dt_consume.c revision 297077
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2012 by Delphix. All rights reserved.
29 */
30
31#include <stdlib.h>
32#include <strings.h>
33#include <errno.h>
34#include <unistd.h>
35#include <limits.h>
36#include <assert.h>
37#include <ctype.h>
38#ifdef illumos
39#include <alloca.h>
40#endif
41#include <dt_impl.h>
42#include <dt_pq.h>
43#ifndef illumos
44#include <libproc_compat.h>
45#endif
46
47#define	DT_MASK_LO 0x00000000FFFFFFFFULL
48
49/*
50 * We declare this here because (1) we need it and (2) we want to avoid a
51 * dependency on libm in libdtrace.
52 */
53static long double
54dt_fabsl(long double x)
55{
56	if (x < 0)
57		return (-x);
58
59	return (x);
60}
61
62static int
63dt_ndigits(long long val)
64{
65	int rval = 1;
66	long long cmp = 10;
67
68	if (val < 0) {
69		val = val == INT64_MIN ? INT64_MAX : -val;
70		rval++;
71	}
72
73	while (val > cmp && cmp > 0) {
74		rval++;
75		cmp *= 10;
76	}
77
78	return (rval < 4 ? 4 : rval);
79}
80
81/*
82 * 128-bit arithmetic functions needed to support the stddev() aggregating
83 * action.
84 */
85static int
86dt_gt_128(uint64_t *a, uint64_t *b)
87{
88	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
89}
90
91static int
92dt_ge_128(uint64_t *a, uint64_t *b)
93{
94	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
95}
96
97static int
98dt_le_128(uint64_t *a, uint64_t *b)
99{
100	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
101}
102
103/*
104 * Shift the 128-bit value in a by b. If b is positive, shift left.
105 * If b is negative, shift right.
106 */
107static void
108dt_shift_128(uint64_t *a, int b)
109{
110	uint64_t mask;
111
112	if (b == 0)
113		return;
114
115	if (b < 0) {
116		b = -b;
117		if (b >= 64) {
118			a[0] = a[1] >> (b - 64);
119			a[1] = 0;
120		} else {
121			a[0] >>= b;
122			mask = 1LL << (64 - b);
123			mask -= 1;
124			a[0] |= ((a[1] & mask) << (64 - b));
125			a[1] >>= b;
126		}
127	} else {
128		if (b >= 64) {
129			a[1] = a[0] << (b - 64);
130			a[0] = 0;
131		} else {
132			a[1] <<= b;
133			mask = a[0] >> (64 - b);
134			a[1] |= mask;
135			a[0] <<= b;
136		}
137	}
138}
139
140static int
141dt_nbits_128(uint64_t *a)
142{
143	int nbits = 0;
144	uint64_t tmp[2];
145	uint64_t zero[2] = { 0, 0 };
146
147	tmp[0] = a[0];
148	tmp[1] = a[1];
149
150	dt_shift_128(tmp, -1);
151	while (dt_gt_128(tmp, zero)) {
152		dt_shift_128(tmp, -1);
153		nbits++;
154	}
155
156	return (nbits);
157}
158
159static void
160dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
161{
162	uint64_t result[2];
163
164	result[0] = minuend[0] - subtrahend[0];
165	result[1] = minuend[1] - subtrahend[1] -
166	    (minuend[0] < subtrahend[0] ? 1 : 0);
167
168	difference[0] = result[0];
169	difference[1] = result[1];
170}
171
172static void
173dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
174{
175	uint64_t result[2];
176
177	result[0] = addend1[0] + addend2[0];
178	result[1] = addend1[1] + addend2[1] +
179	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
180
181	sum[0] = result[0];
182	sum[1] = result[1];
183}
184
185/*
186 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
187 * use native multiplication on those, and then re-combine into the
188 * resulting 128-bit value.
189 *
190 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
191 *     hi1 * hi2 << 64 +
192 *     hi1 * lo2 << 32 +
193 *     hi2 * lo1 << 32 +
194 *     lo1 * lo2
195 */
196static void
197dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
198{
199	uint64_t hi1, hi2, lo1, lo2;
200	uint64_t tmp[2];
201
202	hi1 = factor1 >> 32;
203	hi2 = factor2 >> 32;
204
205	lo1 = factor1 & DT_MASK_LO;
206	lo2 = factor2 & DT_MASK_LO;
207
208	product[0] = lo1 * lo2;
209	product[1] = hi1 * hi2;
210
211	tmp[0] = hi1 * lo2;
212	tmp[1] = 0;
213	dt_shift_128(tmp, 32);
214	dt_add_128(product, tmp, product);
215
216	tmp[0] = hi2 * lo1;
217	tmp[1] = 0;
218	dt_shift_128(tmp, 32);
219	dt_add_128(product, tmp, product);
220}
221
222/*
223 * This is long-hand division.
224 *
225 * We initialize subtrahend by shifting divisor left as far as possible. We
226 * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
227 * subtract and set the appropriate bit in the result.  We then shift
228 * subtrahend right by one bit for the next comparison.
229 */
230static void
231dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
232{
233	uint64_t result[2] = { 0, 0 };
234	uint64_t remainder[2];
235	uint64_t subtrahend[2];
236	uint64_t divisor_128[2];
237	uint64_t mask[2] = { 1, 0 };
238	int log = 0;
239
240	assert(divisor != 0);
241
242	divisor_128[0] = divisor;
243	divisor_128[1] = 0;
244
245	remainder[0] = dividend[0];
246	remainder[1] = dividend[1];
247
248	subtrahend[0] = divisor;
249	subtrahend[1] = 0;
250
251	while (divisor > 0) {
252		log++;
253		divisor >>= 1;
254	}
255
256	dt_shift_128(subtrahend, 128 - log);
257	dt_shift_128(mask, 128 - log);
258
259	while (dt_ge_128(remainder, divisor_128)) {
260		if (dt_ge_128(remainder, subtrahend)) {
261			dt_subtract_128(remainder, subtrahend, remainder);
262			result[0] |= mask[0];
263			result[1] |= mask[1];
264		}
265
266		dt_shift_128(subtrahend, -1);
267		dt_shift_128(mask, -1);
268	}
269
270	quotient[0] = result[0];
271	quotient[1] = result[1];
272}
273
274/*
275 * This is the long-hand method of calculating a square root.
276 * The algorithm is as follows:
277 *
278 * 1. Group the digits by 2 from the right.
279 * 2. Over the leftmost group, find the largest single-digit number
280 *    whose square is less than that group.
281 * 3. Subtract the result of the previous step (2 or 4, depending) and
282 *    bring down the next two-digit group.
283 * 4. For the result R we have so far, find the largest single-digit number
284 *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
285 *    (Note that this is doubling R and performing a decimal left-shift by 1
286 *    and searching for the appropriate decimal to fill the one's place.)
287 *    The value x is the next digit in the square root.
288 * Repeat steps 3 and 4 until the desired precision is reached.  (We're
289 * dealing with integers, so the above is sufficient.)
290 *
291 * In decimal, the square root of 582,734 would be calculated as so:
292 *
293 *     __7__6__3
294 *    | 58 27 34
295 *     -49       (7^2 == 49 => 7 is the first digit in the square root)
296 *      --
297 *       9 27    (Subtract and bring down the next group.)
298 * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
299 *      -----     the square root)
300 *         51 34 (Subtract and bring down the next group.)
301 * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
302 *         -----  the square root)
303 *          5 65 (remainder)
304 *
305 * The above algorithm applies similarly in binary, but note that the
306 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
307 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
308 * preceding difference?
309 *
310 * In binary, the square root of 11011011 would be calculated as so:
311 *
312 *     __1__1__1__0
313 *    | 11 01 10 11
314 *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
315 *      --
316 *      10 01 10 11
317 * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
318 *      -----
319 *       1 00 10 11
320 * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
321 *       -------
322 *          1 01 11
323 * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
324 *
325 */
326static uint64_t
327dt_sqrt_128(uint64_t *square)
328{
329	uint64_t result[2] = { 0, 0 };
330	uint64_t diff[2] = { 0, 0 };
331	uint64_t one[2] = { 1, 0 };
332	uint64_t next_pair[2];
333	uint64_t next_try[2];
334	uint64_t bit_pairs, pair_shift;
335	int i;
336
337	bit_pairs = dt_nbits_128(square) / 2;
338	pair_shift = bit_pairs * 2;
339
340	for (i = 0; i <= bit_pairs; i++) {
341		/*
342		 * Bring down the next pair of bits.
343		 */
344		next_pair[0] = square[0];
345		next_pair[1] = square[1];
346		dt_shift_128(next_pair, -pair_shift);
347		next_pair[0] &= 0x3;
348		next_pair[1] = 0;
349
350		dt_shift_128(diff, 2);
351		dt_add_128(diff, next_pair, diff);
352
353		/*
354		 * next_try = R << 2 + 1
355		 */
356		next_try[0] = result[0];
357		next_try[1] = result[1];
358		dt_shift_128(next_try, 2);
359		dt_add_128(next_try, one, next_try);
360
361		if (dt_le_128(next_try, diff)) {
362			dt_subtract_128(diff, next_try, diff);
363			dt_shift_128(result, 1);
364			dt_add_128(result, one, result);
365		} else {
366			dt_shift_128(result, 1);
367		}
368
369		pair_shift -= 2;
370	}
371
372	assert(result[1] == 0);
373
374	return (result[0]);
375}
376
377uint64_t
378dt_stddev(uint64_t *data, uint64_t normal)
379{
380	uint64_t avg_of_squares[2];
381	uint64_t square_of_avg[2];
382	int64_t norm_avg;
383	uint64_t diff[2];
384
385	if (data[0] == 0)
386		return (0);
387
388	/*
389	 * The standard approximation for standard deviation is
390	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
391	 * of the average of the squares minus the square of the average.
392	 */
393	dt_divide_128(data + 2, normal, avg_of_squares);
394	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
395
396	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
397
398	if (norm_avg < 0)
399		norm_avg = -norm_avg;
400
401	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
402
403	dt_subtract_128(avg_of_squares, square_of_avg, diff);
404
405	return (dt_sqrt_128(diff));
406}
407
408static int
409dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
410    dtrace_bufdesc_t *buf, size_t offs)
411{
412	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
413	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
414	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
415	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
416	const char *str = NULL;
417	static const char *e_str[2] = { " -> ", " => " };
418	static const char *r_str[2] = { " <- ", " <= " };
419	static const char *ent = "entry", *ret = "return";
420	static int entlen = 0, retlen = 0;
421	dtrace_epid_t next, id = epd->dtepd_epid;
422	int rval;
423
424	if (entlen == 0) {
425		assert(retlen == 0);
426		entlen = strlen(ent);
427		retlen = strlen(ret);
428	}
429
430	/*
431	 * If the name of the probe is "entry" or ends with "-entry", we
432	 * treat it as an entry; if it is "return" or ends with "-return",
433	 * we treat it as a return.  (This allows application-provided probes
434	 * like "method-entry" or "function-entry" to participate in flow
435	 * indentation -- without accidentally misinterpreting popular probe
436	 * names like "carpentry", "gentry" or "Coventry".)
437	 */
438	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
439	    (sub == n || sub[-1] == '-')) {
440		flow = DTRACEFLOW_ENTRY;
441		str = e_str[strcmp(p, "syscall") == 0];
442	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
443	    (sub == n || sub[-1] == '-')) {
444		flow = DTRACEFLOW_RETURN;
445		str = r_str[strcmp(p, "syscall") == 0];
446	}
447
448	/*
449	 * If we're going to indent this, we need to check the ID of our last
450	 * call.  If we're looking at the same probe ID but a different EPID,
451	 * we _don't_ want to indent.  (Yes, there are some minor holes in
452	 * this scheme -- it's a heuristic.)
453	 */
454	if (flow == DTRACEFLOW_ENTRY) {
455		if ((last != DTRACE_EPIDNONE && id != last &&
456		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
457			flow = DTRACEFLOW_NONE;
458	}
459
460	/*
461	 * If we're going to unindent this, it's more difficult to see if
462	 * we don't actually want to unindent it -- we need to look at the
463	 * _next_ EPID.
464	 */
465	if (flow == DTRACEFLOW_RETURN) {
466		offs += epd->dtepd_size;
467
468		do {
469			if (offs >= buf->dtbd_size)
470				goto out;
471
472			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
473
474			if (next == DTRACE_EPIDNONE)
475				offs += sizeof (id);
476		} while (next == DTRACE_EPIDNONE);
477
478		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
479			return (rval);
480
481		if (next != id && npd->dtpd_id == pd->dtpd_id)
482			flow = DTRACEFLOW_NONE;
483	}
484
485out:
486	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
487		data->dtpda_prefix = str;
488	} else {
489		data->dtpda_prefix = "| ";
490	}
491
492	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
493		data->dtpda_indent -= 2;
494
495	data->dtpda_flow = flow;
496
497	return (0);
498}
499
500static int
501dt_nullprobe()
502{
503	return (DTRACE_CONSUME_THIS);
504}
505
506static int
507dt_nullrec()
508{
509	return (DTRACE_CONSUME_NEXT);
510}
511
512static void
513dt_quantize_total(dtrace_hdl_t *dtp, int64_t datum, long double *total)
514{
515	long double val = dt_fabsl((long double)datum);
516
517	if (dtp->dt_options[DTRACEOPT_AGGZOOM] == DTRACEOPT_UNSET) {
518		*total += val;
519		return;
520	}
521
522	/*
523	 * If we're zooming in on an aggregation, we want the height of the
524	 * highest value to be approximately 95% of total bar height -- so we
525	 * adjust up by the reciprocal of DTRACE_AGGZOOM_MAX when comparing to
526	 * our highest value.
527	 */
528	val *= 1 / DTRACE_AGGZOOM_MAX;
529
530	if (*total < val)
531		*total = val;
532}
533
534static int
535dt_print_quanthdr(dtrace_hdl_t *dtp, FILE *fp, int width)
536{
537	return (dt_printf(dtp, fp, "\n%*s %41s %-9s\n",
538	    width ? width : 16, width ? "key" : "value",
539	    "------------- Distribution -------------", "count"));
540}
541
542static int
543dt_print_quanthdr_packed(dtrace_hdl_t *dtp, FILE *fp, int width,
544    const dtrace_aggdata_t *aggdata, dtrace_actkind_t action)
545{
546	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin;
547	int minwidth, maxwidth, i;
548
549	assert(action == DTRACEAGG_QUANTIZE || action == DTRACEAGG_LQUANTIZE);
550
551	if (action == DTRACEAGG_QUANTIZE) {
552		if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
553			min--;
554
555		if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
556			max++;
557
558		minwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(min));
559		maxwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(max));
560	} else {
561		maxwidth = 8;
562		minwidth = maxwidth - 1;
563		max++;
564	}
565
566	if (dt_printf(dtp, fp, "\n%*s %*s .",
567	    width, width > 0 ? "key" : "", minwidth, "min") < 0)
568		return (-1);
569
570	for (i = min; i <= max; i++) {
571		if (dt_printf(dtp, fp, "-") < 0)
572			return (-1);
573	}
574
575	return (dt_printf(dtp, fp, ". %*s | count\n", -maxwidth, "max"));
576}
577
578/*
579 * We use a subset of the Unicode Block Elements (U+2588 through U+258F,
580 * inclusive) to represent aggregations via UTF-8 -- which are expressed via
581 * 3-byte UTF-8 sequences.
582 */
583#define	DTRACE_AGGUTF8_FULL	0x2588
584#define	DTRACE_AGGUTF8_BASE	0x258f
585#define	DTRACE_AGGUTF8_LEVELS	8
586
587#define	DTRACE_AGGUTF8_BYTE0(val)	(0xe0 | ((val) >> 12))
588#define	DTRACE_AGGUTF8_BYTE1(val)	(0x80 | (((val) >> 6) & 0x3f))
589#define	DTRACE_AGGUTF8_BYTE2(val)	(0x80 | ((val) & 0x3f))
590
591static int
592dt_print_quantline_utf8(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
593    uint64_t normal, long double total)
594{
595	uint_t len = 40, i, whole, partial;
596	long double f = (dt_fabsl((long double)val) * len) / total;
597	const char *spaces = "                                        ";
598
599	whole = (uint_t)f;
600	partial = (uint_t)((f - (long double)(uint_t)f) *
601	    (long double)DTRACE_AGGUTF8_LEVELS);
602
603	if (dt_printf(dtp, fp, "|") < 0)
604		return (-1);
605
606	for (i = 0; i < whole; i++) {
607		if (dt_printf(dtp, fp, "%c%c%c",
608		    DTRACE_AGGUTF8_BYTE0(DTRACE_AGGUTF8_FULL),
609		    DTRACE_AGGUTF8_BYTE1(DTRACE_AGGUTF8_FULL),
610		    DTRACE_AGGUTF8_BYTE2(DTRACE_AGGUTF8_FULL)) < 0)
611			return (-1);
612	}
613
614	if (partial != 0) {
615		partial = DTRACE_AGGUTF8_BASE - (partial - 1);
616
617		if (dt_printf(dtp, fp, "%c%c%c",
618		    DTRACE_AGGUTF8_BYTE0(partial),
619		    DTRACE_AGGUTF8_BYTE1(partial),
620		    DTRACE_AGGUTF8_BYTE2(partial)) < 0)
621			return (-1);
622
623		i++;
624	}
625
626	return (dt_printf(dtp, fp, "%s %-9lld\n", spaces + i,
627	    (long long)val / normal));
628}
629
630static int
631dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
632    uint64_t normal, long double total, char positives, char negatives)
633{
634	long double f;
635	uint_t depth, len = 40;
636
637	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
638	const char *spaces = "                                        ";
639
640	assert(strlen(ats) == len && strlen(spaces) == len);
641	assert(!(total == 0 && (positives || negatives)));
642	assert(!(val < 0 && !negatives));
643	assert(!(val > 0 && !positives));
644	assert(!(val != 0 && total == 0));
645
646	if (!negatives) {
647		if (positives) {
648			if (dtp->dt_encoding == DT_ENCODING_UTF8) {
649				return (dt_print_quantline_utf8(dtp, fp, val,
650				    normal, total));
651			}
652
653			f = (dt_fabsl((long double)val) * len) / total;
654			depth = (uint_t)(f + 0.5);
655		} else {
656			depth = 0;
657		}
658
659		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
660		    spaces + depth, (long long)val / normal));
661	}
662
663	if (!positives) {
664		f = (dt_fabsl((long double)val) * len) / total;
665		depth = (uint_t)(f + 0.5);
666
667		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
668		    ats + len - depth, (long long)val / normal));
669	}
670
671	/*
672	 * If we're here, we have both positive and negative bucket values.
673	 * To express this graphically, we're going to generate both positive
674	 * and negative bars separated by a centerline.  These bars are half
675	 * the size of normal quantize()/lquantize() bars, so we divide the
676	 * length in half before calculating the bar length.
677	 */
678	len /= 2;
679	ats = &ats[len];
680	spaces = &spaces[len];
681
682	f = (dt_fabsl((long double)val) * len) / total;
683	depth = (uint_t)(f + 0.5);
684
685	if (val <= 0) {
686		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
687		    ats + len - depth, len, "", (long long)val / normal));
688	} else {
689		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
690		    ats + len - depth, spaces + depth,
691		    (long long)val / normal));
692	}
693}
694
695/*
696 * As with UTF-8 printing of aggregations, we use a subset of the Unicode
697 * Block Elements (U+2581 through U+2588, inclusive) to represent our packed
698 * aggregation.
699 */
700#define	DTRACE_AGGPACK_BASE	0x2581
701#define	DTRACE_AGGPACK_LEVELS	8
702
703static int
704dt_print_packed(dtrace_hdl_t *dtp, FILE *fp,
705    long double datum, long double total)
706{
707	static boolean_t utf8_checked = B_FALSE;
708	static boolean_t utf8;
709	char *ascii = "__xxxxXX";
710	char *neg = "vvvvVV";
711	unsigned int len;
712	long double val;
713
714	if (!utf8_checked) {
715		char *term;
716
717		/*
718		 * We want to determine if we can reasonably emit UTF-8 for our
719		 * packed aggregation.  To do this, we will check for terminals
720		 * that are known to be primitive to emit UTF-8 on these.
721		 */
722		utf8_checked = B_TRUE;
723
724		if (dtp->dt_encoding == DT_ENCODING_ASCII) {
725			utf8 = B_FALSE;
726		} else if (dtp->dt_encoding == DT_ENCODING_UTF8) {
727			utf8 = B_TRUE;
728		} else if ((term = getenv("TERM")) != NULL &&
729		    (strcmp(term, "sun") == 0 ||
730		    strcmp(term, "sun-color") == 0 ||
731		    strcmp(term, "dumb") == 0)) {
732			utf8 = B_FALSE;
733		} else {
734			utf8 = B_TRUE;
735		}
736	}
737
738	if (datum == 0)
739		return (dt_printf(dtp, fp, " "));
740
741	if (datum < 0) {
742		len = strlen(neg);
743		val = dt_fabsl(datum * (len - 1)) / total;
744		return (dt_printf(dtp, fp, "%c", neg[(uint_t)(val + 0.5)]));
745	}
746
747	if (utf8) {
748		int block = DTRACE_AGGPACK_BASE + (unsigned int)(((datum *
749		    (DTRACE_AGGPACK_LEVELS - 1)) / total) + 0.5);
750
751		return (dt_printf(dtp, fp, "%c%c%c",
752		    DTRACE_AGGUTF8_BYTE0(block),
753		    DTRACE_AGGUTF8_BYTE1(block),
754		    DTRACE_AGGUTF8_BYTE2(block)));
755	}
756
757	len = strlen(ascii);
758	val = (datum * (len - 1)) / total;
759	return (dt_printf(dtp, fp, "%c", ascii[(uint_t)(val + 0.5)]));
760}
761
762int
763dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
764    size_t size, uint64_t normal)
765{
766	const int64_t *data = addr;
767	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
768	long double total = 0;
769	char positives = 0, negatives = 0;
770
771	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
772		return (dt_set_errno(dtp, EDT_DMISMATCH));
773
774	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
775		first_bin++;
776
777	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
778		/*
779		 * There isn't any data.  This is possible if the aggregation
780		 * has been clear()'d or if negative increment values have been
781		 * used.  Regardless, we'll print the buckets around 0.
782		 */
783		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
784		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
785	} else {
786		if (first_bin > 0)
787			first_bin--;
788
789		while (last_bin > 0 && data[last_bin] == 0)
790			last_bin--;
791
792		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
793			last_bin++;
794	}
795
796	for (i = first_bin; i <= last_bin; i++) {
797		positives |= (data[i] > 0);
798		negatives |= (data[i] < 0);
799		dt_quantize_total(dtp, data[i], &total);
800	}
801
802	if (dt_print_quanthdr(dtp, fp, 0) < 0)
803		return (-1);
804
805	for (i = first_bin; i <= last_bin; i++) {
806		if (dt_printf(dtp, fp, "%16lld ",
807		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
808			return (-1);
809
810		if (dt_print_quantline(dtp, fp, data[i], normal, total,
811		    positives, negatives) < 0)
812			return (-1);
813	}
814
815	return (0);
816}
817
818int
819dt_print_quantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
820    size_t size, const dtrace_aggdata_t *aggdata)
821{
822	const int64_t *data = addr;
823	long double total = 0, count = 0;
824	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin, i;
825	int64_t minval, maxval;
826
827	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
828		return (dt_set_errno(dtp, EDT_DMISMATCH));
829
830	if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
831		min--;
832
833	if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
834		max++;
835
836	minval = DTRACE_QUANTIZE_BUCKETVAL(min);
837	maxval = DTRACE_QUANTIZE_BUCKETVAL(max);
838
839	if (dt_printf(dtp, fp, " %*lld :", dt_ndigits(minval),
840	    (long long)minval) < 0)
841		return (-1);
842
843	for (i = min; i <= max; i++) {
844		dt_quantize_total(dtp, data[i], &total);
845		count += data[i];
846	}
847
848	for (i = min; i <= max; i++) {
849		if (dt_print_packed(dtp, fp, data[i], total) < 0)
850			return (-1);
851	}
852
853	if (dt_printf(dtp, fp, ": %*lld | %lld\n",
854	    -dt_ndigits(maxval), (long long)maxval, (long long)count) < 0)
855		return (-1);
856
857	return (0);
858}
859
860int
861dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
862    size_t size, uint64_t normal)
863{
864	const int64_t *data = addr;
865	int i, first_bin, last_bin, base;
866	uint64_t arg;
867	long double total = 0;
868	uint16_t step, levels;
869	char positives = 0, negatives = 0;
870
871	if (size < sizeof (uint64_t))
872		return (dt_set_errno(dtp, EDT_DMISMATCH));
873
874	arg = *data++;
875	size -= sizeof (uint64_t);
876
877	base = DTRACE_LQUANTIZE_BASE(arg);
878	step = DTRACE_LQUANTIZE_STEP(arg);
879	levels = DTRACE_LQUANTIZE_LEVELS(arg);
880
881	first_bin = 0;
882	last_bin = levels + 1;
883
884	if (size != sizeof (uint64_t) * (levels + 2))
885		return (dt_set_errno(dtp, EDT_DMISMATCH));
886
887	while (first_bin <= levels + 1 && data[first_bin] == 0)
888		first_bin++;
889
890	if (first_bin > levels + 1) {
891		first_bin = 0;
892		last_bin = 2;
893	} else {
894		if (first_bin > 0)
895			first_bin--;
896
897		while (last_bin > 0 && data[last_bin] == 0)
898			last_bin--;
899
900		if (last_bin < levels + 1)
901			last_bin++;
902	}
903
904	for (i = first_bin; i <= last_bin; i++) {
905		positives |= (data[i] > 0);
906		negatives |= (data[i] < 0);
907		dt_quantize_total(dtp, data[i], &total);
908	}
909
910	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
911	    "------------- Distribution -------------", "count") < 0)
912		return (-1);
913
914	for (i = first_bin; i <= last_bin; i++) {
915		char c[32];
916		int err;
917
918		if (i == 0) {
919			(void) snprintf(c, sizeof (c), "< %d", base);
920			err = dt_printf(dtp, fp, "%16s ", c);
921		} else if (i == levels + 1) {
922			(void) snprintf(c, sizeof (c), ">= %d",
923			    base + (levels * step));
924			err = dt_printf(dtp, fp, "%16s ", c);
925		} else {
926			err = dt_printf(dtp, fp, "%16d ",
927			    base + (i - 1) * step);
928		}
929
930		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
931		    total, positives, negatives) < 0)
932			return (-1);
933	}
934
935	return (0);
936}
937
938/*ARGSUSED*/
939int
940dt_print_lquantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
941    size_t size, const dtrace_aggdata_t *aggdata)
942{
943	const int64_t *data = addr;
944	long double total = 0, count = 0;
945	int min, max, base, err;
946	uint64_t arg;
947	uint16_t step, levels;
948	char c[32];
949	unsigned int i;
950
951	if (size < sizeof (uint64_t))
952		return (dt_set_errno(dtp, EDT_DMISMATCH));
953
954	arg = *data++;
955	size -= sizeof (uint64_t);
956
957	base = DTRACE_LQUANTIZE_BASE(arg);
958	step = DTRACE_LQUANTIZE_STEP(arg);
959	levels = DTRACE_LQUANTIZE_LEVELS(arg);
960
961	if (size != sizeof (uint64_t) * (levels + 2))
962		return (dt_set_errno(dtp, EDT_DMISMATCH));
963
964	min = 0;
965	max = levels + 1;
966
967	if (min == 0) {
968		(void) snprintf(c, sizeof (c), "< %d", base);
969		err = dt_printf(dtp, fp, "%8s :", c);
970	} else {
971		err = dt_printf(dtp, fp, "%8d :", base + (min - 1) * step);
972	}
973
974	if (err < 0)
975		return (-1);
976
977	for (i = min; i <= max; i++) {
978		dt_quantize_total(dtp, data[i], &total);
979		count += data[i];
980	}
981
982	for (i = min; i <= max; i++) {
983		if (dt_print_packed(dtp, fp, data[i], total) < 0)
984			return (-1);
985	}
986
987	(void) snprintf(c, sizeof (c), ">= %d", base + (levels * step));
988	return (dt_printf(dtp, fp, ": %-8s | %lld\n", c, (long long)count));
989}
990
991int
992dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
993    size_t size, uint64_t normal)
994{
995	int i, first_bin, last_bin, bin = 1, order, levels;
996	uint16_t factor, low, high, nsteps;
997	const int64_t *data = addr;
998	int64_t value = 1, next, step;
999	char positives = 0, negatives = 0;
1000	long double total = 0;
1001	uint64_t arg;
1002	char c[32];
1003
1004	if (size < sizeof (uint64_t))
1005		return (dt_set_errno(dtp, EDT_DMISMATCH));
1006
1007	arg = *data++;
1008	size -= sizeof (uint64_t);
1009
1010	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1011	low = DTRACE_LLQUANTIZE_LOW(arg);
1012	high = DTRACE_LLQUANTIZE_HIGH(arg);
1013	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1014
1015	/*
1016	 * We don't expect to be handed invalid llquantize() parameters here,
1017	 * but sanity check them (to a degree) nonetheless.
1018	 */
1019	if (size > INT32_MAX || factor < 2 || low >= high ||
1020	    nsteps == 0 || factor > nsteps)
1021		return (dt_set_errno(dtp, EDT_DMISMATCH));
1022
1023	levels = (int)size / sizeof (uint64_t);
1024
1025	first_bin = 0;
1026	last_bin = levels - 1;
1027
1028	while (first_bin < levels && data[first_bin] == 0)
1029		first_bin++;
1030
1031	if (first_bin == levels) {
1032		first_bin = 0;
1033		last_bin = 1;
1034	} else {
1035		if (first_bin > 0)
1036			first_bin--;
1037
1038		while (last_bin > 0 && data[last_bin] == 0)
1039			last_bin--;
1040
1041		if (last_bin < levels - 1)
1042			last_bin++;
1043	}
1044
1045	for (i = first_bin; i <= last_bin; i++) {
1046		positives |= (data[i] > 0);
1047		negatives |= (data[i] < 0);
1048		dt_quantize_total(dtp, data[i], &total);
1049	}
1050
1051	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
1052	    "------------- Distribution -------------", "count") < 0)
1053		return (-1);
1054
1055	for (order = 0; order < low; order++)
1056		value *= factor;
1057
1058	next = value * factor;
1059	step = next > nsteps ? next / nsteps : 1;
1060
1061	if (first_bin == 0) {
1062		(void) snprintf(c, sizeof (c), "< %lld", (long long)value);
1063
1064		if (dt_printf(dtp, fp, "%16s ", c) < 0)
1065			return (-1);
1066
1067		if (dt_print_quantline(dtp, fp, data[0], normal,
1068		    total, positives, negatives) < 0)
1069			return (-1);
1070	}
1071
1072	while (order <= high) {
1073		if (bin >= first_bin && bin <= last_bin) {
1074			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
1075				return (-1);
1076
1077			if (dt_print_quantline(dtp, fp, data[bin],
1078			    normal, total, positives, negatives) < 0)
1079				return (-1);
1080		}
1081
1082		assert(value < next);
1083		bin++;
1084
1085		if ((value += step) != next)
1086			continue;
1087
1088		next = value * factor;
1089		step = next > nsteps ? next / nsteps : 1;
1090		order++;
1091	}
1092
1093	if (last_bin < bin)
1094		return (0);
1095
1096	assert(last_bin == bin);
1097	(void) snprintf(c, sizeof (c), ">= %lld", (long long)value);
1098
1099	if (dt_printf(dtp, fp, "%16s ", c) < 0)
1100		return (-1);
1101
1102	return (dt_print_quantline(dtp, fp, data[bin], normal,
1103	    total, positives, negatives));
1104}
1105
1106/*ARGSUSED*/
1107static int
1108dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1109    size_t size, uint64_t normal)
1110{
1111	/* LINTED - alignment */
1112	int64_t *data = (int64_t *)addr;
1113
1114	return (dt_printf(dtp, fp, " %16lld", data[0] ?
1115	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
1116}
1117
1118/*ARGSUSED*/
1119static int
1120dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1121    size_t size, uint64_t normal)
1122{
1123	/* LINTED - alignment */
1124	uint64_t *data = (uint64_t *)addr;
1125
1126	return (dt_printf(dtp, fp, " %16llu", data[0] ?
1127	    (unsigned long long) dt_stddev(data, normal) : 0));
1128}
1129
1130/*ARGSUSED*/
1131static int
1132dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1133    size_t nbytes, int width, int quiet, int forceraw)
1134{
1135	/*
1136	 * If the byte stream is a series of printable characters, followed by
1137	 * a terminating byte, we print it out as a string.  Otherwise, we
1138	 * assume that it's something else and just print the bytes.
1139	 */
1140	int i, j, margin = 5;
1141	char *c = (char *)addr;
1142
1143	if (nbytes == 0)
1144		return (0);
1145
1146	if (forceraw)
1147		goto raw;
1148
1149	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
1150		goto raw;
1151
1152	for (i = 0; i < nbytes; i++) {
1153		/*
1154		 * We define a "printable character" to be one for which
1155		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
1156		 * or a character which is either backspace or the bell.
1157		 * Backspace and the bell are regrettably special because
1158		 * they fail the first two tests -- and yet they are entirely
1159		 * printable.  These are the only two control characters that
1160		 * have meaning for the terminal and for which isprint(3C) and
1161		 * isspace(3C) return 0.
1162		 */
1163		if (isprint(c[i]) || isspace(c[i]) ||
1164		    c[i] == '\b' || c[i] == '\a')
1165			continue;
1166
1167		if (c[i] == '\0' && i > 0) {
1168			/*
1169			 * This looks like it might be a string.  Before we
1170			 * assume that it is indeed a string, check the
1171			 * remainder of the byte range; if it contains
1172			 * additional non-nul characters, we'll assume that
1173			 * it's a binary stream that just happens to look like
1174			 * a string, and we'll print out the individual bytes.
1175			 */
1176			for (j = i + 1; j < nbytes; j++) {
1177				if (c[j] != '\0')
1178					break;
1179			}
1180
1181			if (j != nbytes)
1182				break;
1183
1184			if (quiet) {
1185				return (dt_printf(dtp, fp, "%s", c));
1186			} else {
1187				return (dt_printf(dtp, fp, " %s%*s",
1188				    width < 0 ? " " : "", width, c));
1189			}
1190		}
1191
1192		break;
1193	}
1194
1195	if (i == nbytes) {
1196		/*
1197		 * The byte range is all printable characters, but there is
1198		 * no trailing nul byte.  We'll assume that it's a string and
1199		 * print it as such.
1200		 */
1201		char *s = alloca(nbytes + 1);
1202		bcopy(c, s, nbytes);
1203		s[nbytes] = '\0';
1204		return (dt_printf(dtp, fp, "  %-*s", width, s));
1205	}
1206
1207raw:
1208	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
1209		return (-1);
1210
1211	for (i = 0; i < 16; i++)
1212		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
1213			return (-1);
1214
1215	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
1216		return (-1);
1217
1218
1219	for (i = 0; i < nbytes; i += 16) {
1220		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
1221			return (-1);
1222
1223		for (j = i; j < i + 16 && j < nbytes; j++) {
1224			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
1225				return (-1);
1226		}
1227
1228		while (j++ % 16) {
1229			if (dt_printf(dtp, fp, "   ") < 0)
1230				return (-1);
1231		}
1232
1233		if (dt_printf(dtp, fp, "  ") < 0)
1234			return (-1);
1235
1236		for (j = i; j < i + 16 && j < nbytes; j++) {
1237			if (dt_printf(dtp, fp, "%c",
1238			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
1239				return (-1);
1240		}
1241
1242		if (dt_printf(dtp, fp, "\n") < 0)
1243			return (-1);
1244	}
1245
1246	return (0);
1247}
1248
1249int
1250dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1251    caddr_t addr, int depth, int size)
1252{
1253	dtrace_syminfo_t dts;
1254	GElf_Sym sym;
1255	int i, indent;
1256	char c[PATH_MAX * 2];
1257	uint64_t pc;
1258
1259	if (dt_printf(dtp, fp, "\n") < 0)
1260		return (-1);
1261
1262	if (format == NULL)
1263		format = "%s";
1264
1265	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1266		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1267	else
1268		indent = _dtrace_stkindent;
1269
1270	for (i = 0; i < depth; i++) {
1271		switch (size) {
1272		case sizeof (uint32_t):
1273			/* LINTED - alignment */
1274			pc = *((uint32_t *)addr);
1275			break;
1276
1277		case sizeof (uint64_t):
1278			/* LINTED - alignment */
1279			pc = *((uint64_t *)addr);
1280			break;
1281
1282		default:
1283			return (dt_set_errno(dtp, EDT_BADSTACKPC));
1284		}
1285
1286		if (pc == 0)
1287			break;
1288
1289		addr += size;
1290
1291		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
1292			return (-1);
1293
1294		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1295			if (pc > sym.st_value) {
1296				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
1297				    dts.dts_object, dts.dts_name,
1298				    (u_longlong_t)(pc - sym.st_value));
1299			} else {
1300				(void) snprintf(c, sizeof (c), "%s`%s",
1301				    dts.dts_object, dts.dts_name);
1302			}
1303		} else {
1304			/*
1305			 * We'll repeat the lookup, but this time we'll specify
1306			 * a NULL GElf_Sym -- indicating that we're only
1307			 * interested in the containing module.
1308			 */
1309			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1310				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1311				    dts.dts_object, (u_longlong_t)pc);
1312			} else {
1313				(void) snprintf(c, sizeof (c), "0x%llx",
1314				    (u_longlong_t)pc);
1315			}
1316		}
1317
1318		if (dt_printf(dtp, fp, format, c) < 0)
1319			return (-1);
1320
1321		if (dt_printf(dtp, fp, "\n") < 0)
1322			return (-1);
1323	}
1324
1325	return (0);
1326}
1327
1328int
1329dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1330    caddr_t addr, uint64_t arg)
1331{
1332	/* LINTED - alignment */
1333	uint64_t *pc = (uint64_t *)addr;
1334	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1335	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1336	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1337	const char *str = strsize ? strbase : NULL;
1338	int err = 0;
1339
1340	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1341	struct ps_prochandle *P;
1342	GElf_Sym sym;
1343	int i, indent;
1344	pid_t pid;
1345
1346	if (depth == 0)
1347		return (0);
1348
1349	pid = (pid_t)*pc++;
1350
1351	if (dt_printf(dtp, fp, "\n") < 0)
1352		return (-1);
1353
1354	if (format == NULL)
1355		format = "%s";
1356
1357	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1358		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1359	else
1360		indent = _dtrace_stkindent;
1361
1362	/*
1363	 * Ultimately, we need to add an entry point in the library vector for
1364	 * determining <symbol, offset> from <pid, address>.  For now, if
1365	 * this is a vector open, we just print the raw address or string.
1366	 */
1367	if (dtp->dt_vector == NULL)
1368		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1369	else
1370		P = NULL;
1371
1372	if (P != NULL)
1373		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1374
1375	for (i = 0; i < depth && pc[i] != 0; i++) {
1376		const prmap_t *map;
1377
1378		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1379			break;
1380
1381		if (P != NULL && Plookup_by_addr(P, pc[i],
1382		    name, sizeof (name), &sym) == 0) {
1383			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1384
1385			if (pc[i] > sym.st_value) {
1386				(void) snprintf(c, sizeof (c),
1387				    "%s`%s+0x%llx", dt_basename(objname), name,
1388				    (u_longlong_t)(pc[i] - sym.st_value));
1389			} else {
1390				(void) snprintf(c, sizeof (c),
1391				    "%s`%s", dt_basename(objname), name);
1392			}
1393		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1394		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1395		    (map->pr_mflags & MA_WRITE)))) {
1396			/*
1397			 * If the current string pointer in the string table
1398			 * does not point to an empty string _and_ the program
1399			 * counter falls in a writable region, we'll use the
1400			 * string from the string table instead of the raw
1401			 * address.  This last condition is necessary because
1402			 * some (broken) ustack helpers will return a string
1403			 * even for a program counter that they can't
1404			 * identify.  If we have a string for a program
1405			 * counter that falls in a segment that isn't
1406			 * writable, we assume that we have fallen into this
1407			 * case and we refuse to use the string.
1408			 */
1409			(void) snprintf(c, sizeof (c), "%s", str);
1410		} else {
1411			if (P != NULL && Pobjname(P, pc[i], objname,
1412			    sizeof (objname)) != 0) {
1413				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1414				    dt_basename(objname), (u_longlong_t)pc[i]);
1415			} else {
1416				(void) snprintf(c, sizeof (c), "0x%llx",
1417				    (u_longlong_t)pc[i]);
1418			}
1419		}
1420
1421		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1422			break;
1423
1424		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1425			break;
1426
1427		if (str != NULL && str[0] == '@') {
1428			/*
1429			 * If the first character of the string is an "at" sign,
1430			 * then the string is inferred to be an annotation --
1431			 * and it is printed out beneath the frame and offset
1432			 * with brackets.
1433			 */
1434			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1435				break;
1436
1437			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1438
1439			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1440				break;
1441
1442			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1443				break;
1444		}
1445
1446		if (str != NULL) {
1447			str += strlen(str) + 1;
1448			if (str - strbase >= strsize)
1449				str = NULL;
1450		}
1451	}
1452
1453	if (P != NULL) {
1454		dt_proc_unlock(dtp, P);
1455		dt_proc_release(dtp, P);
1456	}
1457
1458	return (err);
1459}
1460
1461static int
1462dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1463{
1464	/* LINTED - alignment */
1465	uint64_t pid = ((uint64_t *)addr)[0];
1466	/* LINTED - alignment */
1467	uint64_t pc = ((uint64_t *)addr)[1];
1468	const char *format = "  %-50s";
1469	char *s;
1470	int n, len = 256;
1471
1472	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1473		struct ps_prochandle *P;
1474
1475		if ((P = dt_proc_grab(dtp, pid,
1476		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1477			GElf_Sym sym;
1478
1479			dt_proc_lock(dtp, P);
1480
1481			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1482				pc = sym.st_value;
1483
1484			dt_proc_unlock(dtp, P);
1485			dt_proc_release(dtp, P);
1486		}
1487	}
1488
1489	do {
1490		n = len;
1491		s = alloca(n);
1492	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1493
1494	return (dt_printf(dtp, fp, format, s));
1495}
1496
1497int
1498dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1499{
1500	/* LINTED - alignment */
1501	uint64_t pid = ((uint64_t *)addr)[0];
1502	/* LINTED - alignment */
1503	uint64_t pc = ((uint64_t *)addr)[1];
1504	int err = 0;
1505
1506	char objname[PATH_MAX], c[PATH_MAX * 2];
1507	struct ps_prochandle *P;
1508
1509	if (format == NULL)
1510		format = "  %-50s";
1511
1512	/*
1513	 * See the comment in dt_print_ustack() for the rationale for
1514	 * printing raw addresses in the vectored case.
1515	 */
1516	if (dtp->dt_vector == NULL)
1517		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1518	else
1519		P = NULL;
1520
1521	if (P != NULL)
1522		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1523
1524	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1525		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1526	} else {
1527		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1528	}
1529
1530	err = dt_printf(dtp, fp, format, c);
1531
1532	if (P != NULL) {
1533		dt_proc_unlock(dtp, P);
1534		dt_proc_release(dtp, P);
1535	}
1536
1537	return (err);
1538}
1539
1540int
1541dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1542{
1543	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1544	size_t nbytes = *((uintptr_t *) addr);
1545
1546	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1547	    nbytes, 50, quiet, 1));
1548}
1549
1550typedef struct dt_type_cbdata {
1551	dtrace_hdl_t		*dtp;
1552	dtrace_typeinfo_t	dtt;
1553	caddr_t			addr;
1554	caddr_t			addrend;
1555	const char		*name;
1556	int			f_type;
1557	int			indent;
1558	int			type_width;
1559	int			name_width;
1560	FILE			*fp;
1561} dt_type_cbdata_t;
1562
1563static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1564
1565static int
1566dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1567{
1568	dt_type_cbdata_t cbdata;
1569	dt_type_cbdata_t *cbdatap = arg;
1570	ssize_t ssz;
1571
1572	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1573		return (0);
1574
1575	off /= 8;
1576
1577	cbdata = *cbdatap;
1578	cbdata.name = name;
1579	cbdata.addr += off;
1580	cbdata.addrend = cbdata.addr + ssz;
1581
1582	return (dt_print_type_data(&cbdata, type));
1583}
1584
1585static int
1586dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1587{
1588	char buf[DT_TYPE_NAMELEN];
1589	char *p;
1590	dt_type_cbdata_t *cbdatap = arg;
1591	size_t sz = strlen(name);
1592
1593	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1594
1595	if ((p = strchr(buf, '[')) != NULL)
1596		p[-1] = '\0';
1597	else
1598		p = "";
1599
1600	sz += strlen(p);
1601
1602	if (sz > cbdatap->name_width)
1603		cbdatap->name_width = sz;
1604
1605	sz = strlen(buf);
1606
1607	if (sz > cbdatap->type_width)
1608		cbdatap->type_width = sz;
1609
1610	return (0);
1611}
1612
1613static int
1614dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1615{
1616	caddr_t addr = cbdatap->addr;
1617	caddr_t addrend = cbdatap->addrend;
1618	char buf[DT_TYPE_NAMELEN];
1619	char *p;
1620	int cnt = 0;
1621	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1622	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1623
1624	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1625
1626	if ((p = strchr(buf, '[')) != NULL)
1627		p[-1] = '\0';
1628	else
1629		p = "";
1630
1631	if (cbdatap->f_type) {
1632		int type_width = roundup(cbdatap->type_width + 1, 4);
1633		int name_width = roundup(cbdatap->name_width + 1, 4);
1634
1635		name_width -= strlen(cbdatap->name);
1636
1637		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1638	}
1639
1640	while (addr < addrend) {
1641		dt_type_cbdata_t cbdata;
1642		ctf_arinfo_t arinfo;
1643		ctf_encoding_t cte;
1644		uintptr_t *up;
1645		void *vp = addr;
1646		cbdata = *cbdatap;
1647		cbdata.name = "";
1648		cbdata.addr = addr;
1649		cbdata.addrend = addr + ssz;
1650		cbdata.f_type = 0;
1651		cbdata.indent++;
1652		cbdata.type_width = 0;
1653		cbdata.name_width = 0;
1654
1655		if (cnt > 0)
1656			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1657
1658		switch (kind) {
1659		case CTF_K_INTEGER:
1660			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1661				return (-1);
1662			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1663				switch (cte.cte_bits) {
1664				case 8:
1665					if (isprint(*((char *) vp)))
1666						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1667					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1668					break;
1669				case 16:
1670					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1671					break;
1672				case 32:
1673					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1674					break;
1675				case 64:
1676					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1677					break;
1678				default:
1679					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1680					break;
1681				}
1682			else
1683				switch (cte.cte_bits) {
1684				case 8:
1685					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1686					break;
1687				case 16:
1688					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1689					break;
1690				case 32:
1691					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1692					break;
1693				case 64:
1694					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1695					break;
1696				default:
1697					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1698					break;
1699				}
1700			break;
1701		case CTF_K_FLOAT:
1702			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1703			break;
1704		case CTF_K_POINTER:
1705			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1706			break;
1707		case CTF_K_ARRAY:
1708			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1709				return (-1);
1710			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1711			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1712			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1713			break;
1714		case CTF_K_FUNCTION:
1715			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1716			break;
1717		case CTF_K_STRUCT:
1718			cbdata.f_type = 1;
1719			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1720			    dt_print_type_width, &cbdata) != 0)
1721				return (-1);
1722			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1723			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1724			    dt_print_type_member, &cbdata) != 0)
1725				return (-1);
1726			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1727			break;
1728		case CTF_K_UNION:
1729			cbdata.f_type = 1;
1730			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1731			    dt_print_type_width, &cbdata) != 0)
1732				return (-1);
1733			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1734			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1735			    dt_print_type_member, &cbdata) != 0)
1736				return (-1);
1737			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1738			break;
1739		case CTF_K_ENUM:
1740			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1741			break;
1742		case CTF_K_TYPEDEF:
1743			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1744			break;
1745		case CTF_K_VOLATILE:
1746			if (cbdatap->f_type)
1747				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1748			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1749			break;
1750		case CTF_K_CONST:
1751			if (cbdatap->f_type)
1752				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1753			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1754			break;
1755		case CTF_K_RESTRICT:
1756			if (cbdatap->f_type)
1757				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1758			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1759			break;
1760		default:
1761			break;
1762		}
1763
1764		addr += ssz;
1765		cnt++;
1766	}
1767
1768	return (0);
1769}
1770
1771static int
1772dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1773{
1774	caddr_t addrend;
1775	char *p;
1776	dtrace_typeinfo_t dtt;
1777	dt_type_cbdata_t cbdata;
1778	int num = 0;
1779	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1780	ssize_t ssz;
1781
1782	if (!quiet)
1783		dt_printf(dtp, fp, "\n");
1784
1785	/* Get the total number of bytes of data buffered. */
1786	size_t nbytes = *((uintptr_t *) addr);
1787	addr += sizeof(uintptr_t);
1788
1789	/*
1790	 * Get the size of the type so that we can check that it matches
1791	 * the CTF data we look up and so that we can figure out how many
1792	 * type elements are buffered.
1793	 */
1794	size_t typs = *((uintptr_t *) addr);
1795	addr += sizeof(uintptr_t);
1796
1797	/*
1798	 * Point to the type string in the buffer. Get it's string
1799	 * length and round it up to become the offset to the start
1800	 * of the buffered type data which we would like to be aligned
1801	 * for easy access.
1802	 */
1803	char *strp = (char *) addr;
1804	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1805
1806	/*
1807	 * The type string might have a format such as 'int [20]'.
1808	 * Check if there is an array dimension present.
1809	 */
1810	if ((p = strchr(strp, '[')) != NULL) {
1811		/* Strip off the array dimension. */
1812		*p++ = '\0';
1813
1814		for (; *p != '\0' && *p != ']'; p++)
1815			num = num * 10 + *p - '0';
1816	} else
1817		/* No array dimension, so default. */
1818		num = 1;
1819
1820	/* Lookup the CTF type from the type string. */
1821	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1822		return (-1);
1823
1824	/* Offset the buffer address to the start of the data... */
1825	addr += offset;
1826
1827	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1828
1829	if (typs != ssz) {
1830		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1831		return (-1);
1832	}
1833
1834	cbdata.dtp = dtp;
1835	cbdata.dtt = dtt;
1836	cbdata.name = "";
1837	cbdata.addr = addr;
1838	cbdata.addrend = addr + nbytes;
1839	cbdata.indent = 1;
1840	cbdata.f_type = 1;
1841	cbdata.type_width = 0;
1842	cbdata.name_width = 0;
1843	cbdata.fp = fp;
1844
1845	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1846}
1847
1848static int
1849dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1850{
1851	/* LINTED - alignment */
1852	uint64_t pc = *((uint64_t *)addr);
1853	dtrace_syminfo_t dts;
1854	GElf_Sym sym;
1855	char c[PATH_MAX * 2];
1856
1857	if (format == NULL)
1858		format = "  %-50s";
1859
1860	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1861		(void) snprintf(c, sizeof (c), "%s`%s",
1862		    dts.dts_object, dts.dts_name);
1863	} else {
1864		/*
1865		 * We'll repeat the lookup, but this time we'll specify a
1866		 * NULL GElf_Sym -- indicating that we're only interested in
1867		 * the containing module.
1868		 */
1869		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1870			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1871			    dts.dts_object, (u_longlong_t)pc);
1872		} else {
1873			(void) snprintf(c, sizeof (c), "0x%llx",
1874			    (u_longlong_t)pc);
1875		}
1876	}
1877
1878	if (dt_printf(dtp, fp, format, c) < 0)
1879		return (-1);
1880
1881	return (0);
1882}
1883
1884int
1885dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1886{
1887	/* LINTED - alignment */
1888	uint64_t pc = *((uint64_t *)addr);
1889	dtrace_syminfo_t dts;
1890	char c[PATH_MAX * 2];
1891
1892	if (format == NULL)
1893		format = "  %-50s";
1894
1895	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1896		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1897	} else {
1898		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1899	}
1900
1901	if (dt_printf(dtp, fp, format, c) < 0)
1902		return (-1);
1903
1904	return (0);
1905}
1906
1907typedef struct dt_normal {
1908	dtrace_aggvarid_t dtnd_id;
1909	uint64_t dtnd_normal;
1910} dt_normal_t;
1911
1912static int
1913dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1914{
1915	dt_normal_t *normal = arg;
1916	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1917	dtrace_aggvarid_t id = normal->dtnd_id;
1918
1919	if (agg->dtagd_nrecs == 0)
1920		return (DTRACE_AGGWALK_NEXT);
1921
1922	if (agg->dtagd_varid != id)
1923		return (DTRACE_AGGWALK_NEXT);
1924
1925	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1926	return (DTRACE_AGGWALK_NORMALIZE);
1927}
1928
1929static int
1930dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1931{
1932	dt_normal_t normal;
1933	caddr_t addr;
1934
1935	/*
1936	 * We (should) have two records:  the aggregation ID followed by the
1937	 * normalization value.
1938	 */
1939	addr = base + rec->dtrd_offset;
1940
1941	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1942		return (dt_set_errno(dtp, EDT_BADNORMAL));
1943
1944	/* LINTED - alignment */
1945	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1946	rec++;
1947
1948	if (rec->dtrd_action != DTRACEACT_LIBACT)
1949		return (dt_set_errno(dtp, EDT_BADNORMAL));
1950
1951	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1952		return (dt_set_errno(dtp, EDT_BADNORMAL));
1953
1954	addr = base + rec->dtrd_offset;
1955
1956	switch (rec->dtrd_size) {
1957	case sizeof (uint64_t):
1958		/* LINTED - alignment */
1959		normal.dtnd_normal = *((uint64_t *)addr);
1960		break;
1961	case sizeof (uint32_t):
1962		/* LINTED - alignment */
1963		normal.dtnd_normal = *((uint32_t *)addr);
1964		break;
1965	case sizeof (uint16_t):
1966		/* LINTED - alignment */
1967		normal.dtnd_normal = *((uint16_t *)addr);
1968		break;
1969	case sizeof (uint8_t):
1970		normal.dtnd_normal = *((uint8_t *)addr);
1971		break;
1972	default:
1973		return (dt_set_errno(dtp, EDT_BADNORMAL));
1974	}
1975
1976	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1977
1978	return (0);
1979}
1980
1981static int
1982dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1983{
1984	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1985	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1986
1987	if (agg->dtagd_nrecs == 0)
1988		return (DTRACE_AGGWALK_NEXT);
1989
1990	if (agg->dtagd_varid != id)
1991		return (DTRACE_AGGWALK_NEXT);
1992
1993	return (DTRACE_AGGWALK_DENORMALIZE);
1994}
1995
1996static int
1997dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1998{
1999	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2000	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
2001
2002	if (agg->dtagd_nrecs == 0)
2003		return (DTRACE_AGGWALK_NEXT);
2004
2005	if (agg->dtagd_varid != id)
2006		return (DTRACE_AGGWALK_NEXT);
2007
2008	return (DTRACE_AGGWALK_CLEAR);
2009}
2010
2011typedef struct dt_trunc {
2012	dtrace_aggvarid_t dttd_id;
2013	uint64_t dttd_remaining;
2014} dt_trunc_t;
2015
2016static int
2017dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
2018{
2019	dt_trunc_t *trunc = arg;
2020	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2021	dtrace_aggvarid_t id = trunc->dttd_id;
2022
2023	if (agg->dtagd_nrecs == 0)
2024		return (DTRACE_AGGWALK_NEXT);
2025
2026	if (agg->dtagd_varid != id)
2027		return (DTRACE_AGGWALK_NEXT);
2028
2029	if (trunc->dttd_remaining == 0)
2030		return (DTRACE_AGGWALK_REMOVE);
2031
2032	trunc->dttd_remaining--;
2033	return (DTRACE_AGGWALK_NEXT);
2034}
2035
2036static int
2037dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
2038{
2039	dt_trunc_t trunc;
2040	caddr_t addr;
2041	int64_t remaining;
2042	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
2043
2044	/*
2045	 * We (should) have two records:  the aggregation ID followed by the
2046	 * number of aggregation entries after which the aggregation is to be
2047	 * truncated.
2048	 */
2049	addr = base + rec->dtrd_offset;
2050
2051	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
2052		return (dt_set_errno(dtp, EDT_BADTRUNC));
2053
2054	/* LINTED - alignment */
2055	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
2056	rec++;
2057
2058	if (rec->dtrd_action != DTRACEACT_LIBACT)
2059		return (dt_set_errno(dtp, EDT_BADTRUNC));
2060
2061	if (rec->dtrd_arg != DT_ACT_TRUNC)
2062		return (dt_set_errno(dtp, EDT_BADTRUNC));
2063
2064	addr = base + rec->dtrd_offset;
2065
2066	switch (rec->dtrd_size) {
2067	case sizeof (uint64_t):
2068		/* LINTED - alignment */
2069		remaining = *((int64_t *)addr);
2070		break;
2071	case sizeof (uint32_t):
2072		/* LINTED - alignment */
2073		remaining = *((int32_t *)addr);
2074		break;
2075	case sizeof (uint16_t):
2076		/* LINTED - alignment */
2077		remaining = *((int16_t *)addr);
2078		break;
2079	case sizeof (uint8_t):
2080		remaining = *((int8_t *)addr);
2081		break;
2082	default:
2083		return (dt_set_errno(dtp, EDT_BADNORMAL));
2084	}
2085
2086	if (remaining < 0) {
2087		func = dtrace_aggregate_walk_valsorted;
2088		remaining = -remaining;
2089	} else {
2090		func = dtrace_aggregate_walk_valrevsorted;
2091	}
2092
2093	assert(remaining >= 0);
2094	trunc.dttd_remaining = remaining;
2095
2096	(void) func(dtp, dt_trunc_agg, &trunc);
2097
2098	return (0);
2099}
2100
2101static int
2102dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
2103    caddr_t addr, size_t size, const dtrace_aggdata_t *aggdata,
2104    uint64_t normal, dt_print_aggdata_t *pd)
2105{
2106	int err, width;
2107	dtrace_actkind_t act = rec->dtrd_action;
2108	boolean_t packed = pd->dtpa_agghist || pd->dtpa_aggpack;
2109	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2110
2111	static struct {
2112		size_t size;
2113		int width;
2114		int packedwidth;
2115	} *fmt, fmttab[] = {
2116		{ sizeof (uint8_t),	3,	3 },
2117		{ sizeof (uint16_t),	5,	5 },
2118		{ sizeof (uint32_t),	8,	8 },
2119		{ sizeof (uint64_t),	16,	16 },
2120		{ 0,			-50,	16 }
2121	};
2122
2123	if (packed && pd->dtpa_agghisthdr != agg->dtagd_varid) {
2124		dtrace_recdesc_t *r;
2125
2126		width = 0;
2127
2128		/*
2129		 * To print our quantization header for either an agghist or
2130		 * aggpack aggregation, we need to iterate through all of our
2131		 * of our records to determine their width.
2132		 */
2133		for (r = rec; !DTRACEACT_ISAGG(r->dtrd_action); r++) {
2134			for (fmt = fmttab; fmt->size &&
2135			    fmt->size != r->dtrd_size; fmt++)
2136				continue;
2137
2138			width += fmt->packedwidth + 1;
2139		}
2140
2141		if (pd->dtpa_agghist) {
2142			if (dt_print_quanthdr(dtp, fp, width) < 0)
2143				return (-1);
2144		} else {
2145			if (dt_print_quanthdr_packed(dtp, fp,
2146			    width, aggdata, r->dtrd_action) < 0)
2147				return (-1);
2148		}
2149
2150		pd->dtpa_agghisthdr = agg->dtagd_varid;
2151	}
2152
2153	if (pd->dtpa_agghist && DTRACEACT_ISAGG(act)) {
2154		char positives = aggdata->dtada_flags & DTRACE_A_HASPOSITIVES;
2155		char negatives = aggdata->dtada_flags & DTRACE_A_HASNEGATIVES;
2156		int64_t val;
2157
2158		assert(act == DTRACEAGG_SUM || act == DTRACEAGG_COUNT);
2159		val = (long long)*((uint64_t *)addr);
2160
2161		if (dt_printf(dtp, fp, " ") < 0)
2162			return (-1);
2163
2164		return (dt_print_quantline(dtp, fp, val, normal,
2165		    aggdata->dtada_total, positives, negatives));
2166	}
2167
2168	if (pd->dtpa_aggpack && DTRACEACT_ISAGG(act)) {
2169		switch (act) {
2170		case DTRACEAGG_QUANTIZE:
2171			return (dt_print_quantize_packed(dtp,
2172			    fp, addr, size, aggdata));
2173		case DTRACEAGG_LQUANTIZE:
2174			return (dt_print_lquantize_packed(dtp,
2175			    fp, addr, size, aggdata));
2176		default:
2177			break;
2178		}
2179	}
2180
2181	switch (act) {
2182	case DTRACEACT_STACK:
2183		return (dt_print_stack(dtp, fp, NULL, addr,
2184		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
2185
2186	case DTRACEACT_USTACK:
2187	case DTRACEACT_JSTACK:
2188		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
2189
2190	case DTRACEACT_USYM:
2191	case DTRACEACT_UADDR:
2192		return (dt_print_usym(dtp, fp, addr, act));
2193
2194	case DTRACEACT_UMOD:
2195		return (dt_print_umod(dtp, fp, NULL, addr));
2196
2197	case DTRACEACT_SYM:
2198		return (dt_print_sym(dtp, fp, NULL, addr));
2199
2200	case DTRACEACT_MOD:
2201		return (dt_print_mod(dtp, fp, NULL, addr));
2202
2203	case DTRACEAGG_QUANTIZE:
2204		return (dt_print_quantize(dtp, fp, addr, size, normal));
2205
2206	case DTRACEAGG_LQUANTIZE:
2207		return (dt_print_lquantize(dtp, fp, addr, size, normal));
2208
2209	case DTRACEAGG_LLQUANTIZE:
2210		return (dt_print_llquantize(dtp, fp, addr, size, normal));
2211
2212	case DTRACEAGG_AVG:
2213		return (dt_print_average(dtp, fp, addr, size, normal));
2214
2215	case DTRACEAGG_STDDEV:
2216		return (dt_print_stddev(dtp, fp, addr, size, normal));
2217
2218	default:
2219		break;
2220	}
2221
2222	for (fmt = fmttab; fmt->size && fmt->size != size; fmt++)
2223		continue;
2224
2225	width = packed ? fmt->packedwidth : fmt->width;
2226
2227	switch (size) {
2228	case sizeof (uint64_t):
2229		err = dt_printf(dtp, fp, " %*lld", width,
2230		    /* LINTED - alignment */
2231		    (long long)*((uint64_t *)addr) / normal);
2232		break;
2233	case sizeof (uint32_t):
2234		/* LINTED - alignment */
2235		err = dt_printf(dtp, fp, " %*d", width, *((uint32_t *)addr) /
2236		    (uint32_t)normal);
2237		break;
2238	case sizeof (uint16_t):
2239		/* LINTED - alignment */
2240		err = dt_printf(dtp, fp, " %*d", width, *((uint16_t *)addr) /
2241		    (uint32_t)normal);
2242		break;
2243	case sizeof (uint8_t):
2244		err = dt_printf(dtp, fp, " %*d", width, *((uint8_t *)addr) /
2245		    (uint32_t)normal);
2246		break;
2247	default:
2248		err = dt_print_bytes(dtp, fp, addr, size, width, 0, 0);
2249		break;
2250	}
2251
2252	return (err);
2253}
2254
2255int
2256dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
2257{
2258	int i, aggact = 0;
2259	dt_print_aggdata_t *pd = arg;
2260	const dtrace_aggdata_t *aggdata = aggsdata[0];
2261	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2262	FILE *fp = pd->dtpa_fp;
2263	dtrace_hdl_t *dtp = pd->dtpa_dtp;
2264	dtrace_recdesc_t *rec;
2265	dtrace_actkind_t act;
2266	caddr_t addr;
2267	size_t size;
2268
2269	pd->dtpa_agghist = (aggdata->dtada_flags & DTRACE_A_TOTAL);
2270	pd->dtpa_aggpack = (aggdata->dtada_flags & DTRACE_A_MINMAXBIN);
2271
2272	/*
2273	 * Iterate over each record description in the key, printing the traced
2274	 * data, skipping the first datum (the tuple member created by the
2275	 * compiler).
2276	 */
2277	for (i = 1; i < agg->dtagd_nrecs; i++) {
2278		rec = &agg->dtagd_rec[i];
2279		act = rec->dtrd_action;
2280		addr = aggdata->dtada_data + rec->dtrd_offset;
2281		size = rec->dtrd_size;
2282
2283		if (DTRACEACT_ISAGG(act)) {
2284			aggact = i;
2285			break;
2286		}
2287
2288		if (dt_print_datum(dtp, fp, rec, addr,
2289		    size, aggdata, 1, pd) < 0)
2290			return (-1);
2291
2292		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2293		    DTRACE_BUFDATA_AGGKEY) < 0)
2294			return (-1);
2295	}
2296
2297	assert(aggact != 0);
2298
2299	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
2300		uint64_t normal;
2301
2302		aggdata = aggsdata[i];
2303		agg = aggdata->dtada_desc;
2304		rec = &agg->dtagd_rec[aggact];
2305		act = rec->dtrd_action;
2306		addr = aggdata->dtada_data + rec->dtrd_offset;
2307		size = rec->dtrd_size;
2308
2309		assert(DTRACEACT_ISAGG(act));
2310		normal = aggdata->dtada_normal;
2311
2312		if (dt_print_datum(dtp, fp, rec, addr,
2313		    size, aggdata, normal, pd) < 0)
2314			return (-1);
2315
2316		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2317		    DTRACE_BUFDATA_AGGVAL) < 0)
2318			return (-1);
2319
2320		if (!pd->dtpa_allunprint)
2321			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
2322	}
2323
2324	if (!pd->dtpa_agghist && !pd->dtpa_aggpack) {
2325		if (dt_printf(dtp, fp, "\n") < 0)
2326			return (-1);
2327	}
2328
2329	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
2330	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
2331		return (-1);
2332
2333	return (0);
2334}
2335
2336int
2337dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
2338{
2339	dt_print_aggdata_t *pd = arg;
2340	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2341	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
2342
2343	if (pd->dtpa_allunprint) {
2344		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
2345			return (0);
2346	} else {
2347		/*
2348		 * If we're not printing all unprinted aggregations, then the
2349		 * aggregation variable ID denotes a specific aggregation
2350		 * variable that we should print -- skip any other aggregations
2351		 * that we encounter.
2352		 */
2353		if (agg->dtagd_nrecs == 0)
2354			return (0);
2355
2356		if (aggvarid != agg->dtagd_varid)
2357			return (0);
2358	}
2359
2360	return (dt_print_aggs(&aggdata, 1, arg));
2361}
2362
2363int
2364dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
2365    const char *option, const char *value)
2366{
2367	int len, rval;
2368	char *msg;
2369	const char *errstr;
2370	dtrace_setoptdata_t optdata;
2371
2372	bzero(&optdata, sizeof (optdata));
2373	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
2374
2375	if (dtrace_setopt(dtp, option, value) == 0) {
2376		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
2377		optdata.dtsda_probe = data;
2378		optdata.dtsda_option = option;
2379		optdata.dtsda_handle = dtp;
2380
2381		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
2382			return (rval);
2383
2384		return (0);
2385	}
2386
2387	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
2388	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
2389	msg = alloca(len);
2390
2391	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2392	    option, value, errstr);
2393
2394	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2395		return (0);
2396
2397	return (rval);
2398}
2399
2400static int
2401dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
2402    dtrace_bufdesc_t *buf, boolean_t just_one,
2403    dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2404{
2405	dtrace_epid_t id;
2406	size_t offs;
2407	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2408	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2409	int rval, i, n;
2410	uint64_t tracememsize = 0;
2411	dtrace_probedata_t data;
2412	uint64_t drops;
2413
2414	bzero(&data, sizeof (data));
2415	data.dtpda_handle = dtp;
2416	data.dtpda_cpu = cpu;
2417	data.dtpda_flow = dtp->dt_flow;
2418	data.dtpda_indent = dtp->dt_indent;
2419	data.dtpda_prefix = dtp->dt_prefix;
2420
2421	for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
2422		dtrace_eprobedesc_t *epd;
2423
2424		/*
2425		 * We're guaranteed to have an ID.
2426		 */
2427		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2428
2429		if (id == DTRACE_EPIDNONE) {
2430			/*
2431			 * This is filler to assure proper alignment of the
2432			 * next record; we simply ignore it.
2433			 */
2434			offs += sizeof (id);
2435			continue;
2436		}
2437
2438		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2439		    &data.dtpda_pdesc)) != 0)
2440			return (rval);
2441
2442		epd = data.dtpda_edesc;
2443		data.dtpda_data = buf->dtbd_data + offs;
2444
2445		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2446			rval = dt_handle(dtp, &data);
2447
2448			if (rval == DTRACE_CONSUME_NEXT)
2449				goto nextepid;
2450
2451			if (rval == DTRACE_CONSUME_ERROR)
2452				return (-1);
2453		}
2454
2455		if (flow)
2456			(void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
2457			    buf, offs);
2458
2459		rval = (*efunc)(&data, arg);
2460
2461		if (flow) {
2462			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2463				data.dtpda_indent += 2;
2464		}
2465
2466		if (rval == DTRACE_CONSUME_NEXT)
2467			goto nextepid;
2468
2469		if (rval == DTRACE_CONSUME_ABORT)
2470			return (dt_set_errno(dtp, EDT_DIRABORT));
2471
2472		if (rval != DTRACE_CONSUME_THIS)
2473			return (dt_set_errno(dtp, EDT_BADRVAL));
2474
2475		for (i = 0; i < epd->dtepd_nrecs; i++) {
2476			caddr_t addr;
2477			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2478			dtrace_actkind_t act = rec->dtrd_action;
2479
2480			data.dtpda_data = buf->dtbd_data + offs +
2481			    rec->dtrd_offset;
2482			addr = data.dtpda_data;
2483
2484			if (act == DTRACEACT_LIBACT) {
2485				uint64_t arg = rec->dtrd_arg;
2486				dtrace_aggvarid_t id;
2487
2488				switch (arg) {
2489				case DT_ACT_CLEAR:
2490					/* LINTED - alignment */
2491					id = *((dtrace_aggvarid_t *)addr);
2492					(void) dtrace_aggregate_walk(dtp,
2493					    dt_clear_agg, &id);
2494					continue;
2495
2496				case DT_ACT_DENORMALIZE:
2497					/* LINTED - alignment */
2498					id = *((dtrace_aggvarid_t *)addr);
2499					(void) dtrace_aggregate_walk(dtp,
2500					    dt_denormalize_agg, &id);
2501					continue;
2502
2503				case DT_ACT_FTRUNCATE:
2504					if (fp == NULL)
2505						continue;
2506
2507					(void) fflush(fp);
2508					(void) ftruncate(fileno(fp), 0);
2509					(void) fseeko(fp, 0, SEEK_SET);
2510					continue;
2511
2512				case DT_ACT_NORMALIZE:
2513					if (i == epd->dtepd_nrecs - 1)
2514						return (dt_set_errno(dtp,
2515						    EDT_BADNORMAL));
2516
2517					if (dt_normalize(dtp,
2518					    buf->dtbd_data + offs, rec) != 0)
2519						return (-1);
2520
2521					i++;
2522					continue;
2523
2524				case DT_ACT_SETOPT: {
2525					uint64_t *opts = dtp->dt_options;
2526					dtrace_recdesc_t *valrec;
2527					uint32_t valsize;
2528					caddr_t val;
2529					int rv;
2530
2531					if (i == epd->dtepd_nrecs - 1) {
2532						return (dt_set_errno(dtp,
2533						    EDT_BADSETOPT));
2534					}
2535
2536					valrec = &epd->dtepd_rec[++i];
2537					valsize = valrec->dtrd_size;
2538
2539					if (valrec->dtrd_action != act ||
2540					    valrec->dtrd_arg != arg) {
2541						return (dt_set_errno(dtp,
2542						    EDT_BADSETOPT));
2543					}
2544
2545					if (valsize > sizeof (uint64_t)) {
2546						val = buf->dtbd_data + offs +
2547						    valrec->dtrd_offset;
2548					} else {
2549						val = "1";
2550					}
2551
2552					rv = dt_setopt(dtp, &data, addr, val);
2553
2554					if (rv != 0)
2555						return (-1);
2556
2557					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2558					    DTRACEOPT_UNSET);
2559					quiet = (opts[DTRACEOPT_QUIET] !=
2560					    DTRACEOPT_UNSET);
2561
2562					continue;
2563				}
2564
2565				case DT_ACT_TRUNC:
2566					if (i == epd->dtepd_nrecs - 1)
2567						return (dt_set_errno(dtp,
2568						    EDT_BADTRUNC));
2569
2570					if (dt_trunc(dtp,
2571					    buf->dtbd_data + offs, rec) != 0)
2572						return (-1);
2573
2574					i++;
2575					continue;
2576
2577				default:
2578					continue;
2579				}
2580			}
2581
2582			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2583			    rec->dtrd_size == sizeof (uint64_t)) {
2584			    	/* LINTED - alignment */
2585				tracememsize = *((unsigned long long *)addr);
2586				continue;
2587			}
2588
2589			rval = (*rfunc)(&data, rec, arg);
2590
2591			if (rval == DTRACE_CONSUME_NEXT)
2592				continue;
2593
2594			if (rval == DTRACE_CONSUME_ABORT)
2595				return (dt_set_errno(dtp, EDT_DIRABORT));
2596
2597			if (rval != DTRACE_CONSUME_THIS)
2598				return (dt_set_errno(dtp, EDT_BADRVAL));
2599
2600			if (act == DTRACEACT_STACK) {
2601				int depth = rec->dtrd_arg;
2602
2603				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2604				    rec->dtrd_size / depth) < 0)
2605					return (-1);
2606				goto nextrec;
2607			}
2608
2609			if (act == DTRACEACT_USTACK ||
2610			    act == DTRACEACT_JSTACK) {
2611				if (dt_print_ustack(dtp, fp, NULL,
2612				    addr, rec->dtrd_arg) < 0)
2613					return (-1);
2614				goto nextrec;
2615			}
2616
2617			if (act == DTRACEACT_SYM) {
2618				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2619					return (-1);
2620				goto nextrec;
2621			}
2622
2623			if (act == DTRACEACT_MOD) {
2624				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2625					return (-1);
2626				goto nextrec;
2627			}
2628
2629			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2630				if (dt_print_usym(dtp, fp, addr, act) < 0)
2631					return (-1);
2632				goto nextrec;
2633			}
2634
2635			if (act == DTRACEACT_UMOD) {
2636				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2637					return (-1);
2638				goto nextrec;
2639			}
2640
2641			if (act == DTRACEACT_PRINTM) {
2642				if (dt_print_memory(dtp, fp, addr) < 0)
2643					return (-1);
2644				goto nextrec;
2645			}
2646
2647			if (act == DTRACEACT_PRINTT) {
2648				if (dt_print_type(dtp, fp, addr) < 0)
2649					return (-1);
2650				goto nextrec;
2651			}
2652
2653			if (DTRACEACT_ISPRINTFLIKE(act)) {
2654				void *fmtdata;
2655				int (*func)(dtrace_hdl_t *, FILE *, void *,
2656				    const dtrace_probedata_t *,
2657				    const dtrace_recdesc_t *, uint_t,
2658				    const void *buf, size_t);
2659
2660				if ((fmtdata = dt_format_lookup(dtp,
2661				    rec->dtrd_format)) == NULL)
2662					goto nofmt;
2663
2664				switch (act) {
2665				case DTRACEACT_PRINTF:
2666					func = dtrace_fprintf;
2667					break;
2668				case DTRACEACT_PRINTA:
2669					func = dtrace_fprinta;
2670					break;
2671				case DTRACEACT_SYSTEM:
2672					func = dtrace_system;
2673					break;
2674				case DTRACEACT_FREOPEN:
2675					func = dtrace_freopen;
2676					break;
2677				}
2678
2679				n = (*func)(dtp, fp, fmtdata, &data,
2680				    rec, epd->dtepd_nrecs - i,
2681				    (uchar_t *)buf->dtbd_data + offs,
2682				    buf->dtbd_size - offs);
2683
2684				if (n < 0)
2685					return (-1); /* errno is set for us */
2686
2687				if (n > 0)
2688					i += n - 1;
2689				goto nextrec;
2690			}
2691
2692			/*
2693			 * If this is a DIF expression, and the record has a
2694			 * format set, this indicates we have a CTF type name
2695			 * associated with the data and we should try to print
2696			 * it out by type.
2697			 */
2698			if (act == DTRACEACT_DIFEXPR) {
2699				const char *strdata = dt_strdata_lookup(dtp,
2700				    rec->dtrd_format);
2701				if (strdata != NULL) {
2702					n = dtrace_print(dtp, fp, strdata,
2703					    addr, rec->dtrd_size);
2704
2705					/*
2706					 * dtrace_print() will return -1 on
2707					 * error, or return the number of bytes
2708					 * consumed.  It will return 0 if the
2709					 * type couldn't be determined, and we
2710					 * should fall through to the normal
2711					 * trace method.
2712					 */
2713					if (n < 0)
2714						return (-1);
2715
2716					if (n > 0)
2717						goto nextrec;
2718				}
2719			}
2720
2721nofmt:
2722			if (act == DTRACEACT_PRINTA) {
2723				dt_print_aggdata_t pd;
2724				dtrace_aggvarid_t *aggvars;
2725				int j, naggvars = 0;
2726				size_t size = ((epd->dtepd_nrecs - i) *
2727				    sizeof (dtrace_aggvarid_t));
2728
2729				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2730					return (-1);
2731
2732				/*
2733				 * This might be a printa() with multiple
2734				 * aggregation variables.  We need to scan
2735				 * forward through the records until we find
2736				 * a record from a different statement.
2737				 */
2738				for (j = i; j < epd->dtepd_nrecs; j++) {
2739					dtrace_recdesc_t *nrec;
2740					caddr_t naddr;
2741
2742					nrec = &epd->dtepd_rec[j];
2743
2744					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2745						break;
2746
2747					if (nrec->dtrd_action != act) {
2748						return (dt_set_errno(dtp,
2749						    EDT_BADAGG));
2750					}
2751
2752					naddr = buf->dtbd_data + offs +
2753					    nrec->dtrd_offset;
2754
2755					aggvars[naggvars++] =
2756					    /* LINTED - alignment */
2757					    *((dtrace_aggvarid_t *)naddr);
2758				}
2759
2760				i = j - 1;
2761				bzero(&pd, sizeof (pd));
2762				pd.dtpa_dtp = dtp;
2763				pd.dtpa_fp = fp;
2764
2765				assert(naggvars >= 1);
2766
2767				if (naggvars == 1) {
2768					pd.dtpa_id = aggvars[0];
2769					dt_free(dtp, aggvars);
2770
2771					if (dt_printf(dtp, fp, "\n") < 0 ||
2772					    dtrace_aggregate_walk_sorted(dtp,
2773					    dt_print_agg, &pd) < 0)
2774						return (-1);
2775					goto nextrec;
2776				}
2777
2778				if (dt_printf(dtp, fp, "\n") < 0 ||
2779				    dtrace_aggregate_walk_joined(dtp, aggvars,
2780				    naggvars, dt_print_aggs, &pd) < 0) {
2781					dt_free(dtp, aggvars);
2782					return (-1);
2783				}
2784
2785				dt_free(dtp, aggvars);
2786				goto nextrec;
2787			}
2788
2789			if (act == DTRACEACT_TRACEMEM) {
2790				if (tracememsize == 0 ||
2791				    tracememsize > rec->dtrd_size) {
2792					tracememsize = rec->dtrd_size;
2793				}
2794
2795				n = dt_print_bytes(dtp, fp, addr,
2796				    tracememsize, -33, quiet, 1);
2797
2798				tracememsize = 0;
2799
2800				if (n < 0)
2801					return (-1);
2802
2803				goto nextrec;
2804			}
2805
2806			switch (rec->dtrd_size) {
2807			case sizeof (uint64_t):
2808				n = dt_printf(dtp, fp,
2809				    quiet ? "%lld" : " %16lld",
2810				    /* LINTED - alignment */
2811				    *((unsigned long long *)addr));
2812				break;
2813			case sizeof (uint32_t):
2814				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2815				    /* LINTED - alignment */
2816				    *((uint32_t *)addr));
2817				break;
2818			case sizeof (uint16_t):
2819				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2820				    /* LINTED - alignment */
2821				    *((uint16_t *)addr));
2822				break;
2823			case sizeof (uint8_t):
2824				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2825				    *((uint8_t *)addr));
2826				break;
2827			default:
2828				n = dt_print_bytes(dtp, fp, addr,
2829				    rec->dtrd_size, -33, quiet, 0);
2830				break;
2831			}
2832
2833			if (n < 0)
2834				return (-1); /* errno is set for us */
2835
2836nextrec:
2837			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2838				return (-1); /* errno is set for us */
2839		}
2840
2841		/*
2842		 * Call the record callback with a NULL record to indicate
2843		 * that we're done processing this EPID.
2844		 */
2845		rval = (*rfunc)(&data, NULL, arg);
2846nextepid:
2847		offs += epd->dtepd_size;
2848		dtp->dt_last_epid = id;
2849		if (just_one) {
2850			buf->dtbd_oldest = offs;
2851			break;
2852		}
2853	}
2854
2855	dtp->dt_flow = data.dtpda_flow;
2856	dtp->dt_indent = data.dtpda_indent;
2857	dtp->dt_prefix = data.dtpda_prefix;
2858
2859	if ((drops = buf->dtbd_drops) == 0)
2860		return (0);
2861
2862	/*
2863	 * Explicitly zero the drops to prevent us from processing them again.
2864	 */
2865	buf->dtbd_drops = 0;
2866
2867	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2868}
2869
2870/*
2871 * Reduce memory usage by shrinking the buffer if it's no more than half full.
2872 * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2873 * only 4-byte aligned.
2874 */
2875static void
2876dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2877{
2878	uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2879	if (used < cursize / 2) {
2880		int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2881		char *newdata = dt_alloc(dtp, used + misalign);
2882		if (newdata == NULL)
2883			return;
2884		bzero(newdata, misalign);
2885		bcopy(buf->dtbd_data + buf->dtbd_oldest,
2886		    newdata + misalign, used);
2887		dt_free(dtp, buf->dtbd_data);
2888		buf->dtbd_oldest = misalign;
2889		buf->dtbd_size = used + misalign;
2890		buf->dtbd_data = newdata;
2891	}
2892}
2893
2894/*
2895 * If the ring buffer has wrapped, the data is not in order.  Rearrange it
2896 * so that it is.  Note, we need to preserve the alignment of the data at
2897 * dtbd_oldest, which is only 4-byte aligned.
2898 */
2899static int
2900dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2901{
2902	int misalign;
2903	char *newdata, *ndp;
2904
2905	if (buf->dtbd_oldest == 0)
2906		return (0);
2907
2908	misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2909	newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2910
2911	if (newdata == NULL)
2912		return (-1);
2913
2914	assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2915
2916	bzero(ndp, misalign);
2917	ndp += misalign;
2918
2919	bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2920	    buf->dtbd_size - buf->dtbd_oldest);
2921	ndp += buf->dtbd_size - buf->dtbd_oldest;
2922
2923	bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2924
2925	dt_free(dtp, buf->dtbd_data);
2926	buf->dtbd_oldest = 0;
2927	buf->dtbd_data = newdata;
2928	buf->dtbd_size += misalign;
2929
2930	return (0);
2931}
2932
2933static void
2934dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2935{
2936	dt_free(dtp, buf->dtbd_data);
2937	dt_free(dtp, buf);
2938}
2939
2940/*
2941 * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2942 * data, or NULL if there is no data for this CPU.
2943 * Returns -1 on failure and sets dt_errno.
2944 */
2945static int
2946dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2947{
2948	dtrace_optval_t size;
2949	dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2950	int error, rval;
2951
2952	if (buf == NULL)
2953		return (-1);
2954
2955	(void) dtrace_getopt(dtp, "bufsize", &size);
2956	buf->dtbd_data = dt_alloc(dtp, size);
2957	if (buf->dtbd_data == NULL) {
2958		dt_free(dtp, buf);
2959		return (-1);
2960	}
2961	buf->dtbd_size = size;
2962	buf->dtbd_cpu = cpu;
2963
2964#ifdef illumos
2965	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2966#else
2967	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2968#endif
2969		/*
2970		 * If we failed with ENOENT, it may be because the
2971		 * CPU was unconfigured -- this is okay.  Any other
2972		 * error, however, is unexpected.
2973		 */
2974		if (errno == ENOENT) {
2975			*bufp = NULL;
2976			rval = 0;
2977		} else
2978			rval = dt_set_errno(dtp, errno);
2979
2980		dt_put_buf(dtp, buf);
2981		return (rval);
2982	}
2983
2984	error = dt_unring_buf(dtp, buf);
2985	if (error != 0) {
2986		dt_put_buf(dtp, buf);
2987		return (error);
2988	}
2989	dt_realloc_buf(dtp, buf, size);
2990
2991	*bufp = buf;
2992	return (0);
2993}
2994
2995typedef struct dt_begin {
2996	dtrace_consume_probe_f *dtbgn_probefunc;
2997	dtrace_consume_rec_f *dtbgn_recfunc;
2998	void *dtbgn_arg;
2999	dtrace_handle_err_f *dtbgn_errhdlr;
3000	void *dtbgn_errarg;
3001	int dtbgn_beginonly;
3002} dt_begin_t;
3003
3004static int
3005dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
3006{
3007	dt_begin_t *begin = arg;
3008	dtrace_probedesc_t *pd = data->dtpda_pdesc;
3009
3010	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
3011	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
3012
3013	if (begin->dtbgn_beginonly) {
3014		if (!(r1 && r2))
3015			return (DTRACE_CONSUME_NEXT);
3016	} else {
3017		if (r1 && r2)
3018			return (DTRACE_CONSUME_NEXT);
3019	}
3020
3021	/*
3022	 * We have a record that we're interested in.  Now call the underlying
3023	 * probe function...
3024	 */
3025	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
3026}
3027
3028static int
3029dt_consume_begin_record(const dtrace_probedata_t *data,
3030    const dtrace_recdesc_t *rec, void *arg)
3031{
3032	dt_begin_t *begin = arg;
3033
3034	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
3035}
3036
3037static int
3038dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
3039{
3040	dt_begin_t *begin = (dt_begin_t *)arg;
3041	dtrace_probedesc_t *pd = data->dteda_pdesc;
3042
3043	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
3044	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
3045
3046	if (begin->dtbgn_beginonly) {
3047		if (!(r1 && r2))
3048			return (DTRACE_HANDLE_OK);
3049	} else {
3050		if (r1 && r2)
3051			return (DTRACE_HANDLE_OK);
3052	}
3053
3054	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
3055}
3056
3057static int
3058dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
3059    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
3060{
3061	/*
3062	 * There's this idea that the BEGIN probe should be processed before
3063	 * everything else, and that the END probe should be processed after
3064	 * anything else.  In the common case, this is pretty easy to deal
3065	 * with.  However, a situation may arise where the BEGIN enabling and
3066	 * END enabling are on the same CPU, and some enabling in the middle
3067	 * occurred on a different CPU.  To deal with this (blech!) we need to
3068	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
3069	 * then set it aside.  We will then process every other CPU, and then
3070	 * we'll return to the BEGIN CPU and process the rest of the data
3071	 * (which will inevitably include the END probe, if any).  Making this
3072	 * even more complicated (!) is the library's ERROR enabling.  Because
3073	 * this enabling is processed before we even get into the consume call
3074	 * back, any ERROR firing would result in the library's ERROR enabling
3075	 * being processed twice -- once in our first pass (for BEGIN probes),
3076	 * and again in our second pass (for everything but BEGIN probes).  To
3077	 * deal with this, we interpose on the ERROR handler to assure that we
3078	 * only process ERROR enablings induced by BEGIN enablings in the
3079	 * first pass, and that we only process ERROR enablings _not_ induced
3080	 * by BEGIN enablings in the second pass.
3081	 */
3082
3083	dt_begin_t begin;
3084	processorid_t cpu = dtp->dt_beganon;
3085	int rval, i;
3086	static int max_ncpus;
3087	dtrace_bufdesc_t *buf;
3088
3089	dtp->dt_beganon = -1;
3090
3091	if (dt_get_buf(dtp, cpu, &buf) != 0)
3092		return (-1);
3093	if (buf == NULL)
3094		return (0);
3095
3096	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
3097		/*
3098		 * This is the simple case.  We're either not stopped, or if
3099		 * we are, we actually processed any END probes on another
3100		 * CPU.  We can simply consume this buffer and return.
3101		 */
3102		rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3103		    pf, rf, arg);
3104		dt_put_buf(dtp, buf);
3105		return (rval);
3106	}
3107
3108	begin.dtbgn_probefunc = pf;
3109	begin.dtbgn_recfunc = rf;
3110	begin.dtbgn_arg = arg;
3111	begin.dtbgn_beginonly = 1;
3112
3113	/*
3114	 * We need to interpose on the ERROR handler to be sure that we
3115	 * only process ERRORs induced by BEGIN.
3116	 */
3117	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
3118	begin.dtbgn_errarg = dtp->dt_errarg;
3119	dtp->dt_errhdlr = dt_consume_begin_error;
3120	dtp->dt_errarg = &begin;
3121
3122	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3123	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
3124
3125	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
3126	dtp->dt_errarg = begin.dtbgn_errarg;
3127
3128	if (rval != 0) {
3129		dt_put_buf(dtp, buf);
3130		return (rval);
3131	}
3132
3133	if (max_ncpus == 0)
3134		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
3135
3136	for (i = 0; i < max_ncpus; i++) {
3137		dtrace_bufdesc_t *nbuf;
3138		if (i == cpu)
3139			continue;
3140
3141		if (dt_get_buf(dtp, i, &nbuf) != 0) {
3142			dt_put_buf(dtp, buf);
3143			return (-1);
3144		}
3145		if (nbuf == NULL)
3146			continue;
3147
3148		rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
3149		    pf, rf, arg);
3150		dt_put_buf(dtp, nbuf);
3151		if (rval != 0) {
3152			dt_put_buf(dtp, buf);
3153			return (rval);
3154		}
3155	}
3156
3157	/*
3158	 * Okay -- we're done with the other buffers.  Now we want to
3159	 * reconsume the first buffer -- but this time we're looking for
3160	 * everything _but_ BEGIN.  And of course, in order to only consume
3161	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
3162	 * ERROR interposition function...
3163	 */
3164	begin.dtbgn_beginonly = 0;
3165
3166	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
3167	assert(begin.dtbgn_errarg == dtp->dt_errarg);
3168	dtp->dt_errhdlr = dt_consume_begin_error;
3169	dtp->dt_errarg = &begin;
3170
3171	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
3172	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
3173
3174	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
3175	dtp->dt_errarg = begin.dtbgn_errarg;
3176
3177	return (rval);
3178}
3179
3180/* ARGSUSED */
3181static uint64_t
3182dt_buf_oldest(void *elem, void *arg)
3183{
3184	dtrace_bufdesc_t *buf = elem;
3185	size_t offs = buf->dtbd_oldest;
3186
3187	while (offs < buf->dtbd_size) {
3188		dtrace_rechdr_t *dtrh =
3189		    /* LINTED - alignment */
3190		    (dtrace_rechdr_t *)(buf->dtbd_data + offs);
3191		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
3192			offs += sizeof (dtrace_epid_t);
3193		} else {
3194			return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
3195		}
3196	}
3197
3198	/* There are no records left; use the time the buffer was retrieved. */
3199	return (buf->dtbd_timestamp);
3200}
3201
3202int
3203dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
3204    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
3205{
3206	dtrace_optval_t size;
3207	static int max_ncpus;
3208	int i, rval;
3209	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
3210	hrtime_t now = gethrtime();
3211
3212	if (dtp->dt_lastswitch != 0) {
3213		if (now - dtp->dt_lastswitch < interval)
3214			return (0);
3215
3216		dtp->dt_lastswitch += interval;
3217	} else {
3218		dtp->dt_lastswitch = now;
3219	}
3220
3221	if (!dtp->dt_active)
3222		return (dt_set_errno(dtp, EINVAL));
3223
3224	if (max_ncpus == 0)
3225		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
3226
3227	if (pf == NULL)
3228		pf = (dtrace_consume_probe_f *)dt_nullprobe;
3229
3230	if (rf == NULL)
3231		rf = (dtrace_consume_rec_f *)dt_nullrec;
3232
3233	if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
3234		/*
3235		 * The output will not be in the order it was traced.  Rather,
3236		 * we will consume all of the data from each CPU's buffer in
3237		 * turn.  We apply special handling for the records from BEGIN
3238		 * and END probes so that they are consumed first and last,
3239		 * respectively.
3240		 *
3241		 * If we have just begun, we want to first process the CPU that
3242		 * executed the BEGIN probe (if any).
3243		 */
3244		if (dtp->dt_active && dtp->dt_beganon != -1 &&
3245		    (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
3246			return (rval);
3247
3248		for (i = 0; i < max_ncpus; i++) {
3249			dtrace_bufdesc_t *buf;
3250
3251			/*
3252			 * If we have stopped, we want to process the CPU on
3253			 * which the END probe was processed only _after_ we
3254			 * have processed everything else.
3255			 */
3256			if (dtp->dt_stopped && (i == dtp->dt_endedon))
3257				continue;
3258
3259			if (dt_get_buf(dtp, i, &buf) != 0)
3260				return (-1);
3261			if (buf == NULL)
3262				continue;
3263
3264			dtp->dt_flow = 0;
3265			dtp->dt_indent = 0;
3266			dtp->dt_prefix = NULL;
3267			rval = dt_consume_cpu(dtp, fp, i,
3268			    buf, B_FALSE, pf, rf, arg);
3269			dt_put_buf(dtp, buf);
3270			if (rval != 0)
3271				return (rval);
3272		}
3273		if (dtp->dt_stopped) {
3274			dtrace_bufdesc_t *buf;
3275
3276			if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
3277				return (-1);
3278			if (buf == NULL)
3279				return (0);
3280
3281			rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
3282			    buf, B_FALSE, pf, rf, arg);
3283			dt_put_buf(dtp, buf);
3284			return (rval);
3285		}
3286	} else {
3287		/*
3288		 * The output will be in the order it was traced (or for
3289		 * speculations, when it was committed).  We retrieve a buffer
3290		 * from each CPU and put it into a priority queue, which sorts
3291		 * based on the first entry in the buffer.  This is sufficient
3292		 * because entries within a buffer are already sorted.
3293		 *
3294		 * We then consume records one at a time, always consuming the
3295		 * oldest record, as determined by the priority queue.  When
3296		 * we reach the end of the time covered by these buffers,
3297		 * we need to stop and retrieve more records on the next pass.
3298		 * The kernel tells us the time covered by each buffer, in
3299		 * dtbd_timestamp.  The first buffer's timestamp tells us the
3300		 * time covered by all buffers, as subsequently retrieved
3301		 * buffers will cover to a more recent time.
3302		 */
3303
3304		uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
3305		uint64_t first_timestamp = 0;
3306		uint_t cookie = 0;
3307		dtrace_bufdesc_t *buf;
3308
3309		bzero(drops, max_ncpus * sizeof (uint64_t));
3310
3311		if (dtp->dt_bufq == NULL) {
3312			dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
3313			    dt_buf_oldest, NULL);
3314			if (dtp->dt_bufq == NULL) /* ENOMEM */
3315				return (-1);
3316		}
3317
3318		/* Retrieve data from each CPU. */
3319		(void) dtrace_getopt(dtp, "bufsize", &size);
3320		for (i = 0; i < max_ncpus; i++) {
3321			dtrace_bufdesc_t *buf;
3322
3323			if (dt_get_buf(dtp, i, &buf) != 0)
3324				return (-1);
3325			if (buf != NULL) {
3326				if (first_timestamp == 0)
3327					first_timestamp = buf->dtbd_timestamp;
3328				assert(buf->dtbd_timestamp >= first_timestamp);
3329
3330				dt_pq_insert(dtp->dt_bufq, buf);
3331				drops[i] = buf->dtbd_drops;
3332				buf->dtbd_drops = 0;
3333			}
3334		}
3335
3336		/* Consume records. */
3337		for (;;) {
3338			dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
3339			uint64_t timestamp;
3340
3341			if (buf == NULL)
3342				break;
3343
3344			timestamp = dt_buf_oldest(buf, dtp);
3345			assert(timestamp >= dtp->dt_last_timestamp);
3346			dtp->dt_last_timestamp = timestamp;
3347
3348			if (timestamp == buf->dtbd_timestamp) {
3349				/*
3350				 * We've reached the end of the time covered
3351				 * by this buffer.  If this is the oldest
3352				 * buffer, we must do another pass
3353				 * to retrieve more data.
3354				 */
3355				dt_put_buf(dtp, buf);
3356				if (timestamp == first_timestamp &&
3357				    !dtp->dt_stopped)
3358					break;
3359				continue;
3360			}
3361
3362			if ((rval = dt_consume_cpu(dtp, fp,
3363			    buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
3364				return (rval);
3365			dt_pq_insert(dtp->dt_bufq, buf);
3366		}
3367
3368		/* Consume drops. */
3369		for (i = 0; i < max_ncpus; i++) {
3370			if (drops[i] != 0) {
3371				int error = dt_handle_cpudrop(dtp, i,
3372				    DTRACEDROP_PRINCIPAL, drops[i]);
3373				if (error != 0)
3374					return (error);
3375			}
3376		}
3377
3378		/*
3379		 * Reduce memory usage by re-allocating smaller buffers
3380		 * for the "remnants".
3381		 */
3382		while (buf = dt_pq_walk(dtp->dt_bufq, &cookie))
3383			dt_realloc_buf(dtp, buf, buf->dtbd_size);
3384	}
3385
3386	return (0);
3387}
3388