ctf_open.c revision 268578
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License").  You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23/*
24 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
25 * Use is subject to license terms.
26 */
27/*
28 * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
29 */
30
31#include <ctf_impl.h>
32#include <sys/mman.h>
33#include <sys/zmod.h>
34
35static const ctf_dmodel_t _libctf_models[] = {
36	{ "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
37	{ "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
38	{ NULL, 0, 0, 0, 0, 0, 0 }
39};
40
41const char _CTF_SECTION[] = ".SUNW_ctf";
42const char _CTF_NULLSTR[] = "";
43
44int _libctf_version = CTF_VERSION;	/* library client version */
45int _libctf_debug = 0;			/* debugging messages enabled */
46
47static ushort_t
48get_kind_v1(ushort_t info)
49{
50	return (CTF_INFO_KIND_V1(info));
51}
52
53static ushort_t
54get_kind_v2(ushort_t info)
55{
56	return (CTF_INFO_KIND(info));
57}
58
59static ushort_t
60get_root_v1(ushort_t info)
61{
62	return (CTF_INFO_ISROOT_V1(info));
63}
64
65static ushort_t
66get_root_v2(ushort_t info)
67{
68	return (CTF_INFO_ISROOT(info));
69}
70
71static ushort_t
72get_vlen_v1(ushort_t info)
73{
74	return (CTF_INFO_VLEN_V1(info));
75}
76
77static ushort_t
78get_vlen_v2(ushort_t info)
79{
80	return (CTF_INFO_VLEN(info));
81}
82
83static const ctf_fileops_t ctf_fileops[] = {
84	{ NULL, NULL },
85	{ get_kind_v1, get_root_v1, get_vlen_v1 },
86	{ get_kind_v2, get_root_v2, get_vlen_v2 },
87};
88
89/*
90 * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
91 */
92static Elf64_Sym *
93sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
94{
95	dst->st_name = src->st_name;
96	dst->st_value = src->st_value;
97	dst->st_size = src->st_size;
98	dst->st_info = src->st_info;
99	dst->st_other = src->st_other;
100	dst->st_shndx = src->st_shndx;
101
102	return (dst);
103}
104
105/*
106 * Initialize the symtab translation table by filling each entry with the
107 * offset of the CTF type or function data corresponding to each STT_FUNC or
108 * STT_OBJECT entry in the symbol table.
109 */
110static int
111init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
112    const ctf_sect_t *sp, const ctf_sect_t *strp)
113{
114	const uchar_t *symp = sp->cts_data;
115	uint_t *xp = fp->ctf_sxlate;
116	uint_t *xend = xp + fp->ctf_nsyms;
117
118	uint_t objtoff = hp->cth_objtoff;
119	uint_t funcoff = hp->cth_funcoff;
120
121	ushort_t info, vlen;
122	Elf64_Sym sym, *gsp;
123	const char *name;
124
125	/*
126	 * The CTF data object and function type sections are ordered to match
127	 * the relative order of the respective symbol types in the symtab.
128	 * If no type information is available for a symbol table entry, a
129	 * pad is inserted in the CTF section.  As a further optimization,
130	 * anonymous or undefined symbols are omitted from the CTF data.
131	 */
132	for (; xp < xend; xp++, symp += sp->cts_entsize) {
133		if (sp->cts_entsize == sizeof (Elf32_Sym))
134			gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
135		else
136			gsp = (Elf64_Sym *)(uintptr_t)symp;
137
138		if (gsp->st_name < strp->cts_size)
139			name = (const char *)strp->cts_data + gsp->st_name;
140		else
141			name = _CTF_NULLSTR;
142
143		if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
144		    strcmp(name, "_START_") == 0 ||
145		    strcmp(name, "_END_") == 0) {
146			*xp = -1u;
147			continue;
148		}
149
150		switch (ELF64_ST_TYPE(gsp->st_info)) {
151		case STT_OBJECT:
152			if (objtoff >= hp->cth_funcoff ||
153			    (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
154				*xp = -1u;
155				break;
156			}
157
158			*xp = objtoff;
159			objtoff += sizeof (ushort_t);
160			break;
161
162		case STT_FUNC:
163			if (funcoff >= hp->cth_typeoff) {
164				*xp = -1u;
165				break;
166			}
167
168			*xp = funcoff;
169
170			info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff);
171			vlen = LCTF_INFO_VLEN(fp, info);
172
173			/*
174			 * If we encounter a zero pad at the end, just skip it.
175			 * Otherwise skip over the function and its return type
176			 * (+2) and the argument list (vlen).
177			 */
178			if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
179			    vlen == 0)
180				funcoff += sizeof (ushort_t); /* skip pad */
181			else
182				funcoff += sizeof (ushort_t) * (vlen + 2);
183			break;
184
185		default:
186			*xp = -1u;
187			break;
188		}
189	}
190
191	ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
192	return (0);
193}
194
195/*
196 * Initialize the type ID translation table with the byte offset of each type,
197 * and initialize the hash tables of each named type.
198 */
199static int
200init_types(ctf_file_t *fp, const ctf_header_t *cth)
201{
202	/* LINTED - pointer alignment */
203	const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
204	/* LINTED - pointer alignment */
205	const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);
206
207	ulong_t pop[CTF_K_MAX + 1] = { 0 };
208	const ctf_type_t *tp;
209	ctf_hash_t *hp;
210	ushort_t id, dst;
211	uint_t *xp;
212
213	/*
214	 * We initially determine whether the container is a child or a parent
215	 * based on the value of cth_parname.  To support containers that pre-
216	 * date cth_parname, we also scan the types themselves for references
217	 * to values in the range reserved for child types in our first pass.
218	 */
219	int child = cth->cth_parname != 0;
220	int nlstructs = 0, nlunions = 0;
221	int err;
222
223	/*
224	 * We make two passes through the entire type section.  In this first
225	 * pass, we count the number of each type and the total number of types.
226	 */
227	for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
228		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
229		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
230		ssize_t size, increment;
231
232		size_t vbytes;
233		uint_t n;
234
235		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
236
237		switch (kind) {
238		case CTF_K_INTEGER:
239		case CTF_K_FLOAT:
240			vbytes = sizeof (uint_t);
241			break;
242		case CTF_K_ARRAY:
243			vbytes = sizeof (ctf_array_t);
244			break;
245		case CTF_K_FUNCTION:
246			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
247			break;
248		case CTF_K_STRUCT:
249		case CTF_K_UNION:
250			if (fp->ctf_version == CTF_VERSION_1 ||
251			    size < CTF_LSTRUCT_THRESH) {
252				ctf_member_t *mp = (ctf_member_t *)
253				    ((uintptr_t)tp + increment);
254
255				vbytes = sizeof (ctf_member_t) * vlen;
256				for (n = vlen; n != 0; n--, mp++)
257					child |= CTF_TYPE_ISCHILD(mp->ctm_type);
258			} else {
259				ctf_lmember_t *lmp = (ctf_lmember_t *)
260				    ((uintptr_t)tp + increment);
261
262				vbytes = sizeof (ctf_lmember_t) * vlen;
263				for (n = vlen; n != 0; n--, lmp++)
264					child |=
265					    CTF_TYPE_ISCHILD(lmp->ctlm_type);
266			}
267			break;
268		case CTF_K_ENUM:
269			vbytes = sizeof (ctf_enum_t) * vlen;
270			break;
271		case CTF_K_FORWARD:
272			/*
273			 * For forward declarations, ctt_type is the CTF_K_*
274			 * kind for the tag, so bump that population count too.
275			 * If ctt_type is unknown, treat the tag as a struct.
276			 */
277			if (tp->ctt_type == CTF_K_UNKNOWN ||
278			    tp->ctt_type >= CTF_K_MAX)
279				pop[CTF_K_STRUCT]++;
280			else
281				pop[tp->ctt_type]++;
282			/*FALLTHRU*/
283		case CTF_K_UNKNOWN:
284			vbytes = 0;
285			break;
286		case CTF_K_POINTER:
287		case CTF_K_TYPEDEF:
288		case CTF_K_VOLATILE:
289		case CTF_K_CONST:
290		case CTF_K_RESTRICT:
291			child |= CTF_TYPE_ISCHILD(tp->ctt_type);
292			vbytes = 0;
293			break;
294		default:
295			ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
296			return (ECTF_CORRUPT);
297		}
298		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
299		pop[kind]++;
300	}
301
302	/*
303	 * If we detected a reference to a child type ID, then we know this
304	 * container is a child and may have a parent's types imported later.
305	 */
306	if (child) {
307		ctf_dprintf("CTF container %p is a child\n", (void *)fp);
308		fp->ctf_flags |= LCTF_CHILD;
309	} else
310		ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
311
312	/*
313	 * Now that we've counted up the number of each type, we can allocate
314	 * the hash tables, type translation table, and pointer table.
315	 */
316	if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
317		return (err);
318
319	if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
320		return (err);
321
322	if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
323		return (err);
324
325	if ((err = ctf_hash_create(&fp->ctf_names,
326	    pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
327	    pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
328	    pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
329		return (err);
330
331	fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
332	fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));
333
334	if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
335		return (EAGAIN); /* memory allocation failed */
336
337	xp = fp->ctf_txlate;
338	*xp++ = 0; /* type id 0 is used as a sentinel value */
339
340	bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
341	bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));
342
343	/*
344	 * In the second pass through the types, we fill in each entry of the
345	 * type and pointer tables and add names to the appropriate hashes.
346	 */
347	for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
348		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
349		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
350		ssize_t size, increment;
351
352		const char *name;
353		size_t vbytes;
354		ctf_helem_t *hep;
355		ctf_encoding_t cte;
356
357		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
358		name = ctf_strptr(fp, tp->ctt_name);
359
360		switch (kind) {
361		case CTF_K_INTEGER:
362		case CTF_K_FLOAT:
363			/*
364			 * Only insert a new integer base type definition if
365			 * this type name has not been defined yet.  We re-use
366			 * the names with different encodings for bit-fields.
367			 */
368			if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
369			    name, strlen(name))) == NULL) {
370				err = ctf_hash_insert(&fp->ctf_names, fp,
371				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
372				if (err != 0 && err != ECTF_STRTAB)
373					return (err);
374			} else if (ctf_type_encoding(fp, hep->h_type,
375			    &cte) == 0 && cte.cte_bits == 0) {
376				/*
377				 * Work-around SOS8 stabs bug: replace existing
378				 * intrinsic w/ same name if it was zero bits.
379				 */
380				hep->h_type = CTF_INDEX_TO_TYPE(id, child);
381			}
382			vbytes = sizeof (uint_t);
383			break;
384
385		case CTF_K_ARRAY:
386			vbytes = sizeof (ctf_array_t);
387			break;
388
389		case CTF_K_FUNCTION:
390			err = ctf_hash_insert(&fp->ctf_names, fp,
391			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
392			if (err != 0 && err != ECTF_STRTAB)
393				return (err);
394			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
395			break;
396
397		case CTF_K_STRUCT:
398			err = ctf_hash_define(&fp->ctf_structs, fp,
399			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
400
401			if (err != 0 && err != ECTF_STRTAB)
402				return (err);
403
404			if (fp->ctf_version == CTF_VERSION_1 ||
405			    size < CTF_LSTRUCT_THRESH)
406				vbytes = sizeof (ctf_member_t) * vlen;
407			else {
408				vbytes = sizeof (ctf_lmember_t) * vlen;
409				nlstructs++;
410			}
411			break;
412
413		case CTF_K_UNION:
414			err = ctf_hash_define(&fp->ctf_unions, fp,
415			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
416
417			if (err != 0 && err != ECTF_STRTAB)
418				return (err);
419
420			if (fp->ctf_version == CTF_VERSION_1 ||
421			    size < CTF_LSTRUCT_THRESH)
422				vbytes = sizeof (ctf_member_t) * vlen;
423			else {
424				vbytes = sizeof (ctf_lmember_t) * vlen;
425				nlunions++;
426			}
427			break;
428
429		case CTF_K_ENUM:
430			err = ctf_hash_define(&fp->ctf_enums, fp,
431			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
432
433			if (err != 0 && err != ECTF_STRTAB)
434				return (err);
435
436			vbytes = sizeof (ctf_enum_t) * vlen;
437			break;
438
439		case CTF_K_TYPEDEF:
440			err = ctf_hash_insert(&fp->ctf_names, fp,
441			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
442			if (err != 0 && err != ECTF_STRTAB)
443				return (err);
444			vbytes = 0;
445			break;
446
447		case CTF_K_FORWARD:
448			/*
449			 * Only insert forward tags into the given hash if the
450			 * type or tag name is not already present.
451			 */
452			switch (tp->ctt_type) {
453			case CTF_K_STRUCT:
454				hp = &fp->ctf_structs;
455				break;
456			case CTF_K_UNION:
457				hp = &fp->ctf_unions;
458				break;
459			case CTF_K_ENUM:
460				hp = &fp->ctf_enums;
461				break;
462			default:
463				hp = &fp->ctf_structs;
464			}
465
466			if (ctf_hash_lookup(hp, fp,
467			    name, strlen(name)) == NULL) {
468				err = ctf_hash_insert(hp, fp,
469				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
470				if (err != 0 && err != ECTF_STRTAB)
471					return (err);
472			}
473			vbytes = 0;
474			break;
475
476		case CTF_K_POINTER:
477			/*
478			 * If the type referenced by the pointer is in this CTF
479			 * container, then store the index of the pointer type
480			 * in fp->ctf_ptrtab[ index of referenced type ].
481			 */
482			if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
483			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
484				fp->ctf_ptrtab[
485				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
486			/*FALLTHRU*/
487
488		case CTF_K_VOLATILE:
489		case CTF_K_CONST:
490		case CTF_K_RESTRICT:
491			err = ctf_hash_insert(&fp->ctf_names, fp,
492			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
493			if (err != 0 && err != ECTF_STRTAB)
494				return (err);
495			/*FALLTHRU*/
496
497		default:
498			vbytes = 0;
499			break;
500		}
501
502		*xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
503		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
504	}
505
506	ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
507	ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
508	ctf_dprintf("%u struct names hashed (%d long)\n",
509	    ctf_hash_size(&fp->ctf_structs), nlstructs);
510	ctf_dprintf("%u union names hashed (%d long)\n",
511	    ctf_hash_size(&fp->ctf_unions), nlunions);
512	ctf_dprintf("%u base type names hashed\n",
513	    ctf_hash_size(&fp->ctf_names));
514
515	/*
516	 * Make an additional pass through the pointer table to find pointers
517	 * that point to anonymous typedef nodes.  If we find one, modify the
518	 * pointer table so that the pointer is also known to point to the
519	 * node that is referenced by the anonymous typedef node.
520	 */
521	for (id = 1; id <= fp->ctf_typemax; id++) {
522		if ((dst = fp->ctf_ptrtab[id]) != 0) {
523			tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
524
525			if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
526			    strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
527			    CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
528			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
529				fp->ctf_ptrtab[
530				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
531		}
532	}
533
534	return (0);
535}
536
537/*
538 * Decode the specified CTF buffer and optional symbol table and create a new
539 * CTF container representing the symbolic debugging information.  This code
540 * can be used directly by the debugger, or it can be used as the engine for
541 * ctf_fdopen() or ctf_open(), below.
542 */
543ctf_file_t *
544ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
545    const ctf_sect_t *strsect, int *errp)
546{
547	const ctf_preamble_t *pp;
548	ctf_header_t hp;
549	ctf_file_t *fp;
550	void *buf, *base;
551	size_t size, hdrsz;
552	int err;
553
554	if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
555		return (ctf_set_open_errno(errp, EINVAL));
556
557	if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
558	    symsect->cts_entsize != sizeof (Elf64_Sym))
559		return (ctf_set_open_errno(errp, ECTF_SYMTAB));
560
561	if (symsect != NULL && symsect->cts_data == NULL)
562		return (ctf_set_open_errno(errp, ECTF_SYMBAD));
563
564	if (strsect != NULL && strsect->cts_data == NULL)
565		return (ctf_set_open_errno(errp, ECTF_STRBAD));
566
567	if (ctfsect->cts_size < sizeof (ctf_preamble_t))
568		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
569
570	pp = (const ctf_preamble_t *)ctfsect->cts_data;
571
572	ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
573	    pp->ctp_magic, pp->ctp_version);
574
575	/*
576	 * Validate each part of the CTF header (either V1 or V2).
577	 * First, we validate the preamble (common to all versions).  At that
578	 * point, we know specific header version, and can validate the
579	 * version-specific parts including section offsets and alignments.
580	 */
581	if (pp->ctp_magic != CTF_MAGIC)
582		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
583
584	if (pp->ctp_version == CTF_VERSION_2) {
585		if (ctfsect->cts_size < sizeof (ctf_header_t))
586			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
587
588		bcopy(ctfsect->cts_data, &hp, sizeof (hp));
589		hdrsz = sizeof (ctf_header_t);
590
591	} else if (pp->ctp_version == CTF_VERSION_1) {
592		const ctf_header_v1_t *h1p =
593		    (const ctf_header_v1_t *)ctfsect->cts_data;
594
595		if (ctfsect->cts_size < sizeof (ctf_header_v1_t))
596			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
597
598		bzero(&hp, sizeof (hp));
599		hp.cth_preamble = h1p->cth_preamble;
600		hp.cth_objtoff = h1p->cth_objtoff;
601		hp.cth_funcoff = h1p->cth_funcoff;
602		hp.cth_typeoff = h1p->cth_typeoff;
603		hp.cth_stroff = h1p->cth_stroff;
604		hp.cth_strlen = h1p->cth_strlen;
605
606		hdrsz = sizeof (ctf_header_v1_t);
607	} else
608		return (ctf_set_open_errno(errp, ECTF_CTFVERS));
609
610	size = hp.cth_stroff + hp.cth_strlen;
611
612	ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
613
614	if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
615	    hp.cth_funcoff > size || hp.cth_typeoff > size ||
616	    hp.cth_stroff > size)
617		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
618
619	if (hp.cth_lbloff > hp.cth_objtoff ||
620	    hp.cth_objtoff > hp.cth_funcoff ||
621	    hp.cth_funcoff > hp.cth_typeoff ||
622	    hp.cth_typeoff > hp.cth_stroff)
623		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
624
625	if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
626	    (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
627		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
628
629	/*
630	 * Once everything is determined to be valid, attempt to decompress
631	 * the CTF data buffer if it is compressed.  Otherwise we just put
632	 * the data section's buffer pointer into ctf_buf, below.
633	 */
634	if (hp.cth_flags & CTF_F_COMPRESS) {
635		size_t srclen, dstlen;
636		const void *src;
637		int rc = Z_OK;
638
639		if (ctf_zopen(errp) == NULL)
640			return (NULL); /* errp is set for us */
641
642		if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
643			return (ctf_set_open_errno(errp, ECTF_ZALLOC));
644
645		bcopy(ctfsect->cts_data, base, hdrsz);
646		((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
647		buf = (uchar_t *)base + hdrsz;
648
649		src = (uchar_t *)ctfsect->cts_data + hdrsz;
650		srclen = ctfsect->cts_size - hdrsz;
651		dstlen = size;
652
653		if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
654			ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
655			ctf_data_free(base, size + hdrsz);
656			return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
657		}
658
659		if (dstlen != size) {
660			ctf_dprintf("zlib inflate short -- got %lu of %lu "
661			    "bytes\n", (ulong_t)dstlen, (ulong_t)size);
662			ctf_data_free(base, size + hdrsz);
663			return (ctf_set_open_errno(errp, ECTF_CORRUPT));
664		}
665
666		ctf_data_protect(base, size + hdrsz);
667
668	} else {
669		base = (void *)ctfsect->cts_data;
670		buf = (uchar_t *)base + hdrsz;
671	}
672
673	/*
674	 * Once we have uncompressed and validated the CTF data buffer, we can
675	 * proceed with allocating a ctf_file_t and initializing it.
676	 */
677	if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
678		return (ctf_set_open_errno(errp, EAGAIN));
679
680	bzero(fp, sizeof (ctf_file_t));
681	fp->ctf_version = hp.cth_version;
682	fp->ctf_fileops = &ctf_fileops[hp.cth_version];
683	bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
684
685	if (symsect != NULL) {
686		bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
687		bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
688	}
689
690	if (fp->ctf_data.cts_name != NULL)
691		fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
692	if (fp->ctf_symtab.cts_name != NULL)
693		fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
694	if (fp->ctf_strtab.cts_name != NULL)
695		fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
696
697	if (fp->ctf_data.cts_name == NULL)
698		fp->ctf_data.cts_name = _CTF_NULLSTR;
699	if (fp->ctf_symtab.cts_name == NULL)
700		fp->ctf_symtab.cts_name = _CTF_NULLSTR;
701	if (fp->ctf_strtab.cts_name == NULL)
702		fp->ctf_strtab.cts_name = _CTF_NULLSTR;
703
704	fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
705	fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
706
707	if (strsect != NULL) {
708		fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
709		fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
710	}
711
712	fp->ctf_base = base;
713	fp->ctf_buf = buf;
714	fp->ctf_size = size + hdrsz;
715
716	/*
717	 * If we have a parent container name and label, store the relocated
718	 * string pointers in the CTF container for easy access later.
719	 */
720	if (hp.cth_parlabel != 0)
721		fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
722	if (hp.cth_parname != 0)
723		fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
724
725	ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
726	    fp->ctf_parname ? fp->ctf_parname : "<NULL>",
727	    fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
728
729	/*
730	 * If we have a symbol table section, allocate and initialize
731	 * the symtab translation table, pointed to by ctf_sxlate.
732	 */
733	if (symsect != NULL) {
734		fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
735		fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
736
737		if (fp->ctf_sxlate == NULL) {
738			(void) ctf_set_open_errno(errp, EAGAIN);
739			goto bad;
740		}
741
742		if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
743			(void) ctf_set_open_errno(errp, err);
744			goto bad;
745		}
746	}
747
748	if ((err = init_types(fp, &hp)) != 0) {
749		(void) ctf_set_open_errno(errp, err);
750		goto bad;
751	}
752
753	/*
754	 * Initialize the ctf_lookup_by_name top-level dictionary.  We keep an
755	 * array of type name prefixes and the corresponding ctf_hash to use.
756	 * NOTE: This code must be kept in sync with the code in ctf_update().
757	 */
758	fp->ctf_lookups[0].ctl_prefix = "struct";
759	fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
760	fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
761	fp->ctf_lookups[1].ctl_prefix = "union";
762	fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
763	fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
764	fp->ctf_lookups[2].ctl_prefix = "enum";
765	fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
766	fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
767	fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
768	fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
769	fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
770	fp->ctf_lookups[4].ctl_prefix = NULL;
771	fp->ctf_lookups[4].ctl_len = 0;
772	fp->ctf_lookups[4].ctl_hash = NULL;
773
774	if (symsect != NULL) {
775		if (symsect->cts_entsize == sizeof (Elf64_Sym))
776			(void) ctf_setmodel(fp, CTF_MODEL_LP64);
777		else
778			(void) ctf_setmodel(fp, CTF_MODEL_ILP32);
779	} else
780		(void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
781
782	fp->ctf_refcnt = 1;
783	return (fp);
784
785bad:
786	ctf_close(fp);
787	return (NULL);
788}
789
790/*
791 * Dupliate a ctf_file_t and its underlying section information into a new
792 * container. This works by copying the three ctf_sect_t's of the original
793 * container if they exist and passing those into ctf_bufopen. To copy those, we
794 * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not
795 * the cheapest thing, but it's what we've got.
796 */
797ctf_file_t *
798ctf_dup(ctf_file_t *ofp)
799{
800	ctf_file_t *fp;
801	ctf_sect_t ctfsect, symsect, strsect;
802	ctf_sect_t *ctp, *symp, *strp;
803	void *cbuf, *symbuf, *strbuf;
804	int err;
805
806	cbuf = symbuf = strbuf = NULL;
807	/*
808	 * The ctfsect isn't allowed to not exist, but the symbol and string
809	 * section might not. We only need to copy the data of the section, not
810	 * the name, as ctf_bufopen will take care of that.
811	 */
812	bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t));
813	cbuf = ctf_data_alloc(ctfsect.cts_size);
814	if (cbuf == NULL) {
815		(void) ctf_set_errno(ofp, ECTF_MMAP);
816		return (NULL);
817	}
818
819	bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size);
820	ctf_data_protect(cbuf, ctfsect.cts_size);
821	ctfsect.cts_data = cbuf;
822	ctfsect.cts_offset = 0;
823	ctp = &ctfsect;
824
825	if (ofp->ctf_symtab.cts_data != NULL) {
826		bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t));
827		symbuf = ctf_data_alloc(symsect.cts_size);
828		if (symbuf == NULL) {
829			(void) ctf_set_errno(ofp, ECTF_MMAP);
830			goto err;
831		}
832		bcopy(symsect.cts_data, symbuf, symsect.cts_size);
833		ctf_data_protect(symbuf, symsect.cts_size);
834		symsect.cts_data = symbuf;
835		symsect.cts_offset = 0;
836		symp = &symsect;
837	} else {
838		symp = NULL;
839	}
840
841	if (ofp->ctf_strtab.cts_data != NULL) {
842		bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t));
843		strbuf = ctf_data_alloc(strsect.cts_size);
844		if (strbuf == NULL) {
845			(void) ctf_set_errno(ofp, ECTF_MMAP);
846			goto err;
847		}
848		bcopy(strsect.cts_data, strbuf, strsect.cts_size);
849		ctf_data_protect(strbuf, strsect.cts_size);
850		strsect.cts_data = strbuf;
851		strsect.cts_offset = 0;
852		strp = &strsect;
853	} else {
854		strp = NULL;
855	}
856
857	fp = ctf_bufopen(ctp, symp, strp, &err);
858	if (fp == NULL) {
859		(void) ctf_set_errno(ofp, err);
860		goto err;
861	}
862
863	fp->ctf_flags |= LCTF_MMAP;
864
865	return (fp);
866
867err:
868	ctf_data_free(cbuf, ctfsect.cts_size);
869	if (symbuf != NULL)
870		ctf_data_free(symbuf, symsect.cts_size);
871	if (strbuf != NULL)
872		ctf_data_free(strbuf, strsect.cts_size);
873	return (NULL);
874}
875
876/*
877 * Close the specified CTF container and free associated data structures.  Note
878 * that ctf_close() is a reference counted operation: if the specified file is
879 * the parent of other active containers, its reference count will be greater
880 * than one and it will be freed later when no active children exist.
881 */
882void
883ctf_close(ctf_file_t *fp)
884{
885	ctf_dtdef_t *dtd, *ntd;
886
887	if (fp == NULL)
888		return; /* allow ctf_close(NULL) to simplify caller code */
889
890	ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
891
892	if (fp->ctf_refcnt > 1) {
893		fp->ctf_refcnt--;
894		return;
895	}
896
897	if (fp->ctf_parent != NULL)
898		ctf_close(fp->ctf_parent);
899
900	/*
901	 * Note, to work properly with reference counting on the dynamic
902	 * section, we must delete the list in reverse.
903	 */
904	for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
905		ntd = ctf_list_prev(dtd);
906		ctf_dtd_delete(fp, dtd);
907	}
908
909	ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
910
911	if (fp->ctf_flags & LCTF_MMAP) {
912		if (fp->ctf_data.cts_data != NULL)
913			ctf_sect_munmap(&fp->ctf_data);
914		if (fp->ctf_symtab.cts_data != NULL)
915			ctf_sect_munmap(&fp->ctf_symtab);
916		if (fp->ctf_strtab.cts_data != NULL)
917			ctf_sect_munmap(&fp->ctf_strtab);
918	}
919
920	if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
921	    fp->ctf_data.cts_name != NULL) {
922		ctf_free((char *)fp->ctf_data.cts_name,
923		    strlen(fp->ctf_data.cts_name) + 1);
924	}
925
926	if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
927	    fp->ctf_symtab.cts_name != NULL) {
928		ctf_free((char *)fp->ctf_symtab.cts_name,
929		    strlen(fp->ctf_symtab.cts_name) + 1);
930	}
931
932	if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
933	    fp->ctf_strtab.cts_name != NULL) {
934		ctf_free((char *)fp->ctf_strtab.cts_name,
935		    strlen(fp->ctf_strtab.cts_name) + 1);
936	}
937
938	if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
939		ctf_data_free((void *)fp->ctf_base, fp->ctf_size);
940
941	if (fp->ctf_sxlate != NULL)
942		ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
943
944	if (fp->ctf_txlate != NULL) {
945		ctf_free(fp->ctf_txlate,
946		    sizeof (uint_t) * (fp->ctf_typemax + 1));
947	}
948
949	if (fp->ctf_ptrtab != NULL) {
950		ctf_free(fp->ctf_ptrtab,
951		    sizeof (ushort_t) * (fp->ctf_typemax + 1));
952	}
953
954	ctf_hash_destroy(&fp->ctf_structs);
955	ctf_hash_destroy(&fp->ctf_unions);
956	ctf_hash_destroy(&fp->ctf_enums);
957	ctf_hash_destroy(&fp->ctf_names);
958
959	ctf_free(fp, sizeof (ctf_file_t));
960}
961
962/*
963 * Return the CTF handle for the parent CTF container, if one exists.
964 * Otherwise return NULL to indicate this container has no imported parent.
965 */
966ctf_file_t *
967ctf_parent_file(ctf_file_t *fp)
968{
969	return (fp->ctf_parent);
970}
971
972/*
973 * Return the name of the parent CTF container, if one exists.  Otherwise
974 * return NULL to indicate this container is a root container.
975 */
976const char *
977ctf_parent_name(ctf_file_t *fp)
978{
979	return (fp->ctf_parname);
980}
981
982/*
983 * Import the types from the specified parent container by storing a pointer
984 * to it in ctf_parent and incrementing its reference count.  Only one parent
985 * is allowed: if a parent already exists, it is replaced by the new parent.
986 */
987int
988ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
989{
990	if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
991		return (ctf_set_errno(fp, EINVAL));
992
993	if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
994		return (ctf_set_errno(fp, ECTF_DMODEL));
995
996	if (fp->ctf_parent != NULL)
997		ctf_close(fp->ctf_parent);
998
999	if (pfp != NULL) {
1000		fp->ctf_flags |= LCTF_CHILD;
1001		pfp->ctf_refcnt++;
1002	}
1003
1004	fp->ctf_parent = pfp;
1005	return (0);
1006}
1007
1008/*
1009 * Set the data model constant for the CTF container.
1010 */
1011int
1012ctf_setmodel(ctf_file_t *fp, int model)
1013{
1014	const ctf_dmodel_t *dp;
1015
1016	for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
1017		if (dp->ctd_code == model) {
1018			fp->ctf_dmodel = dp;
1019			return (0);
1020		}
1021	}
1022
1023	return (ctf_set_errno(fp, EINVAL));
1024}
1025
1026/*
1027 * Return the data model constant for the CTF container.
1028 */
1029int
1030ctf_getmodel(ctf_file_t *fp)
1031{
1032	return (fp->ctf_dmodel->ctd_code);
1033}
1034
1035void
1036ctf_setspecific(ctf_file_t *fp, void *data)
1037{
1038	fp->ctf_specific = data;
1039}
1040
1041void *
1042ctf_getspecific(ctf_file_t *fp)
1043{
1044	return (fp->ctf_specific);
1045}
1046