zfs_iter.c revision 263405
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 Pawel Jakub Dawidek <pawel@dawidek.net>.
25 * All rights reserved.
26 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29#include <libintl.h>
30#include <libuutil.h>
31#include <stddef.h>
32#include <stdio.h>
33#include <stdlib.h>
34#include <strings.h>
35
36#include <libzfs.h>
37
38#include "zfs_util.h"
39#include "zfs_iter.h"
40
41/*
42 * This is a private interface used to gather up all the datasets specified on
43 * the command line so that we can iterate over them in order.
44 *
45 * First, we iterate over all filesystems, gathering them together into an
46 * AVL tree.  We report errors for any explicitly specified datasets
47 * that we couldn't open.
48 *
49 * When finished, we have an AVL tree of ZFS handles.  We go through and execute
50 * the provided callback for each one, passing whatever data the user supplied.
51 */
52
53typedef struct zfs_node {
54	zfs_handle_t	*zn_handle;
55	uu_avl_node_t	zn_avlnode;
56} zfs_node_t;
57
58typedef struct callback_data {
59	uu_avl_t		*cb_avl;
60	int			cb_flags;
61	zfs_type_t		cb_types;
62	zfs_sort_column_t	*cb_sortcol;
63	zprop_list_t		**cb_proplist;
64	int			cb_depth_limit;
65	int			cb_depth;
66	uint8_t			cb_props_table[ZFS_NUM_PROPS];
67} callback_data_t;
68
69uu_avl_pool_t *avl_pool;
70
71/*
72 * Include snaps if they were requested or if this a zfs list where types
73 * were not specified and the "listsnapshots" property is set on this pool.
74 */
75static int
76zfs_include_snapshots(zfs_handle_t *zhp, callback_data_t *cb)
77{
78	zpool_handle_t *zph;
79
80	if ((cb->cb_flags & ZFS_ITER_PROP_LISTSNAPS) == 0)
81		return (cb->cb_types & ZFS_TYPE_SNAPSHOT);
82
83	zph = zfs_get_pool_handle(zhp);
84	return (zpool_get_prop_int(zph, ZPOOL_PROP_LISTSNAPS, NULL));
85}
86
87/*
88 * Called for each dataset.  If the object is of an appropriate type,
89 * add it to the avl tree and recurse over any children as necessary.
90 */
91static int
92zfs_callback(zfs_handle_t *zhp, void *data)
93{
94	callback_data_t *cb = data;
95	int dontclose = 0;
96	int include_snaps = zfs_include_snapshots(zhp, cb);
97
98	if ((zfs_get_type(zhp) & cb->cb_types) ||
99	    ((zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) && include_snaps)) {
100		uu_avl_index_t idx;
101		zfs_node_t *node = safe_malloc(sizeof (zfs_node_t));
102
103		node->zn_handle = zhp;
104		uu_avl_node_init(node, &node->zn_avlnode, avl_pool);
105		if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol,
106		    &idx) == NULL) {
107			if (cb->cb_proplist) {
108				if ((*cb->cb_proplist) &&
109				    !(*cb->cb_proplist)->pl_all)
110					zfs_prune_proplist(zhp,
111					    cb->cb_props_table);
112
113				if (zfs_expand_proplist(zhp, cb->cb_proplist,
114				    (cb->cb_flags & ZFS_ITER_RECVD_PROPS),
115				    (cb->cb_flags & ZFS_ITER_LITERAL_PROPS))
116				    != 0) {
117					free(node);
118					return (-1);
119				}
120			}
121			uu_avl_insert(cb->cb_avl, node, idx);
122			dontclose = 1;
123		} else {
124			free(node);
125		}
126	}
127
128	/*
129	 * Recurse if necessary.
130	 */
131	if (cb->cb_flags & ZFS_ITER_RECURSE &&
132	    ((cb->cb_flags & ZFS_ITER_DEPTH_LIMIT) == 0 ||
133	    cb->cb_depth < cb->cb_depth_limit)) {
134		cb->cb_depth++;
135		if (zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM)
136			(void) zfs_iter_filesystems(zhp, zfs_callback, data);
137		if ((zfs_get_type(zhp) != ZFS_TYPE_SNAPSHOT) && include_snaps) {
138			(void) zfs_iter_snapshots(zhp,
139			    (cb->cb_flags & ZFS_ITER_SIMPLE) != 0, zfs_callback,
140			    data);
141		}
142		cb->cb_depth--;
143	}
144
145	if (!dontclose)
146		zfs_close(zhp);
147
148	return (0);
149}
150
151int
152zfs_add_sort_column(zfs_sort_column_t **sc, const char *name,
153    boolean_t reverse)
154{
155	zfs_sort_column_t *col;
156	zfs_prop_t prop;
157
158	if ((prop = zfs_name_to_prop(name)) == ZPROP_INVAL &&
159	    !zfs_prop_user(name))
160		return (-1);
161
162	col = safe_malloc(sizeof (zfs_sort_column_t));
163
164	col->sc_prop = prop;
165	col->sc_reverse = reverse;
166	if (prop == ZPROP_INVAL) {
167		col->sc_user_prop = safe_malloc(strlen(name) + 1);
168		(void) strcpy(col->sc_user_prop, name);
169	}
170
171	if (*sc == NULL) {
172		col->sc_last = col;
173		*sc = col;
174	} else {
175		(*sc)->sc_last->sc_next = col;
176		(*sc)->sc_last = col;
177	}
178
179	return (0);
180}
181
182void
183zfs_free_sort_columns(zfs_sort_column_t *sc)
184{
185	zfs_sort_column_t *col;
186
187	while (sc != NULL) {
188		col = sc->sc_next;
189		free(sc->sc_user_prop);
190		free(sc);
191		sc = col;
192	}
193}
194
195boolean_t
196zfs_sort_only_by_name(const zfs_sort_column_t *sc)
197{
198
199	return (sc != NULL && sc->sc_next == NULL &&
200	    sc->sc_prop == ZFS_PROP_NAME);
201}
202
203/* ARGSUSED */
204static int
205zfs_compare(const void *larg, const void *rarg, void *unused)
206{
207	zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
208	zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
209	const char *lname = zfs_get_name(l);
210	const char *rname = zfs_get_name(r);
211	char *lat, *rat;
212	uint64_t lcreate, rcreate;
213	int ret;
214
215	lat = (char *)strchr(lname, '@');
216	rat = (char *)strchr(rname, '@');
217
218	if (lat != NULL)
219		*lat = '\0';
220	if (rat != NULL)
221		*rat = '\0';
222
223	ret = strcmp(lname, rname);
224	if (ret == 0) {
225		/*
226		 * If we're comparing a dataset to one of its snapshots, we
227		 * always make the full dataset first.
228		 */
229		if (lat == NULL) {
230			ret = -1;
231		} else if (rat == NULL) {
232			ret = 1;
233		} else {
234			/*
235			 * If we have two snapshots from the same dataset, then
236			 * we want to sort them according to creation time.  We
237			 * use the hidden CREATETXG property to get an absolute
238			 * ordering of snapshots.
239			 */
240			lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG);
241			rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG);
242
243			/*
244			 * Both lcreate and rcreate being 0 means we don't have
245			 * properties and we should compare full name.
246			 */
247			if (lcreate == 0 && rcreate == 0)
248				ret = strcmp(lat + 1, rat + 1);
249			else if (lcreate < rcreate)
250				ret = -1;
251			else if (lcreate > rcreate)
252				ret = 1;
253		}
254	}
255
256	if (lat != NULL)
257		*lat = '@';
258	if (rat != NULL)
259		*rat = '@';
260
261	return (ret);
262}
263
264/*
265 * Sort datasets by specified columns.
266 *
267 * o  Numeric types sort in ascending order.
268 * o  String types sort in alphabetical order.
269 * o  Types inappropriate for a row sort that row to the literal
270 *    bottom, regardless of the specified ordering.
271 *
272 * If no sort columns are specified, or two datasets compare equally
273 * across all specified columns, they are sorted alphabetically by name
274 * with snapshots grouped under their parents.
275 */
276static int
277zfs_sort(const void *larg, const void *rarg, void *data)
278{
279	zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
280	zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
281	zfs_sort_column_t *sc = (zfs_sort_column_t *)data;
282	zfs_sort_column_t *psc;
283
284	for (psc = sc; psc != NULL; psc = psc->sc_next) {
285		char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN];
286		char *lstr, *rstr;
287		uint64_t lnum, rnum;
288		boolean_t lvalid, rvalid;
289		int ret = 0;
290
291		/*
292		 * We group the checks below the generic code.  If 'lstr' and
293		 * 'rstr' are non-NULL, then we do a string based comparison.
294		 * Otherwise, we compare 'lnum' and 'rnum'.
295		 */
296		lstr = rstr = NULL;
297		if (psc->sc_prop == ZPROP_INVAL) {
298			nvlist_t *luser, *ruser;
299			nvlist_t *lval, *rval;
300
301			luser = zfs_get_user_props(l);
302			ruser = zfs_get_user_props(r);
303
304			lvalid = (nvlist_lookup_nvlist(luser,
305			    psc->sc_user_prop, &lval) == 0);
306			rvalid = (nvlist_lookup_nvlist(ruser,
307			    psc->sc_user_prop, &rval) == 0);
308
309			if (lvalid)
310				verify(nvlist_lookup_string(lval,
311				    ZPROP_VALUE, &lstr) == 0);
312			if (rvalid)
313				verify(nvlist_lookup_string(rval,
314				    ZPROP_VALUE, &rstr) == 0);
315		} else if (psc->sc_prop == ZFS_PROP_NAME) {
316			lvalid = rvalid = B_TRUE;
317
318			(void) strlcpy(lbuf, zfs_get_name(l), sizeof(lbuf));
319			(void) strlcpy(rbuf, zfs_get_name(r), sizeof(rbuf));
320
321			lstr = lbuf;
322			rstr = rbuf;
323		} else if (zfs_prop_is_string(psc->sc_prop)) {
324			lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf,
325			    sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0);
326			rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf,
327			    sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0);
328
329			lstr = lbuf;
330			rstr = rbuf;
331		} else {
332			lvalid = zfs_prop_valid_for_type(psc->sc_prop,
333			    zfs_get_type(l));
334			rvalid = zfs_prop_valid_for_type(psc->sc_prop,
335			    zfs_get_type(r));
336
337			if (lvalid)
338				(void) zfs_prop_get_numeric(l, psc->sc_prop,
339				    &lnum, NULL, NULL, 0);
340			if (rvalid)
341				(void) zfs_prop_get_numeric(r, psc->sc_prop,
342				    &rnum, NULL, NULL, 0);
343		}
344
345		if (!lvalid && !rvalid)
346			continue;
347		else if (!lvalid)
348			return (1);
349		else if (!rvalid)
350			return (-1);
351
352		if (lstr)
353			ret = strcmp(lstr, rstr);
354		else if (lnum < rnum)
355			ret = -1;
356		else if (lnum > rnum)
357			ret = 1;
358
359		if (ret != 0) {
360			if (psc->sc_reverse == B_TRUE)
361				ret = (ret < 0) ? 1 : -1;
362			return (ret);
363		}
364	}
365
366	return (zfs_compare(larg, rarg, NULL));
367}
368
369int
370zfs_for_each(int argc, char **argv, int flags, zfs_type_t types,
371    zfs_sort_column_t *sortcol, zprop_list_t **proplist, int limit,
372    zfs_iter_f callback, void *data)
373{
374	callback_data_t cb = {0};
375	int ret = 0;
376	zfs_node_t *node;
377	uu_avl_walk_t *walk;
378
379	avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t),
380	    offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT);
381
382	if (avl_pool == NULL)
383		nomem();
384
385	cb.cb_sortcol = sortcol;
386	cb.cb_flags = flags;
387	cb.cb_proplist = proplist;
388	cb.cb_types = types;
389	cb.cb_depth_limit = limit;
390	/*
391	 * If cb_proplist is provided then in the zfs_handles created we
392	 * retain only those properties listed in cb_proplist and sortcol.
393	 * The rest are pruned. So, the caller should make sure that no other
394	 * properties other than those listed in cb_proplist/sortcol are
395	 * accessed.
396	 *
397	 * If cb_proplist is NULL then we retain all the properties.  We
398	 * always retain the zoned property, which some other properties
399	 * need (userquota & friends), and the createtxg property, which
400	 * we need to sort snapshots.
401	 */
402	if (cb.cb_proplist && *cb.cb_proplist) {
403		zprop_list_t *p = *cb.cb_proplist;
404
405		while (p) {
406			if (p->pl_prop >= ZFS_PROP_TYPE &&
407			    p->pl_prop < ZFS_NUM_PROPS) {
408				cb.cb_props_table[p->pl_prop] = B_TRUE;
409			}
410			p = p->pl_next;
411		}
412
413		while (sortcol) {
414			if (sortcol->sc_prop >= ZFS_PROP_TYPE &&
415			    sortcol->sc_prop < ZFS_NUM_PROPS) {
416				cb.cb_props_table[sortcol->sc_prop] = B_TRUE;
417			}
418			sortcol = sortcol->sc_next;
419		}
420
421		cb.cb_props_table[ZFS_PROP_ZONED] = B_TRUE;
422		cb.cb_props_table[ZFS_PROP_CREATETXG] = B_TRUE;
423	} else {
424		(void) memset(cb.cb_props_table, B_TRUE,
425		    sizeof (cb.cb_props_table));
426	}
427
428	if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL)
429		nomem();
430
431	if (argc == 0) {
432		/*
433		 * If given no arguments, iterate over all datasets.
434		 */
435		cb.cb_flags |= ZFS_ITER_RECURSE;
436		ret = zfs_iter_root(g_zfs, zfs_callback, &cb);
437	} else {
438		int i;
439		zfs_handle_t *zhp;
440		zfs_type_t argtype;
441
442		/*
443		 * If we're recursive, then we always allow filesystems as
444		 * arguments.  If we also are interested in snapshots, then we
445		 * can take volumes as well.
446		 */
447		argtype = types;
448		if (flags & ZFS_ITER_RECURSE) {
449			argtype |= ZFS_TYPE_FILESYSTEM;
450			if (types & ZFS_TYPE_SNAPSHOT)
451				argtype |= ZFS_TYPE_VOLUME;
452		}
453
454		for (i = 0; i < argc; i++) {
455			if (flags & ZFS_ITER_ARGS_CAN_BE_PATHS) {
456				zhp = zfs_path_to_zhandle(g_zfs, argv[i],
457				    argtype);
458			} else {
459				zhp = zfs_open(g_zfs, argv[i], argtype);
460			}
461			if (zhp != NULL)
462				ret |= zfs_callback(zhp, &cb);
463			else
464				ret = 1;
465		}
466	}
467
468	/*
469	 * At this point we've got our AVL tree full of zfs handles, so iterate
470	 * over each one and execute the real user callback.
471	 */
472	for (node = uu_avl_first(cb.cb_avl); node != NULL;
473	    node = uu_avl_next(cb.cb_avl, node))
474		ret |= callback(node->zn_handle, data);
475
476	/*
477	 * Finally, clean up the AVL tree.
478	 */
479	if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL)
480		nomem();
481
482	while ((node = uu_avl_walk_next(walk)) != NULL) {
483		uu_avl_remove(cb.cb_avl, node);
484		zfs_close(node->zn_handle);
485		free(node);
486	}
487
488	uu_avl_walk_end(walk);
489	uu_avl_destroy(cb.cb_avl);
490	uu_avl_pool_destroy(avl_pool);
491
492	return (ret);
493}
494