530		for (c = 0; c < children; c++)
1531			if (find_guid(child[c], guid))
1532				return (B_TRUE);
1533	}
1534
1535	return (B_FALSE);
1536}
1537
1538typedef struct aux_cbdata {
1539	const char	*cb_type;
1540	uint64_t	cb_guid;
1541	zpool_handle_t	*cb_zhp;
1542} aux_cbdata_t;
1543
1544static int
1545find_aux(zpool_handle_t *zhp, void *data)
1546{
1547	aux_cbdata_t *cbp = data;
1548	nvlist_t **list;
1549	uint_t i, count;
1550	uint64_t guid;
1551	nvlist_t *nvroot;
1552
1553	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1554	    &nvroot) == 0);
1555
1556	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1557	    &list, &count) == 0) {
1558		for (i = 0; i < count; i++) {
1559			verify(nvlist_lookup_uint64(list[i],
1560			    ZPOOL_CONFIG_GUID, &guid) == 0);
1561			if (guid == cbp->cb_guid) {
1562				cbp->cb_zhp = zhp;
1563				return (1);
1564			}
1565		}
1566	}
1567
1568	zpool_close(zhp);
1569	return (0);
1570}
1571
1572/*
1573 * Determines if the pool is in use.  If so, it returns true and the state of
1574 * the pool as well as the name of the pool.  Both strings are allocated and
1575 * must be freed by the caller.
1576 */
1577int
1578zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1579    boolean_t *inuse)
1580{
1581	nvlist_t *config;
1582	char *name;
1583	boolean_t ret;
1584	uint64_t guid, vdev_guid;
1585	zpool_handle_t *zhp;
1586	nvlist_t *pool_config;
1587	uint64_t stateval, isspare;
1588	aux_cbdata_t cb = { 0 };
1589	boolean_t isactive;
1590
1591	*inuse = B_FALSE;
1592
1593	if (zpool_read_label(fd, &config) != 0 && errno == ENOMEM) {
1594		(void) no_memory(hdl);
1595		return (-1);
1596	}
1597
1598	if (config == NULL)
1599		return (0);
1600
1601	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1602	    &stateval) == 0);
1603	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1604	    &vdev_guid) == 0);
1605
1606	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1607		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1608		    &name) == 0);
1609		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1610		    &guid) == 0);
1611	}
1612
1613	switch (stateval) {
1614	case POOL_STATE_EXPORTED:
1615		/*
1616		 * A pool with an exported state may in fact be imported
1617		 * read-only, so check the in-core state to see if it's
1618		 * active and imported read-only.  If it is, set
1619		 * its state to active.
1620		 */
1621		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1622		    (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1623			if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1624				stateval = POOL_STATE_ACTIVE;
1625
1626			/*
1627			 * All we needed the zpool handle for is the
1628			 * readonly prop check.
1629			 */
1630			zpool_close(zhp);
1631		}
1632
1633		ret = B_TRUE;
1634		break;
1635
1636	case POOL_STATE_ACTIVE:
1637		/*
1638		 * For an active pool, we have to determine if it's really part
1639		 * of a currently active pool (in which case the pool will exist
1640		 * and the guid will be the same), or whether it's part of an
1641		 * active pool that was disconnected without being explicitly
1642		 * exported.
1643		 */
1644		if (pool_active(hdl, name, guid, &isactive) != 0) {
1645			nvlist_free(config);
1646			return (-1);
1647		}
1648
1649		if (isactive) {
1650			/*
1651			 * Because the device may have been removed while
1652			 * offlined, we only report it as active if the vdev is
1653			 * still present in the config.  Otherwise, pretend like
1654			 * it's not in use.
1655			 */
1656			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1657			    (pool_config = zpool_get_config(zhp, NULL))
1658			    != NULL) {
1659				nvlist_t *nvroot;
1660
1661				verify(nvlist_lookup_nvlist(pool_config,
1662				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1663				ret = find_guid(nvroot, vdev_guid);
1664			} else {
1665				ret = B_FALSE;
1666			}
1667
1668			/*
1669			 * If this is an active spare within another pool, we
1670			 * treat it like an unused hot spare.  This allows the
1671			 * user to create a pool with a hot spare that currently
1672			 * in use within another pool.  Since we return B_TRUE,
1673			 * libdiskmgt will continue to prevent generic consumers
1674			 * from using the device.
1675			 */
1676			if (ret && nvlist_lookup_uint64(config,
1677			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1678				stateval = POOL_STATE_SPARE;
1679
1680			if (zhp != NULL)
1681				zpool_close(zhp);
1682		} else {
1683			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1684			ret = B_TRUE;
1685		}
1686		break;
1687
1688	case POOL_STATE_SPARE:
1689		/*
1690		 * For a hot spare, it can be either definitively in use, or
1691		 * potentially active.  To determine if it's in use, we iterate
1692		 * over all pools in the system and search for one with a spare
1693		 * with a matching guid.
1694		 *
1695		 * Due to the shared nature of spares, we don't actually report
1696		 * the potentially active case as in use.  This means the user
1697		 * can freely create pools on the hot spares of exported pools,
1698		 * but to do otherwise makes the resulting code complicated, and
1699		 * we end up having to deal with this case anyway.
1700		 */
1701		cb.cb_zhp = NULL;
1702		cb.cb_guid = vdev_guid;
1703		cb.cb_type = ZPOOL_CONFIG_SPARES;
1704		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1705			name = (char *)zpool_get_name(cb.cb_zhp);
1706			ret = B_TRUE;
1707		} else {
1708			ret = B_FALSE;
1709		}
1710		break;
1711
1712	case POOL_STATE_L2CACHE:
1713
1714		/*
1715		 * Check if any pool is currently using this l2cache device.
1716		 */
1717		cb.cb_zhp = NULL;
1718		cb.cb_guid = vdev_guid;
1719		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1720		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1721			name = (char *)zpool_get_name(cb.cb_zhp);
1722			ret = B_TRUE;
1723		} else {
1724			ret = B_FALSE;
1725		}
1726		break;
1727
1728	default:
1729		ret = B_FALSE;
1730	}
1731
1732
1733	if (ret) {
1734		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1735			if (cb.cb_zhp)
1736				zpool_close(cb.cb_zhp);
1737			nvlist_free(config);
1738			return (-1);
1739		}
1740		*state = (pool_state_t)stateval;
1741	}
1742
1743	if (cb.cb_zhp)
1744		zpool_close(cb.cb_zhp);
1745
1746	nvlist_free(config);
1747	*inuse = ret;
1748	return (0);
1749}
1750