dt_consume.c revision 318784
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2012 by Delphix. All rights reserved.
29 */
30
31#include <stdlib.h>
32#include <strings.h>
33#include <errno.h>
34#include <unistd.h>
35#include <limits.h>
36#include <assert.h>
37#include <ctype.h>
38#ifdef illumos
39#include <alloca.h>
40#endif
41#include <dt_impl.h>
42#include <dt_pq.h>
43#ifndef illumos
44#include <libproc_compat.h>
45#endif
46
47#define	DT_MASK_LO 0x00000000FFFFFFFFULL
48
49/*
50 * We declare this here because (1) we need it and (2) we want to avoid a
51 * dependency on libm in libdtrace.
52 */
53static long double
54dt_fabsl(long double x)
55{
56	if (x < 0)
57		return (-x);
58
59	return (x);
60}
61
62static int
63dt_ndigits(long long val)
64{
65	int rval = 1;
66	long long cmp = 10;
67
68	if (val < 0) {
69		val = val == INT64_MIN ? INT64_MAX : -val;
70		rval++;
71	}
72
73	while (val > cmp && cmp > 0) {
74		rval++;
75		cmp *= 10;
76	}
77
78	return (rval < 4 ? 4 : rval);
79}
80
81/*
82 * 128-bit arithmetic functions needed to support the stddev() aggregating
83 * action.
84 */
85static int
86dt_gt_128(uint64_t *a, uint64_t *b)
87{
88	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
89}
90
91static int
92dt_ge_128(uint64_t *a, uint64_t *b)
93{
94	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
95}
96
97static int
98dt_le_128(uint64_t *a, uint64_t *b)
99{
100	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
101}
102
103/*
104 * Shift the 128-bit value in a by b. If b is positive, shift left.
105 * If b is negative, shift right.
106 */
107static void
108dt_shift_128(uint64_t *a, int b)
109{
110	uint64_t mask;
111
112	if (b == 0)
113		return;
114
115	if (b < 0) {
116		b = -b;
117		if (b >= 64) {
118			a[0] = a[1] >> (b - 64);
119			a[1] = 0;
120		} else {
121			a[0] >>= b;
122			mask = 1LL << (64 - b);
123			mask -= 1;
124			a[0] |= ((a[1] & mask) << (64 - b));
125			a[1] >>= b;
126		}
127	} else {
128		if (b >= 64) {
129			a[1] = a[0] << (b - 64);
130			a[0] = 0;
131		} else {
132			a[1] <<= b;
133			mask = a[0] >> (64 - b);
134			a[1] |= mask;
135			a[0] <<= b;
136		}
137	}
138}
139
140static int
141dt_nbits_128(uint64_t *a)
142{
143	int nbits = 0;
144	uint64_t tmp[2];
145	uint64_t zero[2] = { 0, 0 };
146
147	tmp[0] = a[0];
148	tmp[1] = a[1];
149
150	dt_shift_128(tmp, -1);
151	while (dt_gt_128(tmp, zero)) {
152		dt_shift_128(tmp, -1);
153		nbits++;
154	}
155
156	return (nbits);
157}
158
159static void
160dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
161{
162	uint64_t result[2];
163
164	result[0] = minuend[0] - subtrahend[0];
165	result[1] = minuend[1] - subtrahend[1] -
166	    (minuend[0] < subtrahend[0] ? 1 : 0);
167
168	difference[0] = result[0];
169	difference[1] = result[1];
170}
171
172static void
173dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
174{
175	uint64_t result[2];
176
177	result[0] = addend1[0] + addend2[0];
178	result[1] = addend1[1] + addend2[1] +
179	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
180
181	sum[0] = result[0];
182	sum[1] = result[1];
183}
184
185/*
186 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
187 * use native multiplication on those, and then re-combine into the
188 * resulting 128-bit value.
189 *
190 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
191 *     hi1 * hi2 << 64 +
192 *     hi1 * lo2 << 32 +
193 *     hi2 * lo1 << 32 +
194 *     lo1 * lo2
195 */
196static void
197dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
198{
199	uint64_t hi1, hi2, lo1, lo2;
200	uint64_t tmp[2];
201
202	hi1 = factor1 >> 32;
203	hi2 = factor2 >> 32;
204
205	lo1 = factor1 & DT_MASK_LO;
206	lo2 = factor2 & DT_MASK_LO;
207
208	product[0] = lo1 * lo2;
209	product[1] = hi1 * hi2;
210
211	tmp[0] = hi1 * lo2;
212	tmp[1] = 0;
213	dt_shift_128(tmp, 32);
214	dt_add_128(product, tmp, product);
215
216	tmp[0] = hi2 * lo1;
217	tmp[1] = 0;
218	dt_shift_128(tmp, 32);
219	dt_add_128(product, tmp, product);
220}
221
222/*
223 * This is long-hand division.
224 *
225 * We initialize subtrahend by shifting divisor left as far as possible. We
226 * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
227 * subtract and set the appropriate bit in the result.  We then shift
228 * subtrahend right by one bit for the next comparison.
229 */
230static void
231dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
232{
233	uint64_t result[2] = { 0, 0 };
234	uint64_t remainder[2];
235	uint64_t subtrahend[2];
236	uint64_t divisor_128[2];
237	uint64_t mask[2] = { 1, 0 };
238	int log = 0;
239
240	assert(divisor != 0);
241
242	divisor_128[0] = divisor;
243	divisor_128[1] = 0;
244
245	remainder[0] = dividend[0];
246	remainder[1] = dividend[1];
247
248	subtrahend[0] = divisor;
249	subtrahend[1] = 0;
250
251	while (divisor > 0) {
252		log++;
253		divisor >>= 1;
254	}
255
256	dt_shift_128(subtrahend, 128 - log);
257	dt_shift_128(mask, 128 - log);
258
259	while (dt_ge_128(remainder, divisor_128)) {
260		if (dt_ge_128(remainder, subtrahend)) {
261			dt_subtract_128(remainder, subtrahend, remainder);
262			result[0] |= mask[0];
263			result[1] |= mask[1];
264		}
265
266		dt_shift_128(subtrahend, -1);
267		dt_shift_128(mask, -1);
268	}
269
270	quotient[0] = result[0];
271	quotient[1] = result[1];
272}
273
274/*
275 * This is the long-hand method of calculating a square root.
276 * The algorithm is as follows:
277 *
278 * 1. Group the digits by 2 from the right.
279 * 2. Over the leftmost group, find the largest single-digit number
280 *    whose square is less than that group.
281 * 3. Subtract the result of the previous step (2 or 4, depending) and
282 *    bring down the next two-digit group.
283 * 4. For the result R we have so far, find the largest single-digit number
284 *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
285 *    (Note that this is doubling R and performing a decimal left-shift by 1
286 *    and searching for the appropriate decimal to fill the one's place.)
287 *    The value x is the next digit in the square root.
288 * Repeat steps 3 and 4 until the desired precision is reached.  (We're
289 * dealing with integers, so the above is sufficient.)
290 *
291 * In decimal, the square root of 582,734 would be calculated as so:
292 *
293 *     __7__6__3
294 *    | 58 27 34
295 *     -49       (7^2 == 49 => 7 is the first digit in the square root)
296 *      --
297 *       9 27    (Subtract and bring down the next group.)
298 * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
299 *      -----     the square root)
300 *         51 34 (Subtract and bring down the next group.)
301 * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
302 *         -----  the square root)
303 *          5 65 (remainder)
304 *
305 * The above algorithm applies similarly in binary, but note that the
306 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
307 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
308 * preceding difference?
309 *
310 * In binary, the square root of 11011011 would be calculated as so:
311 *
312 *     __1__1__1__0
313 *    | 11 01 10 11
314 *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
315 *      --
316 *      10 01 10 11
317 * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
318 *      -----
319 *       1 00 10 11
320 * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
321 *       -------
322 *          1 01 11
323 * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
324 *
325 */
326static uint64_t
327dt_sqrt_128(uint64_t *square)
328{
329	uint64_t result[2] = { 0, 0 };
330	uint64_t diff[2] = { 0, 0 };
331	uint64_t one[2] = { 1, 0 };
332	uint64_t next_pair[2];
333	uint64_t next_try[2];
334	uint64_t bit_pairs, pair_shift;
335	int i;
336
337	bit_pairs = dt_nbits_128(square) / 2;
338	pair_shift = bit_pairs * 2;
339
340	for (i = 0; i <= bit_pairs; i++) {
341		/*
342		 * Bring down the next pair of bits.
343		 */
344		next_pair[0] = square[0];
345		next_pair[1] = square[1];
346		dt_shift_128(next_pair, -pair_shift);
347		next_pair[0] &= 0x3;
348		next_pair[1] = 0;
349
350		dt_shift_128(diff, 2);
351		dt_add_128(diff, next_pair, diff);
352
353		/*
354		 * next_try = R << 2 + 1
355		 */
356		next_try[0] = result[0];
357		next_try[1] = result[1];
358		dt_shift_128(next_try, 2);
359		dt_add_128(next_try, one, next_try);
360
361		if (dt_le_128(next_try, diff)) {
362			dt_subtract_128(diff, next_try, diff);
363			dt_shift_128(result, 1);
364			dt_add_128(result, one, result);
365		} else {
366			dt_shift_128(result, 1);
367		}
368
369		pair_shift -= 2;
370	}
371
372	assert(result[1] == 0);
373
374	return (result[0]);
375}
376
377uint64_t
378dt_stddev(uint64_t *data, uint64_t normal)
379{
380	uint64_t avg_of_squares[2];
381	uint64_t square_of_avg[2];
382	int64_t norm_avg;
383	uint64_t diff[2];
384
385	if (data[0] == 0)
386		return (0);
387
388	/*
389	 * The standard approximation for standard deviation is
390	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
391	 * of the average of the squares minus the square of the average.
392	 * When normalizing, we should divide the sum of x**2 by normal**2.
393	 */
394	dt_divide_128(data + 2, normal, avg_of_squares);
395	dt_divide_128(avg_of_squares, normal, avg_of_squares);
396	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
397
398	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
399
400	if (norm_avg < 0)
401		norm_avg = -norm_avg;
402
403	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
404
405	dt_subtract_128(avg_of_squares, square_of_avg, diff);
406
407	return (dt_sqrt_128(diff));
408}
409
410static int
411dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
412    dtrace_bufdesc_t *buf, size_t offs)
413{
414	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
415	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
416	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
417	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
418	const char *str = NULL;
419	static const char *e_str[2] = { " -> ", " => " };
420	static const char *r_str[2] = { " <- ", " <= " };
421	static const char *ent = "entry", *ret = "return";
422	static int entlen = 0, retlen = 0;
423	dtrace_epid_t next, id = epd->dtepd_epid;
424	int rval;
425
426	if (entlen == 0) {
427		assert(retlen == 0);
428		entlen = strlen(ent);
429		retlen = strlen(ret);
430	}
431
432	/*
433	 * If the name of the probe is "entry" or ends with "-entry", we
434	 * treat it as an entry; if it is "return" or ends with "-return",
435	 * we treat it as a return.  (This allows application-provided probes
436	 * like "method-entry" or "function-entry" to participate in flow
437	 * indentation -- without accidentally misinterpreting popular probe
438	 * names like "carpentry", "gentry" or "Coventry".)
439	 */
440	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
441	    (sub == n || sub[-1] == '-')) {
442		flow = DTRACEFLOW_ENTRY;
443		str = e_str[strcmp(p, "syscall") == 0];
444	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
445	    (sub == n || sub[-1] == '-')) {
446		flow = DTRACEFLOW_RETURN;
447		str = r_str[strcmp(p, "syscall") == 0];
448	}
449
450	/*
451	 * If we're going to indent this, we need to check the ID of our last
452	 * call.  If we're looking at the same probe ID but a different EPID,
453	 * we _don't_ want to indent.  (Yes, there are some minor holes in
454	 * this scheme -- it's a heuristic.)
455	 */
456	if (flow == DTRACEFLOW_ENTRY) {
457		if ((last != DTRACE_EPIDNONE && id != last &&
458		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
459			flow = DTRACEFLOW_NONE;
460	}
461
462	/*
463	 * If we're going to unindent this, it's more difficult to see if
464	 * we don't actually want to unindent it -- we need to look at the
465	 * _next_ EPID.
466	 */
467	if (flow == DTRACEFLOW_RETURN) {
468		offs += epd->dtepd_size;
469
470		do {
471			if (offs >= buf->dtbd_size)
472				goto out;
473
474			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
475
476			if (next == DTRACE_EPIDNONE)
477				offs += sizeof (id);
478		} while (next == DTRACE_EPIDNONE);
479
480		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
481			return (rval);
482
483		if (next != id && npd->dtpd_id == pd->dtpd_id)
484			flow = DTRACEFLOW_NONE;
485	}
486
487out:
488	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
489		data->dtpda_prefix = str;
490	} else {
491		data->dtpda_prefix = "| ";
492	}
493
494	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
495		data->dtpda_indent -= 2;
496
497	data->dtpda_flow = flow;
498
499	return (0);
500}
501
502static int
503dt_nullprobe()
504{
505	return (DTRACE_CONSUME_THIS);
506}
507
508static int
509dt_nullrec()
510{
511	return (DTRACE_CONSUME_NEXT);
512}
513
514static void
515dt_quantize_total(dtrace_hdl_t *dtp, int64_t datum, long double *total)
516{
517	long double val = dt_fabsl((long double)datum);
518
519	if (dtp->dt_options[DTRACEOPT_AGGZOOM] == DTRACEOPT_UNSET) {
520		*total += val;
521		return;
522	}
523
524	/*
525	 * If we're zooming in on an aggregation, we want the height of the
526	 * highest value to be approximately 95% of total bar height -- so we
527	 * adjust up by the reciprocal of DTRACE_AGGZOOM_MAX when comparing to
528	 * our highest value.
529	 */
530	val *= 1 / DTRACE_AGGZOOM_MAX;
531
532	if (*total < val)
533		*total = val;
534}
535
536static int
537dt_print_quanthdr(dtrace_hdl_t *dtp, FILE *fp, int width)
538{
539	return (dt_printf(dtp, fp, "\n%*s %41s %-9s\n",
540	    width ? width : 16, width ? "key" : "value",
541	    "------------- Distribution -------------", "count"));
542}
543
544static int
545dt_print_quanthdr_packed(dtrace_hdl_t *dtp, FILE *fp, int width,
546    const dtrace_aggdata_t *aggdata, dtrace_actkind_t action)
547{
548	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin;
549	int minwidth, maxwidth, i;
550
551	assert(action == DTRACEAGG_QUANTIZE || action == DTRACEAGG_LQUANTIZE);
552
553	if (action == DTRACEAGG_QUANTIZE) {
554		if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
555			min--;
556
557		if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
558			max++;
559
560		minwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(min));
561		maxwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(max));
562	} else {
563		maxwidth = 8;
564		minwidth = maxwidth - 1;
565		max++;
566	}
567
568	if (dt_printf(dtp, fp, "\n%*s %*s .",
569	    width, width > 0 ? "key" : "", minwidth, "min") < 0)
570		return (-1);
571
572	for (i = min; i <= max; i++) {
573		if (dt_printf(dtp, fp, "-") < 0)
574			return (-1);
575	}
576
577	return (dt_printf(dtp, fp, ". %*s | count\n", -maxwidth, "max"));
578}
579
580/*
581 * We use a subset of the Unicode Block Elements (U+2588 through U+258F,
582 * inclusive) to represent aggregations via UTF-8 -- which are expressed via
583 * 3-byte UTF-8 sequences.
584 */
585#define	DTRACE_AGGUTF8_FULL	0x2588
586#define	DTRACE_AGGUTF8_BASE	0x258f
587#define	DTRACE_AGGUTF8_LEVELS	8
588
589#define	DTRACE_AGGUTF8_BYTE0(val)	(0xe0 | ((val) >> 12))
590#define	DTRACE_AGGUTF8_BYTE1(val)	(0x80 | (((val) >> 6) & 0x3f))
591#define	DTRACE_AGGUTF8_BYTE2(val)	(0x80 | ((val) & 0x3f))
592
593static int
594dt_print_quantline_utf8(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
595    uint64_t normal, long double total)
596{
597	uint_t len = 40, i, whole, partial;
598	long double f = (dt_fabsl((long double)val) * len) / total;
599	const char *spaces = "                                        ";
600
601	whole = (uint_t)f;
602	partial = (uint_t)((f - (long double)(uint_t)f) *
603	    (long double)DTRACE_AGGUTF8_LEVELS);
604
605	if (dt_printf(dtp, fp, "|") < 0)
606		return (-1);
607
608	for (i = 0; i < whole; i++) {
609		if (dt_printf(dtp, fp, "%c%c%c",
610		    DTRACE_AGGUTF8_BYTE0(DTRACE_AGGUTF8_FULL),
611		    DTRACE_AGGUTF8_BYTE1(DTRACE_AGGUTF8_FULL),
612		    DTRACE_AGGUTF8_BYTE2(DTRACE_AGGUTF8_FULL)) < 0)
613			return (-1);
614	}
615
616	if (partial != 0) {
617		partial = DTRACE_AGGUTF8_BASE - (partial - 1);
618
619		if (dt_printf(dtp, fp, "%c%c%c",
620		    DTRACE_AGGUTF8_BYTE0(partial),
621		    DTRACE_AGGUTF8_BYTE1(partial),
622		    DTRACE_AGGUTF8_BYTE2(partial)) < 0)
623			return (-1);
624
625		i++;
626	}
627
628	return (dt_printf(dtp, fp, "%s %-9lld\n", spaces + i,
629	    (long long)val / normal));
630}
631
632static int
633dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
634    uint64_t normal, long double total, char positives, char negatives)
635{
636	long double f;
637	uint_t depth, len = 40;
638
639	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
640	const char *spaces = "                                        ";
641
642	assert(strlen(ats) == len && strlen(spaces) == len);
643	assert(!(total == 0 && (positives || negatives)));
644	assert(!(val < 0 && !negatives));
645	assert(!(val > 0 && !positives));
646	assert(!(val != 0 && total == 0));
647
648	if (!negatives) {
649		if (positives) {
650			if (dtp->dt_encoding == DT_ENCODING_UTF8) {
651				return (dt_print_quantline_utf8(dtp, fp, val,
652				    normal, total));
653			}
654
655			f = (dt_fabsl((long double)val) * len) / total;
656			depth = (uint_t)(f + 0.5);
657		} else {
658			depth = 0;
659		}
660
661		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
662		    spaces + depth, (long long)val / normal));
663	}
664
665	if (!positives) {
666		f = (dt_fabsl((long double)val) * len) / total;
667		depth = (uint_t)(f + 0.5);
668
669		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
670		    ats + len - depth, (long long)val / normal));
671	}
672
673	/*
674	 * If we're here, we have both positive and negative bucket values.
675	 * To express this graphically, we're going to generate both positive
676	 * and negative bars separated by a centerline.  These bars are half
677	 * the size of normal quantize()/lquantize() bars, so we divide the
678	 * length in half before calculating the bar length.
679	 */
680	len /= 2;
681	ats = &ats[len];
682	spaces = &spaces[len];
683
684	f = (dt_fabsl((long double)val) * len) / total;
685	depth = (uint_t)(f + 0.5);
686
687	if (val <= 0) {
688		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
689		    ats + len - depth, len, "", (long long)val / normal));
690	} else {
691		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
692		    ats + len - depth, spaces + depth,
693		    (long long)val / normal));
694	}
695}
696
697/*
698 * As with UTF-8 printing of aggregations, we use a subset of the Unicode
699 * Block Elements (U+2581 through U+2588, inclusive) to represent our packed
700 * aggregation.
701 */
702#define	DTRACE_AGGPACK_BASE	0x2581
703#define	DTRACE_AGGPACK_LEVELS	8
704
705static int
706dt_print_packed(dtrace_hdl_t *dtp, FILE *fp,
707    long double datum, long double total)
708{
709	static boolean_t utf8_checked = B_FALSE;
710	static boolean_t utf8;
711	char *ascii = "__xxxxXX";
712	char *neg = "vvvvVV";
713	unsigned int len;
714	long double val;
715
716	if (!utf8_checked) {
717		char *term;
718
719		/*
720		 * We want to determine if we can reasonably emit UTF-8 for our
721		 * packed aggregation.  To do this, we will check for terminals
722		 * that are known to be primitive to emit UTF-8 on these.
723		 */
724		utf8_checked = B_TRUE;
725
726		if (dtp->dt_encoding == DT_ENCODING_ASCII) {
727			utf8 = B_FALSE;
728		} else if (dtp->dt_encoding == DT_ENCODING_UTF8) {
729			utf8 = B_TRUE;
730		} else if ((term = getenv("TERM")) != NULL &&
731		    (strcmp(term, "sun") == 0 ||
732		    strcmp(term, "sun-color") == 0 ||
733		    strcmp(term, "dumb") == 0)) {
734			utf8 = B_FALSE;
735		} else {
736			utf8 = B_TRUE;
737		}
738	}
739
740	if (datum == 0)
741		return (dt_printf(dtp, fp, " "));
742
743	if (datum < 0) {
744		len = strlen(neg);
745		val = dt_fabsl(datum * (len - 1)) / total;
746		return (dt_printf(dtp, fp, "%c", neg[(uint_t)(val + 0.5)]));
747	}
748
749	if (utf8) {
750		int block = DTRACE_AGGPACK_BASE + (unsigned int)(((datum *
751		    (DTRACE_AGGPACK_LEVELS - 1)) / total) + 0.5);
752
753		return (dt_printf(dtp, fp, "%c%c%c",
754		    DTRACE_AGGUTF8_BYTE0(block),
755		    DTRACE_AGGUTF8_BYTE1(block),
756		    DTRACE_AGGUTF8_BYTE2(block)));
757	}
758
759	len = strlen(ascii);
760	val = (datum * (len - 1)) / total;
761	return (dt_printf(dtp, fp, "%c", ascii[(uint_t)(val + 0.5)]));
762}
763
764int
765dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
766    size_t size, uint64_t normal)
767{
768	const int64_t *data = addr;
769	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
770	long double total = 0;
771	char positives = 0, negatives = 0;
772
773	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
774		return (dt_set_errno(dtp, EDT_DMISMATCH));
775
776	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
777		first_bin++;
778
779	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
780		/*
781		 * There isn't any data.  This is possible if the aggregation
782		 * has been clear()'d or if negative increment values have been
783		 * used.  Regardless, we'll print the buckets around 0.
784		 */
785		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
786		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
787	} else {
788		if (first_bin > 0)
789			first_bin--;
790
791		while (last_bin > 0 && data[last_bin] == 0)
792			last_bin--;
793
794		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
795			last_bin++;
796	}
797
798	for (i = first_bin; i <= last_bin; i++) {
799		positives |= (data[i] > 0);
800		negatives |= (data[i] < 0);
801		dt_quantize_total(dtp, data[i], &total);
802	}
803
804	if (dt_print_quanthdr(dtp, fp, 0) < 0)
805		return (-1);
806
807	for (i = first_bin; i <= last_bin; i++) {
808		if (dt_printf(dtp, fp, "%16lld ",
809		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
810			return (-1);
811
812		if (dt_print_quantline(dtp, fp, data[i], normal, total,
813		    positives, negatives) < 0)
814			return (-1);
815	}
816
817	return (0);
818}
819
820int
821dt_print_quantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
822    size_t size, const dtrace_aggdata_t *aggdata)
823{
824	const int64_t *data = addr;
825	long double total = 0, count = 0;
826	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin, i;
827	int64_t minval, maxval;
828
829	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
830		return (dt_set_errno(dtp, EDT_DMISMATCH));
831
832	if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
833		min--;
834
835	if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
836		max++;
837
838	minval = DTRACE_QUANTIZE_BUCKETVAL(min);
839	maxval = DTRACE_QUANTIZE_BUCKETVAL(max);
840
841	if (dt_printf(dtp, fp, " %*lld :", dt_ndigits(minval),
842	    (long long)minval) < 0)
843		return (-1);
844
845	for (i = min; i <= max; i++) {
846		dt_quantize_total(dtp, data[i], &total);
847		count += data[i];
848	}
849
850	for (i = min; i <= max; i++) {
851		if (dt_print_packed(dtp, fp, data[i], total) < 0)
852			return (-1);
853	}
854
855	if (dt_printf(dtp, fp, ": %*lld | %lld\n",
856	    -dt_ndigits(maxval), (long long)maxval, (long long)count) < 0)
857		return (-1);
858
859	return (0);
860}
861
862int
863dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
864    size_t size, uint64_t normal)
865{
866	const int64_t *data = addr;
867	int i, first_bin, last_bin, base;
868	uint64_t arg;
869	long double total = 0;
870	uint16_t step, levels;
871	char positives = 0, negatives = 0;
872
873	if (size < sizeof (uint64_t))
874		return (dt_set_errno(dtp, EDT_DMISMATCH));
875
876	arg = *data++;
877	size -= sizeof (uint64_t);
878
879	base = DTRACE_LQUANTIZE_BASE(arg);
880	step = DTRACE_LQUANTIZE_STEP(arg);
881	levels = DTRACE_LQUANTIZE_LEVELS(arg);
882
883	first_bin = 0;
884	last_bin = levels + 1;
885
886	if (size != sizeof (uint64_t) * (levels + 2))
887		return (dt_set_errno(dtp, EDT_DMISMATCH));
888
889	while (first_bin <= levels + 1 && data[first_bin] == 0)
890		first_bin++;
891
892	if (first_bin > levels + 1) {
893		first_bin = 0;
894		last_bin = 2;
895	} else {
896		if (first_bin > 0)
897			first_bin--;
898
899		while (last_bin > 0 && data[last_bin] == 0)
900			last_bin--;
901
902		if (last_bin < levels + 1)
903			last_bin++;
904	}
905
906	for (i = first_bin; i <= last_bin; i++) {
907		positives |= (data[i] > 0);
908		negatives |= (data[i] < 0);
909		dt_quantize_total(dtp, data[i], &total);
910	}
911
912	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
913	    "------------- Distribution -------------", "count") < 0)
914		return (-1);
915
916	for (i = first_bin; i <= last_bin; i++) {
917		char c[32];
918		int err;
919
920		if (i == 0) {
921			(void) snprintf(c, sizeof (c), "< %d", base);
922			err = dt_printf(dtp, fp, "%16s ", c);
923		} else if (i == levels + 1) {
924			(void) snprintf(c, sizeof (c), ">= %d",
925			    base + (levels * step));
926			err = dt_printf(dtp, fp, "%16s ", c);
927		} else {
928			err = dt_printf(dtp, fp, "%16d ",
929			    base + (i - 1) * step);
930		}
931
932		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
933		    total, positives, negatives) < 0)
934			return (-1);
935	}
936
937	return (0);
938}
939
940/*ARGSUSED*/
941int
942dt_print_lquantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
943    size_t size, const dtrace_aggdata_t *aggdata)
944{
945	const int64_t *data = addr;
946	long double total = 0, count = 0;
947	int min, max, base, err;
948	uint64_t arg;
949	uint16_t step, levels;
950	char c[32];
951	unsigned int i;
952
953	if (size < sizeof (uint64_t))
954		return (dt_set_errno(dtp, EDT_DMISMATCH));
955
956	arg = *data++;
957	size -= sizeof (uint64_t);
958
959	base = DTRACE_LQUANTIZE_BASE(arg);
960	step = DTRACE_LQUANTIZE_STEP(arg);
961	levels = DTRACE_LQUANTIZE_LEVELS(arg);
962
963	if (size != sizeof (uint64_t) * (levels + 2))
964		return (dt_set_errno(dtp, EDT_DMISMATCH));
965
966	min = 0;
967	max = levels + 1;
968
969	if (min == 0) {
970		(void) snprintf(c, sizeof (c), "< %d", base);
971		err = dt_printf(dtp, fp, "%8s :", c);
972	} else {
973		err = dt_printf(dtp, fp, "%8d :", base + (min - 1) * step);
974	}
975
976	if (err < 0)
977		return (-1);
978
979	for (i = min; i <= max; i++) {
980		dt_quantize_total(dtp, data[i], &total);
981		count += data[i];
982	}
983
984	for (i = min; i <= max; i++) {
985		if (dt_print_packed(dtp, fp, data[i], total) < 0)
986			return (-1);
987	}
988
989	(void) snprintf(c, sizeof (c), ">= %d", base + (levels * step));
990	return (dt_printf(dtp, fp, ": %-8s | %lld\n", c, (long long)count));
991}
992
993int
994dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
995    size_t size, uint64_t normal)
996{
997	int i, first_bin, last_bin, bin = 1, order, levels;
998	uint16_t factor, low, high, nsteps;
999	const int64_t *data = addr;
1000	int64_t value = 1, next, step;
1001	char positives = 0, negatives = 0;
1002	long double total = 0;
1003	uint64_t arg;
1004	char c[32];
1005
1006	if (size < sizeof (uint64_t))
1007		return (dt_set_errno(dtp, EDT_DMISMATCH));
1008
1009	arg = *data++;
1010	size -= sizeof (uint64_t);
1011
1012	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1013	low = DTRACE_LLQUANTIZE_LOW(arg);
1014	high = DTRACE_LLQUANTIZE_HIGH(arg);
1015	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1016
1017	/*
1018	 * We don't expect to be handed invalid llquantize() parameters here,
1019	 * but sanity check them (to a degree) nonetheless.
1020	 */
1021	if (size > INT32_MAX || factor < 2 || low >= high ||
1022	    nsteps == 0 || factor > nsteps)
1023		return (dt_set_errno(dtp, EDT_DMISMATCH));
1024
1025	levels = (int)size / sizeof (uint64_t);
1026
1027	first_bin = 0;
1028	last_bin = levels - 1;
1029
1030	while (first_bin < levels && data[first_bin] == 0)
1031		first_bin++;
1032
1033	if (first_bin == levels) {
1034		first_bin = 0;
1035		last_bin = 1;
1036	} else {
1037		if (first_bin > 0)
1038			first_bin--;
1039
1040		while (last_bin > 0 && data[last_bin] == 0)
1041			last_bin--;
1042
1043		if (last_bin < levels - 1)
1044			last_bin++;
1045	}
1046
1047	for (i = first_bin; i <= last_bin; i++) {
1048		positives |= (data[i] > 0);
1049		negatives |= (data[i] < 0);
1050		dt_quantize_total(dtp, data[i], &total);
1051	}
1052
1053	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
1054	    "------------- Distribution -------------", "count") < 0)
1055		return (-1);
1056
1057	for (order = 0; order < low; order++)
1058		value *= factor;
1059
1060	next = value * factor;
1061	step = next > nsteps ? next / nsteps : 1;
1062
1063	if (first_bin == 0) {
1064		(void) snprintf(c, sizeof (c), "< %lld", (long long)value);
1065
1066		if (dt_printf(dtp, fp, "%16s ", c) < 0)
1067			return (-1);
1068
1069		if (dt_print_quantline(dtp, fp, data[0], normal,
1070		    total, positives, negatives) < 0)
1071			return (-1);
1072	}
1073
1074	while (order <= high) {
1075		if (bin >= first_bin && bin <= last_bin) {
1076			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
1077				return (-1);
1078
1079			if (dt_print_quantline(dtp, fp, data[bin],
1080			    normal, total, positives, negatives) < 0)
1081				return (-1);
1082		}
1083
1084		assert(value < next);
1085		bin++;
1086
1087		if ((value += step) != next)
1088			continue;
1089
1090		next = value * factor;
1091		step = next > nsteps ? next / nsteps : 1;
1092		order++;
1093	}
1094
1095	if (last_bin < bin)
1096		return (0);
1097
1098	assert(last_bin == bin);
1099	(void) snprintf(c, sizeof (c), ">= %lld", (long long)value);
1100
1101	if (dt_printf(dtp, fp, "%16s ", c) < 0)
1102		return (-1);
1103
1104	return (dt_print_quantline(dtp, fp, data[bin], normal,
1105	    total, positives, negatives));
1106}
1107
1108/*ARGSUSED*/
1109static int
1110dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1111    size_t size, uint64_t normal)
1112{
1113	/* LINTED - alignment */
1114	int64_t *data = (int64_t *)addr;
1115
1116	return (dt_printf(dtp, fp, " %16lld", data[0] ?
1117	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
1118}
1119
1120/*ARGSUSED*/
1121static int
1122dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1123    size_t size, uint64_t normal)
1124{
1125	/* LINTED - alignment */
1126	uint64_t *data = (uint64_t *)addr;
1127
1128	return (dt_printf(dtp, fp, " %16llu", data[0] ?
1129	    (unsigned long long) dt_stddev(data, normal) : 0));
1130}
1131
1132/*ARGSUSED*/
1133static int
1134dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1135    size_t nbytes, int width, int quiet, int forceraw)
1136{
1137	/*
1138	 * If the byte stream is a series of printable characters, followed by
1139	 * a terminating byte, we print it out as a string.  Otherwise, we
1140	 * assume that it's something else and just print the bytes.
1141	 */
1142	int i, j, margin = 5;
1143	char *c = (char *)addr;
1144
1145	if (nbytes == 0)
1146		return (0);
1147
1148	if (forceraw)
1149		goto raw;
1150
1151	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
1152		goto raw;
1153
1154	for (i = 0; i < nbytes; i++) {
1155		/*
1156		 * We define a "printable character" to be one for which
1157		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
1158		 * or a character which is either backspace or the bell.
1159		 * Backspace and the bell are regrettably special because
1160		 * they fail the first two tests -- and yet they are entirely
1161		 * printable.  These are the only two control characters that
1162		 * have meaning for the terminal and for which isprint(3C) and
1163		 * isspace(3C) return 0.
1164		 */
1165		if (isprint(c[i]) || isspace(c[i]) ||
1166		    c[i] == '\b' || c[i] == '\a')
1167			continue;
1168
1169		if (c[i] == '\0' && i > 0) {
1170			/*
1171			 * This looks like it might be a string.  Before we
1172			 * assume that it is indeed a string, check the
1173			 * remainder of the byte range; if it contains
1174			 * additional non-nul characters, we'll assume that
1175			 * it's a binary stream that just happens to look like
1176			 * a string, and we'll print out the individual bytes.
1177			 */
1178			for (j = i + 1; j < nbytes; j++) {
1179				if (c[j] != '\0')
1180					break;
1181			}
1182
1183			if (j != nbytes)
1184				break;
1185
1186			if (quiet) {
1187				return (dt_printf(dtp, fp, "%s", c));
1188			} else {
1189				return (dt_printf(dtp, fp, " %s%*s",
1190				    width < 0 ? " " : "", width, c));
1191			}
1192		}
1193
1194		break;
1195	}
1196
1197	if (i == nbytes) {
1198		/*
1199		 * The byte range is all printable characters, but there is
1200		 * no trailing nul byte.  We'll assume that it's a string and
1201		 * print it as such.
1202		 */
1203		char *s = alloca(nbytes + 1);
1204		bcopy(c, s, nbytes);
1205		s[nbytes] = '\0';
1206		return (dt_printf(dtp, fp, "  %-*s", width, s));
1207	}
1208
1209raw:
1210	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
1211		return (-1);
1212
1213	for (i = 0; i < 16; i++)
1214		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
1215			return (-1);
1216
1217	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
1218		return (-1);
1219
1220
1221	for (i = 0; i < nbytes; i += 16) {
1222		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
1223			return (-1);
1224
1225		for (j = i; j < i + 16 && j < nbytes; j++) {
1226			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
1227				return (-1);
1228		}
1229
1230		while (j++ % 16) {
1231			if (dt_printf(dtp, fp, "   ") < 0)
1232				return (-1);
1233		}
1234
1235		if (dt_printf(dtp, fp, "  ") < 0)
1236			return (-1);
1237
1238		for (j = i; j < i + 16 && j < nbytes; j++) {
1239			if (dt_printf(dtp, fp, "%c",
1240			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
1241				return (-1);
1242		}
1243
1244		if (dt_printf(dtp, fp, "\n") < 0)
1245			return (-1);
1246	}
1247
1248	return (0);
1249}
1250
1251int
1252dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1253    caddr_t addr, int depth, int size)
1254{
1255	dtrace_syminfo_t dts;
1256	GElf_Sym sym;
1257	int i, indent;
1258	char c[PATH_MAX * 2];
1259	uint64_t pc;
1260
1261	if (dt_printf(dtp, fp, "\n") < 0)
1262		return (-1);
1263
1264	if (format == NULL)
1265		format = "%s";
1266
1267	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1268		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1269	else
1270		indent = _dtrace_stkindent;
1271
1272	for (i = 0; i < depth; i++) {
1273		switch (size) {
1274		case sizeof (uint32_t):
1275			/* LINTED - alignment */
1276			pc = *((uint32_t *)addr);
1277			break;
1278
1279		case sizeof (uint64_t):
1280			/* LINTED - alignment */
1281			pc = *((uint64_t *)addr);
1282			break;
1283
1284		default:
1285			return (dt_set_errno(dtp, EDT_BADSTACKPC));
1286		}
1287
1288		if (pc == 0)
1289			break;
1290
1291		addr += size;
1292
1293		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
1294			return (-1);
1295
1296		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1297			if (pc > sym.st_value) {
1298				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
1299				    dts.dts_object, dts.dts_name,
1300				    (u_longlong_t)(pc - sym.st_value));
1301			} else {
1302				(void) snprintf(c, sizeof (c), "%s`%s",
1303				    dts.dts_object, dts.dts_name);
1304			}
1305		} else {
1306			/*
1307			 * We'll repeat the lookup, but this time we'll specify
1308			 * a NULL GElf_Sym -- indicating that we're only
1309			 * interested in the containing module.
1310			 */
1311			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1312				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1313				    dts.dts_object, (u_longlong_t)pc);
1314			} else {
1315				(void) snprintf(c, sizeof (c), "0x%llx",
1316				    (u_longlong_t)pc);
1317			}
1318		}
1319
1320		if (dt_printf(dtp, fp, format, c) < 0)
1321			return (-1);
1322
1323		if (dt_printf(dtp, fp, "\n") < 0)
1324			return (-1);
1325	}
1326
1327	return (0);
1328}
1329
1330int
1331dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1332    caddr_t addr, uint64_t arg)
1333{
1334	/* LINTED - alignment */
1335	uint64_t *pc = (uint64_t *)addr;
1336	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1337	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1338	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1339	const char *str = strsize ? strbase : NULL;
1340	int err = 0;
1341
1342	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1343	struct ps_prochandle *P;
1344	GElf_Sym sym;
1345	int i, indent;
1346	pid_t pid;
1347
1348	if (depth == 0)
1349		return (0);
1350
1351	pid = (pid_t)*pc++;
1352
1353	if (dt_printf(dtp, fp, "\n") < 0)
1354		return (-1);
1355
1356	if (format == NULL)
1357		format = "%s";
1358
1359	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1360		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1361	else
1362		indent = _dtrace_stkindent;
1363
1364	/*
1365	 * Ultimately, we need to add an entry point in the library vector for
1366	 * determining <symbol, offset> from <pid, address>.  For now, if
1367	 * this is a vector open, we just print the raw address or string.
1368	 */
1369	if (dtp->dt_vector == NULL)
1370		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1371	else
1372		P = NULL;
1373
1374	if (P != NULL)
1375		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1376
1377	for (i = 0; i < depth && pc[i] != 0; i++) {
1378		const prmap_t *map;
1379
1380		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1381			break;
1382
1383		if (P != NULL && Plookup_by_addr(P, pc[i],
1384		    name, sizeof (name), &sym) == 0) {
1385			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1386
1387			if (pc[i] > sym.st_value) {
1388				(void) snprintf(c, sizeof (c),
1389				    "%s`%s+0x%llx", dt_basename(objname), name,
1390				    (u_longlong_t)(pc[i] - sym.st_value));
1391			} else {
1392				(void) snprintf(c, sizeof (c),
1393				    "%s`%s", dt_basename(objname), name);
1394			}
1395		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1396		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1397		    (map->pr_mflags & MA_WRITE)))) {
1398			/*
1399			 * If the current string pointer in the string table
1400			 * does not point to an empty string _and_ the program
1401			 * counter falls in a writable region, we'll use the
1402			 * string from the string table instead of the raw
1403			 * address.  This last condition is necessary because
1404			 * some (broken) ustack helpers will return a string
1405			 * even for a program counter that they can't
1406			 * identify.  If we have a string for a program
1407			 * counter that falls in a segment that isn't
1408			 * writable, we assume that we have fallen into this
1409			 * case and we refuse to use the string.
1410			 */
1411			(void) snprintf(c, sizeof (c), "%s", str);
1412		} else {
1413			if (P != NULL && Pobjname(P, pc[i], objname,
1414			    sizeof (objname)) != 0) {
1415				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1416				    dt_basename(objname), (u_longlong_t)pc[i]);
1417			} else {
1418				(void) snprintf(c, sizeof (c), "0x%llx",
1419				    (u_longlong_t)pc[i]);
1420			}
1421		}
1422
1423		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1424			break;
1425
1426		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1427			break;
1428
1429		if (str != NULL && str[0] == '@') {
1430			/*
1431			 * If the first character of the string is an "at" sign,
1432			 * then the string is inferred to be an annotation --
1433			 * and it is printed out beneath the frame and offset
1434			 * with brackets.
1435			 */
1436			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1437				break;
1438
1439			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1440
1441			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1442				break;
1443
1444			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1445				break;
1446		}
1447
1448		if (str != NULL) {
1449			str += strlen(str) + 1;
1450			if (str - strbase >= strsize)
1451				str = NULL;
1452		}
1453	}
1454
1455	if (P != NULL) {
1456		dt_proc_unlock(dtp, P);
1457		dt_proc_release(dtp, P);
1458	}
1459
1460	return (err);
1461}
1462
1463static int
1464dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1465{
1466	/* LINTED - alignment */
1467	uint64_t pid = ((uint64_t *)addr)[0];
1468	/* LINTED - alignment */
1469	uint64_t pc = ((uint64_t *)addr)[1];
1470	const char *format = "  %-50s";
1471	char *s;
1472	int n, len = 256;
1473
1474	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1475		struct ps_prochandle *P;
1476
1477		if ((P = dt_proc_grab(dtp, pid,
1478		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1479			GElf_Sym sym;
1480
1481			dt_proc_lock(dtp, P);
1482
1483			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1484				pc = sym.st_value;
1485
1486			dt_proc_unlock(dtp, P);
1487			dt_proc_release(dtp, P);
1488		}
1489	}
1490
1491	do {
1492		n = len;
1493		s = alloca(n);
1494	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1495
1496	return (dt_printf(dtp, fp, format, s));
1497}
1498
1499int
1500dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1501{
1502	/* LINTED - alignment */
1503	uint64_t pid = ((uint64_t *)addr)[0];
1504	/* LINTED - alignment */
1505	uint64_t pc = ((uint64_t *)addr)[1];
1506	int err = 0;
1507
1508	char objname[PATH_MAX], c[PATH_MAX * 2];
1509	struct ps_prochandle *P;
1510
1511	if (format == NULL)
1512		format = "  %-50s";
1513
1514	/*
1515	 * See the comment in dt_print_ustack() for the rationale for
1516	 * printing raw addresses in the vectored case.
1517	 */
1518	if (dtp->dt_vector == NULL)
1519		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1520	else
1521		P = NULL;
1522
1523	if (P != NULL)
1524		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1525
1526	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1527		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1528	} else {
1529		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1530	}
1531
1532	err = dt_printf(dtp, fp, format, c);
1533
1534	if (P != NULL) {
1535		dt_proc_unlock(dtp, P);
1536		dt_proc_release(dtp, P);
1537	}
1538
1539	return (err);
1540}
1541
1542int
1543dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1544{
1545	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1546	size_t nbytes = *((uintptr_t *) addr);
1547
1548	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1549	    nbytes, 50, quiet, 1));
1550}
1551
1552typedef struct dt_type_cbdata {
1553	dtrace_hdl_t		*dtp;
1554	dtrace_typeinfo_t	dtt;
1555	caddr_t			addr;
1556	caddr_t			addrend;
1557	const char		*name;
1558	int			f_type;
1559	int			indent;
1560	int			type_width;
1561	int			name_width;
1562	FILE			*fp;
1563} dt_type_cbdata_t;
1564
1565static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1566
1567static int
1568dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1569{
1570	dt_type_cbdata_t cbdata;
1571	dt_type_cbdata_t *cbdatap = arg;
1572	ssize_t ssz;
1573
1574	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1575		return (0);
1576
1577	off /= 8;
1578
1579	cbdata = *cbdatap;
1580	cbdata.name = name;
1581	cbdata.addr += off;
1582	cbdata.addrend = cbdata.addr + ssz;
1583
1584	return (dt_print_type_data(&cbdata, type));
1585}
1586
1587static int
1588dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1589{
1590	char buf[DT_TYPE_NAMELEN];
1591	char *p;
1592	dt_type_cbdata_t *cbdatap = arg;
1593	size_t sz = strlen(name);
1594
1595	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1596
1597	if ((p = strchr(buf, '[')) != NULL)
1598		p[-1] = '\0';
1599	else
1600		p = "";
1601
1602	sz += strlen(p);
1603
1604	if (sz > cbdatap->name_width)
1605		cbdatap->name_width = sz;
1606
1607	sz = strlen(buf);
1608
1609	if (sz > cbdatap->type_width)
1610		cbdatap->type_width = sz;
1611
1612	return (0);
1613}
1614
1615static int
1616dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1617{
1618	caddr_t addr = cbdatap->addr;
1619	caddr_t addrend = cbdatap->addrend;
1620	char buf[DT_TYPE_NAMELEN];
1621	char *p;
1622	int cnt = 0;
1623	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1624	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1625
1626	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1627
1628	if ((p = strchr(buf, '[')) != NULL)
1629		p[-1] = '\0';
1630	else
1631		p = "";
1632
1633	if (cbdatap->f_type) {
1634		int type_width = roundup(cbdatap->type_width + 1, 4);
1635		int name_width = roundup(cbdatap->name_width + 1, 4);
1636
1637		name_width -= strlen(cbdatap->name);
1638
1639		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1640	}
1641
1642	while (addr < addrend) {
1643		dt_type_cbdata_t cbdata;
1644		ctf_arinfo_t arinfo;
1645		ctf_encoding_t cte;
1646		uintptr_t *up;
1647		void *vp = addr;
1648		cbdata = *cbdatap;
1649		cbdata.name = "";
1650		cbdata.addr = addr;
1651		cbdata.addrend = addr + ssz;
1652		cbdata.f_type = 0;
1653		cbdata.indent++;
1654		cbdata.type_width = 0;
1655		cbdata.name_width = 0;
1656
1657		if (cnt > 0)
1658			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1659
1660		switch (kind) {
1661		case CTF_K_INTEGER:
1662			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1663				return (-1);
1664			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1665				switch (cte.cte_bits) {
1666				case 8:
1667					if (isprint(*((char *) vp)))
1668						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1669					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1670					break;
1671				case 16:
1672					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1673					break;
1674				case 32:
1675					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1676					break;
1677				case 64:
1678					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1679					break;
1680				default:
1681					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1682					break;
1683				}
1684			else
1685				switch (cte.cte_bits) {
1686				case 8:
1687					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1688					break;
1689				case 16:
1690					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1691					break;
1692				case 32:
1693					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1694					break;
1695				case 64:
1696					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1697					break;
1698				default:
1699					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1700					break;
1701				}
1702			break;
1703		case CTF_K_FLOAT:
1704			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1705			break;
1706		case CTF_K_POINTER:
1707			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1708			break;
1709		case CTF_K_ARRAY:
1710			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1711				return (-1);
1712			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1713			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1714			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1715			break;
1716		case CTF_K_FUNCTION:
1717			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1718			break;
1719		case CTF_K_STRUCT:
1720			cbdata.f_type = 1;
1721			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1722			    dt_print_type_width, &cbdata) != 0)
1723				return (-1);
1724			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1725			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1726			    dt_print_type_member, &cbdata) != 0)
1727				return (-1);
1728			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1729			break;
1730		case CTF_K_UNION:
1731			cbdata.f_type = 1;
1732			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1733			    dt_print_type_width, &cbdata) != 0)
1734				return (-1);
1735			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1736			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1737			    dt_print_type_member, &cbdata) != 0)
1738				return (-1);
1739			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1740			break;
1741		case CTF_K_ENUM:
1742			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1743			break;
1744		case CTF_K_TYPEDEF:
1745			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1746			break;
1747		case CTF_K_VOLATILE:
1748			if (cbdatap->f_type)
1749				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1750			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1751			break;
1752		case CTF_K_CONST:
1753			if (cbdatap->f_type)
1754				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1755			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1756			break;
1757		case CTF_K_RESTRICT:
1758			if (cbdatap->f_type)
1759				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1760			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1761			break;
1762		default:
1763			break;
1764		}
1765
1766		addr += ssz;
1767		cnt++;
1768	}
1769
1770	return (0);
1771}
1772
1773static int
1774dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1775{
1776	caddr_t addrend;
1777	char *p;
1778	dtrace_typeinfo_t dtt;
1779	dt_type_cbdata_t cbdata;
1780	int num = 0;
1781	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1782	ssize_t ssz;
1783
1784	if (!quiet)
1785		dt_printf(dtp, fp, "\n");
1786
1787	/* Get the total number of bytes of data buffered. */
1788	size_t nbytes = *((uintptr_t *) addr);
1789	addr += sizeof(uintptr_t);
1790
1791	/*
1792	 * Get the size of the type so that we can check that it matches
1793	 * the CTF data we look up and so that we can figure out how many
1794	 * type elements are buffered.
1795	 */
1796	size_t typs = *((uintptr_t *) addr);
1797	addr += sizeof(uintptr_t);
1798
1799	/*
1800	 * Point to the type string in the buffer. Get it's string
1801	 * length and round it up to become the offset to the start
1802	 * of the buffered type data which we would like to be aligned
1803	 * for easy access.
1804	 */
1805	char *strp = (char *) addr;
1806	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1807
1808	/*
1809	 * The type string might have a format such as 'int [20]'.
1810	 * Check if there is an array dimension present.
1811	 */
1812	if ((p = strchr(strp, '[')) != NULL) {
1813		/* Strip off the array dimension. */
1814		*p++ = '\0';
1815
1816		for (; *p != '\0' && *p != ']'; p++)
1817			num = num * 10 + *p - '0';
1818	} else
1819		/* No array dimension, so default. */
1820		num = 1;
1821
1822	/* Lookup the CTF type from the type string. */
1823	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1824		return (-1);
1825
1826	/* Offset the buffer address to the start of the data... */
1827	addr += offset;
1828
1829	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1830
1831	if (typs != ssz) {
1832		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1833		return (-1);
1834	}
1835
1836	cbdata.dtp = dtp;
1837	cbdata.dtt = dtt;
1838	cbdata.name = "";
1839	cbdata.addr = addr;
1840	cbdata.addrend = addr + nbytes;
1841	cbdata.indent = 1;
1842	cbdata.f_type = 1;
1843	cbdata.type_width = 0;
1844	cbdata.name_width = 0;
1845	cbdata.fp = fp;
1846
1847	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1848}
1849
1850static int
1851dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1852{
1853	/* LINTED - alignment */
1854	uint64_t pc = *((uint64_t *)addr);
1855	dtrace_syminfo_t dts;
1856	GElf_Sym sym;
1857	char c[PATH_MAX * 2];
1858
1859	if (format == NULL)
1860		format = "  %-50s";
1861
1862	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1863		(void) snprintf(c, sizeof (c), "%s`%s",
1864		    dts.dts_object, dts.dts_name);
1865	} else {
1866		/*
1867		 * We'll repeat the lookup, but this time we'll specify a
1868		 * NULL GElf_Sym -- indicating that we're only interested in
1869		 * the containing module.
1870		 */
1871		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1872			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1873			    dts.dts_object, (u_longlong_t)pc);
1874		} else {
1875			(void) snprintf(c, sizeof (c), "0x%llx",
1876			    (u_longlong_t)pc);
1877		}
1878	}
1879
1880	if (dt_printf(dtp, fp, format, c) < 0)
1881		return (-1);
1882
1883	return (0);
1884}
1885
1886int
1887dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1888{
1889	/* LINTED - alignment */
1890	uint64_t pc = *((uint64_t *)addr);
1891	dtrace_syminfo_t dts;
1892	char c[PATH_MAX * 2];
1893
1894	if (format == NULL)
1895		format = "  %-50s";
1896
1897	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1898		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1899	} else {
1900		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1901	}
1902
1903	if (dt_printf(dtp, fp, format, c) < 0)
1904		return (-1);
1905
1906	return (0);
1907}
1908
1909typedef struct dt_normal {
1910	dtrace_aggvarid_t dtnd_id;
1911	uint64_t dtnd_normal;
1912} dt_normal_t;
1913
1914static int
1915dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1916{
1917	dt_normal_t *normal = arg;
1918	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1919	dtrace_aggvarid_t id = normal->dtnd_id;
1920
1921	if (agg->dtagd_nrecs == 0)
1922		return (DTRACE_AGGWALK_NEXT);
1923
1924	if (agg->dtagd_varid != id)
1925		return (DTRACE_AGGWALK_NEXT);
1926
1927	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1928	return (DTRACE_AGGWALK_NORMALIZE);
1929}
1930
1931static int
1932dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1933{
1934	dt_normal_t normal;
1935	caddr_t addr;
1936
1937	/*
1938	 * We (should) have two records:  the aggregation ID followed by the
1939	 * normalization value.
1940	 */
1941	addr = base + rec->dtrd_offset;
1942
1943	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1944		return (dt_set_errno(dtp, EDT_BADNORMAL));
1945
1946	/* LINTED - alignment */
1947	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1948	rec++;
1949
1950	if (rec->dtrd_action != DTRACEACT_LIBACT)
1951		return (dt_set_errno(dtp, EDT_BADNORMAL));
1952
1953	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1954		return (dt_set_errno(dtp, EDT_BADNORMAL));
1955
1956	addr = base + rec->dtrd_offset;
1957
1958	switch (rec->dtrd_size) {
1959	case sizeof (uint64_t):
1960		/* LINTED - alignment */
1961		normal.dtnd_normal = *((uint64_t *)addr);
1962		break;
1963	case sizeof (uint32_t):
1964		/* LINTED - alignment */
1965		normal.dtnd_normal = *((uint32_t *)addr);
1966		break;
1967	case sizeof (uint16_t):
1968		/* LINTED - alignment */
1969		normal.dtnd_normal = *((uint16_t *)addr);
1970		break;
1971	case sizeof (uint8_t):
1972		normal.dtnd_normal = *((uint8_t *)addr);
1973		break;
1974	default:
1975		return (dt_set_errno(dtp, EDT_BADNORMAL));
1976	}
1977
1978	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1979
1980	return (0);
1981}
1982
1983static int
1984dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1985{
1986	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1987	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1988
1989	if (agg->dtagd_nrecs == 0)
1990		return (DTRACE_AGGWALK_NEXT);
1991
1992	if (agg->dtagd_varid != id)
1993		return (DTRACE_AGGWALK_NEXT);
1994
1995	return (DTRACE_AGGWALK_DENORMALIZE);
1996}
1997
1998static int
1999dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
2000{
2001	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2002	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
2003
2004	if (agg->dtagd_nrecs == 0)
2005		return (DTRACE_AGGWALK_NEXT);
2006
2007	if (agg->dtagd_varid != id)
2008		return (DTRACE_AGGWALK_NEXT);
2009
2010	return (DTRACE_AGGWALK_CLEAR);
2011}
2012
2013typedef struct dt_trunc {
2014	dtrace_aggvarid_t dttd_id;
2015	uint64_t dttd_remaining;
2016} dt_trunc_t;
2017
2018static int
2019dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
2020{
2021	dt_trunc_t *trunc = arg;
2022	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2023	dtrace_aggvarid_t id = trunc->dttd_id;
2024
2025	if (agg->dtagd_nrecs == 0)
2026		return (DTRACE_AGGWALK_NEXT);
2027
2028	if (agg->dtagd_varid != id)
2029		return (DTRACE_AGGWALK_NEXT);
2030
2031	if (trunc->dttd_remaining == 0)
2032		return (DTRACE_AGGWALK_REMOVE);
2033
2034	trunc->dttd_remaining--;
2035	return (DTRACE_AGGWALK_NEXT);
2036}
2037
2038static int
2039dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
2040{
2041	dt_trunc_t trunc;
2042	caddr_t addr;
2043	int64_t remaining;
2044	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
2045
2046	/*
2047	 * We (should) have two records:  the aggregation ID followed by the
2048	 * number of aggregation entries after which the aggregation is to be
2049	 * truncated.
2050	 */
2051	addr = base + rec->dtrd_offset;
2052
2053	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
2054		return (dt_set_errno(dtp, EDT_BADTRUNC));
2055
2056	/* LINTED - alignment */
2057	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
2058	rec++;
2059
2060	if (rec->dtrd_action != DTRACEACT_LIBACT)
2061		return (dt_set_errno(dtp, EDT_BADTRUNC));
2062
2063	if (rec->dtrd_arg != DT_ACT_TRUNC)
2064		return (dt_set_errno(dtp, EDT_BADTRUNC));
2065
2066	addr = base + rec->dtrd_offset;
2067
2068	switch (rec->dtrd_size) {
2069	case sizeof (uint64_t):
2070		/* LINTED - alignment */
2071		remaining = *((int64_t *)addr);
2072		break;
2073	case sizeof (uint32_t):
2074		/* LINTED - alignment */
2075		remaining = *((int32_t *)addr);
2076		break;
2077	case sizeof (uint16_t):
2078		/* LINTED - alignment */
2079		remaining = *((int16_t *)addr);
2080		break;
2081	case sizeof (uint8_t):
2082		remaining = *((int8_t *)addr);
2083		break;
2084	default:
2085		return (dt_set_errno(dtp, EDT_BADNORMAL));
2086	}
2087
2088	if (remaining < 0) {
2089		func = dtrace_aggregate_walk_valsorted;
2090		remaining = -remaining;
2091	} else {
2092		func = dtrace_aggregate_walk_valrevsorted;
2093	}
2094
2095	assert(remaining >= 0);
2096	trunc.dttd_remaining = remaining;
2097
2098	(void) func(dtp, dt_trunc_agg, &trunc);
2099
2100	return (0);
2101}
2102
2103static int
2104dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
2105    caddr_t addr, size_t size, const dtrace_aggdata_t *aggdata,
2106    uint64_t normal, dt_print_aggdata_t *pd)
2107{
2108	int err, width;
2109	dtrace_actkind_t act = rec->dtrd_action;
2110	boolean_t packed = pd->dtpa_agghist || pd->dtpa_aggpack;
2111	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2112
2113	static struct {
2114		size_t size;
2115		int width;
2116		int packedwidth;
2117	} *fmt, fmttab[] = {
2118		{ sizeof (uint8_t),	3,	3 },
2119		{ sizeof (uint16_t),	5,	5 },
2120		{ sizeof (uint32_t),	8,	8 },
2121		{ sizeof (uint64_t),	16,	16 },
2122		{ 0,			-50,	16 }
2123	};
2124
2125	if (packed && pd->dtpa_agghisthdr != agg->dtagd_varid) {
2126		dtrace_recdesc_t *r;
2127
2128		width = 0;
2129
2130		/*
2131		 * To print our quantization header for either an agghist or
2132		 * aggpack aggregation, we need to iterate through all of our
2133		 * of our records to determine their width.
2134		 */
2135		for (r = rec; !DTRACEACT_ISAGG(r->dtrd_action); r++) {
2136			for (fmt = fmttab; fmt->size &&
2137			    fmt->size != r->dtrd_size; fmt++)
2138				continue;
2139
2140			width += fmt->packedwidth + 1;
2141		}
2142
2143		if (pd->dtpa_agghist) {
2144			if (dt_print_quanthdr(dtp, fp, width) < 0)
2145				return (-1);
2146		} else {
2147			if (dt_print_quanthdr_packed(dtp, fp,
2148			    width, aggdata, r->dtrd_action) < 0)
2149				return (-1);
2150		}
2151
2152		pd->dtpa_agghisthdr = agg->dtagd_varid;
2153	}
2154
2155	if (pd->dtpa_agghist && DTRACEACT_ISAGG(act)) {
2156		char positives = aggdata->dtada_flags & DTRACE_A_HASPOSITIVES;
2157		char negatives = aggdata->dtada_flags & DTRACE_A_HASNEGATIVES;
2158		int64_t val;
2159
2160		assert(act == DTRACEAGG_SUM || act == DTRACEAGG_COUNT);
2161		val = (long long)*((uint64_t *)addr);
2162
2163		if (dt_printf(dtp, fp, " ") < 0)
2164			return (-1);
2165
2166		return (dt_print_quantline(dtp, fp, val, normal,
2167		    aggdata->dtada_total, positives, negatives));
2168	}
2169
2170	if (pd->dtpa_aggpack && DTRACEACT_ISAGG(act)) {
2171		switch (act) {
2172		case DTRACEAGG_QUANTIZE:
2173			return (dt_print_quantize_packed(dtp,
2174			    fp, addr, size, aggdata));
2175		case DTRACEAGG_LQUANTIZE:
2176			return (dt_print_lquantize_packed(dtp,
2177			    fp, addr, size, aggdata));
2178		default:
2179			break;
2180		}
2181	}
2182
2183	switch (act) {
2184	case DTRACEACT_STACK:
2185		return (dt_print_stack(dtp, fp, NULL, addr,
2186		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
2187
2188	case DTRACEACT_USTACK:
2189	case DTRACEACT_JSTACK:
2190		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
2191
2192	case DTRACEACT_USYM:
2193	case DTRACEACT_UADDR:
2194		return (dt_print_usym(dtp, fp, addr, act));
2195
2196	case DTRACEACT_UMOD:
2197		return (dt_print_umod(dtp, fp, NULL, addr));
2198
2199	case DTRACEACT_SYM:
2200		return (dt_print_sym(dtp, fp, NULL, addr));
2201
2202	case DTRACEACT_MOD:
2203		return (dt_print_mod(dtp, fp, NULL, addr));
2204
2205	case DTRACEAGG_QUANTIZE:
2206		return (dt_print_quantize(dtp, fp, addr, size, normal));
2207
2208	case DTRACEAGG_LQUANTIZE:
2209		return (dt_print_lquantize(dtp, fp, addr, size, normal));
2210
2211	case DTRACEAGG_LLQUANTIZE:
2212		return (dt_print_llquantize(dtp, fp, addr, size, normal));
2213
2214	case DTRACEAGG_AVG:
2215		return (dt_print_average(dtp, fp, addr, size, normal));
2216
2217	case DTRACEAGG_STDDEV:
2218		return (dt_print_stddev(dtp, fp, addr, size, normal));
2219
2220	default:
2221		break;
2222	}
2223
2224	for (fmt = fmttab; fmt->size && fmt->size != size; fmt++)
2225		continue;
2226
2227	width = packed ? fmt->packedwidth : fmt->width;
2228
2229	switch (size) {
2230	case sizeof (uint64_t):
2231		err = dt_printf(dtp, fp, " %*lld", width,
2232		    /* LINTED - alignment */
2233		    (long long)*((uint64_t *)addr) / normal);
2234		break;
2235	case sizeof (uint32_t):
2236		/* LINTED - alignment */
2237		err = dt_printf(dtp, fp, " %*d", width, *((uint32_t *)addr) /
2238		    (uint32_t)normal);
2239		break;
2240	case sizeof (uint16_t):
2241		/* LINTED - alignment */
2242		err = dt_printf(dtp, fp, " %*d", width, *((uint16_t *)addr) /
2243		    (uint32_t)normal);
2244		break;
2245	case sizeof (uint8_t):
2246		err = dt_printf(dtp, fp, " %*d", width, *((uint8_t *)addr) /
2247		    (uint32_t)normal);
2248		break;
2249	default:
2250		err = dt_print_bytes(dtp, fp, addr, size, width, 0, 0);
2251		break;
2252	}
2253
2254	return (err);
2255}
2256
2257int
2258dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
2259{
2260	int i, aggact = 0;
2261	dt_print_aggdata_t *pd = arg;
2262	const dtrace_aggdata_t *aggdata = aggsdata[0];
2263	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2264	FILE *fp = pd->dtpa_fp;
2265	dtrace_hdl_t *dtp = pd->dtpa_dtp;
2266	dtrace_recdesc_t *rec;
2267	dtrace_actkind_t act;
2268	caddr_t addr;
2269	size_t size;
2270
2271	pd->dtpa_agghist = (aggdata->dtada_flags & DTRACE_A_TOTAL);
2272	pd->dtpa_aggpack = (aggdata->dtada_flags & DTRACE_A_MINMAXBIN);
2273
2274	/*
2275	 * Iterate over each record description in the key, printing the traced
2276	 * data, skipping the first datum (the tuple member created by the
2277	 * compiler).
2278	 */
2279	for (i = 1; i < agg->dtagd_nrecs; i++) {
2280		rec = &agg->dtagd_rec[i];
2281		act = rec->dtrd_action;
2282		addr = aggdata->dtada_data + rec->dtrd_offset;
2283		size = rec->dtrd_size;
2284
2285		if (DTRACEACT_ISAGG(act)) {
2286			aggact = i;
2287			break;
2288		}
2289
2290		if (dt_print_datum(dtp, fp, rec, addr,
2291		    size, aggdata, 1, pd) < 0)
2292			return (-1);
2293
2294		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2295		    DTRACE_BUFDATA_AGGKEY) < 0)
2296			return (-1);
2297	}
2298
2299	assert(aggact != 0);
2300
2301	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
2302		uint64_t normal;
2303
2304		aggdata = aggsdata[i];
2305		agg = aggdata->dtada_desc;
2306		rec = &agg->dtagd_rec[aggact];
2307		act = rec->dtrd_action;
2308		addr = aggdata->dtada_data + rec->dtrd_offset;
2309		size = rec->dtrd_size;
2310
2311		assert(DTRACEACT_ISAGG(act));
2312		normal = aggdata->dtada_normal;
2313
2314		if (dt_print_datum(dtp, fp, rec, addr,
2315		    size, aggdata, normal, pd) < 0)
2316			return (-1);
2317
2318		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2319		    DTRACE_BUFDATA_AGGVAL) < 0)
2320			return (-1);
2321
2322		if (!pd->dtpa_allunprint)
2323			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
2324	}
2325
2326	if (!pd->dtpa_agghist && !pd->dtpa_aggpack) {
2327		if (dt_printf(dtp, fp, "\n") < 0)
2328			return (-1);
2329	}
2330
2331	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
2332	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
2333		return (-1);
2334
2335	return (0);
2336}
2337
2338int
2339dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
2340{
2341	dt_print_aggdata_t *pd = arg;
2342	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2343	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
2344
2345	if (pd->dtpa_allunprint) {
2346		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
2347			return (0);
2348	} else {
2349		/*
2350		 * If we're not printing all unprinted aggregations, then the
2351		 * aggregation variable ID denotes a specific aggregation
2352		 * variable that we should print -- skip any other aggregations
2353		 * that we encounter.
2354		 */
2355		if (agg->dtagd_nrecs == 0)
2356			return (0);
2357
2358		if (aggvarid != agg->dtagd_varid)
2359			return (0);
2360	}
2361
2362	return (dt_print_aggs(&aggdata, 1, arg));
2363}
2364
2365int
2366dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
2367    const char *option, const char *value)
2368{
2369	int len, rval;
2370	char *msg;
2371	const char *errstr;
2372	dtrace_setoptdata_t optdata;
2373
2374	bzero(&optdata, sizeof (optdata));
2375	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
2376
2377	if (dtrace_setopt(dtp, option, value) == 0) {
2378		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
2379		optdata.dtsda_probe = data;
2380		optdata.dtsda_option = option;
2381		optdata.dtsda_handle = dtp;
2382
2383		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
2384			return (rval);
2385
2386		return (0);
2387	}
2388
2389	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
2390	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
2391	msg = alloca(len);
2392
2393	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2394	    option, value, errstr);
2395
2396	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2397		return (0);
2398
2399	return (rval);
2400}
2401
2402static int
2403dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
2404    dtrace_bufdesc_t *buf, boolean_t just_one,
2405    dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2406{
2407	dtrace_epid_t id;
2408	size_t offs;
2409	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2410	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2411	int rval, i, n;
2412	uint64_t tracememsize = 0;
2413	dtrace_probedata_t data;
2414	uint64_t drops;
2415
2416	bzero(&data, sizeof (data));
2417	data.dtpda_handle = dtp;
2418	data.dtpda_cpu = cpu;
2419	data.dtpda_flow = dtp->dt_flow;
2420	data.dtpda_indent = dtp->dt_indent;
2421	data.dtpda_prefix = dtp->dt_prefix;
2422
2423	for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
2424		dtrace_eprobedesc_t *epd;
2425
2426		/*
2427		 * We're guaranteed to have an ID.
2428		 */
2429		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2430
2431		if (id == DTRACE_EPIDNONE) {
2432			/*
2433			 * This is filler to assure proper alignment of the
2434			 * next record; we simply ignore it.
2435			 */
2436			offs += sizeof (id);
2437			continue;
2438		}
2439
2440		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2441		    &data.dtpda_pdesc)) != 0)
2442			return (rval);
2443
2444		epd = data.dtpda_edesc;
2445		data.dtpda_data = buf->dtbd_data + offs;
2446
2447		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2448			rval = dt_handle(dtp, &data);
2449
2450			if (rval == DTRACE_CONSUME_NEXT)
2451				goto nextepid;
2452
2453			if (rval == DTRACE_CONSUME_ERROR)
2454				return (-1);
2455		}
2456
2457		if (flow)
2458			(void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
2459			    buf, offs);
2460
2461		rval = (*efunc)(&data, arg);
2462
2463		if (flow) {
2464			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2465				data.dtpda_indent += 2;
2466		}
2467
2468		if (rval == DTRACE_CONSUME_NEXT)
2469			goto nextepid;
2470
2471		if (rval == DTRACE_CONSUME_ABORT)
2472			return (dt_set_errno(dtp, EDT_DIRABORT));
2473
2474		if (rval != DTRACE_CONSUME_THIS)
2475			return (dt_set_errno(dtp, EDT_BADRVAL));
2476
2477		for (i = 0; i < epd->dtepd_nrecs; i++) {
2478			caddr_t addr;
2479			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2480			dtrace_actkind_t act = rec->dtrd_action;
2481
2482			data.dtpda_data = buf->dtbd_data + offs +
2483			    rec->dtrd_offset;
2484			addr = data.dtpda_data;
2485
2486			if (act == DTRACEACT_LIBACT) {
2487				uint64_t arg = rec->dtrd_arg;
2488				dtrace_aggvarid_t id;
2489
2490				switch (arg) {
2491				case DT_ACT_CLEAR:
2492					/* LINTED - alignment */
2493					id = *((dtrace_aggvarid_t *)addr);
2494					(void) dtrace_aggregate_walk(dtp,
2495					    dt_clear_agg, &id);
2496					continue;
2497
2498				case DT_ACT_DENORMALIZE:
2499					/* LINTED - alignment */
2500					id = *((dtrace_aggvarid_t *)addr);
2501					(void) dtrace_aggregate_walk(dtp,
2502					    dt_denormalize_agg, &id);
2503					continue;
2504
2505				case DT_ACT_FTRUNCATE:
2506					if (fp == NULL)
2507						continue;
2508
2509					(void) fflush(fp);
2510					(void) ftruncate(fileno(fp), 0);
2511					(void) fseeko(fp, 0, SEEK_SET);
2512					continue;
2513
2514				case DT_ACT_NORMALIZE:
2515					if (i == epd->dtepd_nrecs - 1)
2516						return (dt_set_errno(dtp,
2517						    EDT_BADNORMAL));
2518
2519					if (dt_normalize(dtp,
2520					    buf->dtbd_data + offs, rec) != 0)
2521						return (-1);
2522
2523					i++;
2524					continue;
2525
2526				case DT_ACT_SETOPT: {
2527					uint64_t *opts = dtp->dt_options;
2528					dtrace_recdesc_t *valrec;
2529					uint32_t valsize;
2530					caddr_t val;
2531					int rv;
2532
2533					if (i == epd->dtepd_nrecs - 1) {
2534						return (dt_set_errno(dtp,
2535						    EDT_BADSETOPT));
2536					}
2537
2538					valrec = &epd->dtepd_rec[++i];
2539					valsize = valrec->dtrd_size;
2540
2541					if (valrec->dtrd_action != act ||
2542					    valrec->dtrd_arg != arg) {
2543						return (dt_set_errno(dtp,
2544						    EDT_BADSETOPT));
2545					}
2546
2547					if (valsize > sizeof (uint64_t)) {
2548						val = buf->dtbd_data + offs +
2549						    valrec->dtrd_offset;
2550					} else {
2551						val = "1";
2552					}
2553
2554					rv = dt_setopt(dtp, &data, addr, val);
2555
2556					if (rv != 0)
2557						return (-1);
2558
2559					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2560					    DTRACEOPT_UNSET);
2561					quiet = (opts[DTRACEOPT_QUIET] !=
2562					    DTRACEOPT_UNSET);
2563
2564					continue;
2565				}
2566
2567				case DT_ACT_TRUNC:
2568					if (i == epd->dtepd_nrecs - 1)
2569						return (dt_set_errno(dtp,
2570						    EDT_BADTRUNC));
2571
2572					if (dt_trunc(dtp,
2573					    buf->dtbd_data + offs, rec) != 0)
2574						return (-1);
2575
2576					i++;
2577					continue;
2578
2579				default:
2580					continue;
2581				}
2582			}
2583
2584			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2585			    rec->dtrd_size == sizeof (uint64_t)) {
2586			    	/* LINTED - alignment */
2587				tracememsize = *((unsigned long long *)addr);
2588				continue;
2589			}
2590
2591			rval = (*rfunc)(&data, rec, arg);
2592
2593			if (rval == DTRACE_CONSUME_NEXT)
2594				continue;
2595
2596			if (rval == DTRACE_CONSUME_ABORT)
2597				return (dt_set_errno(dtp, EDT_DIRABORT));
2598
2599			if (rval != DTRACE_CONSUME_THIS)
2600				return (dt_set_errno(dtp, EDT_BADRVAL));
2601
2602			if (act == DTRACEACT_STACK) {
2603				int depth = rec->dtrd_arg;
2604
2605				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2606				    rec->dtrd_size / depth) < 0)
2607					return (-1);
2608				goto nextrec;
2609			}
2610
2611			if (act == DTRACEACT_USTACK ||
2612			    act == DTRACEACT_JSTACK) {
2613				if (dt_print_ustack(dtp, fp, NULL,
2614				    addr, rec->dtrd_arg) < 0)
2615					return (-1);
2616				goto nextrec;
2617			}
2618
2619			if (act == DTRACEACT_SYM) {
2620				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2621					return (-1);
2622				goto nextrec;
2623			}
2624
2625			if (act == DTRACEACT_MOD) {
2626				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2627					return (-1);
2628				goto nextrec;
2629			}
2630
2631			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2632				if (dt_print_usym(dtp, fp, addr, act) < 0)
2633					return (-1);
2634				goto nextrec;
2635			}
2636
2637			if (act == DTRACEACT_UMOD) {
2638				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2639					return (-1);
2640				goto nextrec;
2641			}
2642
2643			if (act == DTRACEACT_PRINTM) {
2644				if (dt_print_memory(dtp, fp, addr) < 0)
2645					return (-1);
2646				goto nextrec;
2647			}
2648
2649			if (act == DTRACEACT_PRINTT) {
2650				if (dt_print_type(dtp, fp, addr) < 0)
2651					return (-1);
2652				goto nextrec;
2653			}
2654
2655			if (DTRACEACT_ISPRINTFLIKE(act)) {
2656				void *fmtdata;
2657				int (*func)(dtrace_hdl_t *, FILE *, void *,
2658				    const dtrace_probedata_t *,
2659				    const dtrace_recdesc_t *, uint_t,
2660				    const void *buf, size_t);
2661
2662				if ((fmtdata = dt_format_lookup(dtp,
2663				    rec->dtrd_format)) == NULL)
2664					goto nofmt;
2665
2666				switch (act) {
2667				case DTRACEACT_PRINTF:
2668					func = dtrace_fprintf;
2669					break;
2670				case DTRACEACT_PRINTA:
2671					func = dtrace_fprinta;
2672					break;
2673				case DTRACEACT_SYSTEM:
2674					func = dtrace_system;
2675					break;
2676				case DTRACEACT_FREOPEN:
2677					func = dtrace_freopen;
2678					break;
2679				}
2680
2681				n = (*func)(dtp, fp, fmtdata, &data,
2682				    rec, epd->dtepd_nrecs - i,
2683				    (uchar_t *)buf->dtbd_data + offs,
2684				    buf->dtbd_size - offs);
2685
2686				if (n < 0)
2687					return (-1); /* errno is set for us */
2688
2689				if (n > 0)
2690					i += n - 1;
2691				goto nextrec;
2692			}
2693
2694			/*
2695			 * If this is a DIF expression, and the record has a
2696			 * format set, this indicates we have a CTF type name
2697			 * associated with the data and we should try to print
2698			 * it out by type.
2699			 */
2700			if (act == DTRACEACT_DIFEXPR) {
2701				const char *strdata = dt_strdata_lookup(dtp,
2702				    rec->dtrd_format);
2703				if (strdata != NULL) {
2704					n = dtrace_print(dtp, fp, strdata,
2705					    addr, rec->dtrd_size);
2706
2707					/*
2708					 * dtrace_print() will return -1 on
2709					 * error, or return the number of bytes
2710					 * consumed.  It will return 0 if the
2711					 * type couldn't be determined, and we
2712					 * should fall through to the normal
2713					 * trace method.
2714					 */
2715					if (n < 0)
2716						return (-1);
2717
2718					if (n > 0)
2719						goto nextrec;
2720				}
2721			}
2722
2723nofmt:
2724			if (act == DTRACEACT_PRINTA) {
2725				dt_print_aggdata_t pd;
2726				dtrace_aggvarid_t *aggvars;
2727				int j, naggvars = 0;
2728				size_t size = ((epd->dtepd_nrecs - i) *
2729				    sizeof (dtrace_aggvarid_t));
2730
2731				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2732					return (-1);
2733
2734				/*
2735				 * This might be a printa() with multiple
2736				 * aggregation variables.  We need to scan
2737				 * forward through the records until we find
2738				 * a record from a different statement.
2739				 */
2740				for (j = i; j < epd->dtepd_nrecs; j++) {
2741					dtrace_recdesc_t *nrec;
2742					caddr_t naddr;
2743
2744					nrec = &epd->dtepd_rec[j];
2745
2746					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2747						break;
2748
2749					if (nrec->dtrd_action != act) {
2750						return (dt_set_errno(dtp,
2751						    EDT_BADAGG));
2752					}
2753
2754					naddr = buf->dtbd_data + offs +
2755					    nrec->dtrd_offset;
2756
2757					aggvars[naggvars++] =
2758					    /* LINTED - alignment */
2759					    *((dtrace_aggvarid_t *)naddr);
2760				}
2761
2762				i = j - 1;
2763				bzero(&pd, sizeof (pd));
2764				pd.dtpa_dtp = dtp;
2765				pd.dtpa_fp = fp;
2766
2767				assert(naggvars >= 1);
2768
2769				if (naggvars == 1) {
2770					pd.dtpa_id = aggvars[0];
2771					dt_free(dtp, aggvars);
2772
2773					if (dt_printf(dtp, fp, "\n") < 0 ||
2774					    dtrace_aggregate_walk_sorted(dtp,
2775					    dt_print_agg, &pd) < 0)
2776						return (-1);
2777					goto nextrec;
2778				}
2779
2780				if (dt_printf(dtp, fp, "\n") < 0 ||
2781				    dtrace_aggregate_walk_joined(dtp, aggvars,
2782				    naggvars, dt_print_aggs, &pd) < 0) {
2783					dt_free(dtp, aggvars);
2784					return (-1);
2785				}
2786
2787				dt_free(dtp, aggvars);
2788				goto nextrec;
2789			}
2790
2791			if (act == DTRACEACT_TRACEMEM) {
2792				if (tracememsize == 0 ||
2793				    tracememsize > rec->dtrd_size) {
2794					tracememsize = rec->dtrd_size;
2795				}
2796
2797				n = dt_print_bytes(dtp, fp, addr,
2798				    tracememsize, -33, quiet, 1);
2799
2800				tracememsize = 0;
2801
2802				if (n < 0)
2803					return (-1);
2804
2805				goto nextrec;
2806			}
2807
2808			switch (rec->dtrd_size) {
2809			case sizeof (uint64_t):
2810				n = dt_printf(dtp, fp,
2811				    quiet ? "%lld" : " %16lld",
2812				    /* LINTED - alignment */
2813				    *((unsigned long long *)addr));
2814				break;
2815			case sizeof (uint32_t):
2816				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2817				    /* LINTED - alignment */
2818				    *((uint32_t *)addr));
2819				break;
2820			case sizeof (uint16_t):
2821				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2822				    /* LINTED - alignment */
2823				    *((uint16_t *)addr));
2824				break;
2825			case sizeof (uint8_t):
2826				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2827				    *((uint8_t *)addr));
2828				break;
2829			default:
2830				n = dt_print_bytes(dtp, fp, addr,
2831				    rec->dtrd_size, -33, quiet, 0);
2832				break;
2833			}
2834
2835			if (n < 0)
2836				return (-1); /* errno is set for us */
2837
2838nextrec:
2839			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2840				return (-1); /* errno is set for us */
2841		}
2842
2843		/*
2844		 * Call the record callback with a NULL record to indicate
2845		 * that we're done processing this EPID.
2846		 */
2847		rval = (*rfunc)(&data, NULL, arg);
2848nextepid:
2849		offs += epd->dtepd_size;
2850		dtp->dt_last_epid = id;
2851		if (just_one) {
2852			buf->dtbd_oldest = offs;
2853			break;
2854		}
2855	}
2856
2857	dtp->dt_flow = data.dtpda_flow;
2858	dtp->dt_indent = data.dtpda_indent;
2859	dtp->dt_prefix = data.dtpda_prefix;
2860
2861	if ((drops = buf->dtbd_drops) == 0)
2862		return (0);
2863
2864	/*
2865	 * Explicitly zero the drops to prevent us from processing them again.
2866	 */
2867	buf->dtbd_drops = 0;
2868
2869	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2870}
2871
2872/*
2873 * Reduce memory usage by shrinking the buffer if it's no more than half full.
2874 * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2875 * only 4-byte aligned.
2876 */
2877static void
2878dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2879{
2880	uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2881	if (used < cursize / 2) {
2882		int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2883		char *newdata = dt_alloc(dtp, used + misalign);
2884		if (newdata == NULL)
2885			return;
2886		bzero(newdata, misalign);
2887		bcopy(buf->dtbd_data + buf->dtbd_oldest,
2888		    newdata + misalign, used);
2889		dt_free(dtp, buf->dtbd_data);
2890		buf->dtbd_oldest = misalign;
2891		buf->dtbd_size = used + misalign;
2892		buf->dtbd_data = newdata;
2893	}
2894}
2895
2896/*
2897 * If the ring buffer has wrapped, the data is not in order.  Rearrange it
2898 * so that it is.  Note, we need to preserve the alignment of the data at
2899 * dtbd_oldest, which is only 4-byte aligned.
2900 */
2901static int
2902dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2903{
2904	int misalign;
2905	char *newdata, *ndp;
2906
2907	if (buf->dtbd_oldest == 0)
2908		return (0);
2909
2910	misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2911	newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2912
2913	if (newdata == NULL)
2914		return (-1);
2915
2916	assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2917
2918	bzero(ndp, misalign);
2919	ndp += misalign;
2920
2921	bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2922	    buf->dtbd_size - buf->dtbd_oldest);
2923	ndp += buf->dtbd_size - buf->dtbd_oldest;
2924
2925	bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2926
2927	dt_free(dtp, buf->dtbd_data);
2928	buf->dtbd_oldest = 0;
2929	buf->dtbd_data = newdata;
2930	buf->dtbd_size += misalign;
2931
2932	return (0);
2933}
2934
2935static void
2936dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2937{
2938	dt_free(dtp, buf->dtbd_data);
2939	dt_free(dtp, buf);
2940}
2941
2942/*
2943 * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2944 * data, or NULL if there is no data for this CPU.
2945 * Returns -1 on failure and sets dt_errno.
2946 */
2947static int
2948dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2949{
2950	dtrace_optval_t size;
2951	dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2952	int error, rval;
2953
2954	if (buf == NULL)
2955		return (-1);
2956
2957	(void) dtrace_getopt(dtp, "bufsize", &size);
2958	buf->dtbd_data = dt_alloc(dtp, size);
2959	if (buf->dtbd_data == NULL) {
2960		dt_free(dtp, buf);
2961		return (-1);
2962	}
2963	buf->dtbd_size = size;
2964	buf->dtbd_cpu = cpu;
2965
2966#ifdef illumos
2967	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2968#else
2969	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2970#endif
2971		/*
2972		 * If we failed with ENOENT, it may be because the
2973		 * CPU was unconfigured -- this is okay.  Any other
2974		 * error, however, is unexpected.
2975		 */
2976		if (errno == ENOENT) {
2977			*bufp = NULL;
2978			rval = 0;
2979		} else
2980			rval = dt_set_errno(dtp, errno);
2981
2982		dt_put_buf(dtp, buf);
2983		return (rval);
2984	}
2985
2986	error = dt_unring_buf(dtp, buf);
2987	if (error != 0) {
2988		dt_put_buf(dtp, buf);
2989		return (error);
2990	}
2991	dt_realloc_buf(dtp, buf, size);
2992
2993	*bufp = buf;
2994	return (0);
2995}
2996
2997typedef struct dt_begin {
2998	dtrace_consume_probe_f *dtbgn_probefunc;
2999	dtrace_consume_rec_f *dtbgn_recfunc;
3000	void *dtbgn_arg;
3001	dtrace_handle_err_f *dtbgn_errhdlr;
3002	void *dtbgn_errarg;
3003	int dtbgn_beginonly;
3004} dt_begin_t;
3005
3006static int
3007dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
3008{
3009	dt_begin_t *begin = arg;
3010	dtrace_probedesc_t *pd = data->dtpda_pdesc;
3011
3012	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
3013	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
3014
3015	if (begin->dtbgn_beginonly) {
3016		if (!(r1 && r2))
3017			return (DTRACE_CONSUME_NEXT);
3018	} else {
3019		if (r1 && r2)
3020			return (DTRACE_CONSUME_NEXT);
3021	}
3022
3023	/*
3024	 * We have a record that we're interested in.  Now call the underlying
3025	 * probe function...
3026	 */
3027	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
3028}
3029
3030static int
3031dt_consume_begin_record(const dtrace_probedata_t *data,
3032    const dtrace_recdesc_t *rec, void *arg)
3033{
3034	dt_begin_t *begin = arg;
3035
3036	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
3037}
3038
3039static int
3040dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
3041{
3042	dt_begin_t *begin = (dt_begin_t *)arg;
3043	dtrace_probedesc_t *pd = data->dteda_pdesc;
3044
3045	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
3046	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
3047
3048	if (begin->dtbgn_beginonly) {
3049		if (!(r1 && r2))
3050			return (DTRACE_HANDLE_OK);
3051	} else {
3052		if (r1 && r2)
3053			return (DTRACE_HANDLE_OK);
3054	}
3055
3056	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
3057}
3058
3059static int
3060dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
3061    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
3062{
3063	/*
3064	 * There's this idea that the BEGIN probe should be processed before
3065	 * everything else, and that the END probe should be processed after
3066	 * anything else.  In the common case, this is pretty easy to deal
3067	 * with.  However, a situation may arise where the BEGIN enabling and
3068	 * END enabling are on the same CPU, and some enabling in the middle
3069	 * occurred on a different CPU.  To deal with this (blech!) we need to
3070	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
3071	 * then set it aside.  We will then process every other CPU, and then
3072	 * we'll return to the BEGIN CPU and process the rest of the data
3073	 * (which will inevitably include the END probe, if any).  Making this
3074	 * even more complicated (!) is the library's ERROR enabling.  Because
3075	 * this enabling is processed before we even get into the consume call
3076	 * back, any ERROR firing would result in the library's ERROR enabling
3077	 * being processed twice -- once in our first pass (for BEGIN probes),
3078	 * and again in our second pass (for everything but BEGIN probes).  To
3079	 * deal with this, we interpose on the ERROR handler to assure that we
3080	 * only process ERROR enablings induced by BEGIN enablings in the
3081	 * first pass, and that we only process ERROR enablings _not_ induced
3082	 * by BEGIN enablings in the second pass.
3083	 */
3084
3085	dt_begin_t begin;
3086	processorid_t cpu = dtp->dt_beganon;
3087	int rval, i;
3088	static int max_ncpus;
3089	dtrace_bufdesc_t *buf;
3090
3091	dtp->dt_beganon = -1;
3092
3093	if (dt_get_buf(dtp, cpu, &buf) != 0)
3094		return (-1);
3095	if (buf == NULL)
3096		return (0);
3097
3098	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
3099		/*
3100		 * This is the simple case.  We're either not stopped, or if
3101		 * we are, we actually processed any END probes on another
3102		 * CPU.  We can simply consume this buffer and return.
3103		 */
3104		rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3105		    pf, rf, arg);
3106		dt_put_buf(dtp, buf);
3107		return (rval);
3108	}
3109
3110	begin.dtbgn_probefunc = pf;
3111	begin.dtbgn_recfunc = rf;
3112	begin.dtbgn_arg = arg;
3113	begin.dtbgn_beginonly = 1;
3114
3115	/*
3116	 * We need to interpose on the ERROR handler to be sure that we
3117	 * only process ERRORs induced by BEGIN.
3118	 */
3119	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
3120	begin.dtbgn_errarg = dtp->dt_errarg;
3121	dtp->dt_errhdlr = dt_consume_begin_error;
3122	dtp->dt_errarg = &begin;
3123
3124	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3125	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
3126
3127	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
3128	dtp->dt_errarg = begin.dtbgn_errarg;
3129
3130	if (rval != 0) {
3131		dt_put_buf(dtp, buf);
3132		return (rval);
3133	}
3134
3135	if (max_ncpus == 0)
3136		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
3137
3138	for (i = 0; i < max_ncpus; i++) {
3139		dtrace_bufdesc_t *nbuf;
3140		if (i == cpu)
3141			continue;
3142
3143		if (dt_get_buf(dtp, i, &nbuf) != 0) {
3144			dt_put_buf(dtp, buf);
3145			return (-1);
3146		}
3147		if (nbuf == NULL)
3148			continue;
3149
3150		rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
3151		    pf, rf, arg);
3152		dt_put_buf(dtp, nbuf);
3153		if (rval != 0) {
3154			dt_put_buf(dtp, buf);
3155			return (rval);
3156		}
3157	}
3158
3159	/*
3160	 * Okay -- we're done with the other buffers.  Now we want to
3161	 * reconsume the first buffer -- but this time we're looking for
3162	 * everything _but_ BEGIN.  And of course, in order to only consume
3163	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
3164	 * ERROR interposition function...
3165	 */
3166	begin.dtbgn_beginonly = 0;
3167
3168	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
3169	assert(begin.dtbgn_errarg == dtp->dt_errarg);
3170	dtp->dt_errhdlr = dt_consume_begin_error;
3171	dtp->dt_errarg = &begin;
3172
3173	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3174	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
3175
3176	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
3177	dtp->dt_errarg = begin.dtbgn_errarg;
3178
3179	return (rval);
3180}
3181
3182/* ARGSUSED */
3183static uint64_t
3184dt_buf_oldest(void *elem, void *arg)
3185{
3186	dtrace_bufdesc_t *buf = elem;
3187	size_t offs = buf->dtbd_oldest;
3188
3189	while (offs < buf->dtbd_size) {
3190		dtrace_rechdr_t *dtrh =
3191		    /* LINTED - alignment */
3192		    (dtrace_rechdr_t *)(buf->dtbd_data + offs);
3193		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
3194			offs += sizeof (dtrace_epid_t);
3195		} else {
3196			return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
3197		}
3198	}
3199
3200	/* There are no records left; use the time the buffer was retrieved. */
3201	return (buf->dtbd_timestamp);
3202}
3203
3204int
3205dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
3206    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
3207{
3208	dtrace_optval_t size;
3209	static int max_ncpus;
3210	int i, rval;
3211	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
3212	hrtime_t now = gethrtime();
3213
3214	if (dtp->dt_lastswitch != 0) {
3215		if (now - dtp->dt_lastswitch < interval)
3216			return (0);
3217
3218		dtp->dt_lastswitch += interval;
3219	} else {
3220		dtp->dt_lastswitch = now;
3221	}
3222
3223	if (!dtp->dt_active)
3224		return (dt_set_errno(dtp, EINVAL));
3225
3226	if (max_ncpus == 0)
3227		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
3228
3229	if (pf == NULL)
3230		pf = (dtrace_consume_probe_f *)dt_nullprobe;
3231
3232	if (rf == NULL)
3233		rf = (dtrace_consume_rec_f *)dt_nullrec;
3234
3235	if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
3236		/*
3237		 * The output will not be in the order it was traced.  Rather,
3238		 * we will consume all of the data from each CPU's buffer in
3239		 * turn.  We apply special handling for the records from BEGIN
3240		 * and END probes so that they are consumed first and last,
3241		 * respectively.
3242		 *
3243		 * If we have just begun, we want to first process the CPU that
3244		 * executed the BEGIN probe (if any).
3245		 */
3246		if (dtp->dt_active && dtp->dt_beganon != -1 &&
3247		    (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
3248			return (rval);
3249
3250		for (i = 0; i < max_ncpus; i++) {
3251			dtrace_bufdesc_t *buf;
3252
3253			/*
3254			 * If we have stopped, we want to process the CPU on
3255			 * which the END probe was processed only _after_ we
3256			 * have processed everything else.
3257			 */
3258			if (dtp->dt_stopped && (i == dtp->dt_endedon))
3259				continue;
3260
3261			if (dt_get_buf(dtp, i, &buf) != 0)
3262				return (-1);
3263			if (buf == NULL)
3264				continue;
3265
3266			dtp->dt_flow = 0;
3267			dtp->dt_indent = 0;
3268			dtp->dt_prefix = NULL;
3269			rval = dt_consume_cpu(dtp, fp, i,
3270			    buf, B_FALSE, pf, rf, arg);
3271			dt_put_buf(dtp, buf);
3272			if (rval != 0)
3273				return (rval);
3274		}
3275		if (dtp->dt_stopped) {
3276			dtrace_bufdesc_t *buf;
3277
3278			if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
3279				return (-1);
3280			if (buf == NULL)
3281				return (0);
3282
3283			rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
3284			    buf, B_FALSE, pf, rf, arg);
3285			dt_put_buf(dtp, buf);
3286			return (rval);
3287		}
3288	} else {
3289		/*
3290		 * The output will be in the order it was traced (or for
3291		 * speculations, when it was committed).  We retrieve a buffer
3292		 * from each CPU and put it into a priority queue, which sorts
3293		 * based on the first entry in the buffer.  This is sufficient
3294		 * because entries within a buffer are already sorted.
3295		 *
3296		 * We then consume records one at a time, always consuming the
3297		 * oldest record, as determined by the priority queue.  When
3298		 * we reach the end of the time covered by these buffers,
3299		 * we need to stop and retrieve more records on the next pass.
3300		 * The kernel tells us the time covered by each buffer, in
3301		 * dtbd_timestamp.  The first buffer's timestamp tells us the
3302		 * time covered by all buffers, as subsequently retrieved
3303		 * buffers will cover to a more recent time.
3304		 */
3305
3306		uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
3307		uint64_t first_timestamp = 0;
3308		uint_t cookie = 0;
3309		dtrace_bufdesc_t *buf;
3310
3311		bzero(drops, max_ncpus * sizeof (uint64_t));
3312
3313		if (dtp->dt_bufq == NULL) {
3314			dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
3315			    dt_buf_oldest, NULL);
3316			if (dtp->dt_bufq == NULL) /* ENOMEM */
3317				return (-1);
3318		}
3319
3320		/* Retrieve data from each CPU. */
3321		(void) dtrace_getopt(dtp, "bufsize", &size);
3322		for (i = 0; i < max_ncpus; i++) {
3323			dtrace_bufdesc_t *buf;
3324
3325			if (dt_get_buf(dtp, i, &buf) != 0)
3326				return (-1);
3327			if (buf != NULL) {
3328				if (first_timestamp == 0)
3329					first_timestamp = buf->dtbd_timestamp;
3330				assert(buf->dtbd_timestamp >= first_timestamp);
3331
3332				dt_pq_insert(dtp->dt_bufq, buf);
3333				drops[i] = buf->dtbd_drops;
3334				buf->dtbd_drops = 0;
3335			}
3336		}
3337
3338		/* Consume records. */
3339		for (;;) {
3340			dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
3341			uint64_t timestamp;
3342
3343			if (buf == NULL)
3344				break;
3345
3346			timestamp = dt_buf_oldest(buf, dtp);
3347			assert(timestamp >= dtp->dt_last_timestamp);
3348			dtp->dt_last_timestamp = timestamp;
3349
3350			if (timestamp == buf->dtbd_timestamp) {
3351				/*
3352				 * We've reached the end of the time covered
3353				 * by this buffer.  If this is the oldest
3354				 * buffer, we must do another pass
3355				 * to retrieve more data.
3356				 */
3357				dt_put_buf(dtp, buf);
3358				if (timestamp == first_timestamp &&
3359				    !dtp->dt_stopped)
3360					break;
3361				continue;
3362			}
3363
3364			if ((rval = dt_consume_cpu(dtp, fp,
3365			    buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
3366				return (rval);
3367			dt_pq_insert(dtp->dt_bufq, buf);
3368		}
3369
3370		/* Consume drops. */
3371		for (i = 0; i < max_ncpus; i++) {
3372			if (drops[i] != 0) {
3373				int error = dt_handle_cpudrop(dtp, i,
3374				    DTRACEDROP_PRINCIPAL, drops[i]);
3375				if (error != 0)
3376					return (error);
3377			}
3378		}
3379
3380		/*
3381		 * Reduce memory usage by re-allocating smaller buffers
3382		 * for the "remnants".
3383		 */
3384		while (buf = dt_pq_walk(dtp->dt_bufq, &cookie))
3385			dt_realloc_buf(dtp, buf, buf->dtbd_size);
3386	}
3387
3388	return (0);
3389}
3390