libzfs_import.c revision 260339
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 */
26
27/*
28 * Pool import support functions.
29 *
30 * To import a pool, we rely on reading the configuration information from the
31 * ZFS label of each device.  If we successfully read the label, then we
32 * organize the configuration information in the following hierarchy:
33 *
34 * 	pool guid -> toplevel vdev guid -> label txg
35 *
36 * Duplicate entries matching this same tuple will be discarded.  Once we have
37 * examined every device, we pick the best label txg config for each toplevel
38 * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
39 * update any paths that have changed.  Finally, we attempt to import the pool
40 * using our derived config, and record the results.
41 */
42
43#include <ctype.h>
44#include <devid.h>
45#include <dirent.h>
46#include <errno.h>
47#include <libintl.h>
48#include <stddef.h>
49#include <stdlib.h>
50#include <string.h>
51#include <sys/stat.h>
52#include <unistd.h>
53#include <fcntl.h>
54#include <thread_pool.h>
55#include <libgeom.h>
56
57#include <sys/vdev_impl.h>
58
59#include "libzfs.h"
60#include "libzfs_impl.h"
61
62/*
63 * Intermediate structures used to gather configuration information.
64 */
65typedef struct config_entry {
66	uint64_t		ce_txg;
67	nvlist_t		*ce_config;
68	struct config_entry	*ce_next;
69} config_entry_t;
70
71typedef struct vdev_entry {
72	uint64_t		ve_guid;
73	config_entry_t		*ve_configs;
74	struct vdev_entry	*ve_next;
75} vdev_entry_t;
76
77typedef struct pool_entry {
78	uint64_t		pe_guid;
79	vdev_entry_t		*pe_vdevs;
80	struct pool_entry	*pe_next;
81} pool_entry_t;
82
83typedef struct name_entry {
84	char			*ne_name;
85	uint64_t		ne_guid;
86	struct name_entry	*ne_next;
87} name_entry_t;
88
89typedef struct pool_list {
90	pool_entry_t		*pools;
91	name_entry_t		*names;
92} pool_list_t;
93
94static char *
95get_devid(const char *path)
96{
97	int fd;
98	ddi_devid_t devid;
99	char *minor, *ret;
100
101	if ((fd = open(path, O_RDONLY)) < 0)
102		return (NULL);
103
104	minor = NULL;
105	ret = NULL;
106	if (devid_get(fd, &devid) == 0) {
107		if (devid_get_minor_name(fd, &minor) == 0)
108			ret = devid_str_encode(devid, minor);
109		if (minor != NULL)
110			devid_str_free(minor);
111		devid_free(devid);
112	}
113	(void) close(fd);
114
115	return (ret);
116}
117
118
119/*
120 * Go through and fix up any path and/or devid information for the given vdev
121 * configuration.
122 */
123static int
124fix_paths(nvlist_t *nv, name_entry_t *names)
125{
126	nvlist_t **child;
127	uint_t c, children;
128	uint64_t guid;
129	name_entry_t *ne, *best;
130	char *path, *devid;
131	int matched;
132
133	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
134	    &child, &children) == 0) {
135		for (c = 0; c < children; c++)
136			if (fix_paths(child[c], names) != 0)
137				return (-1);
138		return (0);
139	}
140
141	/*
142	 * This is a leaf (file or disk) vdev.  In either case, go through
143	 * the name list and see if we find a matching guid.  If so, replace
144	 * the path and see if we can calculate a new devid.
145	 *
146	 * There may be multiple names associated with a particular guid, in
147	 * which case we have overlapping slices or multiple paths to the same
148	 * disk.  If this is the case, then we want to pick the path that is
149	 * the most similar to the original, where "most similar" is the number
150	 * of matching characters starting from the end of the path.  This will
151	 * preserve slice numbers even if the disks have been reorganized, and
152	 * will also catch preferred disk names if multiple paths exist.
153	 */
154	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
155	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
156		path = NULL;
157
158	matched = 0;
159	best = NULL;
160	for (ne = names; ne != NULL; ne = ne->ne_next) {
161		if (ne->ne_guid == guid) {
162			const char *src, *dst;
163			int count;
164
165			if (path == NULL) {
166				best = ne;
167				break;
168			}
169
170			src = ne->ne_name + strlen(ne->ne_name) - 1;
171			dst = path + strlen(path) - 1;
172			for (count = 0; src >= ne->ne_name && dst >= path;
173			    src--, dst--, count++)
174				if (*src != *dst)
175					break;
176
177			/*
178			 * At this point, 'count' is the number of characters
179			 * matched from the end.
180			 */
181			if (count > matched || best == NULL) {
182				best = ne;
183				matched = count;
184			}
185		}
186	}
187
188	if (best == NULL)
189		return (0);
190
191	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
192		return (-1);
193
194	if ((devid = get_devid(best->ne_name)) == NULL) {
195		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
196	} else {
197		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
198			return (-1);
199		devid_str_free(devid);
200	}
201
202	return (0);
203}
204
205/*
206 * Add the given configuration to the list of known devices.
207 */
208static int
209add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
210    nvlist_t *config)
211{
212	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
213	pool_entry_t *pe;
214	vdev_entry_t *ve;
215	config_entry_t *ce;
216	name_entry_t *ne;
217
218	/*
219	 * If this is a hot spare not currently in use or level 2 cache
220	 * device, add it to the list of names to translate, but don't do
221	 * anything else.
222	 */
223	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
224	    &state) == 0 &&
225	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
226	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
227		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
228			return (-1);
229
230		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
231			free(ne);
232			return (-1);
233		}
234		ne->ne_guid = vdev_guid;
235		ne->ne_next = pl->names;
236		pl->names = ne;
237		return (0);
238	}
239
240	/*
241	 * If we have a valid config but cannot read any of these fields, then
242	 * it means we have a half-initialized label.  In vdev_label_init()
243	 * we write a label with txg == 0 so that we can identify the device
244	 * in case the user refers to the same disk later on.  If we fail to
245	 * create the pool, we'll be left with a label in this state
246	 * which should not be considered part of a valid pool.
247	 */
248	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
249	    &pool_guid) != 0 ||
250	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
251	    &vdev_guid) != 0 ||
252	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
253	    &top_guid) != 0 ||
254	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
255	    &txg) != 0 || txg == 0) {
256		nvlist_free(config);
257		return (0);
258	}
259
260	/*
261	 * First, see if we know about this pool.  If not, then add it to the
262	 * list of known pools.
263	 */
264	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
265		if (pe->pe_guid == pool_guid)
266			break;
267	}
268
269	if (pe == NULL) {
270		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
271			nvlist_free(config);
272			return (-1);
273		}
274		pe->pe_guid = pool_guid;
275		pe->pe_next = pl->pools;
276		pl->pools = pe;
277	}
278
279	/*
280	 * Second, see if we know about this toplevel vdev.  Add it if its
281	 * missing.
282	 */
283	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
284		if (ve->ve_guid == top_guid)
285			break;
286	}
287
288	if (ve == NULL) {
289		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
290			nvlist_free(config);
291			return (-1);
292		}
293		ve->ve_guid = top_guid;
294		ve->ve_next = pe->pe_vdevs;
295		pe->pe_vdevs = ve;
296	}
297
298	/*
299	 * Third, see if we have a config with a matching transaction group.  If
300	 * so, then we do nothing.  Otherwise, add it to the list of known
301	 * configs.
302	 */
303	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
304		if (ce->ce_txg == txg)
305			break;
306	}
307
308	if (ce == NULL) {
309		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
310			nvlist_free(config);
311			return (-1);
312		}
313		ce->ce_txg = txg;
314		ce->ce_config = config;
315		ce->ce_next = ve->ve_configs;
316		ve->ve_configs = ce;
317	} else {
318		nvlist_free(config);
319	}
320
321	/*
322	 * At this point we've successfully added our config to the list of
323	 * known configs.  The last thing to do is add the vdev guid -> path
324	 * mappings so that we can fix up the configuration as necessary before
325	 * doing the import.
326	 */
327	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
328		return (-1);
329
330	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
331		free(ne);
332		return (-1);
333	}
334
335	ne->ne_guid = vdev_guid;
336	ne->ne_next = pl->names;
337	pl->names = ne;
338
339	return (0);
340}
341
342/*
343 * Returns true if the named pool matches the given GUID.
344 */
345static int
346pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
347    boolean_t *isactive)
348{
349	zpool_handle_t *zhp;
350	uint64_t theguid;
351
352	if (zpool_open_silent(hdl, name, &zhp) != 0)
353		return (-1);
354
355	if (zhp == NULL) {
356		*isactive = B_FALSE;
357		return (0);
358	}
359
360	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
361	    &theguid) == 0);
362
363	zpool_close(zhp);
364
365	*isactive = (theguid == guid);
366	return (0);
367}
368
369static nvlist_t *
370refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
371{
372	nvlist_t *nvl;
373	zfs_cmd_t zc = { 0 };
374	int err;
375
376	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
377		return (NULL);
378
379	if (zcmd_alloc_dst_nvlist(hdl, &zc,
380	    zc.zc_nvlist_conf_size * 2) != 0) {
381		zcmd_free_nvlists(&zc);
382		return (NULL);
383	}
384
385	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
386	    &zc)) != 0 && errno == ENOMEM) {
387		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
388			zcmd_free_nvlists(&zc);
389			return (NULL);
390		}
391	}
392
393	if (err) {
394		zcmd_free_nvlists(&zc);
395		return (NULL);
396	}
397
398	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
399		zcmd_free_nvlists(&zc);
400		return (NULL);
401	}
402
403	zcmd_free_nvlists(&zc);
404	return (nvl);
405}
406
407/*
408 * Determine if the vdev id is a hole in the namespace.
409 */
410boolean_t
411vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
412{
413	for (int c = 0; c < holes; c++) {
414
415		/* Top-level is a hole */
416		if (hole_array[c] == id)
417			return (B_TRUE);
418	}
419	return (B_FALSE);
420}
421
422/*
423 * Convert our list of pools into the definitive set of configurations.  We
424 * start by picking the best config for each toplevel vdev.  Once that's done,
425 * we assemble the toplevel vdevs into a full config for the pool.  We make a
426 * pass to fix up any incorrect paths, and then add it to the main list to
427 * return to the user.
428 */
429static nvlist_t *
430get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
431{
432	pool_entry_t *pe;
433	vdev_entry_t *ve;
434	config_entry_t *ce;
435	nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
436	nvlist_t **spares, **l2cache;
437	uint_t i, nspares, nl2cache;
438	boolean_t config_seen;
439	uint64_t best_txg;
440	char *name, *hostname;
441	uint64_t guid;
442	uint_t children = 0;
443	nvlist_t **child = NULL;
444	uint_t holes;
445	uint64_t *hole_array, max_id;
446	uint_t c;
447	boolean_t isactive;
448	uint64_t hostid;
449	nvlist_t *nvl;
450	boolean_t found_one = B_FALSE;
451	boolean_t valid_top_config = B_FALSE;
452
453	if (nvlist_alloc(&ret, 0, 0) != 0)
454		goto nomem;
455
456	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
457		uint64_t id, max_txg = 0;
458
459		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
460			goto nomem;
461		config_seen = B_FALSE;
462
463		/*
464		 * Iterate over all toplevel vdevs.  Grab the pool configuration
465		 * from the first one we find, and then go through the rest and
466		 * add them as necessary to the 'vdevs' member of the config.
467		 */
468		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
469
470			/*
471			 * Determine the best configuration for this vdev by
472			 * selecting the config with the latest transaction
473			 * group.
474			 */
475			best_txg = 0;
476			for (ce = ve->ve_configs; ce != NULL;
477			    ce = ce->ce_next) {
478
479				if (ce->ce_txg > best_txg) {
480					tmp = ce->ce_config;
481					best_txg = ce->ce_txg;
482				}
483			}
484
485			/*
486			 * We rely on the fact that the max txg for the
487			 * pool will contain the most up-to-date information
488			 * about the valid top-levels in the vdev namespace.
489			 */
490			if (best_txg > max_txg) {
491				(void) nvlist_remove(config,
492				    ZPOOL_CONFIG_VDEV_CHILDREN,
493				    DATA_TYPE_UINT64);
494				(void) nvlist_remove(config,
495				    ZPOOL_CONFIG_HOLE_ARRAY,
496				    DATA_TYPE_UINT64_ARRAY);
497
498				max_txg = best_txg;
499				hole_array = NULL;
500				holes = 0;
501				max_id = 0;
502				valid_top_config = B_FALSE;
503
504				if (nvlist_lookup_uint64(tmp,
505				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
506					verify(nvlist_add_uint64(config,
507					    ZPOOL_CONFIG_VDEV_CHILDREN,
508					    max_id) == 0);
509					valid_top_config = B_TRUE;
510				}
511
512				if (nvlist_lookup_uint64_array(tmp,
513				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
514				    &holes) == 0) {
515					verify(nvlist_add_uint64_array(config,
516					    ZPOOL_CONFIG_HOLE_ARRAY,
517					    hole_array, holes) == 0);
518				}
519			}
520
521			if (!config_seen) {
522				/*
523				 * Copy the relevant pieces of data to the pool
524				 * configuration:
525				 *
526				 *	version
527				 *	pool guid
528				 *	name
529				 *	comment (if available)
530				 *	pool state
531				 *	hostid (if available)
532				 *	hostname (if available)
533				 */
534				uint64_t state, version;
535				char *comment = NULL;
536
537				version = fnvlist_lookup_uint64(tmp,
538				    ZPOOL_CONFIG_VERSION);
539				fnvlist_add_uint64(config,
540				    ZPOOL_CONFIG_VERSION, version);
541				guid = fnvlist_lookup_uint64(tmp,
542				    ZPOOL_CONFIG_POOL_GUID);
543				fnvlist_add_uint64(config,
544				    ZPOOL_CONFIG_POOL_GUID, guid);
545				name = fnvlist_lookup_string(tmp,
546				    ZPOOL_CONFIG_POOL_NAME);
547				fnvlist_add_string(config,
548				    ZPOOL_CONFIG_POOL_NAME, name);
549
550				if (nvlist_lookup_string(tmp,
551				    ZPOOL_CONFIG_COMMENT, &comment) == 0)
552					fnvlist_add_string(config,
553					    ZPOOL_CONFIG_COMMENT, comment);
554
555				state = fnvlist_lookup_uint64(tmp,
556				    ZPOOL_CONFIG_POOL_STATE);
557				fnvlist_add_uint64(config,
558				    ZPOOL_CONFIG_POOL_STATE, state);
559
560				hostid = 0;
561				if (nvlist_lookup_uint64(tmp,
562				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
563					fnvlist_add_uint64(config,
564					    ZPOOL_CONFIG_HOSTID, hostid);
565					hostname = fnvlist_lookup_string(tmp,
566					    ZPOOL_CONFIG_HOSTNAME);
567					fnvlist_add_string(config,
568					    ZPOOL_CONFIG_HOSTNAME, hostname);
569				}
570
571				config_seen = B_TRUE;
572			}
573
574			/*
575			 * Add this top-level vdev to the child array.
576			 */
577			verify(nvlist_lookup_nvlist(tmp,
578			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
579			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
580			    &id) == 0);
581
582			if (id >= children) {
583				nvlist_t **newchild;
584
585				newchild = zfs_alloc(hdl, (id + 1) *
586				    sizeof (nvlist_t *));
587				if (newchild == NULL)
588					goto nomem;
589
590				for (c = 0; c < children; c++)
591					newchild[c] = child[c];
592
593				free(child);
594				child = newchild;
595				children = id + 1;
596			}
597			if (nvlist_dup(nvtop, &child[id], 0) != 0)
598				goto nomem;
599
600		}
601
602		/*
603		 * If we have information about all the top-levels then
604		 * clean up the nvlist which we've constructed. This
605		 * means removing any extraneous devices that are
606		 * beyond the valid range or adding devices to the end
607		 * of our array which appear to be missing.
608		 */
609		if (valid_top_config) {
610			if (max_id < children) {
611				for (c = max_id; c < children; c++)
612					nvlist_free(child[c]);
613				children = max_id;
614			} else if (max_id > children) {
615				nvlist_t **newchild;
616
617				newchild = zfs_alloc(hdl, (max_id) *
618				    sizeof (nvlist_t *));
619				if (newchild == NULL)
620					goto nomem;
621
622				for (c = 0; c < children; c++)
623					newchild[c] = child[c];
624
625				free(child);
626				child = newchild;
627				children = max_id;
628			}
629		}
630
631		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
632		    &guid) == 0);
633
634		/*
635		 * The vdev namespace may contain holes as a result of
636		 * device removal. We must add them back into the vdev
637		 * tree before we process any missing devices.
638		 */
639		if (holes > 0) {
640			ASSERT(valid_top_config);
641
642			for (c = 0; c < children; c++) {
643				nvlist_t *holey;
644
645				if (child[c] != NULL ||
646				    !vdev_is_hole(hole_array, holes, c))
647					continue;
648
649				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
650				    0) != 0)
651					goto nomem;
652
653				/*
654				 * Holes in the namespace are treated as
655				 * "hole" top-level vdevs and have a
656				 * special flag set on them.
657				 */
658				if (nvlist_add_string(holey,
659				    ZPOOL_CONFIG_TYPE,
660				    VDEV_TYPE_HOLE) != 0 ||
661				    nvlist_add_uint64(holey,
662				    ZPOOL_CONFIG_ID, c) != 0 ||
663				    nvlist_add_uint64(holey,
664				    ZPOOL_CONFIG_GUID, 0ULL) != 0)
665					goto nomem;
666				child[c] = holey;
667			}
668		}
669
670		/*
671		 * Look for any missing top-level vdevs.  If this is the case,
672		 * create a faked up 'missing' vdev as a placeholder.  We cannot
673		 * simply compress the child array, because the kernel performs
674		 * certain checks to make sure the vdev IDs match their location
675		 * in the configuration.
676		 */
677		for (c = 0; c < children; c++) {
678			if (child[c] == NULL) {
679				nvlist_t *missing;
680				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
681				    0) != 0)
682					goto nomem;
683				if (nvlist_add_string(missing,
684				    ZPOOL_CONFIG_TYPE,
685				    VDEV_TYPE_MISSING) != 0 ||
686				    nvlist_add_uint64(missing,
687				    ZPOOL_CONFIG_ID, c) != 0 ||
688				    nvlist_add_uint64(missing,
689				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
690					nvlist_free(missing);
691					goto nomem;
692				}
693				child[c] = missing;
694			}
695		}
696
697		/*
698		 * Put all of this pool's top-level vdevs into a root vdev.
699		 */
700		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
701			goto nomem;
702		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
703		    VDEV_TYPE_ROOT) != 0 ||
704		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
705		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
706		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
707		    child, children) != 0) {
708			nvlist_free(nvroot);
709			goto nomem;
710		}
711
712		for (c = 0; c < children; c++)
713			nvlist_free(child[c]);
714		free(child);
715		children = 0;
716		child = NULL;
717
718		/*
719		 * Go through and fix up any paths and/or devids based on our
720		 * known list of vdev GUID -> path mappings.
721		 */
722		if (fix_paths(nvroot, pl->names) != 0) {
723			nvlist_free(nvroot);
724			goto nomem;
725		}
726
727		/*
728		 * Add the root vdev to this pool's configuration.
729		 */
730		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
731		    nvroot) != 0) {
732			nvlist_free(nvroot);
733			goto nomem;
734		}
735		nvlist_free(nvroot);
736
737		/*
738		 * zdb uses this path to report on active pools that were
739		 * imported or created using -R.
740		 */
741		if (active_ok)
742			goto add_pool;
743
744		/*
745		 * Determine if this pool is currently active, in which case we
746		 * can't actually import it.
747		 */
748		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
749		    &name) == 0);
750		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
751		    &guid) == 0);
752
753		if (pool_active(hdl, name, guid, &isactive) != 0)
754			goto error;
755
756		if (isactive) {
757			nvlist_free(config);
758			config = NULL;
759			continue;
760		}
761
762		if ((nvl = refresh_config(hdl, config)) == NULL) {
763			nvlist_free(config);
764			config = NULL;
765			continue;
766		}
767
768		nvlist_free(config);
769		config = nvl;
770
771		/*
772		 * Go through and update the paths for spares, now that we have
773		 * them.
774		 */
775		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
776		    &nvroot) == 0);
777		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
778		    &spares, &nspares) == 0) {
779			for (i = 0; i < nspares; i++) {
780				if (fix_paths(spares[i], pl->names) != 0)
781					goto nomem;
782			}
783		}
784
785		/*
786		 * Update the paths for l2cache devices.
787		 */
788		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
789		    &l2cache, &nl2cache) == 0) {
790			for (i = 0; i < nl2cache; i++) {
791				if (fix_paths(l2cache[i], pl->names) != 0)
792					goto nomem;
793			}
794		}
795
796		/*
797		 * Restore the original information read from the actual label.
798		 */
799		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
800		    DATA_TYPE_UINT64);
801		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
802		    DATA_TYPE_STRING);
803		if (hostid != 0) {
804			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
805			    hostid) == 0);
806			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
807			    hostname) == 0);
808		}
809
810add_pool:
811		/*
812		 * Add this pool to the list of configs.
813		 */
814		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
815		    &name) == 0);
816		if (nvlist_add_nvlist(ret, name, config) != 0)
817			goto nomem;
818
819		found_one = B_TRUE;
820		nvlist_free(config);
821		config = NULL;
822	}
823
824	if (!found_one) {
825		nvlist_free(ret);
826		ret = NULL;
827	}
828
829	return (ret);
830
831nomem:
832	(void) no_memory(hdl);
833error:
834	nvlist_free(config);
835	nvlist_free(ret);
836	for (c = 0; c < children; c++)
837		nvlist_free(child[c]);
838	free(child);
839
840	return (NULL);
841}
842
843/*
844 * Return the offset of the given label.
845 */
846static uint64_t
847label_offset(uint64_t size, int l)
848{
849	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
850	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
851	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
852}
853
854/*
855 * Given a file descriptor, read the label information and return an nvlist
856 * describing the configuration, if there is one.
857 */
858int
859zpool_read_label(int fd, nvlist_t **config)
860{
861	struct stat64 statbuf;
862	int l;
863	vdev_label_t *label;
864	uint64_t state, txg, size;
865
866	*config = NULL;
867
868	if (fstat64(fd, &statbuf) == -1)
869		return (0);
870	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
871
872	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
873		return (-1);
874
875	for (l = 0; l < VDEV_LABELS; l++) {
876		if (pread64(fd, label, sizeof (vdev_label_t),
877		    label_offset(size, l)) != sizeof (vdev_label_t))
878			continue;
879
880		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
881		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
882			continue;
883
884		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
885		    &state) != 0 || state > POOL_STATE_L2CACHE) {
886			nvlist_free(*config);
887			continue;
888		}
889
890		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
891		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
892		    &txg) != 0 || txg == 0)) {
893			nvlist_free(*config);
894			continue;
895		}
896
897		free(label);
898		return (0);
899	}
900
901	free(label);
902	*config = NULL;
903	return (0);
904}
905
906typedef struct rdsk_node {
907	char *rn_name;
908	int rn_dfd;
909	libzfs_handle_t *rn_hdl;
910	nvlist_t *rn_config;
911	avl_tree_t *rn_avl;
912	avl_node_t rn_node;
913	boolean_t rn_nozpool;
914} rdsk_node_t;
915
916static int
917slice_cache_compare(const void *arg1, const void *arg2)
918{
919	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
920	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
921	char *nm1slice, *nm2slice;
922	int rv;
923
924	/*
925	 * slices zero and two are the most likely to provide results,
926	 * so put those first
927	 */
928	nm1slice = strstr(nm1, "s0");
929	nm2slice = strstr(nm2, "s0");
930	if (nm1slice && !nm2slice) {
931		return (-1);
932	}
933	if (!nm1slice && nm2slice) {
934		return (1);
935	}
936	nm1slice = strstr(nm1, "s2");
937	nm2slice = strstr(nm2, "s2");
938	if (nm1slice && !nm2slice) {
939		return (-1);
940	}
941	if (!nm1slice && nm2slice) {
942		return (1);
943	}
944
945	rv = strcmp(nm1, nm2);
946	if (rv == 0)
947		return (0);
948	return (rv > 0 ? 1 : -1);
949}
950
951#ifdef sun
952static void
953check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
954    diskaddr_t size, uint_t blksz)
955{
956	rdsk_node_t tmpnode;
957	rdsk_node_t *node;
958	char sname[MAXNAMELEN];
959
960	tmpnode.rn_name = &sname[0];
961	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
962	    diskname, partno);
963	/*
964	 * protect against division by zero for disk labels that
965	 * contain a bogus sector size
966	 */
967	if (blksz == 0)
968		blksz = DEV_BSIZE;
969	/* too small to contain a zpool? */
970	if ((size < (SPA_MINDEVSIZE / blksz)) &&
971	    (node = avl_find(r, &tmpnode, NULL)))
972		node->rn_nozpool = B_TRUE;
973}
974#endif	/* sun */
975
976static void
977nozpool_all_slices(avl_tree_t *r, const char *sname)
978{
979#ifdef sun
980	char diskname[MAXNAMELEN];
981	char *ptr;
982	int i;
983
984	(void) strncpy(diskname, sname, MAXNAMELEN);
985	if (((ptr = strrchr(diskname, 's')) == NULL) &&
986	    ((ptr = strrchr(diskname, 'p')) == NULL))
987		return;
988	ptr[0] = 's';
989	ptr[1] = '\0';
990	for (i = 0; i < NDKMAP; i++)
991		check_one_slice(r, diskname, i, 0, 1);
992	ptr[0] = 'p';
993	for (i = 0; i <= FD_NUMPART; i++)
994		check_one_slice(r, diskname, i, 0, 1);
995#endif	/* sun */
996}
997
998#ifdef sun
999static void
1000check_slices(avl_tree_t *r, int fd, const char *sname)
1001{
1002	struct extvtoc vtoc;
1003	struct dk_gpt *gpt;
1004	char diskname[MAXNAMELEN];
1005	char *ptr;
1006	int i;
1007
1008	(void) strncpy(diskname, sname, MAXNAMELEN);
1009	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1010		return;
1011	ptr[1] = '\0';
1012
1013	if (read_extvtoc(fd, &vtoc) >= 0) {
1014		for (i = 0; i < NDKMAP; i++)
1015			check_one_slice(r, diskname, i,
1016			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1017	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1018		/*
1019		 * on x86 we'll still have leftover links that point
1020		 * to slices s[9-15], so use NDKMAP instead
1021		 */
1022		for (i = 0; i < NDKMAP; i++)
1023			check_one_slice(r, diskname, i,
1024			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1025		/* nodes p[1-4] are never used with EFI labels */
1026		ptr[0] = 'p';
1027		for (i = 1; i <= FD_NUMPART; i++)
1028			check_one_slice(r, diskname, i, 0, 1);
1029		efi_free(gpt);
1030	}
1031}
1032#endif	/* sun */
1033
1034static void
1035zpool_open_func(void *arg)
1036{
1037	rdsk_node_t *rn = arg;
1038	struct stat64 statbuf;
1039	nvlist_t *config;
1040	int fd;
1041
1042	if (rn->rn_nozpool)
1043		return;
1044	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1045		/* symlink to a device that's no longer there */
1046		if (errno == ENOENT)
1047			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1048		return;
1049	}
1050	/*
1051	 * Ignore failed stats.  We only want regular
1052	 * files, character devs and block devs.
1053	 */
1054	if (fstat64(fd, &statbuf) != 0 ||
1055	    (!S_ISREG(statbuf.st_mode) &&
1056	    !S_ISCHR(statbuf.st_mode) &&
1057	    !S_ISBLK(statbuf.st_mode))) {
1058		(void) close(fd);
1059		return;
1060	}
1061	/* this file is too small to hold a zpool */
1062#ifdef sun
1063	if (S_ISREG(statbuf.st_mode) &&
1064	    statbuf.st_size < SPA_MINDEVSIZE) {
1065		(void) close(fd);
1066		return;
1067	} else if (!S_ISREG(statbuf.st_mode)) {
1068		/*
1069		 * Try to read the disk label first so we don't have to
1070		 * open a bunch of minor nodes that can't have a zpool.
1071		 */
1072		check_slices(rn->rn_avl, fd, rn->rn_name);
1073	}
1074#else	/* !sun */
1075	if (statbuf.st_size < SPA_MINDEVSIZE) {
1076		(void) close(fd);
1077		return;
1078	}
1079#endif	/* sun */
1080
1081	if ((zpool_read_label(fd, &config)) != 0) {
1082		(void) close(fd);
1083		(void) no_memory(rn->rn_hdl);
1084		return;
1085	}
1086	(void) close(fd);
1087
1088
1089	rn->rn_config = config;
1090	if (config != NULL) {
1091		assert(rn->rn_nozpool == B_FALSE);
1092	}
1093}
1094
1095/*
1096 * Given a file descriptor, clear (zero) the label information.  This function
1097 * is used in the appliance stack as part of the ZFS sysevent module and
1098 * to implement the "zpool labelclear" command.
1099 */
1100int
1101zpool_clear_label(int fd)
1102{
1103	struct stat64 statbuf;
1104	int l;
1105	vdev_label_t *label;
1106	uint64_t size;
1107
1108	if (fstat64(fd, &statbuf) == -1)
1109		return (0);
1110	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1111
1112	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1113		return (-1);
1114
1115	for (l = 0; l < VDEV_LABELS; l++) {
1116		if (pwrite64(fd, label, sizeof (vdev_label_t),
1117		    label_offset(size, l)) != sizeof (vdev_label_t))
1118			return (-1);
1119	}
1120
1121	free(label);
1122	return (0);
1123}
1124
1125/*
1126 * Given a list of directories to search, find all pools stored on disk.  This
1127 * includes partial pools which are not available to import.  If no args are
1128 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1129 * poolname or guid (but not both) are provided by the caller when trying
1130 * to import a specific pool.
1131 */
1132static nvlist_t *
1133zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1134{
1135	int i, dirs = iarg->paths;
1136	DIR *dirp = NULL;
1137	struct dirent64 *dp;
1138	char path[MAXPATHLEN];
1139	char *end, **dir = iarg->path;
1140	size_t pathleft;
1141	nvlist_t *ret = NULL;
1142	static char *default_dir = "/dev";
1143	pool_list_t pools = { 0 };
1144	pool_entry_t *pe, *penext;
1145	vdev_entry_t *ve, *venext;
1146	config_entry_t *ce, *cenext;
1147	name_entry_t *ne, *nenext;
1148	avl_tree_t slice_cache;
1149	rdsk_node_t *slice;
1150	void *cookie;
1151
1152	if (dirs == 0) {
1153		dirs = 1;
1154		dir = &default_dir;
1155	}
1156
1157	/*
1158	 * Go through and read the label configuration information from every
1159	 * possible device, organizing the information according to pool GUID
1160	 * and toplevel GUID.
1161	 */
1162	for (i = 0; i < dirs; i++) {
1163		tpool_t *t;
1164		char *rdsk;
1165		int dfd;
1166
1167		/* use realpath to normalize the path */
1168		if (realpath(dir[i], path) == 0) {
1169			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1170			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1171			goto error;
1172		}
1173		end = &path[strlen(path)];
1174		*end++ = '/';
1175		*end = 0;
1176		pathleft = &path[sizeof (path)] - end;
1177
1178		/*
1179		 * Using raw devices instead of block devices when we're
1180		 * reading the labels skips a bunch of slow operations during
1181		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1182		 */
1183		if (strcmp(path, "/dev/dsk/") == 0)
1184			rdsk = "/dev/";
1185		else
1186			rdsk = path;
1187
1188		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1189		    (dirp = fdopendir(dfd)) == NULL) {
1190			zfs_error_aux(hdl, strerror(errno));
1191			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1192			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1193			    rdsk);
1194			goto error;
1195		}
1196
1197		avl_create(&slice_cache, slice_cache_compare,
1198		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1199
1200		if (strcmp(rdsk, "/dev/") == 0) {
1201			struct gmesh mesh;
1202			struct gclass *mp;
1203			struct ggeom *gp;
1204			struct gprovider *pp;
1205
1206			errno = geom_gettree(&mesh);
1207			if (errno != 0) {
1208				zfs_error_aux(hdl, strerror(errno));
1209				(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1210				    dgettext(TEXT_DOMAIN, "cannot get GEOM tree"));
1211				goto error;
1212			}
1213
1214			LIST_FOREACH(mp, &mesh.lg_class, lg_class) {
1215		        	LIST_FOREACH(gp, &mp->lg_geom, lg_geom) {
1216					LIST_FOREACH(pp, &gp->lg_provider, lg_provider) {
1217						slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1218						slice->rn_name = zfs_strdup(hdl, pp->lg_name);
1219						slice->rn_avl = &slice_cache;
1220						slice->rn_dfd = dfd;
1221						slice->rn_hdl = hdl;
1222						slice->rn_nozpool = B_FALSE;
1223						avl_add(&slice_cache, slice);
1224					}
1225				}
1226			}
1227
1228			geom_deletetree(&mesh);
1229			goto skipdir;
1230		}
1231
1232		/*
1233		 * This is not MT-safe, but we have no MT consumers of libzfs
1234		 */
1235		while ((dp = readdir64(dirp)) != NULL) {
1236			const char *name = dp->d_name;
1237			if (name[0] == '.' &&
1238			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1239				continue;
1240
1241			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1242			slice->rn_name = zfs_strdup(hdl, name);
1243			slice->rn_avl = &slice_cache;
1244			slice->rn_dfd = dfd;
1245			slice->rn_hdl = hdl;
1246			slice->rn_nozpool = B_FALSE;
1247			avl_add(&slice_cache, slice);
1248		}
1249skipdir:
1250		/*
1251		 * create a thread pool to do all of this in parallel;
1252		 * rn_nozpool is not protected, so this is racy in that
1253		 * multiple tasks could decide that the same slice can
1254		 * not hold a zpool, which is benign.  Also choose
1255		 * double the number of processors; we hold a lot of
1256		 * locks in the kernel, so going beyond this doesn't
1257		 * buy us much.
1258		 */
1259		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1260		    0, NULL);
1261		for (slice = avl_first(&slice_cache); slice;
1262		    (slice = avl_walk(&slice_cache, slice,
1263		    AVL_AFTER)))
1264			(void) tpool_dispatch(t, zpool_open_func, slice);
1265		tpool_wait(t);
1266		tpool_destroy(t);
1267
1268		cookie = NULL;
1269		while ((slice = avl_destroy_nodes(&slice_cache,
1270		    &cookie)) != NULL) {
1271			if (slice->rn_config != NULL) {
1272				nvlist_t *config = slice->rn_config;
1273				boolean_t matched = B_TRUE;
1274
1275				if (iarg->poolname != NULL) {
1276					char *pname;
1277
1278					matched = nvlist_lookup_string(config,
1279					    ZPOOL_CONFIG_POOL_NAME,
1280					    &pname) == 0 &&
1281					    strcmp(iarg->poolname, pname) == 0;
1282				} else if (iarg->guid != 0) {
1283					uint64_t this_guid;
1284
1285					matched = nvlist_lookup_uint64(config,
1286					    ZPOOL_CONFIG_POOL_GUID,
1287					    &this_guid) == 0 &&
1288					    iarg->guid == this_guid;
1289				}
1290				if (!matched) {
1291					nvlist_free(config);
1292					config = NULL;
1293					continue;
1294				}
1295				/* use the non-raw path for the config */
1296				(void) strlcpy(end, slice->rn_name, pathleft);
1297				if (add_config(hdl, &pools, path, config) != 0)
1298					goto error;
1299			}
1300			free(slice->rn_name);
1301			free(slice);
1302		}
1303		avl_destroy(&slice_cache);
1304
1305		(void) closedir(dirp);
1306		dirp = NULL;
1307	}
1308
1309	ret = get_configs(hdl, &pools, iarg->can_be_active);
1310
1311error:
1312	for (pe = pools.pools; pe != NULL; pe = penext) {
1313		penext = pe->pe_next;
1314		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1315			venext = ve->ve_next;
1316			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1317				cenext = ce->ce_next;
1318				if (ce->ce_config)
1319					nvlist_free(ce->ce_config);
1320				free(ce);
1321			}
1322			free(ve);
1323		}
1324		free(pe);
1325	}
1326
1327	for (ne = pools.names; ne != NULL; ne = nenext) {
1328		nenext = ne->ne_next;
1329		if (ne->ne_name)
1330			free(ne->ne_name);
1331		free(ne);
1332	}
1333
1334	if (dirp)
1335		(void) closedir(dirp);
1336
1337	return (ret);
1338}
1339
1340nvlist_t *
1341zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1342{
1343	importargs_t iarg = { 0 };
1344
1345	iarg.paths = argc;
1346	iarg.path = argv;
1347
1348	return (zpool_find_import_impl(hdl, &iarg));
1349}
1350
1351/*
1352 * Given a cache file, return the contents as a list of importable pools.
1353 * poolname or guid (but not both) are provided by the caller when trying
1354 * to import a specific pool.
1355 */
1356nvlist_t *
1357zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1358    char *poolname, uint64_t guid)
1359{
1360	char *buf;
1361	int fd;
1362	struct stat64 statbuf;
1363	nvlist_t *raw, *src, *dst;
1364	nvlist_t *pools;
1365	nvpair_t *elem;
1366	char *name;
1367	uint64_t this_guid;
1368	boolean_t active;
1369
1370	verify(poolname == NULL || guid == 0);
1371
1372	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1373		zfs_error_aux(hdl, "%s", strerror(errno));
1374		(void) zfs_error(hdl, EZFS_BADCACHE,
1375		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1376		return (NULL);
1377	}
1378
1379	if (fstat64(fd, &statbuf) != 0) {
1380		zfs_error_aux(hdl, "%s", strerror(errno));
1381		(void) close(fd);
1382		(void) zfs_error(hdl, EZFS_BADCACHE,
1383		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1384		return (NULL);
1385	}
1386
1387	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1388		(void) close(fd);
1389		return (NULL);
1390	}
1391
1392	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1393		(void) close(fd);
1394		free(buf);
1395		(void) zfs_error(hdl, EZFS_BADCACHE,
1396		    dgettext(TEXT_DOMAIN,
1397		    "failed to read cache file contents"));
1398		return (NULL);
1399	}
1400
1401	(void) close(fd);
1402
1403	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1404		free(buf);
1405		(void) zfs_error(hdl, EZFS_BADCACHE,
1406		    dgettext(TEXT_DOMAIN,
1407		    "invalid or corrupt cache file contents"));
1408		return (NULL);
1409	}
1410
1411	free(buf);
1412
1413	/*
1414	 * Go through and get the current state of the pools and refresh their
1415	 * state.
1416	 */
1417	if (nvlist_alloc(&pools, 0, 0) != 0) {
1418		(void) no_memory(hdl);
1419		nvlist_free(raw);
1420		return (NULL);
1421	}
1422
1423	elem = NULL;
1424	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1425		verify(nvpair_value_nvlist(elem, &src) == 0);
1426
1427		verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1428		    &name) == 0);
1429		if (poolname != NULL && strcmp(poolname, name) != 0)
1430			continue;
1431
1432		verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1433		    &this_guid) == 0);
1434		if (guid != 0) {
1435			verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1436			    &this_guid) == 0);
1437			if (guid != this_guid)
1438				continue;
1439		}
1440
1441		if (pool_active(hdl, name, this_guid, &active) != 0) {
1442			nvlist_free(raw);
1443			nvlist_free(pools);
1444			return (NULL);
1445		}
1446
1447		if (active)
1448			continue;
1449
1450		if ((dst = refresh_config(hdl, src)) == NULL) {
1451			nvlist_free(raw);
1452			nvlist_free(pools);
1453			return (NULL);
1454		}
1455
1456		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1457			(void) no_memory(hdl);
1458			nvlist_free(dst);
1459			nvlist_free(raw);
1460			nvlist_free(pools);
1461			return (NULL);
1462		}
1463		nvlist_free(dst);
1464	}
1465
1466	nvlist_free(raw);
1467	return (pools);
1468}
1469
1470static int
1471name_or_guid_exists(zpool_handle_t *zhp, void *data)
1472{
1473	importargs_t *import = data;
1474	int found = 0;
1475
1476	if (import->poolname != NULL) {
1477		char *pool_name;
1478
1479		verify(nvlist_lookup_string(zhp->zpool_config,
1480		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1481		if (strcmp(pool_name, import->poolname) == 0)
1482			found = 1;
1483	} else {
1484		uint64_t pool_guid;
1485
1486		verify(nvlist_lookup_uint64(zhp->zpool_config,
1487		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1488		if (pool_guid == import->guid)
1489			found = 1;
1490	}
1491
1492	zpool_close(zhp);
1493	return (found);
1494}
1495
1496nvlist_t *
1497zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1498{
1499	verify(import->poolname == NULL || import->guid == 0);
1500
1501	if (import->unique)
1502		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1503
1504	if (import->cachefile != NULL)
1505		return (zpool_find_import_cached(hdl, import->cachefile,
1506		    import->poolname, import->guid));
1507
1508	return (zpool_find_import_impl(hdl, import));
1509}
1510
1511boolean_t
1512find_guid(nvlist_t *nv, uint64_t guid)
1513{
1514	uint64_t tmp;
1515	nvlist_t **child;
1516	uint_t c, children;
1517
1518	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1519	if (tmp == guid)
1520		return (B_TRUE);
1521
1522	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1523	    &child, &children) == 0) {
1524		for (c = 0; c < children; c++)
1525			if (find_guid(child[c], guid))
1526				return (B_TRUE);
1527	}
1528
1529	return (B_FALSE);
1530}
1531
1532typedef struct aux_cbdata {
1533	const char	*cb_type;
1534	uint64_t	cb_guid;
1535	zpool_handle_t	*cb_zhp;
1536} aux_cbdata_t;
1537
1538static int
1539find_aux(zpool_handle_t *zhp, void *data)
1540{
1541	aux_cbdata_t *cbp = data;
1542	nvlist_t **list;
1543	uint_t i, count;
1544	uint64_t guid;
1545	nvlist_t *nvroot;
1546
1547	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1548	    &nvroot) == 0);
1549
1550	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1551	    &list, &count) == 0) {
1552		for (i = 0; i < count; i++) {
1553			verify(nvlist_lookup_uint64(list[i],
1554			    ZPOOL_CONFIG_GUID, &guid) == 0);
1555			if (guid == cbp->cb_guid) {
1556				cbp->cb_zhp = zhp;
1557				return (1);
1558			}
1559		}
1560	}
1561
1562	zpool_close(zhp);
1563	return (0);
1564}
1565
1566/*
1567 * Determines if the pool is in use.  If so, it returns true and the state of
1568 * the pool as well as the name of the pool.  Both strings are allocated and
1569 * must be freed by the caller.
1570 */
1571int
1572zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1573    boolean_t *inuse)
1574{
1575	nvlist_t *config;
1576	char *name;
1577	boolean_t ret;
1578	uint64_t guid, vdev_guid;
1579	zpool_handle_t *zhp;
1580	nvlist_t *pool_config;
1581	uint64_t stateval, isspare;
1582	aux_cbdata_t cb = { 0 };
1583	boolean_t isactive;
1584
1585	*inuse = B_FALSE;
1586
1587	if (zpool_read_label(fd, &config) != 0) {
1588		(void) no_memory(hdl);
1589		return (-1);
1590	}
1591
1592	if (config == NULL)
1593		return (0);
1594
1595	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1596	    &stateval) == 0);
1597	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1598	    &vdev_guid) == 0);
1599
1600	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1601		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1602		    &name) == 0);
1603		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1604		    &guid) == 0);
1605	}
1606
1607	switch (stateval) {
1608	case POOL_STATE_EXPORTED:
1609		/*
1610		 * A pool with an exported state may in fact be imported
1611		 * read-only, so check the in-core state to see if it's
1612		 * active and imported read-only.  If it is, set
1613		 * its state to active.
1614		 */
1615		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1616		    (zhp = zpool_open_canfail(hdl, name)) != NULL &&
1617		    zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1618			stateval = POOL_STATE_ACTIVE;
1619
1620		ret = B_TRUE;
1621		break;
1622
1623	case POOL_STATE_ACTIVE:
1624		/*
1625		 * For an active pool, we have to determine if it's really part
1626		 * of a currently active pool (in which case the pool will exist
1627		 * and the guid will be the same), or whether it's part of an
1628		 * active pool that was disconnected without being explicitly
1629		 * exported.
1630		 */
1631		if (pool_active(hdl, name, guid, &isactive) != 0) {
1632			nvlist_free(config);
1633			return (-1);
1634		}
1635
1636		if (isactive) {
1637			/*
1638			 * Because the device may have been removed while
1639			 * offlined, we only report it as active if the vdev is
1640			 * still present in the config.  Otherwise, pretend like
1641			 * it's not in use.
1642			 */
1643			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1644			    (pool_config = zpool_get_config(zhp, NULL))
1645			    != NULL) {
1646				nvlist_t *nvroot;
1647
1648				verify(nvlist_lookup_nvlist(pool_config,
1649				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1650				ret = find_guid(nvroot, vdev_guid);
1651			} else {
1652				ret = B_FALSE;
1653			}
1654
1655			/*
1656			 * If this is an active spare within another pool, we
1657			 * treat it like an unused hot spare.  This allows the
1658			 * user to create a pool with a hot spare that currently
1659			 * in use within another pool.  Since we return B_TRUE,
1660			 * libdiskmgt will continue to prevent generic consumers
1661			 * from using the device.
1662			 */
1663			if (ret && nvlist_lookup_uint64(config,
1664			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1665				stateval = POOL_STATE_SPARE;
1666
1667			if (zhp != NULL)
1668				zpool_close(zhp);
1669		} else {
1670			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1671			ret = B_TRUE;
1672		}
1673		break;
1674
1675	case POOL_STATE_SPARE:
1676		/*
1677		 * For a hot spare, it can be either definitively in use, or
1678		 * potentially active.  To determine if it's in use, we iterate
1679		 * over all pools in the system and search for one with a spare
1680		 * with a matching guid.
1681		 *
1682		 * Due to the shared nature of spares, we don't actually report
1683		 * the potentially active case as in use.  This means the user
1684		 * can freely create pools on the hot spares of exported pools,
1685		 * but to do otherwise makes the resulting code complicated, and
1686		 * we end up having to deal with this case anyway.
1687		 */
1688		cb.cb_zhp = NULL;
1689		cb.cb_guid = vdev_guid;
1690		cb.cb_type = ZPOOL_CONFIG_SPARES;
1691		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1692			name = (char *)zpool_get_name(cb.cb_zhp);
1693			ret = TRUE;
1694		} else {
1695			ret = FALSE;
1696		}
1697		break;
1698
1699	case POOL_STATE_L2CACHE:
1700
1701		/*
1702		 * Check if any pool is currently using this l2cache device.
1703		 */
1704		cb.cb_zhp = NULL;
1705		cb.cb_guid = vdev_guid;
1706		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1707		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1708			name = (char *)zpool_get_name(cb.cb_zhp);
1709			ret = TRUE;
1710		} else {
1711			ret = FALSE;
1712		}
1713		break;
1714
1715	default:
1716		ret = B_FALSE;
1717	}
1718
1719
1720	if (ret) {
1721		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1722			if (cb.cb_zhp)
1723				zpool_close(cb.cb_zhp);
1724			nvlist_free(config);
1725			return (-1);
1726		}
1727		*state = (pool_state_t)stateval;
1728	}
1729
1730	if (cb.cb_zhp)
1731		zpool_close(cb.cb_zhp);
1732
1733	nvlist_free(config);
1734	*inuse = ret;
1735	return (0);
1736}
1737