1/******************************************************************************
2 *
3 *	(C)Copyright 1998,1999 SysKonnect,
4 *	a business unit of Schneider & Koch & Co. Datensysteme GmbH.
5 *
6 *	See the file "skfddi.c" for further information.
7 *
8 *	This program is free software; you can redistribute it and/or modify
9 *	it under the terms of the GNU General Public License as published by
10 *	the Free Software Foundation; either version 2 of the License, or
11 *	(at your option) any later version.
12 *
13 *	The information in this file is provided "AS IS" without warranty.
14 *
15 ******************************************************************************/
16
17/*
18 * FBI board dependent Driver for SMT and LLC
19 */
20
21#include "h/types.h"
22#include "h/fddi.h"
23#include "h/smc.h"
24#include "h/supern_2.h"
25#include "h/skfbiinc.h"
26
27#ifndef	lint
28static const char ID_sccs[] = "@(#)drvfbi.c	1.63 99/02/11 (C) SK " ;
29#endif
30
31/*
32 * PCM active state
33 */
34#define PC8_ACTIVE	8
35
36#define	LED_Y_ON	0x11	/* Used for ring up/down indication */
37#define	LED_Y_OFF	0x10
38
39
40#define MS2BCLK(x)	((x)*12500L)
41
42/*
43 * valid configuration values are:
44 */
45#ifdef	ISA
46const int opt_ints[] = {8,	3, 4, 5, 9, 10, 11, 12, 15} ;
47const int opt_iops[] = {8,
48	0x100, 0x120, 0x180, 0x1a0, 0x220, 0x240, 0x320, 0x340};
49const int opt_dmas[] = {4,	3, 5, 6, 7} ;
50const int opt_eproms[] = {15,	0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
51			0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ;
52#endif
53#ifdef	EISA
54const int opt_ints[] = {5, 9, 10, 11} ;
55const int opt_dmas[] = {0, 5, 6, 7} ;
56const int opt_eproms[] = {0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
57				0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ;
58#endif
59
60#ifdef	MCA
61int	opt_ints[] = {3, 11, 10, 9} ;			/* FM1 */
62int	opt_eproms[] = {0, 0xc4, 0xc8, 0xcc, 0xd0, 0xd4, 0xd8, 0xdc} ;
63#endif	/* MCA */
64
65/*
66 *	xPOS_ID:xxxx
67 *	|	\  /
68 *	|	 \/
69 *	|	  --------------------- the patched POS_ID of the Adapter
70 *	|				xxxx = (Vendor ID low byte,
71 *	|					Vendor ID high byte,
72 *	|					Device ID low byte,
73 *	|					Device ID high byte)
74 *	+------------------------------ the patched oem_id must be
75 *					'S' for SK or 'I' for IBM
76 *					this is a short id for the driver.
77 */
78#ifndef MULT_OEM
79#ifndef	OEM_CONCEPT
80#ifndef MCA
81const u_char oem_id[] = "xPOS_ID:xxxx" ;
82#else
83const u_char oem_id[] = "xPOSID1:xxxx" ;	/* FM1 card id. */
84#endif
85#else	/* OEM_CONCEPT */
86#ifndef MCA
87const u_char oem_id[] = OEM_ID ;
88#else
89const u_char oem_id[] = OEM_ID1 ;	/* FM1 card id. */
90#endif	/* MCA */
91#endif	/* OEM_CONCEPT */
92#define	ID_BYTE0	8
93#define	OEMID(smc,i)	oem_id[ID_BYTE0 + i]
94#else	/* MULT_OEM */
95const struct s_oem_ids oem_ids[] = {
96#include "oemids.h"
97{0}
98};
99#define	OEMID(smc,i)	smc->hw.oem_id->oi_id[i]
100#endif	/* MULT_OEM */
101
102/* Prototypes of external functions */
103extern void hwt_restart() ;
104#ifdef AIX
105extern int AIX_vpdReadByte() ;
106#endif
107
108
109/* Prototypes of local functions. */
110void smt_stop_watchdog() ;
111
112#ifdef MCA
113static int read_card_id() ;
114static void DisableSlotAccess() ;
115static void EnableSlotAccess() ;
116#ifdef AIX
117extern int attach_POS_addr() ;
118extern int detach_POS_addr() ;
119extern u_char read_POS() ;
120extern void write_POS() ;
121extern int AIX_vpdReadByte() ;
122#else
123#define	read_POS(smc,a1,a2)	((u_char) inp(a1))
124#define	write_POS(smc,a1,a2,a3)	outp((a1),(a3))
125#endif
126#endif	/* MCA */
127
128
129/*
130 * FDDI card reset
131 */
132static void card_start(smc)
133struct s_smc *smc ;
134{
135	int i ;
136#ifdef	PCI
137	u_char	rev_id ;
138	u_short word;
139#endif
140
141	smt_stop_watchdog(smc) ;
142
143#ifdef	ISA
144	outpw(CSR_A,0) ;			/* reset for all chips */
145	for (i = 10 ; i ; i--)			/* delay for PLC's */
146		(void)inpw(ISR_A) ;
147	OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(2)) ;
148					/* counter 2, mode 2 */
149	OUT_82c54_TIMER(2,97) ;		/* LSB */
150	OUT_82c54_TIMER(2,0) ;		/* MSB ( 15.6 us ) */
151	outpw(CSR_A,CS_CRESET) ;
152#endif
153#ifdef	EISA
154	outpw(CSR_A,0) ;			/* reset for all chips */
155	for (i = 10 ; i ; i--)			/* delay for PLC's */
156		(void)inpw(ISR_A) ;
157	outpw(CSR_A,CS_CRESET) ;
158	smc->hw.led = (2<<6) ;
159	outpw(CSR_A,CS_CRESET | smc->hw.led) ;
160#endif
161#ifdef	MCA
162	outp(ADDR(CARD_DIS),0) ;		/* reset for all chips */
163	for (i = 10 ; i ; i--)			/* delay for PLC's */
164		(void)inpw(ISR_A) ;
165	outp(ADDR(CARD_EN),0) ;
166	/* first I/O after reset must not be a access to FORMAC or PLC */
167
168	/*
169	 * bus timeout (MCA)
170	 */
171	OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(3)) ;
172					/* counter 2, mode 3 */
173	OUT_82c54_TIMER(2,(2*24)) ;	/* 3.9 us * 2 square wave */
174	OUT_82c54_TIMER(2,0) ;		/* MSB */
175
176	/* POS 102 indicated an activ Check Line or Buss Error monitoring */
177	if (inpw(CSA_A) & (POS_EN_CHKINT | POS_EN_BUS_ERR)) {
178		outp(ADDR(IRQ_CHCK_EN),0) ;
179	}
180
181	if (!((i = inpw(CSR_A)) & CS_SAS)) {
182		if (!(i & CS_BYSTAT)) {
183			outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */
184		}
185	}
186	outpw(LEDR_A,LED_1) ;	/* yellow */
187#endif	/* MCA */
188#ifdef	PCI
189	/*
190	 * make sure no transfer activity is pending
191	 */
192	outpw(FM_A(FM_MDREG1),FM_MINIT) ;
193	outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
194	hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
195	/*
196	 * now reset everything
197	 */
198	outp(ADDR(B0_CTRL),CTRL_RST_SET) ;	/* reset for all chips */
199	i = (int) inp(ADDR(B0_CTRL)) ;		/* do dummy read */
200	SK_UNUSED(i) ;				/* Make LINT happy. */
201	outp(ADDR(B0_CTRL), CTRL_RST_CLR) ;
202
203	/*
204	 * Reset all bits in the PCI STATUS register
205	 */
206	outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_ON) ;	/* enable for writes */
207	word = inpw(PCI_C(PCI_STATUS)) ;
208	outpw(PCI_C(PCI_STATUS), word | PCI_ERRBITS) ;
209	outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_OFF) ;	/* disable writes */
210
211	/*
212	 * Release the reset of all the State machines
213	 * Release Master_Reset
214	 * Release HPI_SM_Reset
215	 */
216	outp(ADDR(B0_CTRL), CTRL_MRST_CLR|CTRL_HPI_CLR) ;
217
218	/*
219	 * determine the adapter type
220	 * Note: Do it here, because some drivers may call card_start() once
221	 *	 at very first before any other initialization functions is
222	 *	 executed.
223	 */
224	rev_id = inp(PCI_C(PCI_REV_ID)) ;
225	if ((rev_id & 0xf0) == SK_ML_ID_1 || (rev_id & 0xf0) == SK_ML_ID_2) {
226		smc->hw.hw_is_64bit = TRUE ;
227	} else {
228		smc->hw.hw_is_64bit = FALSE ;
229	}
230
231	/*
232	 * Watermark initialization
233	 */
234	if (!smc->hw.hw_is_64bit) {
235		outpd(ADDR(B4_R1_F), RX_WATERMARK) ;
236		outpd(ADDR(B5_XA_F), TX_WATERMARK) ;
237		outpd(ADDR(B5_XS_F), TX_WATERMARK) ;
238	}
239
240	outp(ADDR(B0_CTRL),CTRL_RST_CLR) ;	/* clear the reset chips */
241	outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_ON|LED_GB_OFF) ; /* ye LED on */
242
243	/* init the timer value for the watch dog 2,5 minutes */
244	outpd(ADDR(B2_WDOG_INI),0x6FC23AC0) ;
245
246	/* initialize the ISR mask */
247	smc->hw.is_imask = ISR_MASK ;
248	smc->hw.hw_state = STOPPED ;
249#endif
250	GET_PAGE(0) ;		/* necessary for BOOT */
251}
252
253void card_stop(smc)
254struct s_smc *smc ;
255{
256	smt_stop_watchdog(smc) ;
257	smc->hw.mac_ring_is_up = 0 ;		/* ring down */
258#ifdef	ISA
259	outpw(CSR_A,0) ;			/* reset for all chips */
260#endif
261#ifdef	EISA
262	outpw(CSR_A,0) ;			/* reset for all chips */
263#endif
264#ifdef	MCA
265	outp(ADDR(CARD_DIS),0) ;		/* reset for all chips */
266#endif
267#ifdef	PCI
268	/*
269	 * make sure no transfer activity is pending
270	 */
271	outpw(FM_A(FM_MDREG1),FM_MINIT) ;
272	outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
273	hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
274	/*
275	 * now reset everything
276	 */
277	outp(ADDR(B0_CTRL),CTRL_RST_SET) ;	/* reset for all chips */
278	outp(ADDR(B0_CTRL),CTRL_RST_CLR) ;	/* reset for all chips */
279	outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_OFF|LED_GB_OFF) ; /* all LEDs off */
280	smc->hw.hw_state = STOPPED ;
281#endif
282}
283/*--------------------------- ISR handling ----------------------------------*/
284
285#ifndef PCI
286void mac1_irq(smc,stu, stl)
287struct s_smc *smc ;
288u_short stu;
289u_short stl;
290{
291	int	restart_tx = 0 ;
292again:
293#ifndef ISA
294/*
295 * FORMAC+ bug modified the queue pointer if many read/write accesses happens!?
296 */
297	if (stl & (FM_SPCEPDS  |	/* parit/coding err. syn.q.*/
298		   FM_SPCEPDA0 |	/* parit/coding err. a.q.0 */
299		   FM_SPCEPDA1 |	/* parit/coding err. a.q.1 */
300		   FM_SPCEPDA2)) {	/* parit/coding err. a.q.2 */
301		SMT_PANIC(smc,SMT_E0132, SMT_E0132_MSG) ;
302	}
303	if (stl & (FM_STBURS  |	/* tx buffer underrun syn.q.*/
304		   FM_STBURA0 |	/* tx buffer underrun a.q.0 */
305		   FM_STBURA1 |	/* tx buffer underrun a.q.1 */
306		   FM_STBURA2)) {	/* tx buffer underrun a.q.2 */
307		SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
308	}
309#endif
310	if ( (stu & (FM_SXMTABT |		/* transmit abort */
311#ifdef	SYNC
312		     FM_STXABRS |	/* syn. tx abort */
313#endif	/* SYNC */
314		     FM_STXABRA0)) ||	/* asyn. tx abort */
315	     (stl & (FM_SQLCKS |		/* lock for syn. q. */
316		     FM_SQLCKA0)) ) {	/* lock for asyn. q. */
317		formac_tx_restart(smc) ;		/* init tx */
318		restart_tx = 1 ;
319		stu = inpw(FM_A(FM_ST1U)) ;
320		stl = inpw(FM_A(FM_ST1L)) ;
321		stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
322		if (stu || stl)
323			goto again ;
324	}
325
326#ifndef	SYNC
327	if (stu & (FM_STECFRMA0 | /* end of chain asyn tx */
328		   FM_STEFRMA0)) { /* end of frame asyn tx */
329		/* free tx_queue */
330		smc->hw.n_a_send = 0 ;
331		if (++smc->hw.fp.tx_free < smc->hw.fp.tx_max) {
332			start_next_send(smc);
333		}
334		restart_tx = 1 ;
335	}
336#else	/* SYNC */
337	if (stu & (FM_STEFRMA0 |	/* end of asyn tx */
338		    FM_STEFRMS)) {	/* end of sync tx */
339		restart_tx = 1 ;
340	}
341#endif	/* SYNC */
342	if (restart_tx)
343		llc_restart_tx(smc) ;
344}
345#else	/* PCI */
346
347void mac1_irq(smc,stu, stl)
348struct s_smc *smc ;
349u_short stu;
350u_short stl;
351{
352	int	restart_tx = 0 ;
353again:
354
355	/*
356	 * parity error: note encoding error is not possible in tag mode
357	 */
358	if (stl & (FM_SPCEPDS  |	/* parity err. syn.q.*/
359		   FM_SPCEPDA0 |	/* parity err. a.q.0 */
360		   FM_SPCEPDA1)) {	/* parity err. a.q.1 */
361		SMT_PANIC(smc,SMT_E0134, SMT_E0134_MSG) ;
362	}
363	/*
364	 * buffer underrun: can only occur if a tx threshold is specified
365	 */
366	if (stl & (FM_STBURS  |		/* tx buffer underrun syn.q.*/
367		   FM_STBURA0 |		/* tx buffer underrun a.q.0 */
368		   FM_STBURA1)) {	/* tx buffer underrun a.q.2 */
369		SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
370	}
371
372	if ( (stu & (FM_SXMTABT |		/* transmit abort */
373		     FM_STXABRS |		/* syn. tx abort */
374		     FM_STXABRA0)) ||		/* asyn. tx abort */
375	     (stl & (FM_SQLCKS |		/* lock for syn. q. */
376		     FM_SQLCKA0)) ) {		/* lock for asyn. q. */
377		formac_tx_restart(smc) ;	/* init tx */
378		restart_tx = 1 ;
379		stu = inpw(FM_A(FM_ST1U)) ;
380		stl = inpw(FM_A(FM_ST1L)) ;
381		stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
382		if (stu || stl)
383			goto again ;
384	}
385
386	if (stu & (FM_STEFRMA0 |	/* end of asyn tx */
387		    FM_STEFRMS)) {	/* end of sync tx */
388		restart_tx = 1 ;
389	}
390
391	if (restart_tx)
392		llc_restart_tx(smc) ;
393}
394#endif	/* PCI */
395/*
396 * interrupt source= plc1
397 * this function is called in nwfbisr.asm
398 */
399void plc1_irq(smc)
400struct s_smc *smc ;
401{
402	u_short	st = inpw(PLC(PB,PL_INTR_EVENT)) ;
403
404#if	(defined(ISA) || defined(EISA))
405	/* reset PLC Int. bits */
406	outpw(PLC1_I,inpw(PLC1_I)) ;
407#endif
408	plc_irq(smc,PB,st) ;
409}
410
411/*
412 * interrupt source= plc2
413 * this function is called in nwfbisr.asm
414 */
415void plc2_irq(smc)
416struct s_smc *smc ;
417{
418	u_short	st = inpw(PLC(PA,PL_INTR_EVENT)) ;
419
420#if	(defined(ISA) || defined(EISA))
421	/* reset PLC Int. bits */
422	outpw(PLC2_I,inpw(PLC2_I)) ;
423#endif
424	plc_irq(smc,PA,st) ;
425}
426
427
428/*
429 * interrupt source= timer
430 */
431void timer_irq(smc)
432struct s_smc *smc ;
433{
434	hwt_restart(smc);
435	smc->hw.t_stop = smc->hw.t_start;
436	smt_timer_done(smc) ;
437}
438
439/*
440 * return S-port (PA or PB)
441 */
442int pcm_get_s_port(smc)
443struct s_smc *smc ;
444{
445	SK_UNUSED(smc) ;
446	return(PS) ;
447}
448
449/*
450 * Station Label = "FDDI-XYZ" where
451 *
452 *	X = connector type
453 *	Y = PMD type
454 *	Z = port type
455 */
456#define STATION_LABEL_CONNECTOR_OFFSET	5
457#define STATION_LABEL_PMD_OFFSET	6
458#define STATION_LABEL_PORT_OFFSET	7
459
460void read_address(smc,mac_addr)
461struct s_smc *smc ;
462u_char *mac_addr ;
463{
464	char ConnectorType ;
465	char PmdType ;
466	int	i ;
467
468	extern const u_char canonical[256] ;
469
470#if	(defined(ISA) || defined(MCA))
471	for (i = 0; i < 4 ;i++) {	/* read mac address from board */
472		smc->hw.fddi_phys_addr.a[i] =
473			canonical[(inpw(PR_A(i+SA_MAC))&0xff)] ;
474	}
475	for (i = 4; i < 6; i++) {
476		smc->hw.fddi_phys_addr.a[i] =
477			canonical[(inpw(PR_A(i+SA_MAC+PRA_OFF))&0xff)] ;
478	}
479#endif
480#ifdef	EISA
481	/*
482	 * Note: We get trouble on an Alpha machine if we make a inpw()
483	 * instead of inp()
484	 */
485	for (i = 0; i < 4 ;i++) {	/* read mac address from board */
486		smc->hw.fddi_phys_addr.a[i] =
487			canonical[inp(PR_A(i+SA_MAC))] ;
488	}
489	for (i = 4; i < 6; i++) {
490		smc->hw.fddi_phys_addr.a[i] =
491			canonical[inp(PR_A(i+SA_MAC+PRA_OFF))] ;
492	}
493#endif
494#ifdef	PCI
495	for (i = 0; i < 6; i++) {	/* read mac address from board */
496		smc->hw.fddi_phys_addr.a[i] =
497			canonical[inp(ADDR(B2_MAC_0+i))] ;
498	}
499#endif
500#ifndef	PCI
501	ConnectorType = inpw(PR_A(SA_PMD_TYPE)) & 0xff ;
502	PmdType = inpw(PR_A(SA_PMD_TYPE+1)) & 0xff ;
503#else
504	ConnectorType = inp(ADDR(B2_CONN_TYP)) ;
505	PmdType = inp(ADDR(B2_PMD_TYP)) ;
506#endif
507
508	smc->y[PA].pmd_type[PMD_SK_CONN] =
509	smc->y[PB].pmd_type[PMD_SK_CONN] = ConnectorType ;
510	smc->y[PA].pmd_type[PMD_SK_PMD ] =
511	smc->y[PB].pmd_type[PMD_SK_PMD ] = PmdType ;
512
513	if (mac_addr) {
514		for (i = 0; i < 6 ;i++) {
515			smc->hw.fddi_canon_addr.a[i] = mac_addr[i] ;
516			smc->hw.fddi_home_addr.a[i] = canonical[mac_addr[i]] ;
517		}
518		return ;
519	}
520	smc->hw.fddi_home_addr = smc->hw.fddi_phys_addr ;
521
522	for (i = 0; i < 6 ;i++) {
523		smc->hw.fddi_canon_addr.a[i] =
524			canonical[smc->hw.fddi_phys_addr.a[i]] ;
525	}
526}
527
528/*
529 * FDDI card soft reset
530 */
531void init_board(smc,mac_addr)
532struct s_smc *smc ;
533u_char *mac_addr ;
534{
535	card_start(smc) ;
536	read_address(smc,mac_addr) ;
537
538#ifndef	PCI
539	if (inpw(CSR_A) & CS_SAS)
540#else
541	if (!(inp(ADDR(B0_DAS)) & DAS_AVAIL))
542#endif
543		smc->s.sas = SMT_SAS ;	/* Single att. station */
544	else
545		smc->s.sas = SMT_DAS ;	/* Dual att. station */
546
547#ifndef	PCI
548	if (inpw(CSR_A) & CS_BYSTAT)
549#else
550	if (!(inp(ADDR(B0_DAS)) & DAS_BYP_ST))
551#endif
552		smc->mib.fddiSMTBypassPresent = 0 ;
553		/* without opt. bypass */
554	else
555		smc->mib.fddiSMTBypassPresent = 1 ;
556		/* with opt. bypass */
557}
558
559/*
560 * insert or deinsert optical bypass (called by ECM)
561 */
562void sm_pm_bypass_req(smc,mode)
563struct s_smc *smc ;
564int mode;
565{
566#if	(defined(ISA) || defined(EISA))
567	int csra_v ;
568#endif
569
570	DB_ECMN(1,"ECM : sm_pm_bypass_req(%s)\n",(mode == BP_INSERT) ?
571					"BP_INSERT" : "BP_DEINSERT",0) ;
572
573	if (smc->s.sas != SMT_DAS)
574		return ;
575
576#if	(defined(ISA) || defined(EISA))
577
578	csra_v = inpw(CSR_A) & ~CS_BYPASS ;
579#ifdef	EISA
580	csra_v |= smc->hw.led ;
581#endif
582
583	switch(mode) {
584	case BP_INSERT :
585		outpw(CSR_A,csra_v | CS_BYPASS) ;
586		break ;
587	case BP_DEINSERT :
588		outpw(CSR_A,csra_v) ;
589		break ;
590	}
591#endif	/* ISA / EISA */
592#ifdef	MCA
593	switch(mode) {
594	case BP_INSERT :
595		outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */
596		break ;
597	case BP_DEINSERT :
598		outp(ADDR(BYPASS(STAT_BYP)),0) ;	/* bypass station */
599		break ;
600	}
601#endif
602#ifdef	PCI
603	switch(mode) {
604	case BP_INSERT :
605		outp(ADDR(B0_DAS),DAS_BYP_INS) ;	/* insert station */
606		break ;
607	case BP_DEINSERT :
608		outp(ADDR(B0_DAS),DAS_BYP_RMV) ;	/* bypass station */
609		break ;
610	}
611#endif
612}
613
614/*
615 * check if bypass connected
616 */
617int sm_pm_bypass_present(smc)
618struct s_smc *smc ;
619{
620#ifndef	PCI
621	return(	(inpw(CSR_A) & CS_BYSTAT) ? FALSE : TRUE ) ;
622#else
623	return(	(inp(ADDR(B0_DAS)) & DAS_BYP_ST) ? TRUE: FALSE) ;
624#endif
625}
626
627void plc_clear_irq(smc,p)
628struct s_smc *smc ;
629int p ;
630{
631	SK_UNUSED(p) ;
632
633#if	(defined(ISA) || defined(EISA))
634	switch (p) {
635	case PA :
636		/* reset PLC Int. bits */
637		outpw(PLC2_I,inpw(PLC2_I)) ;
638		break ;
639	case PB :
640		/* reset PLC Int. bits */
641		outpw(PLC1_I,inpw(PLC1_I)) ;
642		break ;
643	}
644#else
645	SK_UNUSED(smc) ;
646#endif
647}
648
649
650/*
651 * led_indication called by rmt_indication() and
652 * pcm_state_change()
653 *
654 * Input:
655 *	smc:	SMT context
656 *	led_event:
657 *	0	Only switch green LEDs according to their respective PCM state
658 *	LED_Y_OFF	just switch yellow LED off
659 *	LED_Y_ON	just switch yello LED on
660 */
661void led_indication(smc,led_event)
662struct s_smc	*smc ;
663int		led_event;
664{
665	/* use smc->hw.mac_ring_is_up == TRUE
666	 * as indication for Ring Operational
667	 */
668	u_short			led_state ;
669	struct s_phy		*phy ;
670	struct fddi_mib_p	*mib_a ;
671	struct fddi_mib_p	*mib_b ;
672
673	phy = &smc->y[PA] ;
674	mib_a = phy->mib ;
675	phy = &smc->y[PB] ;
676	mib_b = phy->mib ;
677
678#ifdef	EISA
679	/* Ring up = yellow led OFF*/
680	if (led_event == LED_Y_ON) {
681		smc->hw.led |= CS_LED_1 ;
682	}
683	else if (led_event == LED_Y_OFF) {
684		smc->hw.led &= ~CS_LED_1 ;
685	}
686	else {
687		/* Link at Port A or B = green led ON */
688		if (mib_a->fddiPORTPCMState == PC8_ACTIVE ||
689		    mib_b->fddiPORTPCMState == PC8_ACTIVE) {
690			smc->hw.led |= CS_LED_0 ;
691		}
692		else {
693			smc->hw.led &= ~CS_LED_0 ;
694		}
695	}
696#endif
697#ifdef	MCA
698	led_state = inpw(LEDR_A) ;
699
700	/* Ring up = yellow led OFF*/
701	if (led_event == LED_Y_ON) {
702		led_state |= LED_1 ;
703	}
704	else if (led_event == LED_Y_OFF) {
705		led_state &= ~LED_1 ;
706	}
707	else {
708                led_state &= ~(LED_2|LED_0) ;
709
710		/* Link at Port A = green led A ON */
711		if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {
712			led_state |= LED_2 ;
713		}
714
715		/* Link at Port B/S = green led B ON */
716		if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
717			led_state |= LED_0 ;
718		}
719	}
720
721        outpw(LEDR_A, led_state) ;
722#endif	/* MCA */
723#ifdef	PCI
724        led_state = 0 ;
725
726	/* Ring up = yellow led OFF*/
727	if (led_event == LED_Y_ON) {
728		led_state |= LED_MY_ON ;
729	}
730	else if (led_event == LED_Y_OFF) {
731		led_state |= LED_MY_OFF ;
732	}
733	else {	/* PCM state changed */
734		/* Link at Port A/S = green led A ON */
735		if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {
736			led_state |= LED_GA_ON ;
737		}
738		else {
739			led_state |= LED_GA_OFF ;
740		}
741
742		/* Link at Port B = green led B ON */
743		if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
744			led_state |= LED_GB_ON ;
745		}
746		else {
747			led_state |= LED_GB_OFF ;
748		}
749	}
750
751        outp(ADDR(B0_LED), led_state) ;
752#endif	/* PCI */
753
754}
755
756
757void pcm_state_change(smc,plc,p_state)
758struct s_smc *smc;
759int plc;
760int p_state;
761{
762	/*
763	 * the current implementation of pcm_state_change() in the driver
764	 * parts must be renamed to drv_pcm_state_change() which will be called
765	 * now after led_indication.
766	 */
767	DRV_PCM_STATE_CHANGE(smc,plc,p_state) ;
768
769	led_indication(smc,0) ;
770}
771
772
773void rmt_indication(smc,i)
774struct s_smc *smc ;
775int i;
776{
777	/* Call a driver special function if defined */
778	DRV_RMT_INDICATION(smc,i) ;
779
780        led_indication(smc, i ? LED_Y_OFF : LED_Y_ON) ;
781}
782
783
784/*
785 * llc_recover_tx called by init_tx (fplus.c)
786 */
787void llc_recover_tx(smc)
788struct s_smc *smc ;
789{
790#ifdef	LOAD_GEN
791	extern	int load_gen_flag ;
792
793	load_gen_flag = 0 ;
794#endif
795#ifndef	SYNC
796	smc->hw.n_a_send= 0 ;
797#else
798	SK_UNUSED(smc) ;
799#endif
800}
801
802/*--------------------------- DMA init ----------------------------*/
803#ifdef	ISA
804
805/*
806 * init DMA
807 */
808void init_dma(smc,dma)
809struct s_smc *smc;
810int	dma;
811{
812	SK_UNUSED(smc) ;
813
814	/*
815	 * set cascade mode,
816	 * clear mask bit (enable DMA cannal)
817	 */
818	if (dma > 3) {
819		outp(0xd6,(dma & 0x03) | 0xc0) ;
820		outp(0xd4, dma & 0x03) ;
821	}
822	else {
823		outp(0x0b,(dma & 0x03) | 0xc0) ;
824		outp(0x0a,dma & 0x03) ;
825	}
826}
827
828/*
829 * disable DMA
830 */
831void dis_dma(smc,dma)
832struct s_smc *smc ;
833int	dma;
834{
835	SK_UNUSED(smc) ;
836
837	/*
838	 * set mask bit (disable DMA cannal)
839	 */
840	if (dma > 3) {
841		outp(0xd4,(dma & 0x03) | 0x04) ;
842	}
843	else {
844		outp(0x0a,(dma & 0x03) | 0x04) ;
845	}
846}
847
848#endif	/* ISA */
849
850#ifdef	EISA
851
852/*arrays with io addresses of dma controller length and address registers*/
853static const int cntr[8] = { 0x001,0x003,0x005,0x007,0,0x0c6,0x0ca,0x0ce } ;
854static const int base[8] = { 0x000,0x002,0x004,0x006,0,0x0c4,0x0c8,0x0cc } ;
855static const int page[8] = { 0x087,0x083,0x081,0x082,0,0x08b,0x089,0x08a } ;
856
857void init_dma(smc,dma)
858struct s_smc *smc ;
859int	dma;
860{
861	/*
862	 * extended mode register
863	 * 32 bit IO
864	 * type c
865	 * TC output
866	 * disable stop
867	 */
868
869	/* mode read (write) demand */
870	smc->hw.dma_rmode = (dma & 3) | 0x08 | 0x0 ;
871	smc->hw.dma_wmode = (dma & 3) | 0x04 | 0x0 ;
872
873	/* 32 bit IO's, burst DMA mode (type "C") */
874	smc->hw.dma_emode = (dma & 3) | 0x08 | 0x30 ;
875
876	outp((dma < 4) ? 0x40b : 0x4d6,smc->hw.dma_emode) ;
877
878	/* disable chaining */
879	outp((dma < 4) ? 0x40a : 0x4d4,(dma&3)) ;
880
881	/*load dma controller addresses for fast access during set dma*/
882	smc->hw.dma_base_word_count = cntr[smc->hw.dma];
883	smc->hw.dma_base_address = base[smc->hw.dma];
884	smc->hw.dma_base_address_page = page[smc->hw.dma];
885
886}
887
888void dis_dma(smc,dma)
889struct s_smc *smc ;
890int	dma;
891{
892	SK_UNUSED(smc) ;
893
894	outp((dma < 4) ? 0x0a : 0xd4,(dma&3)|4) ;/* mask bit */
895}
896#endif	/* EISA */
897
898#ifdef	MCA
899void init_dma(smc,dma)
900struct s_smc *smc;
901int	dma;
902{
903	SK_UNUSED(smc) ;
904	SK_UNUSED(dma) ;
905}
906void dis_dma(smc,dma)
907struct s_smc *smc;
908int	dma;
909{
910	SK_UNUSED(smc) ;
911	SK_UNUSED(dma) ;
912}
913#endif
914
915#ifdef	PCI
916void init_dma(smc,dma)
917struct s_smc *smc;
918int	dma;
919{
920	SK_UNUSED(smc) ;
921	SK_UNUSED(dma) ;
922}
923void dis_dma(smc,dma)
924struct s_smc *smc;
925int	dma;
926{
927	SK_UNUSED(smc) ;
928	SK_UNUSED(dma) ;
929}
930#endif
931
932#ifdef MULT_OEM
933static int is_equal_num(comp1,comp2,num)
934char comp1[] ;
935char comp2[] ;
936int num ;
937{
938	int i ;
939
940	for (i = 0 ; i < num ; i++) {
941		if (comp1[i] != comp2[i])
942			return (0) ;
943	}
944		return (1) ;
945}	/* is_equal_num */
946
947
948/*
949 * set the OEM ID defaults, and test the contents of the OEM data base
950 * The default OEM is the first ACTIVE entry in the OEM data base
951 *
952 * returns:	0	success
953 *		1	error in data base
954 *		2	data base empty
955 *		3	no active entry
956 */
957int set_oi_id_def(smc)
958struct s_smc *smc ;
959{
960	int sel_id ;
961	int i ;
962	int act_entries ;
963
964	i = 0 ;
965	sel_id = -1 ;
966	act_entries = FALSE ;
967	smc->hw.oem_id = 0 ;
968	smc->hw.oem_min_status = OI_STAT_ACTIVE ;
969
970	/* check OEM data base */
971	while (oem_ids[i].oi_status) {
972		switch (oem_ids[i].oi_status) {
973		case OI_STAT_ACTIVE:
974			act_entries = TRUE ;	/* we have active IDs */
975			if (sel_id == -1)
976				sel_id = i ;	/* save the first active ID */
977		case OI_STAT_VALID:
978		case OI_STAT_PRESENT:
979			i++ ;
980			break ;			/* entry ok */
981		default:
982			return (1) ;		/* invalid oi_status */
983		}
984	}
985
986	if (i == 0)
987		return (2) ;
988	if (!act_entries)
989		return (3) ;
990
991	/* ok, we have a valid OEM data base with an active entry */
992	smc->hw.oem_id = (struct s_oem_ids *)  &oem_ids[sel_id] ;
993	return (0) ;
994}
995#endif	/* MULT_OEM */
996
997
998#ifdef	MCA
999/************************
1000 *
1001 * BEGIN_MANUAL_ENTRY()
1002 *
1003 *	exist_board
1004 *
1005 *	Check if an MCA board is present in the specified slot.
1006 *
1007 *	int exist_board(
1008 *		struct s_smc *smc,
1009 *		int slot) ;
1010 * In
1011 *	smc - A pointer to the SMT Context struct.
1012 *
1013 *	slot - The number of the slot to inspect.
1014 * Out
1015 *	0 = No adapter present.
1016 *	1 = Found FM1 adapter.
1017 *
1018 * Pseudo
1019 *      Read MCA ID
1020 *	for all valid OEM_IDs
1021 *		compare with ID read
1022 *		if equal, return 1
1023 *	return(0
1024 *
1025 * Note
1026 *	The smc pointer must be valid now.
1027 *
1028 * END_MANUAL_ENTRY()
1029 *
1030 ************************/
1031#define LONG_CARD_ID(lo, hi)	((((hi) & 0xff) << 8) | ((lo) & 0xff))
1032int exist_board(smc,slot)
1033struct s_smc *smc ;
1034int	slot ;
1035{
1036#ifdef MULT_OEM
1037	SK_LOC_DECL(u_char,id[2]) ;
1038	int idi ;
1039#endif	/* MULT_OEM */
1040
1041	/* No longer valid. */
1042	if (smc == NULL)
1043		return(0) ;
1044
1045#ifndef MULT_OEM
1046	if (read_card_id(smc, slot)
1047		== LONG_CARD_ID(OEMID(smc,0), OEMID(smc,1)))
1048		return (1) ;	/* Found FM adapter. */
1049
1050#else	/* MULT_OEM */
1051	idi = read_card_id(smc, slot) ;
1052	id[0] = idi & 0xff ;
1053	id[1] = idi >> 8 ;
1054
1055        smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1056	for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1057		if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1058			continue ;
1059
1060		if (is_equal_num(&id[0],&OEMID(smc,0),2))
1061			return (1) ;
1062	}
1063#endif	/* MULT_OEM */
1064	return (0) ;	/* No adapter found. */
1065}
1066
1067/************************
1068 *
1069 *	read_card_id
1070 *
1071 *	Read the MCA card id from the specified slot.
1072 * In
1073 *	smc - A pointer to the SMT Context struct.
1074 *	CAVEAT: This pointer may be NULL and *must not* be used within this
1075 *	function. It's only purpose is for drivers that need some information
1076 *	for the inp() and outp() macros.
1077 *
1078 *	slot - The number of the slot for which the card id is returned.
1079 * Out
1080 *	Returns the card id read from the specified slot. If an illegal slot
1081 *	number is specified, the function returns zero.
1082 *
1083 ************************/
1084static int read_card_id(smc,slot)
1085struct s_smc *smc ;	/* Do not use. */
1086int slot ;
1087{
1088	int card_id ;
1089
1090	SK_UNUSED(smc) ;	/* Make LINT happy. */
1091	if ((slot < 1) || (slot > 15))	/* max 16 slots, 0 = motherboard */
1092		return (0) ;	/* Illegal slot number specified. */
1093
1094	EnableSlotAccess(smc, slot) ;
1095
1096	card_id = ((read_POS(smc,POS_ID_HIGH,slot - 1) & 0xff) << 8) |
1097				(read_POS(smc,POS_ID_LOW,slot - 1) & 0xff) ;
1098
1099	DisableSlotAccess(smc) ;
1100
1101	return (card_id) ;
1102}
1103
1104/************************
1105 *
1106 * BEGIN_MANUAL_ENTRY()
1107 *
1108 *	get_board_para
1109 *
1110 *	Get adapter configuration information. Fill all board specific
1111 *	parameters within the 'smc' structure.
1112 *
1113 *	int get_board_para(
1114 *		struct s_smc *smc,
1115 *		int slot) ;
1116 * In
1117 *	smc - A pointer to the SMT Context struct, to which this function will
1118 *	write some adapter configuration data.
1119 *
1120 *	slot - The number of the slot, in which the adapter is installed.
1121 * Out
1122 *	0 = No adapter present.
1123 *	1 = Ok.
1124 *	2 = Adapter present, but card enable bit not set.
1125 *
1126 * END_MANUAL_ENTRY()
1127 *
1128 ************************/
1129int get_board_para(smc,slot)
1130struct s_smc *smc ;
1131int slot ;
1132{
1133	int val ;
1134	int i ;
1135
1136	/* Check if adapter present & get type of adapter. */
1137	switch (exist_board(smc, slot)) {
1138	case 0:	/* Adapter not present. */
1139		return (0) ;
1140	case 1:	/* FM Rev. 1 */
1141		smc->hw.rev = FM1_REV ;
1142		smc->hw.VFullRead = 0x0a ;
1143		smc->hw.VFullWrite = 0x05 ;
1144		smc->hw.DmaWriteExtraBytes = 8 ;	/* 2 extra words. */
1145		break ;
1146	}
1147	smc->hw.slot = slot ;
1148
1149	EnableSlotAccess(smc, slot) ;
1150
1151	if (!(read_POS(smc,POS_102, slot - 1) & POS_CARD_EN)) {
1152		DisableSlotAccess(smc) ;
1153		return (2) ;	/* Card enable bit not set. */
1154	}
1155
1156	val = read_POS(smc,POS_104, slot - 1) ;	/* I/O, IRQ */
1157
1158#ifndef MEM_MAPPED_IO	    /* is defined by the operating system */
1159	i = val & POS_IOSEL ;	/* I/O base addr. (0x0200 .. 0xfe00) */
1160	smc->hw.iop = (i + 1) * 0x0400 - 0x200 ;
1161#endif
1162	i = ((val & POS_IRQSEL) >> 6) & 0x03 ;	/* IRQ <0, 1> */
1163	smc->hw.irq = opt_ints[i] ;
1164
1165	/* FPROM base addr. */
1166	i = ((read_POS(smc,POS_103, slot - 1) & POS_MSEL) >> 4) & 0x07 ;
1167	smc->hw.eprom = opt_eproms[i] ;
1168
1169	DisableSlotAccess(smc) ;
1170
1171	/* before this, the smc->hw.iop must be set !!! */
1172	smc->hw.slot_32 = inpw(CSF_A) & SLOT_32 ;
1173
1174	return (1) ;
1175}
1176
1177/* Enable access to specified MCA slot. */
1178static void EnableSlotAccess(smc,slot)
1179struct s_smc *smc ;
1180int slot ;
1181{
1182	SK_UNUSED(slot) ;
1183
1184#ifndef AIX
1185	SK_UNUSED(smc) ;
1186
1187	/* System mode. */
1188	outp(POS_SYS_SETUP, POS_SYSTEM) ;
1189
1190	/* Select slot. */
1191	outp(POS_CHANNEL_POS, POS_CHANNEL_BIT | (slot-1)) ;
1192#else
1193	attach_POS_addr (smc) ;
1194#endif
1195}
1196
1197/* Disable access to MCA slot formerly enabled via EnableSlotAccess(). */
1198static void DisableSlotAccess(smc)
1199struct s_smc *smc ;
1200{
1201#ifndef AIX
1202	SK_UNUSED(smc) ;
1203
1204	outp(POS_CHANNEL_POS, 0) ;
1205#else
1206	detach_POS_addr (smc) ;
1207#endif
1208}
1209#endif	/* MCA */
1210
1211#ifdef	EISA
1212#ifndef	MEM_MAPPED_IO
1213#define	SADDR(slot)	(((slot)<<12)&0xf000)
1214#else	/* MEM_MAPPED_IO */
1215#define	SADDR(slot)	(smc->hw.iop)
1216#endif	/* MEM_MAPPED_IO */
1217
1218/************************
1219 *
1220 * BEGIN_MANUAL_ENTRY()
1221 *
1222 *	exist_board
1223 *
1224 *	Check if an EISA board is present in the specified slot.
1225 *
1226 *	int exist_board(
1227 *		struct s_smc *smc,
1228 *		int slot) ;
1229 * In
1230 *	smc - A pointer to the SMT Context struct.
1231 *
1232 *	slot - The number of the slot to inspect.
1233 * Out
1234 *	0 = No adapter present.
1235 *	1 = Found adapter.
1236 *
1237 * Pseudo
1238 *      Read EISA ID
1239 *	for all valid OEM_IDs
1240 *		compare with ID read
1241 *		if equal, return 1
1242 *	return(0
1243 *
1244 * Note
1245 *	The smc pointer must be valid now.
1246 *
1247 ************************/
1248int exist_board(smc,slot)
1249struct s_smc *smc ;
1250int	slot ;
1251{
1252	int i ;
1253#ifdef MULT_OEM
1254	SK_LOC_DECL(u_char,id[4]) ;
1255#endif	/* MULT_OEM */
1256
1257	/* No longer valid. */
1258	if (smc == NULL)
1259		return(0);
1260
1261	SK_UNUSED(slot) ;
1262
1263#ifndef MULT_OEM
1264	for (i = 0 ; i < 4 ; i++) {
1265		if (inp(SADDR(slot)+PRA(i)) != OEMID(smc,i))
1266			return(0) ;
1267	}
1268	return(1) ;
1269#else	/* MULT_OEM */
1270	for (i = 0 ; i < 4 ; i++)
1271		id[i] = inp(SADDR(slot)+PRA(i)) ;
1272
1273	smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1274
1275	for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1276		if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1277			continue ;
1278
1279		if (is_equal_num(&id[0],&OEMID(smc,0),4))
1280			return (1) ;
1281	}
1282	return (0) ;	/* No adapter found. */
1283#endif	/* MULT_OEM */
1284}
1285
1286
1287int get_board_para(smc,slot)
1288struct s_smc *smc ;
1289int	slot ;
1290{
1291	int	i ;
1292
1293	if (!exist_board(smc,slot))
1294		return(0) ;
1295
1296	smc->hw.slot = slot ;
1297#ifndef	MEM_MAPPED_IO		    /* if defined by the operating system */
1298	smc->hw.iop = SADDR(slot) ;
1299#endif
1300
1301	if (!(inp(C0_A(0))&CFG_CARD_EN)) {
1302		return(2) ;			/* CFG_CARD_EN bit not set! */
1303	}
1304
1305	smc->hw.irq = opt_ints[(inp(C1_A(0)) & CFG_IRQ_SEL)] ;
1306	smc->hw.dma = opt_dmas[((inp(C1_A(0)) & CFG_DRQ_SEL)>>3)] ;
1307
1308	if ((i = inp(C2_A(0)) & CFG_EPROM_SEL) != 0x0f)
1309		smc->hw.eprom = opt_eproms[i] ;
1310	else
1311		smc->hw.eprom = 0 ;
1312
1313	smc->hw.DmaWriteExtraBytes = 8 ;
1314
1315	return(1) ;
1316}
1317#endif	/* EISA */
1318
1319#ifdef	ISA
1320#ifndef MULT_OEM
1321const u_char sklogo[6] = SKLOGO_STR ;
1322#define	SIZE_SKLOGO(smc)	sizeof(sklogo)
1323#define	SKLOGO(smc,i)		sklogo[i]
1324#else	/* MULT_OEM */
1325#define	SIZE_SKLOGO(smc)	smc->hw.oem_id->oi_logo_len
1326#define	SKLOGO(smc,i)		smc->hw.oem_id->oi_logo[i]
1327#endif	/* MULT_OEM */
1328
1329
1330int exist_board(smc,port)
1331struct s_smc *smc ;
1332HW_PTR	port ;
1333{
1334	int	i ;
1335#ifdef MULT_OEM
1336	int	bytes_read ;
1337	u_char	board_logo[15] ;
1338	SK_LOC_DECL(u_char,id[4]) ;
1339#endif	/* MULT_OEM */
1340
1341	/* No longer valid. */
1342	if (smc == NULL)
1343		return(0);
1344
1345	SK_UNUSED(smc) ;
1346#ifndef MULT_OEM
1347	for (i = SADDRL ; i < (signed) (SADDRL+SIZE_SKLOGO(smc)) ; i++) {
1348		if ((u_char)inpw((PRA(i)+port)) != SKLOGO(smc,i-SADDRL)) {
1349			return(0) ;
1350		}
1351	}
1352
1353	/* check MAC address (S&K or other) */
1354	for (i = 0 ; i < 3 ; i++) {
1355		if ((u_char)inpw((PRA(i)+port)) != OEMID(smc,i))
1356			return(0) ;
1357	}
1358	return(1) ;
1359#else	/* MULT_OEM */
1360        smc->hw.oem_id = (struct s_oem_ids *)  &oem_ids[0] ;
1361	board_logo[0] = (u_char)inpw((PRA(SADDRL)+port)) ;
1362	bytes_read = 1 ;
1363
1364	for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1365		if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1366			continue ;
1367
1368		/* Test all read bytes with current OEM_entry */
1369		/* for (i=0; (i<bytes_read) && (i < SIZE_SKLOGO(smc)); i++) { */
1370		for (i = 0; i < bytes_read; i++) {
1371			if (board_logo[i] != SKLOGO(smc,i))
1372				break ;
1373		}
1374
1375		/* If mismatch, switch to next OEM entry */
1376		if ((board_logo[i] != SKLOGO(smc,i)) && (i < bytes_read))
1377			continue ;
1378
1379		--i ;
1380		while (bytes_read < SIZE_SKLOGO(smc)) {
1381			//   inpw next byte SK_Logo
1382			i++ ;
1383			board_logo[i] = (u_char)inpw((PRA(SADDRL+i)+port)) ;
1384			bytes_read++ ;
1385			if (board_logo[i] != SKLOGO(smc,i))
1386				break ;
1387		}
1388
1389		for (i = 0 ; i < 3 ; i++)
1390			id[i] = (u_char)inpw((PRA(i)+port)) ;
1391
1392		if ((board_logo[i] == SKLOGO(smc,i))
1393			&& (bytes_read == SIZE_SKLOGO(smc))) {
1394
1395			if (is_equal_num(&id[0],&OEMID(smc,0),3))
1396				return(1);
1397		}
1398	}	/* for */
1399	return(0) ;
1400#endif	/* MULT_OEM */
1401}
1402
1403int get_board_para(smc,slot)
1404struct s_smc *smc ;
1405int	slot ;
1406{
1407	SK_UNUSED(smc) ;
1408	SK_UNUSED(slot) ;
1409	return(0) ;	/* for ISA not supported */
1410}
1411#endif	/* ISA */
1412
1413#ifdef PCI
1414#ifdef USE_BIOS_FUN
1415int exist_board(smc,slot)
1416struct s_smc *smc ;
1417int	slot ;
1418{
1419	u_short dev_id ;
1420	u_short ven_id ;
1421	int found ;
1422	int i ;
1423
1424	found = FALSE ;		/* make sure we returned with adatper not found*/
1425				/* if an empty oemids.h was included */
1426
1427#ifdef MULT_OEM
1428        smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
1429	for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
1430		if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
1431			continue ;
1432#endif
1433		ven_id = OEMID(smc,0) + (OEMID(smc,1) << 8) ;
1434		dev_id = OEMID(smc,2) + (OEMID(smc,3) << 8) ;
1435		for (i = 0; i < slot; i++) {
1436			if (pci_find_device(i,&smc->hw.pci_handle,
1437				dev_id,ven_id) != 0) {
1438
1439				found = FALSE ;
1440			} else {
1441				found = TRUE ;
1442			}
1443		}
1444		if (found) {
1445			return(1) ;	/* adapter was found */
1446		}
1447#ifdef MULT_OEM
1448	}
1449#endif
1450	return(0) ;	/* adapter was not found */
1451}
1452#endif	/* PCI */
1453#endif	/* USE_BIOS_FUNC */
1454
1455void driver_get_bia(smc, bia_addr)
1456struct s_smc *smc ;
1457struct fddi_addr *bia_addr ;
1458{
1459	int i ;
1460
1461	extern const u_char canonical[256] ;
1462
1463	for (i = 0 ; i < 6 ; i++) {
1464		bia_addr->a[i] = canonical[smc->hw.fddi_phys_addr.a[i]] ;
1465	}
1466}
1467
1468void smt_start_watchdog(smc)
1469struct s_smc *smc ;
1470{
1471	SK_UNUSED(smc) ;	/* Make LINT happy. */
1472
1473#ifndef	DEBUG
1474
1475#ifdef	PCI
1476	if (smc->hw.wdog_used) {
1477		outpw(ADDR(B2_WDOG_CRTL),TIM_START) ;	/* Start timer. */
1478	}
1479#endif
1480
1481#endif	/* DEBUG */
1482}
1483
1484void smt_stop_watchdog(smc)
1485struct s_smc *smc ;
1486{
1487	SK_UNUSED(smc) ;	/* Make LINT happy. */
1488#ifndef	DEBUG
1489
1490#ifdef	PCI
1491	if (smc->hw.wdog_used) {
1492		outpw(ADDR(B2_WDOG_CRTL),TIM_STOP) ;	/* Stop timer. */
1493	}
1494#endif
1495
1496#endif	/* DEBUG */
1497}
1498
1499#ifdef	PCI
1500static char get_rom_byte(smc,addr)
1501struct s_smc *smc ;
1502u_short	addr ;
1503{
1504	GET_PAGE(addr) ;
1505	return (READ_PROM(ADDR(B2_FDP))) ;
1506}
1507
1508/*
1509 * ROM image defines
1510 */
1511#define	ROM_SIG_1	0
1512#define ROM_SIG_2	1
1513#define PCI_DATA_1	0x18
1514#define PCI_DATA_2	0x19
1515
1516/*
1517 * PCI data structure defines
1518 */
1519#define	VPD_DATA_1	0x08
1520#define	VPD_DATA_2	0x09
1521#define IMAGE_LEN_1	0x10
1522#define IMAGE_LEN_2	0x11
1523#define	CODE_TYPE	0x14
1524#define	INDICATOR	0x15
1525
1526/*
1527 *	BEGIN_MANUAL_ENTRY(mac_drv_vpd_read)
1528 *	mac_drv_vpd_read(smc,buf,size,image)
1529 *
1530 * function	DOWNCALL	(FDDIWARE)
1531 *		reads the VPD data of the FPROM and writes it into the
1532 *		buffer
1533 *
1534 * para	buf	points to the buffer for the VPD data
1535 *	size	size of the VPD data buffer
1536 *	image	boot image; code type of the boot image
1537 *		image = 0	Intel x86, PC-AT compatible
1538 *			1	OPENBOOT standard for PCI
1539 *			2-FF	reserved
1540 *
1541 * returns	len	number of VPD data bytes read form the FPROM
1542 *		<0	number of read bytes
1543 *		>0	error: data invalid
1544 *
1545 *	END_MANUAL_ENTRY
1546 */
1547int mac_drv_vpd_read(smc,buf,size,image)
1548struct s_smc *smc ;
1549char *buf ;
1550int size ;
1551char image ;
1552{
1553	u_short	ibase ;
1554	u_short pci_base ;
1555	u_short vpd ;
1556	int	len ;
1557
1558	len = 0 ;
1559	ibase = 0 ;
1560	/*
1561	 * as long images defined
1562	 */
1563	while (get_rom_byte(smc,ibase+ROM_SIG_1) == 0x55 &&
1564		(u_char) get_rom_byte(smc,ibase+ROM_SIG_2) == 0xaa) {
1565		/*
1566		 * get the pointer to the PCI data structure
1567		 */
1568		pci_base = ibase + get_rom_byte(smc,ibase+PCI_DATA_1) +
1569				(get_rom_byte(smc,ibase+PCI_DATA_2) << 8) ;
1570
1571		if (image == get_rom_byte(smc,pci_base+CODE_TYPE)) {
1572			/*
1573			 * we have the right image, read the VPD data
1574			 */
1575			vpd = ibase + get_rom_byte(smc,pci_base+VPD_DATA_1) +
1576				(get_rom_byte(smc,pci_base+VPD_DATA_2) << 8) ;
1577			if (vpd == ibase) {
1578				break ;		/* no VPD data */
1579			}
1580			for (len = 0; len < size; len++,buf++,vpd++) {
1581				*buf = get_rom_byte(smc,vpd) ;
1582			}
1583			break ;
1584		}
1585		else {
1586			/*
1587			 * try the next image
1588			 */
1589			if (get_rom_byte(smc,pci_base+INDICATOR) & 0x80) {
1590				break ;		/* this was the last image */
1591			}
1592			ibase = ibase + get_rom_byte(smc,ibase+IMAGE_LEN_1) +
1593				(get_rom_byte(smc,ibase+IMAGE_LEN_2) << 8) ;
1594		}
1595	}
1596
1597	return(len) ;
1598}
1599
1600void mac_drv_pci_fix(smc,fix_value)
1601struct s_smc *smc ;
1602u_long fix_value ;
1603{
1604	smc->hw.pci_fix_value = fix_value ;
1605}
1606
1607void mac_do_pci_fix(smc)
1608struct s_smc *smc ;
1609{
1610	SK_UNUSED(smc) ;
1611}
1612#endif	/* PCI */
1613