libzfs_import.c revision 266611
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 */
26
27/*
28 * Pool import support functions.
29 *
30 * To import a pool, we rely on reading the configuration information from the
31 * ZFS label of each device.  If we successfully read the label, then we
32 * organize the configuration information in the following hierarchy:
33 *
34 * 	pool guid -> toplevel vdev guid -> label txg
35 *
36 * Duplicate entries matching this same tuple will be discarded.  Once we have
37 * examined every device, we pick the best label txg config for each toplevel
38 * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
39 * update any paths that have changed.  Finally, we attempt to import the pool
40 * using our derived config, and record the results.
41 */
42
43#include <ctype.h>
44#include <devid.h>
45#include <dirent.h>
46#include <errno.h>
47#include <libintl.h>
48#include <stddef.h>
49#include <stdlib.h>
50#include <string.h>
51#include <sys/stat.h>
52#include <unistd.h>
53#include <fcntl.h>
54#include <thread_pool.h>
55#include <libgeom.h>
56
57#include <sys/vdev_impl.h>
58
59#include "libzfs.h"
60#include "libzfs_impl.h"
61
62/*
63 * Intermediate structures used to gather configuration information.
64 */
65typedef struct config_entry {
66	uint64_t		ce_txg;
67	nvlist_t		*ce_config;
68	struct config_entry	*ce_next;
69} config_entry_t;
70
71typedef struct vdev_entry {
72	uint64_t		ve_guid;
73	config_entry_t		*ve_configs;
74	struct vdev_entry	*ve_next;
75} vdev_entry_t;
76
77typedef struct pool_entry {
78	uint64_t		pe_guid;
79	vdev_entry_t		*pe_vdevs;
80	struct pool_entry	*pe_next;
81} pool_entry_t;
82
83typedef struct name_entry {
84	char			*ne_name;
85	uint64_t		ne_guid;
86	struct name_entry	*ne_next;
87} name_entry_t;
88
89typedef struct pool_list {
90	pool_entry_t		*pools;
91	name_entry_t		*names;
92} pool_list_t;
93
94static char *
95get_devid(const char *path)
96{
97#ifdef have_devid
98	int fd;
99	ddi_devid_t devid;
100	char *minor, *ret;
101
102	if ((fd = open(path, O_RDONLY)) < 0)
103		return (NULL);
104
105	minor = NULL;
106	ret = NULL;
107	if (devid_get(fd, &devid) == 0) {
108		if (devid_get_minor_name(fd, &minor) == 0)
109			ret = devid_str_encode(devid, minor);
110		if (minor != NULL)
111			devid_str_free(minor);
112		devid_free(devid);
113	}
114	(void) close(fd);
115
116	return (ret);
117#else
118	return (NULL);
119#endif
120}
121
122
123/*
124 * Go through and fix up any path and/or devid information for the given vdev
125 * configuration.
126 */
127static int
128fix_paths(nvlist_t *nv, name_entry_t *names)
129{
130	nvlist_t **child;
131	uint_t c, children;
132	uint64_t guid;
133	name_entry_t *ne, *best;
134	char *path, *devid;
135	int matched;
136
137	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
138	    &child, &children) == 0) {
139		for (c = 0; c < children; c++)
140			if (fix_paths(child[c], names) != 0)
141				return (-1);
142		return (0);
143	}
144
145	/*
146	 * This is a leaf (file or disk) vdev.  In either case, go through
147	 * the name list and see if we find a matching guid.  If so, replace
148	 * the path and see if we can calculate a new devid.
149	 *
150	 * There may be multiple names associated with a particular guid, in
151	 * which case we have overlapping slices or multiple paths to the same
152	 * disk.  If this is the case, then we want to pick the path that is
153	 * the most similar to the original, where "most similar" is the number
154	 * of matching characters starting from the end of the path.  This will
155	 * preserve slice numbers even if the disks have been reorganized, and
156	 * will also catch preferred disk names if multiple paths exist.
157	 */
158	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
159	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
160		path = NULL;
161
162	matched = 0;
163	best = NULL;
164	for (ne = names; ne != NULL; ne = ne->ne_next) {
165		if (ne->ne_guid == guid) {
166			const char *src, *dst;
167			int count;
168
169			if (path == NULL) {
170				best = ne;
171				break;
172			}
173
174			src = ne->ne_name + strlen(ne->ne_name) - 1;
175			dst = path + strlen(path) - 1;
176			for (count = 0; src >= ne->ne_name && dst >= path;
177			    src--, dst--, count++)
178				if (*src != *dst)
179					break;
180
181			/*
182			 * At this point, 'count' is the number of characters
183			 * matched from the end.
184			 */
185			if (count > matched || best == NULL) {
186				best = ne;
187				matched = count;
188			}
189		}
190	}
191
192	if (best == NULL)
193		return (0);
194
195	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
196		return (-1);
197
198	if ((devid = get_devid(best->ne_name)) == NULL) {
199		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
200	} else {
201		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
202			return (-1);
203		devid_str_free(devid);
204	}
205
206	return (0);
207}
208
209/*
210 * Add the given configuration to the list of known devices.
211 */
212static int
213add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
214    nvlist_t *config)
215{
216	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
217	pool_entry_t *pe;
218	vdev_entry_t *ve;
219	config_entry_t *ce;
220	name_entry_t *ne;
221
222	/*
223	 * If this is a hot spare not currently in use or level 2 cache
224	 * device, add it to the list of names to translate, but don't do
225	 * anything else.
226	 */
227	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
228	    &state) == 0 &&
229	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
230	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
231		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
232			return (-1);
233
234		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
235			free(ne);
236			return (-1);
237		}
238		ne->ne_guid = vdev_guid;
239		ne->ne_next = pl->names;
240		pl->names = ne;
241		return (0);
242	}
243
244	/*
245	 * If we have a valid config but cannot read any of these fields, then
246	 * it means we have a half-initialized label.  In vdev_label_init()
247	 * we write a label with txg == 0 so that we can identify the device
248	 * in case the user refers to the same disk later on.  If we fail to
249	 * create the pool, we'll be left with a label in this state
250	 * which should not be considered part of a valid pool.
251	 */
252	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
253	    &pool_guid) != 0 ||
254	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
255	    &vdev_guid) != 0 ||
256	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
257	    &top_guid) != 0 ||
258	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
259	    &txg) != 0 || txg == 0) {
260		nvlist_free(config);
261		return (0);
262	}
263
264	/*
265	 * First, see if we know about this pool.  If not, then add it to the
266	 * list of known pools.
267	 */
268	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
269		if (pe->pe_guid == pool_guid)
270			break;
271	}
272
273	if (pe == NULL) {
274		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
275			nvlist_free(config);
276			return (-1);
277		}
278		pe->pe_guid = pool_guid;
279		pe->pe_next = pl->pools;
280		pl->pools = pe;
281	}
282
283	/*
284	 * Second, see if we know about this toplevel vdev.  Add it if its
285	 * missing.
286	 */
287	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
288		if (ve->ve_guid == top_guid)
289			break;
290	}
291
292	if (ve == NULL) {
293		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
294			nvlist_free(config);
295			return (-1);
296		}
297		ve->ve_guid = top_guid;
298		ve->ve_next = pe->pe_vdevs;
299		pe->pe_vdevs = ve;
300	}
301
302	/*
303	 * Third, see if we have a config with a matching transaction group.  If
304	 * so, then we do nothing.  Otherwise, add it to the list of known
305	 * configs.
306	 */
307	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
308		if (ce->ce_txg == txg)
309			break;
310	}
311
312	if (ce == NULL) {
313		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
314			nvlist_free(config);
315			return (-1);
316		}
317		ce->ce_txg = txg;
318		ce->ce_config = config;
319		ce->ce_next = ve->ve_configs;
320		ve->ve_configs = ce;
321	} else {
322		nvlist_free(config);
323	}
324
325	/*
326	 * At this point we've successfully added our config to the list of
327	 * known configs.  The last thing to do is add the vdev guid -> path
328	 * mappings so that we can fix up the configuration as necessary before
329	 * doing the import.
330	 */
331	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
332		return (-1);
333
334	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
335		free(ne);
336		return (-1);
337	}
338
339	ne->ne_guid = vdev_guid;
340	ne->ne_next = pl->names;
341	pl->names = ne;
342
343	return (0);
344}
345
346/*
347 * Returns true if the named pool matches the given GUID.
348 */
349static int
350pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
351    boolean_t *isactive)
352{
353	zpool_handle_t *zhp;
354	uint64_t theguid;
355
356	if (zpool_open_silent(hdl, name, &zhp) != 0)
357		return (-1);
358
359	if (zhp == NULL) {
360		*isactive = B_FALSE;
361		return (0);
362	}
363
364	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
365	    &theguid) == 0);
366
367	zpool_close(zhp);
368
369	*isactive = (theguid == guid);
370	return (0);
371}
372
373static nvlist_t *
374refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
375{
376	nvlist_t *nvl;
377	zfs_cmd_t zc = { 0 };
378	int err;
379
380	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
381		return (NULL);
382
383	if (zcmd_alloc_dst_nvlist(hdl, &zc,
384	    zc.zc_nvlist_conf_size * 2) != 0) {
385		zcmd_free_nvlists(&zc);
386		return (NULL);
387	}
388
389	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
390	    &zc)) != 0 && errno == ENOMEM) {
391		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
392			zcmd_free_nvlists(&zc);
393			return (NULL);
394		}
395	}
396
397	if (err) {
398		zcmd_free_nvlists(&zc);
399		return (NULL);
400	}
401
402	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
403		zcmd_free_nvlists(&zc);
404		return (NULL);
405	}
406
407	zcmd_free_nvlists(&zc);
408	return (nvl);
409}
410
411/*
412 * Determine if the vdev id is a hole in the namespace.
413 */
414boolean_t
415vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
416{
417	for (int c = 0; c < holes; c++) {
418
419		/* Top-level is a hole */
420		if (hole_array[c] == id)
421			return (B_TRUE);
422	}
423	return (B_FALSE);
424}
425
426/*
427 * Convert our list of pools into the definitive set of configurations.  We
428 * start by picking the best config for each toplevel vdev.  Once that's done,
429 * we assemble the toplevel vdevs into a full config for the pool.  We make a
430 * pass to fix up any incorrect paths, and then add it to the main list to
431 * return to the user.
432 */
433static nvlist_t *
434get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
435{
436	pool_entry_t *pe;
437	vdev_entry_t *ve;
438	config_entry_t *ce;
439	nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
440	nvlist_t **spares, **l2cache;
441	uint_t i, nspares, nl2cache;
442	boolean_t config_seen;
443	uint64_t best_txg;
444	char *name, *hostname;
445	uint64_t guid;
446	uint_t children = 0;
447	nvlist_t **child = NULL;
448	uint_t holes;
449	uint64_t *hole_array, max_id;
450	uint_t c;
451	boolean_t isactive;
452	uint64_t hostid;
453	nvlist_t *nvl;
454	boolean_t found_one = B_FALSE;
455	boolean_t valid_top_config = B_FALSE;
456
457	if (nvlist_alloc(&ret, 0, 0) != 0)
458		goto nomem;
459
460	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
461		uint64_t id, max_txg = 0;
462
463		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
464			goto nomem;
465		config_seen = B_FALSE;
466
467		/*
468		 * Iterate over all toplevel vdevs.  Grab the pool configuration
469		 * from the first one we find, and then go through the rest and
470		 * add them as necessary to the 'vdevs' member of the config.
471		 */
472		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
473
474			/*
475			 * Determine the best configuration for this vdev by
476			 * selecting the config with the latest transaction
477			 * group.
478			 */
479			best_txg = 0;
480			for (ce = ve->ve_configs; ce != NULL;
481			    ce = ce->ce_next) {
482
483				if (ce->ce_txg > best_txg) {
484					tmp = ce->ce_config;
485					best_txg = ce->ce_txg;
486				}
487			}
488
489			/*
490			 * We rely on the fact that the max txg for the
491			 * pool will contain the most up-to-date information
492			 * about the valid top-levels in the vdev namespace.
493			 */
494			if (best_txg > max_txg) {
495				(void) nvlist_remove(config,
496				    ZPOOL_CONFIG_VDEV_CHILDREN,
497				    DATA_TYPE_UINT64);
498				(void) nvlist_remove(config,
499				    ZPOOL_CONFIG_HOLE_ARRAY,
500				    DATA_TYPE_UINT64_ARRAY);
501
502				max_txg = best_txg;
503				hole_array = NULL;
504				holes = 0;
505				max_id = 0;
506				valid_top_config = B_FALSE;
507
508				if (nvlist_lookup_uint64(tmp,
509				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
510					verify(nvlist_add_uint64(config,
511					    ZPOOL_CONFIG_VDEV_CHILDREN,
512					    max_id) == 0);
513					valid_top_config = B_TRUE;
514				}
515
516				if (nvlist_lookup_uint64_array(tmp,
517				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
518				    &holes) == 0) {
519					verify(nvlist_add_uint64_array(config,
520					    ZPOOL_CONFIG_HOLE_ARRAY,
521					    hole_array, holes) == 0);
522				}
523			}
524
525			if (!config_seen) {
526				/*
527				 * Copy the relevant pieces of data to the pool
528				 * configuration:
529				 *
530				 *	version
531				 *	pool guid
532				 *	name
533				 *	comment (if available)
534				 *	pool state
535				 *	hostid (if available)
536				 *	hostname (if available)
537				 */
538				uint64_t state, version;
539				char *comment = NULL;
540
541				version = fnvlist_lookup_uint64(tmp,
542				    ZPOOL_CONFIG_VERSION);
543				fnvlist_add_uint64(config,
544				    ZPOOL_CONFIG_VERSION, version);
545				guid = fnvlist_lookup_uint64(tmp,
546				    ZPOOL_CONFIG_POOL_GUID);
547				fnvlist_add_uint64(config,
548				    ZPOOL_CONFIG_POOL_GUID, guid);
549				name = fnvlist_lookup_string(tmp,
550				    ZPOOL_CONFIG_POOL_NAME);
551				fnvlist_add_string(config,
552				    ZPOOL_CONFIG_POOL_NAME, name);
553
554				if (nvlist_lookup_string(tmp,
555				    ZPOOL_CONFIG_COMMENT, &comment) == 0)
556					fnvlist_add_string(config,
557					    ZPOOL_CONFIG_COMMENT, comment);
558
559				state = fnvlist_lookup_uint64(tmp,
560				    ZPOOL_CONFIG_POOL_STATE);
561				fnvlist_add_uint64(config,
562				    ZPOOL_CONFIG_POOL_STATE, state);
563
564				hostid = 0;
565				if (nvlist_lookup_uint64(tmp,
566				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
567					fnvlist_add_uint64(config,
568					    ZPOOL_CONFIG_HOSTID, hostid);
569					hostname = fnvlist_lookup_string(tmp,
570					    ZPOOL_CONFIG_HOSTNAME);
571					fnvlist_add_string(config,
572					    ZPOOL_CONFIG_HOSTNAME, hostname);
573				}
574
575				config_seen = B_TRUE;
576			}
577
578			/*
579			 * Add this top-level vdev to the child array.
580			 */
581			verify(nvlist_lookup_nvlist(tmp,
582			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
583			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
584			    &id) == 0);
585
586			if (id >= children) {
587				nvlist_t **newchild;
588
589				newchild = zfs_alloc(hdl, (id + 1) *
590				    sizeof (nvlist_t *));
591				if (newchild == NULL)
592					goto nomem;
593
594				for (c = 0; c < children; c++)
595					newchild[c] = child[c];
596
597				free(child);
598				child = newchild;
599				children = id + 1;
600			}
601			if (nvlist_dup(nvtop, &child[id], 0) != 0)
602				goto nomem;
603
604		}
605
606		/*
607		 * If we have information about all the top-levels then
608		 * clean up the nvlist which we've constructed. This
609		 * means removing any extraneous devices that are
610		 * beyond the valid range or adding devices to the end
611		 * of our array which appear to be missing.
612		 */
613		if (valid_top_config) {
614			if (max_id < children) {
615				for (c = max_id; c < children; c++)
616					nvlist_free(child[c]);
617				children = max_id;
618			} else if (max_id > children) {
619				nvlist_t **newchild;
620
621				newchild = zfs_alloc(hdl, (max_id) *
622				    sizeof (nvlist_t *));
623				if (newchild == NULL)
624					goto nomem;
625
626				for (c = 0; c < children; c++)
627					newchild[c] = child[c];
628
629				free(child);
630				child = newchild;
631				children = max_id;
632			}
633		}
634
635		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
636		    &guid) == 0);
637
638		/*
639		 * The vdev namespace may contain holes as a result of
640		 * device removal. We must add them back into the vdev
641		 * tree before we process any missing devices.
642		 */
643		if (holes > 0) {
644			ASSERT(valid_top_config);
645
646			for (c = 0; c < children; c++) {
647				nvlist_t *holey;
648
649				if (child[c] != NULL ||
650				    !vdev_is_hole(hole_array, holes, c))
651					continue;
652
653				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
654				    0) != 0)
655					goto nomem;
656
657				/*
658				 * Holes in the namespace are treated as
659				 * "hole" top-level vdevs and have a
660				 * special flag set on them.
661				 */
662				if (nvlist_add_string(holey,
663				    ZPOOL_CONFIG_TYPE,
664				    VDEV_TYPE_HOLE) != 0 ||
665				    nvlist_add_uint64(holey,
666				    ZPOOL_CONFIG_ID, c) != 0 ||
667				    nvlist_add_uint64(holey,
668				    ZPOOL_CONFIG_GUID, 0ULL) != 0)
669					goto nomem;
670				child[c] = holey;
671			}
672		}
673
674		/*
675		 * Look for any missing top-level vdevs.  If this is the case,
676		 * create a faked up 'missing' vdev as a placeholder.  We cannot
677		 * simply compress the child array, because the kernel performs
678		 * certain checks to make sure the vdev IDs match their location
679		 * in the configuration.
680		 */
681		for (c = 0; c < children; c++) {
682			if (child[c] == NULL) {
683				nvlist_t *missing;
684				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
685				    0) != 0)
686					goto nomem;
687				if (nvlist_add_string(missing,
688				    ZPOOL_CONFIG_TYPE,
689				    VDEV_TYPE_MISSING) != 0 ||
690				    nvlist_add_uint64(missing,
691				    ZPOOL_CONFIG_ID, c) != 0 ||
692				    nvlist_add_uint64(missing,
693				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
694					nvlist_free(missing);
695					goto nomem;
696				}
697				child[c] = missing;
698			}
699		}
700
701		/*
702		 * Put all of this pool's top-level vdevs into a root vdev.
703		 */
704		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
705			goto nomem;
706		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
707		    VDEV_TYPE_ROOT) != 0 ||
708		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
709		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
710		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
711		    child, children) != 0) {
712			nvlist_free(nvroot);
713			goto nomem;
714		}
715
716		for (c = 0; c < children; c++)
717			nvlist_free(child[c]);
718		free(child);
719		children = 0;
720		child = NULL;
721
722		/*
723		 * Go through and fix up any paths and/or devids based on our
724		 * known list of vdev GUID -> path mappings.
725		 */
726		if (fix_paths(nvroot, pl->names) != 0) {
727			nvlist_free(nvroot);
728			goto nomem;
729		}
730
731		/*
732		 * Add the root vdev to this pool's configuration.
733		 */
734		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
735		    nvroot) != 0) {
736			nvlist_free(nvroot);
737			goto nomem;
738		}
739		nvlist_free(nvroot);
740
741		/*
742		 * zdb uses this path to report on active pools that were
743		 * imported or created using -R.
744		 */
745		if (active_ok)
746			goto add_pool;
747
748		/*
749		 * Determine if this pool is currently active, in which case we
750		 * can't actually import it.
751		 */
752		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
753		    &name) == 0);
754		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
755		    &guid) == 0);
756
757		if (pool_active(hdl, name, guid, &isactive) != 0)
758			goto error;
759
760		if (isactive) {
761			nvlist_free(config);
762			config = NULL;
763			continue;
764		}
765
766		if ((nvl = refresh_config(hdl, config)) == NULL) {
767			nvlist_free(config);
768			config = NULL;
769			continue;
770		}
771
772		nvlist_free(config);
773		config = nvl;
774
775		/*
776		 * Go through and update the paths for spares, now that we have
777		 * them.
778		 */
779		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
780		    &nvroot) == 0);
781		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
782		    &spares, &nspares) == 0) {
783			for (i = 0; i < nspares; i++) {
784				if (fix_paths(spares[i], pl->names) != 0)
785					goto nomem;
786			}
787		}
788
789		/*
790		 * Update the paths for l2cache devices.
791		 */
792		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
793		    &l2cache, &nl2cache) == 0) {
794			for (i = 0; i < nl2cache; i++) {
795				if (fix_paths(l2cache[i], pl->names) != 0)
796					goto nomem;
797			}
798		}
799
800		/*
801		 * Restore the original information read from the actual label.
802		 */
803		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
804		    DATA_TYPE_UINT64);
805		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
806		    DATA_TYPE_STRING);
807		if (hostid != 0) {
808			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
809			    hostid) == 0);
810			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
811			    hostname) == 0);
812		}
813
814add_pool:
815		/*
816		 * Add this pool to the list of configs.
817		 */
818		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
819		    &name) == 0);
820		if (nvlist_add_nvlist(ret, name, config) != 0)
821			goto nomem;
822
823		found_one = B_TRUE;
824		nvlist_free(config);
825		config = NULL;
826	}
827
828	if (!found_one) {
829		nvlist_free(ret);
830		ret = NULL;
831	}
832
833	return (ret);
834
835nomem:
836	(void) no_memory(hdl);
837error:
838	nvlist_free(config);
839	nvlist_free(ret);
840	for (c = 0; c < children; c++)
841		nvlist_free(child[c]);
842	free(child);
843
844	return (NULL);
845}
846
847/*
848 * Return the offset of the given label.
849 */
850static uint64_t
851label_offset(uint64_t size, int l)
852{
853	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
854	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
855	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
856}
857
858/*
859 * Given a file descriptor, read the label information and return an nvlist
860 * describing the configuration, if there is one.
861 */
862int
863zpool_read_label(int fd, nvlist_t **config)
864{
865	struct stat64 statbuf;
866	int l;
867	vdev_label_t *label;
868	uint64_t state, txg, size;
869
870	*config = NULL;
871
872	if (fstat64(fd, &statbuf) == -1)
873		return (0);
874	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
875
876	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
877		return (-1);
878
879	for (l = 0; l < VDEV_LABELS; l++) {
880		if (pread64(fd, label, sizeof (vdev_label_t),
881		    label_offset(size, l)) != sizeof (vdev_label_t))
882			continue;
883
884		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
885		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
886			continue;
887
888		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
889		    &state) != 0 || state > POOL_STATE_L2CACHE) {
890			nvlist_free(*config);
891			continue;
892		}
893
894		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
895		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
896		    &txg) != 0 || txg == 0)) {
897			nvlist_free(*config);
898			continue;
899		}
900
901		free(label);
902		return (0);
903	}
904
905	free(label);
906	*config = NULL;
907	return (0);
908}
909
910typedef struct rdsk_node {
911	char *rn_name;
912	int rn_dfd;
913	libzfs_handle_t *rn_hdl;
914	nvlist_t *rn_config;
915	avl_tree_t *rn_avl;
916	avl_node_t rn_node;
917	boolean_t rn_nozpool;
918} rdsk_node_t;
919
920static int
921slice_cache_compare(const void *arg1, const void *arg2)
922{
923	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
924	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
925	char *nm1slice, *nm2slice;
926	int rv;
927
928	/*
929	 * slices zero and two are the most likely to provide results,
930	 * so put those first
931	 */
932	nm1slice = strstr(nm1, "s0");
933	nm2slice = strstr(nm2, "s0");
934	if (nm1slice && !nm2slice) {
935		return (-1);
936	}
937	if (!nm1slice && nm2slice) {
938		return (1);
939	}
940	nm1slice = strstr(nm1, "s2");
941	nm2slice = strstr(nm2, "s2");
942	if (nm1slice && !nm2slice) {
943		return (-1);
944	}
945	if (!nm1slice && nm2slice) {
946		return (1);
947	}
948
949	rv = strcmp(nm1, nm2);
950	if (rv == 0)
951		return (0);
952	return (rv > 0 ? 1 : -1);
953}
954
955#ifdef sun
956static void
957check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
958    diskaddr_t size, uint_t blksz)
959{
960	rdsk_node_t tmpnode;
961	rdsk_node_t *node;
962	char sname[MAXNAMELEN];
963
964	tmpnode.rn_name = &sname[0];
965	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
966	    diskname, partno);
967	/*
968	 * protect against division by zero for disk labels that
969	 * contain a bogus sector size
970	 */
971	if (blksz == 0)
972		blksz = DEV_BSIZE;
973	/* too small to contain a zpool? */
974	if ((size < (SPA_MINDEVSIZE / blksz)) &&
975	    (node = avl_find(r, &tmpnode, NULL)))
976		node->rn_nozpool = B_TRUE;
977}
978#endif	/* sun */
979
980static void
981nozpool_all_slices(avl_tree_t *r, const char *sname)
982{
983#ifdef sun
984	char diskname[MAXNAMELEN];
985	char *ptr;
986	int i;
987
988	(void) strncpy(diskname, sname, MAXNAMELEN);
989	if (((ptr = strrchr(diskname, 's')) == NULL) &&
990	    ((ptr = strrchr(diskname, 'p')) == NULL))
991		return;
992	ptr[0] = 's';
993	ptr[1] = '\0';
994	for (i = 0; i < NDKMAP; i++)
995		check_one_slice(r, diskname, i, 0, 1);
996	ptr[0] = 'p';
997	for (i = 0; i <= FD_NUMPART; i++)
998		check_one_slice(r, diskname, i, 0, 1);
999#endif	/* sun */
1000}
1001
1002#ifdef sun
1003static void
1004check_slices(avl_tree_t *r, int fd, const char *sname)
1005{
1006	struct extvtoc vtoc;
1007	struct dk_gpt *gpt;
1008	char diskname[MAXNAMELEN];
1009	char *ptr;
1010	int i;
1011
1012	(void) strncpy(diskname, sname, MAXNAMELEN);
1013	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1014		return;
1015	ptr[1] = '\0';
1016
1017	if (read_extvtoc(fd, &vtoc) >= 0) {
1018		for (i = 0; i < NDKMAP; i++)
1019			check_one_slice(r, diskname, i,
1020			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1021	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1022		/*
1023		 * on x86 we'll still have leftover links that point
1024		 * to slices s[9-15], so use NDKMAP instead
1025		 */
1026		for (i = 0; i < NDKMAP; i++)
1027			check_one_slice(r, diskname, i,
1028			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1029		/* nodes p[1-4] are never used with EFI labels */
1030		ptr[0] = 'p';
1031		for (i = 1; i <= FD_NUMPART; i++)
1032			check_one_slice(r, diskname, i, 0, 1);
1033		efi_free(gpt);
1034	}
1035}
1036#endif	/* sun */
1037
1038static void
1039zpool_open_func(void *arg)
1040{
1041	rdsk_node_t *rn = arg;
1042	struct stat64 statbuf;
1043	nvlist_t *config;
1044	int fd;
1045
1046	if (rn->rn_nozpool)
1047		return;
1048	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1049		/* symlink to a device that's no longer there */
1050		if (errno == ENOENT)
1051			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1052		return;
1053	}
1054	/*
1055	 * Ignore failed stats.  We only want regular
1056	 * files, character devs and block devs.
1057	 */
1058	if (fstat64(fd, &statbuf) != 0 ||
1059	    (!S_ISREG(statbuf.st_mode) &&
1060	    !S_ISCHR(statbuf.st_mode) &&
1061	    !S_ISBLK(statbuf.st_mode))) {
1062		(void) close(fd);
1063		return;
1064	}
1065	/* this file is too small to hold a zpool */
1066#ifdef sun
1067	if (S_ISREG(statbuf.st_mode) &&
1068	    statbuf.st_size < SPA_MINDEVSIZE) {
1069		(void) close(fd);
1070		return;
1071	} else if (!S_ISREG(statbuf.st_mode)) {
1072		/*
1073		 * Try to read the disk label first so we don't have to
1074		 * open a bunch of minor nodes that can't have a zpool.
1075		 */
1076		check_slices(rn->rn_avl, fd, rn->rn_name);
1077	}
1078#else	/* !sun */
1079	if (statbuf.st_size < SPA_MINDEVSIZE) {
1080		(void) close(fd);
1081		return;
1082	}
1083#endif	/* sun */
1084
1085	if ((zpool_read_label(fd, &config)) != 0) {
1086		(void) close(fd);
1087		(void) no_memory(rn->rn_hdl);
1088		return;
1089	}
1090	(void) close(fd);
1091
1092
1093	rn->rn_config = config;
1094	if (config != NULL) {
1095		assert(rn->rn_nozpool == B_FALSE);
1096	}
1097}
1098
1099/*
1100 * Given a file descriptor, clear (zero) the label information.  This function
1101 * is used in the appliance stack as part of the ZFS sysevent module and
1102 * to implement the "zpool labelclear" command.
1103 */
1104int
1105zpool_clear_label(int fd)
1106{
1107	struct stat64 statbuf;
1108	int l;
1109	vdev_label_t *label;
1110	uint64_t size;
1111
1112	if (fstat64(fd, &statbuf) == -1)
1113		return (0);
1114	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1115
1116	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1117		return (-1);
1118
1119	for (l = 0; l < VDEV_LABELS; l++) {
1120		if (pwrite64(fd, label, sizeof (vdev_label_t),
1121		    label_offset(size, l)) != sizeof (vdev_label_t))
1122			return (-1);
1123	}
1124
1125	free(label);
1126	return (0);
1127}
1128
1129/*
1130 * Given a list of directories to search, find all pools stored on disk.  This
1131 * includes partial pools which are not available to import.  If no args are
1132 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1133 * poolname or guid (but not both) are provided by the caller when trying
1134 * to import a specific pool.
1135 */
1136static nvlist_t *
1137zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1138{
1139	int i, dirs = iarg->paths;
1140	DIR *dirp = NULL;
1141	struct dirent64 *dp;
1142	char path[MAXPATHLEN];
1143	char *end, **dir = iarg->path;
1144	size_t pathleft;
1145	nvlist_t *ret = NULL;
1146	static char *default_dir = "/dev";
1147	pool_list_t pools = { 0 };
1148	pool_entry_t *pe, *penext;
1149	vdev_entry_t *ve, *venext;
1150	config_entry_t *ce, *cenext;
1151	name_entry_t *ne, *nenext;
1152	avl_tree_t slice_cache;
1153	rdsk_node_t *slice;
1154	void *cookie;
1155
1156	if (dirs == 0) {
1157		dirs = 1;
1158		dir = &default_dir;
1159	}
1160
1161	/*
1162	 * Go through and read the label configuration information from every
1163	 * possible device, organizing the information according to pool GUID
1164	 * and toplevel GUID.
1165	 */
1166	for (i = 0; i < dirs; i++) {
1167		tpool_t *t;
1168		char *rdsk;
1169		int dfd;
1170
1171		/* use realpath to normalize the path */
1172		if (realpath(dir[i], path) == 0) {
1173			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1174			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1175			goto error;
1176		}
1177		end = &path[strlen(path)];
1178		*end++ = '/';
1179		*end = 0;
1180		pathleft = &path[sizeof (path)] - end;
1181
1182		/*
1183		 * Using raw devices instead of block devices when we're
1184		 * reading the labels skips a bunch of slow operations during
1185		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1186		 */
1187		if (strcmp(path, "/dev/dsk/") == 0)
1188			rdsk = "/dev/";
1189		else
1190			rdsk = path;
1191
1192		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1193		    (dirp = fdopendir(dfd)) == NULL) {
1194			zfs_error_aux(hdl, strerror(errno));
1195			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1196			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1197			    rdsk);
1198			goto error;
1199		}
1200
1201		avl_create(&slice_cache, slice_cache_compare,
1202		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1203
1204		if (strcmp(rdsk, "/dev/") == 0) {
1205			struct gmesh mesh;
1206			struct gclass *mp;
1207			struct ggeom *gp;
1208			struct gprovider *pp;
1209
1210			errno = geom_gettree(&mesh);
1211			if (errno != 0) {
1212				zfs_error_aux(hdl, strerror(errno));
1213				(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1214				    dgettext(TEXT_DOMAIN, "cannot get GEOM tree"));
1215				goto error;
1216			}
1217
1218			LIST_FOREACH(mp, &mesh.lg_class, lg_class) {
1219		        	LIST_FOREACH(gp, &mp->lg_geom, lg_geom) {
1220					LIST_FOREACH(pp, &gp->lg_provider, lg_provider) {
1221						slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1222						slice->rn_name = zfs_strdup(hdl, pp->lg_name);
1223						slice->rn_avl = &slice_cache;
1224						slice->rn_dfd = dfd;
1225						slice->rn_hdl = hdl;
1226						slice->rn_nozpool = B_FALSE;
1227						avl_add(&slice_cache, slice);
1228					}
1229				}
1230			}
1231
1232			geom_deletetree(&mesh);
1233			goto skipdir;
1234		}
1235
1236		/*
1237		 * This is not MT-safe, but we have no MT consumers of libzfs
1238		 */
1239		while ((dp = readdir64(dirp)) != NULL) {
1240			const char *name = dp->d_name;
1241			if (name[0] == '.' &&
1242			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1243				continue;
1244
1245			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1246			slice->rn_name = zfs_strdup(hdl, name);
1247			slice->rn_avl = &slice_cache;
1248			slice->rn_dfd = dfd;
1249			slice->rn_hdl = hdl;
1250			slice->rn_nozpool = B_FALSE;
1251			avl_add(&slice_cache, slice);
1252		}
1253skipdir:
1254		/*
1255		 * create a thread pool to do all of this in parallel;
1256		 * rn_nozpool is not protected, so this is racy in that
1257		 * multiple tasks could decide that the same slice can
1258		 * not hold a zpool, which is benign.  Also choose
1259		 * double the number of processors; we hold a lot of
1260		 * locks in the kernel, so going beyond this doesn't
1261		 * buy us much.
1262		 */
1263		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1264		    0, NULL);
1265		for (slice = avl_first(&slice_cache); slice;
1266		    (slice = avl_walk(&slice_cache, slice,
1267		    AVL_AFTER)))
1268			(void) tpool_dispatch(t, zpool_open_func, slice);
1269		tpool_wait(t);
1270		tpool_destroy(t);
1271
1272		cookie = NULL;
1273		while ((slice = avl_destroy_nodes(&slice_cache,
1274		    &cookie)) != NULL) {
1275			if (slice->rn_config != NULL) {
1276				nvlist_t *config = slice->rn_config;
1277				boolean_t matched = B_TRUE;
1278
1279				if (iarg->poolname != NULL) {
1280					char *pname;
1281
1282					matched = nvlist_lookup_string(config,
1283					    ZPOOL_CONFIG_POOL_NAME,
1284					    &pname) == 0 &&
1285					    strcmp(iarg->poolname, pname) == 0;
1286				} else if (iarg->guid != 0) {
1287					uint64_t this_guid;
1288
1289					matched = nvlist_lookup_uint64(config,
1290					    ZPOOL_CONFIG_POOL_GUID,
1291					    &this_guid) == 0 &&
1292					    iarg->guid == this_guid;
1293				}
1294				if (!matched) {
1295					nvlist_free(config);
1296					config = NULL;
1297					continue;
1298				}
1299				/* use the non-raw path for the config */
1300				(void) strlcpy(end, slice->rn_name, pathleft);
1301				if (add_config(hdl, &pools, path, config) != 0)
1302					goto error;
1303			}
1304			free(slice->rn_name);
1305			free(slice);
1306		}
1307		avl_destroy(&slice_cache);
1308
1309		(void) closedir(dirp);
1310		dirp = NULL;
1311	}
1312
1313	ret = get_configs(hdl, &pools, iarg->can_be_active);
1314
1315error:
1316	for (pe = pools.pools; pe != NULL; pe = penext) {
1317		penext = pe->pe_next;
1318		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1319			venext = ve->ve_next;
1320			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1321				cenext = ce->ce_next;
1322				if (ce->ce_config)
1323					nvlist_free(ce->ce_config);
1324				free(ce);
1325			}
1326			free(ve);
1327		}
1328		free(pe);
1329	}
1330
1331	for (ne = pools.names; ne != NULL; ne = nenext) {
1332		nenext = ne->ne_next;
1333		if (ne->ne_name)
1334			free(ne->ne_name);
1335		free(ne);
1336	}
1337
1338	if (dirp)
1339		(void) closedir(dirp);
1340
1341	return (ret);
1342}
1343
1344nvlist_t *
1345zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1346{
1347	importargs_t iarg = { 0 };
1348
1349	iarg.paths = argc;
1350	iarg.path = argv;
1351
1352	return (zpool_find_import_impl(hdl, &iarg));
1353}
1354
1355/*
1356 * Given a cache file, return the contents as a list of importable pools.
1357 * poolname or guid (but not both) are provided by the caller when trying
1358 * to import a specific pool.
1359 */
1360nvlist_t *
1361zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1362    char *poolname, uint64_t guid)
1363{
1364	char *buf;
1365	int fd;
1366	struct stat64 statbuf;
1367	nvlist_t *raw, *src, *dst;
1368	nvlist_t *pools;
1369	nvpair_t *elem;
1370	char *name;
1371	uint64_t this_guid;
1372	boolean_t active;
1373
1374	verify(poolname == NULL || guid == 0);
1375
1376	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1377		zfs_error_aux(hdl, "%s", strerror(errno));
1378		(void) zfs_error(hdl, EZFS_BADCACHE,
1379		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1380		return (NULL);
1381	}
1382
1383	if (fstat64(fd, &statbuf) != 0) {
1384		zfs_error_aux(hdl, "%s", strerror(errno));
1385		(void) close(fd);
1386		(void) zfs_error(hdl, EZFS_BADCACHE,
1387		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1388		return (NULL);
1389	}
1390
1391	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1392		(void) close(fd);
1393		return (NULL);
1394	}
1395
1396	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1397		(void) close(fd);
1398		free(buf);
1399		(void) zfs_error(hdl, EZFS_BADCACHE,
1400		    dgettext(TEXT_DOMAIN,
1401		    "failed to read cache file contents"));
1402		return (NULL);
1403	}
1404
1405	(void) close(fd);
1406
1407	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1408		free(buf);
1409		(void) zfs_error(hdl, EZFS_BADCACHE,
1410		    dgettext(TEXT_DOMAIN,
1411		    "invalid or corrupt cache file contents"));
1412		return (NULL);
1413	}
1414
1415	free(buf);
1416
1417	/*
1418	 * Go through and get the current state of the pools and refresh their
1419	 * state.
1420	 */
1421	if (nvlist_alloc(&pools, 0, 0) != 0) {
1422		(void) no_memory(hdl);
1423		nvlist_free(raw);
1424		return (NULL);
1425	}
1426
1427	elem = NULL;
1428	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1429		verify(nvpair_value_nvlist(elem, &src) == 0);
1430
1431		verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1432		    &name) == 0);
1433		if (poolname != NULL && strcmp(poolname, name) != 0)
1434			continue;
1435
1436		verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1437		    &this_guid) == 0);
1438		if (guid != 0) {
1439			verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1440			    &this_guid) == 0);
1441			if (guid != this_guid)
1442				continue;
1443		}
1444
1445		if (pool_active(hdl, name, this_guid, &active) != 0) {
1446			nvlist_free(raw);
1447			nvlist_free(pools);
1448			return (NULL);
1449		}
1450
1451		if (active)
1452			continue;
1453
1454		if ((dst = refresh_config(hdl, src)) == NULL) {
1455			nvlist_free(raw);
1456			nvlist_free(pools);
1457			return (NULL);
1458		}
1459
1460		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1461			(void) no_memory(hdl);
1462			nvlist_free(dst);
1463			nvlist_free(raw);
1464			nvlist_free(pools);
1465			return (NULL);
1466		}
1467		nvlist_free(dst);
1468	}
1469
1470	nvlist_free(raw);
1471	return (pools);
1472}
1473
1474static int
1475name_or_guid_exists(zpool_handle_t *zhp, void *data)
1476{
1477	importargs_t *import = data;
1478	int found = 0;
1479
1480	if (import->poolname != NULL) {
1481		char *pool_name;
1482
1483		verify(nvlist_lookup_string(zhp->zpool_config,
1484		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1485		if (strcmp(pool_name, import->poolname) == 0)
1486			found = 1;
1487	} else {
1488		uint64_t pool_guid;
1489
1490		verify(nvlist_lookup_uint64(zhp->zpool_config,
1491		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1492		if (pool_guid == import->guid)
1493			found = 1;
1494	}
1495
1496	zpool_close(zhp);
1497	return (found);
1498}
1499
1500nvlist_t *
1501zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1502{
1503	verify(import->poolname == NULL || import->guid == 0);
1504
1505	if (import->unique)
1506		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1507
1508	if (import->cachefile != NULL)
1509		return (zpool_find_import_cached(hdl, import->cachefile,
1510		    import->poolname, import->guid));
1511
1512	return (zpool_find_import_impl(hdl, import));
1513}
1514
1515boolean_t
1516find_guid(nvlist_t *nv, uint64_t guid)
1517{
1518	uint64_t tmp;
1519	nvlist_t **child;
1520	uint_t c, children;
1521
1522	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1523	if (tmp == guid)
1524		return (B_TRUE);
1525
1526	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1527	    &child, &children) == 0) {
1528		for (c = 0; c < children; c++)
1529			if (find_guid(child[c], guid))
1530				return (B_TRUE);
1531	}
1532
1533	return (B_FALSE);
1534}
1535
1536typedef struct aux_cbdata {
1537	const char	*cb_type;
1538	uint64_t	cb_guid;
1539	zpool_handle_t	*cb_zhp;
1540} aux_cbdata_t;
1541
1542static int
1543find_aux(zpool_handle_t *zhp, void *data)
1544{
1545	aux_cbdata_t *cbp = data;
1546	nvlist_t **list;
1547	uint_t i, count;
1548	uint64_t guid;
1549	nvlist_t *nvroot;
1550
1551	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1552	    &nvroot) == 0);
1553
1554	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1555	    &list, &count) == 0) {
1556		for (i = 0; i < count; i++) {
1557			verify(nvlist_lookup_uint64(list[i],
1558			    ZPOOL_CONFIG_GUID, &guid) == 0);
1559			if (guid == cbp->cb_guid) {
1560				cbp->cb_zhp = zhp;
1561				return (1);
1562			}
1563		}
1564	}
1565
1566	zpool_close(zhp);
1567	return (0);
1568}
1569
1570/*
1571 * Determines if the pool is in use.  If so, it returns true and the state of
1572 * the pool as well as the name of the pool.  Both strings are allocated and
1573 * must be freed by the caller.
1574 */
1575int
1576zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1577    boolean_t *inuse)
1578{
1579	nvlist_t *config;
1580	char *name;
1581	boolean_t ret;
1582	uint64_t guid, vdev_guid;
1583	zpool_handle_t *zhp;
1584	nvlist_t *pool_config;
1585	uint64_t stateval, isspare;
1586	aux_cbdata_t cb = { 0 };
1587	boolean_t isactive;
1588
1589	*inuse = B_FALSE;
1590
1591	if (zpool_read_label(fd, &config) != 0) {
1592		(void) no_memory(hdl);
1593		return (-1);
1594	}
1595
1596	if (config == NULL)
1597		return (0);
1598
1599	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1600	    &stateval) == 0);
1601	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1602	    &vdev_guid) == 0);
1603
1604	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1605		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1606		    &name) == 0);
1607		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1608		    &guid) == 0);
1609	}
1610
1611	switch (stateval) {
1612	case POOL_STATE_EXPORTED:
1613		/*
1614		 * A pool with an exported state may in fact be imported
1615		 * read-only, so check the in-core state to see if it's
1616		 * active and imported read-only.  If it is, set
1617		 * its state to active.
1618		 */
1619		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1620		    (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1621			if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1622				stateval = POOL_STATE_ACTIVE;
1623
1624			/*
1625			 * All we needed the zpool handle for is the
1626			 * readonly prop check.
1627			 */
1628			zpool_close(zhp);
1629		}
1630
1631		ret = B_TRUE;
1632		break;
1633
1634	case POOL_STATE_ACTIVE:
1635		/*
1636		 * For an active pool, we have to determine if it's really part
1637		 * of a currently active pool (in which case the pool will exist
1638		 * and the guid will be the same), or whether it's part of an
1639		 * active pool that was disconnected without being explicitly
1640		 * exported.
1641		 */
1642		if (pool_active(hdl, name, guid, &isactive) != 0) {
1643			nvlist_free(config);
1644			return (-1);
1645		}
1646
1647		if (isactive) {
1648			/*
1649			 * Because the device may have been removed while
1650			 * offlined, we only report it as active if the vdev is
1651			 * still present in the config.  Otherwise, pretend like
1652			 * it's not in use.
1653			 */
1654			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1655			    (pool_config = zpool_get_config(zhp, NULL))
1656			    != NULL) {
1657				nvlist_t *nvroot;
1658
1659				verify(nvlist_lookup_nvlist(pool_config,
1660				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1661				ret = find_guid(nvroot, vdev_guid);
1662			} else {
1663				ret = B_FALSE;
1664			}
1665
1666			/*
1667			 * If this is an active spare within another pool, we
1668			 * treat it like an unused hot spare.  This allows the
1669			 * user to create a pool with a hot spare that currently
1670			 * in use within another pool.  Since we return B_TRUE,
1671			 * libdiskmgt will continue to prevent generic consumers
1672			 * from using the device.
1673			 */
1674			if (ret && nvlist_lookup_uint64(config,
1675			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1676				stateval = POOL_STATE_SPARE;
1677
1678			if (zhp != NULL)
1679				zpool_close(zhp);
1680		} else {
1681			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1682			ret = B_TRUE;
1683		}
1684		break;
1685
1686	case POOL_STATE_SPARE:
1687		/*
1688		 * For a hot spare, it can be either definitively in use, or
1689		 * potentially active.  To determine if it's in use, we iterate
1690		 * over all pools in the system and search for one with a spare
1691		 * with a matching guid.
1692		 *
1693		 * Due to the shared nature of spares, we don't actually report
1694		 * the potentially active case as in use.  This means the user
1695		 * can freely create pools on the hot spares of exported pools,
1696		 * but to do otherwise makes the resulting code complicated, and
1697		 * we end up having to deal with this case anyway.
1698		 */
1699		cb.cb_zhp = NULL;
1700		cb.cb_guid = vdev_guid;
1701		cb.cb_type = ZPOOL_CONFIG_SPARES;
1702		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1703			name = (char *)zpool_get_name(cb.cb_zhp);
1704			ret = TRUE;
1705		} else {
1706			ret = FALSE;
1707		}
1708		break;
1709
1710	case POOL_STATE_L2CACHE:
1711
1712		/*
1713		 * Check if any pool is currently using this l2cache device.
1714		 */
1715		cb.cb_zhp = NULL;
1716		cb.cb_guid = vdev_guid;
1717		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1718		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1719			name = (char *)zpool_get_name(cb.cb_zhp);
1720			ret = TRUE;
1721		} else {
1722			ret = FALSE;
1723		}
1724		break;
1725
1726	default:
1727		ret = B_FALSE;
1728	}
1729
1730
1731	if (ret) {
1732		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1733			if (cb.cb_zhp)
1734				zpool_close(cb.cb_zhp);
1735			nvlist_free(config);
1736			return (-1);
1737		}
1738		*state = (pool_state_t)stateval;
1739	}
1740
1741	if (cb.cb_zhp)
1742		zpool_close(cb.cb_zhp);
1743
1744	nvlist_free(config);
1745	*inuse = ret;
1746	return (0);
1747}
1748