1
2/*
3 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
4 *
5 * $Id: lart.c,v 1.1.1.1 2008/10/15 03:26:35 james26_jang Exp $
6 *
7 * Author: Abraham vd Merwe <abraham@2d3d.co.za>
8 *
9 * Copyright (c) 2001, 2d3D, Inc.
10 *
11 * This code is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 * References:
16 *
17 *    [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
18 *           - Order Number: 290644-005
19 *           - January 2000
20 *
21 *    [2] MTD internal API documentation
22 *           - http://www.linux-mtd.infradead.org/tech/
23 *
24 * Limitations:
25 *
26 *    Even though this driver is written for 3 Volt Fast Boot
27 *    Block Flash Memory, it is rather specific to LART. With
28 *    Minor modifications, notably the without data/address line
29 *    mangling and different bus settings, etc. it should be
30 *    trivial to adapt to other platforms.
31 *
32 *    If somebody would sponsor me a different board, I'll
33 *    adapt the driver (:
34 */
35
36/* debugging */
37//#define LART_DEBUG
38
39/* partition support */
40#define HAVE_PARTITIONS
41
42#include <linux/kernel.h>
43#include <linux/module.h>
44#include <linux/types.h>
45#include <linux/version.h>
46#include <linux/errno.h>
47#include <linux/mtd/mtd.h>
48#ifdef HAVE_PARTITIONS
49#include <linux/mtd/partitions.h>
50#endif
51
52#ifndef CONFIG_SA1100_LART
53#error This is for LART architecture only
54#endif
55
56static char module_name[] = "lart";
57
58/*
59 * These values is specific to 28Fxxxx3 flash memory.
60 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
61 */
62#define FLASH_BLOCKSIZE_PARAM		(4096 * BUSWIDTH)
63#define FLASH_NUMBLOCKS_16m_PARAM	8
64#define FLASH_NUMBLOCKS_8m_PARAM	8
65
66/*
67 * These values is specific to 28Fxxxx3 flash memory.
68 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
69 */
70#define FLASH_BLOCKSIZE_MAIN		(32768 * BUSWIDTH)
71#define FLASH_NUMBLOCKS_16m_MAIN	31
72#define FLASH_NUMBLOCKS_8m_MAIN		15
73
74/*
75 * These values are specific to LART
76 */
77
78/* general */
79#define BUSWIDTH			4				/* don't change this - a lot of the code _will_ break if you change this */
80#define FLASH_OFFSET		0xe8000000		/* see linux/arch/arm/mach-sa1100/lart.c */
81
82/* blob */
83#define NUM_BLOB_BLOCKS		FLASH_NUMBLOCKS_16m_PARAM
84#define BLOB_START			0x00000000
85#define BLOB_LEN			(NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
86
87/* kernel */
88#define NUM_KERNEL_BLOCKS	7
89#define KERNEL_START		(BLOB_START + BLOB_LEN)
90#define KERNEL_LEN			(NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
91
92/* initial ramdisk */
93#define NUM_INITRD_BLOCKS	24
94#define INITRD_START		(KERNEL_START + KERNEL_LEN)
95#define INITRD_LEN			(NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
96
97/*
98 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
99 */
100#define READ_ARRAY			0x00FF00FF		/* Read Array/Reset */
101#define READ_ID_CODES		0x00900090		/* Read Identifier Codes */
102#define ERASE_SETUP			0x00200020		/* Block Erase */
103#define ERASE_CONFIRM		0x00D000D0		/* Block Erase and Program Resume */
104#define PGM_SETUP			0x00400040		/* Program */
105#define STATUS_READ			0x00700070		/* Read Status Register */
106#define STATUS_CLEAR		0x00500050		/* Clear Status Register */
107#define STATUS_BUSY			0x00800080		/* Write State Machine Status (WSMS) */
108#define STATUS_ERASE_ERR	0x00200020		/* Erase Status (ES) */
109#define STATUS_PGM_ERR		0x00100010		/* Program Status (PS) */
110
111/*
112 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
113 */
114#define FLASH_MANUFACTURER			0x00890089
115#define FLASH_DEVICE_8mbit_TOP		0x88f188f1
116#define FLASH_DEVICE_8mbit_BOTTOM	0x88f288f2
117#define FLASH_DEVICE_16mbit_TOP		0x88f388f3
118#define FLASH_DEVICE_16mbit_BOTTOM	0x88f488f4
119
120/***************************************************************************************************/
121
122/*
123 * The data line mapping on LART is as follows:
124 *
125 *   	 U2  CPU |   U3  CPU
126 *   	 -------------------
127 *   	  0  20  |   0   12
128 *   	  1  22  |   1   14
129 *   	  2  19  |   2   11
130 *   	  3  17  |   3   9
131 *   	  4  24  |   4   0
132 *   	  5  26  |   5   2
133 *   	  6  31  |   6   7
134 *   	  7  29  |   7   5
135 *   	  8  21  |   8   13
136 *   	  9  23  |   9   15
137 *   	  10 18  |   10  10
138 *   	  11 16  |   11  8
139 *   	  12 25  |   12  1
140 *   	  13 27  |   13  3
141 *   	  14 30  |   14  6
142 *   	  15 28  |   15  4
143 */
144
145/* Mangle data (x) */
146#define DATA_TO_FLASH(x)				\
147	(									\
148		(((x) & 0x08009000) >> 11)	+	\
149		(((x) & 0x00002000) >> 10)	+	\
150		(((x) & 0x04004000) >> 8)	+	\
151		(((x) & 0x00000010) >> 4)	+	\
152		(((x) & 0x91000820) >> 3)	+	\
153		(((x) & 0x22080080) >> 2)	+	\
154		((x) & 0x40000400)			+	\
155		(((x) & 0x00040040) << 1)	+	\
156		(((x) & 0x00110000) << 4)	+	\
157		(((x) & 0x00220100) << 5)	+	\
158		(((x) & 0x00800208) << 6)	+	\
159		(((x) & 0x00400004) << 9)	+	\
160		(((x) & 0x00000001) << 12)	+	\
161		(((x) & 0x00000002) << 13)		\
162	)
163
164/* Unmangle data (x) */
165#define FLASH_TO_DATA(x)				\
166	(									\
167		(((x) & 0x00010012) << 11)	+	\
168		(((x) & 0x00000008) << 10)	+	\
169		(((x) & 0x00040040) << 8)	+	\
170		(((x) & 0x00000001) << 4)	+	\
171		(((x) & 0x12200104) << 3)	+	\
172		(((x) & 0x08820020) << 2)	+	\
173		((x) & 0x40000400)			+	\
174		(((x) & 0x00080080) >> 1)	+	\
175		(((x) & 0x01100000) >> 4)	+	\
176		(((x) & 0x04402000) >> 5)	+	\
177		(((x) & 0x20008200) >> 6)	+	\
178		(((x) & 0x80000800) >> 9)	+	\
179		(((x) & 0x00001000) >> 12)	+	\
180		(((x) & 0x00004000) >> 13)		\
181	)
182
183/*
184 * The address line mapping on LART is as follows:
185 *
186 *   	 U3  CPU |   U2  CPU
187 *   	 -------------------
188 *   	  0  2   |   0   2
189 *   	  1  3   |   1   3
190 *   	  2  9   |   2   9
191 *   	  3  13  |   3   8
192 *   	  4  8   |   4   7
193 *   	  5  12  |   5   6
194 *   	  6  11  |   6   5
195 *   	  7  10  |   7   4
196 *   	  8  4   |   8   10
197 *   	  9  5   |   9   11
198 *   	 10  6   |   10  12
199 *   	 11  7   |   11  13
200 *
201 *   	 BOOT BLOCK BOUNDARY
202 *
203 *   	 12  15  |   12  15
204 *   	 13  14  |   13  14
205 *   	 14  16  |   14  16
206 *
207 *   	 MAIN BLOCK BOUNDARY
208 *
209 *   	 15  17  |   15  18
210 *   	 16  18  |   16  17
211 *   	 17  20  |   17  20
212 *   	 18  19  |   18  19
213 *   	 19  21  |   19  21
214 *
215 * As we can see from above, the addresses aren't mangled across
216 * block boundaries, so we don't need to worry about address
217 * translations except for sending/reading commands during
218 * initialization
219 */
220
221/* Mangle address (x) on chip U2 */
222#define ADDR_TO_FLASH_U2(x)				\
223	(									\
224		(((x) & 0x00000f00) >> 4)	+	\
225		(((x) & 0x00042000) << 1)	+	\
226		(((x) & 0x0009c003) << 2)	+	\
227		(((x) & 0x00021080) << 3)	+	\
228		(((x) & 0x00000010) << 4)	+	\
229		(((x) & 0x00000040) << 5)	+	\
230		(((x) & 0x00000024) << 7)	+	\
231		(((x) & 0x00000008) << 10)		\
232	)
233
234/* Unmangle address (x) on chip U2 */
235#define FLASH_U2_TO_ADDR(x)				\
236	(									\
237		(((x) << 4) & 0x00000f00)	+	\
238		(((x) >> 1) & 0x00042000)	+	\
239		(((x) >> 2) & 0x0009c003)	+	\
240		(((x) >> 3) & 0x00021080)	+	\
241		(((x) >> 4) & 0x00000010)	+	\
242		(((x) >> 5) & 0x00000040)	+	\
243		(((x) >> 7) & 0x00000024)	+	\
244		(((x) >> 10) & 0x00000008)		\
245	)
246
247/* Mangle address (x) on chip U3 */
248#define ADDR_TO_FLASH_U3(x)				\
249	(									\
250		(((x) & 0x00000080) >> 3)	+	\
251		(((x) & 0x00000040) >> 1)	+	\
252		(((x) & 0x00052020) << 1)	+	\
253		(((x) & 0x00084f03) << 2)	+	\
254		(((x) & 0x00029010) << 3)	+	\
255		(((x) & 0x00000008) << 5)	+	\
256		(((x) & 0x00000004) << 7)		\
257	)
258
259/* Unmangle address (x) on chip U3 */
260#define FLASH_U3_TO_ADDR(x)				\
261	(									\
262		(((x) << 3) & 0x00000080)	+	\
263		(((x) << 1) & 0x00000040)	+	\
264		(((x) >> 1) & 0x00052020)	+	\
265		(((x) >> 2) & 0x00084f03)	+	\
266		(((x) >> 3) & 0x00029010)	+	\
267		(((x) >> 5) & 0x00000008)	+	\
268		(((x) >> 7) & 0x00000004)		\
269	)
270
271/***************************************************************************************************/
272
273static __u8 read8 (__u32 offset)
274{
275   volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
276#ifdef LART_DEBUG
277   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n",__FUNCTION__,offset,*data);
278#endif
279   return (*data);
280}
281
282static __u32 read32 (__u32 offset)
283{
284   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
285#ifdef LART_DEBUG
286   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n",__FUNCTION__,offset,*data);
287#endif
288   return (*data);
289}
290
291static void write32 (__u32 x,__u32 offset)
292{
293   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
294   *data = x;
295#ifdef LART_DEBUG
296   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n",__FUNCTION__,offset,*data);
297#endif
298}
299
300/***************************************************************************************************/
301
302/*
303 * Probe for 16mbit flash memory on a LART board without doing
304 * too much damage. Since we need to write 1 dword to memory,
305 * we're f**cked if this happens to be DRAM since we can't
306 * restore the memory (otherwise we might exit Read Array mode).
307 *
308 * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
309 */
310static int flash_probe (void)
311{
312   __u32 manufacturer,devtype;
313
314   /* setup "Read Identifier Codes" mode */
315   write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
316
317   /* probe U2. U2/U3 returns the same data since the first 3
318	* address lines is mangled in the same way */
319   manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
320   devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
321
322   /* put the flash back into command mode */
323   write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
324
325   return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || FLASH_DEVICE_16mbit_BOTTOM));
326}
327
328/*
329 * Erase one block of flash memory at offset ``offset'' which is any
330 * address within the block which should be erased.
331 *
332 * Returns 1 if successful, 0 otherwise.
333 */
334static inline int erase_block (__u32 offset)
335{
336   __u32 status;
337
338#ifdef LART_DEBUG
339   printk (KERN_DEBUG "%s(): 0x%.8x\n",__FUNCTION__,offset);
340#endif
341
342   /* erase and confirm */
343   write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
344   write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
345
346   /* wait for block erase to finish */
347   do
348	 {
349		write32 (DATA_TO_FLASH (STATUS_READ),offset);
350		status = FLASH_TO_DATA (read32 (offset));
351	 }
352   while ((~status & STATUS_BUSY) != 0);
353
354   /* put the flash back into command mode */
355   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
356
357   /* was the erase successfull? */
358   if ((status & STATUS_ERASE_ERR))
359	 {
360		printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
361		return (0);
362	 }
363
364   return (1);
365}
366
367static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
368{
369   __u32 addr,len;
370   int i,first;
371
372#ifdef LART_DEBUG
373   printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n",__FUNCTION__,instr->addr,instr->len);
374#endif
375
376   /* sanity checks */
377   if (instr->addr + instr->len > mtd->size) return (-EINVAL);
378
379   /*
380	* check that both start and end of the requested erase are
381	* aligned with the erasesize at the appropriate addresses.
382	*
383	* skip all erase regions which are ended before the start of
384	* the requested erase. Actually, to save on the calculations,
385	* we skip to the first erase region which starts after the
386	* start of the requested erase, and then go back one.
387	*/
388   for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
389   i--;
390
391   /*
392	* ok, now i is pointing at the erase region in which this
393	* erase request starts. Check the start of the requested
394	* erase range is aligned with the erase size which is in
395	* effect here.
396	*/
397   if (instr->addr & (mtd->eraseregions[i].erasesize - 1)) return (-EINVAL);
398
399   /* Remember the erase region we start on */
400   first = i;
401
402   /*
403	* next, check that the end of the requested erase is aligned
404	* with the erase region at that address.
405	*
406	* as before, drop back one to point at the region in which
407	* the address actually falls
408	*/
409   for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
410   i--;
411
412   /* is the end aligned on a block boundary? */
413   if ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)) return (-EINVAL);
414
415   addr = instr->addr;
416   len = instr->len;
417
418   i = first;
419
420   /* now erase those blocks */
421   while (len)
422	 {
423		if (!erase_block (addr))
424		  {
425			 instr->state = MTD_ERASE_FAILED;
426			 return (-EIO);
427		  }
428
429		addr += mtd->eraseregions[i].erasesize;
430		len -= mtd->eraseregions[i].erasesize;
431
432		if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
433	 }
434
435   instr->state = MTD_ERASE_DONE;
436   if (instr->callback) instr->callback (instr);
437
438   return (0);
439}
440
441static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
442{
443#ifdef LART_DEBUG
444   printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) from,len);
445#endif
446
447   /* sanity checks */
448   if (!len) return (0);
449   if (from + len > mtd->size) return (-EINVAL);
450
451   /* we always read len bytes */
452   *retlen = len;
453
454   /* first, we read bytes until we reach a dword boundary */
455   if (from & (BUSWIDTH - 1))
456	 {
457		int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
458
459		while (len && gap--) *buf++ = read8 (from++), len--;
460	 }
461
462   /* now we read dwords until we reach a non-dword boundary */
463   while (len >= BUSWIDTH)
464	 {
465		*((__u32 *) buf) = read32 (from);
466
467		buf += BUSWIDTH;
468		from += BUSWIDTH;
469		len -= BUSWIDTH;
470	 }
471
472   /* top up the last unaligned bytes */
473   if (len & (BUSWIDTH - 1))
474	 while (len--) *buf++ = read8 (from++);
475
476   return (0);
477}
478
479/*
480 * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
481 * must be 32 bits, i.e. it must be on a dword boundary.
482 *
483 * Returns 1 if successful, 0 otherwise.
484 */
485static inline int write_dword (__u32 offset,__u32 x)
486{
487   __u32 status;
488
489#ifdef LART_DEBUG
490   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n",__FUNCTION__,offset,x);
491#endif
492
493   /* setup writing */
494   write32 (DATA_TO_FLASH (PGM_SETUP),offset);
495
496   /* write the data */
497   write32 (x,offset);
498
499   /* wait for the write to finish */
500   do
501	 {
502		write32 (DATA_TO_FLASH (STATUS_READ),offset);
503		status = FLASH_TO_DATA (read32 (offset));
504	 }
505   while ((~status & STATUS_BUSY) != 0);
506
507   /* put the flash back into command mode */
508   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
509
510   /* was the write successfull? */
511   if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
512	 {
513		printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
514		return (0);
515	 }
516
517   return (1);
518}
519
520static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
521{
522   __u8 tmp[4];
523   int i,n;
524
525#ifdef LART_DEBUG
526   printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) to,len);
527#endif
528
529   *retlen = 0;
530
531   /* sanity checks */
532   if (!len) return (0);
533   if (to + len > mtd->size) return (-EINVAL);
534
535   /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
536   if (to & (BUSWIDTH - 1))
537	 {
538		__u32 aligned = to & ~(BUSWIDTH - 1);
539		int gap = to - aligned;
540
541		i = n = 0;
542
543		while (gap--) tmp[i++] = 0xFF;
544		while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--;
545		while (i < BUSWIDTH) tmp[i++] = 0xFF;
546
547		if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
548
549		to += n;
550		buf += n;
551		*retlen += n;
552	 }
553
554   /* now we write dwords until we reach a non-dword boundary */
555   while (len >= BUSWIDTH)
556	 {
557		if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
558
559		to += BUSWIDTH;
560		buf += BUSWIDTH;
561		*retlen += BUSWIDTH;
562		len -= BUSWIDTH;
563	 }
564
565   /* top up the last unaligned bytes, padded with 0xFF.... */
566   if (len & (BUSWIDTH - 1))
567	 {
568		i = n = 0;
569
570		while (len--) tmp[i++] = buf[n++];
571		while (i < BUSWIDTH) tmp[i++] = 0xFF;
572
573		if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
574
575		*retlen += n;
576	 }
577
578   return (0);
579}
580
581/***************************************************************************************************/
582
583#define NB_OF(x) (sizeof (x) / sizeof (x[0]))
584
585static struct mtd_info mtd;
586
587static struct mtd_erase_region_info erase_regions[] =
588{
589   /* parameter blocks */
590   {
591	     offset: 0x00000000,
592	  erasesize: FLASH_BLOCKSIZE_PARAM,
593	  numblocks: FLASH_NUMBLOCKS_16m_PARAM
594   },
595   /* main blocks */
596   {
597	     offset: FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
598	  erasesize: FLASH_BLOCKSIZE_MAIN,
599	  numblocks: FLASH_NUMBLOCKS_16m_MAIN
600   }
601};
602
603#ifdef HAVE_PARTITIONS
604static struct mtd_partition lart_partitions[] =
605{
606   /* blob */
607   {
608	       name: "blob",
609	     offset: BLOB_START,
610	       size: BLOB_LEN,
611	 mask_flags: 0
612   },
613   /* kernel */
614   {
615	       name: "kernel",
616	     offset: KERNEL_START,			/* MTDPART_OFS_APPEND */
617	       size: KERNEL_LEN,
618	 mask_flags: 0
619   },
620   /* initial ramdisk / file system */
621   {
622	       name: "file system",
623	     offset: INITRD_START,			/* MTDPART_OFS_APPEND */
624	       size: INITRD_LEN,			/* MTDPART_SIZ_FULL */
625	 mask_flags: 0
626   }
627};
628#endif
629
630int __init lart_flash_init (void)
631{
632   int result;
633   memset (&mtd,0,sizeof (mtd));
634   printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
635   printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
636   if (!flash_probe ())
637	 {
638		printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
639		return (-ENXIO);
640	 }
641   printk ("%s: This looks like a LART board to me.\n",module_name);
642   mtd.name = module_name;
643   mtd.type = MTD_NORFLASH;
644   mtd.flags = MTD_CAP_NORFLASH;
645   mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
646   mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
647   mtd.numeraseregions = NB_OF (erase_regions);
648   mtd.eraseregions = erase_regions;
649   mtd.module = THIS_MODULE;
650   mtd.erase = flash_erase;
651   mtd.read = flash_read;
652   mtd.write = flash_write;
653
654#ifdef LART_DEBUG
655   printk (KERN_DEBUG
656		   "mtd.name = %s\n"
657		   "mtd.size = 0x%.8x (%uM)\n"
658		   "mtd.erasesize = 0x%.8x (%uK)\n"
659		   "mtd.numeraseregions = %d\n",
660		   mtd.name,
661		   mtd.size,mtd.size / (1024*1024),
662		   mtd.erasesize,mtd.erasesize / 1024,
663		   mtd.numeraseregions);
664
665   if (mtd.numeraseregions)
666	 for (result = 0; result < mtd.numeraseregions; result++)
667	   printk (KERN_DEBUG
668			   "\n\n"
669			   "mtd.eraseregions[%d].offset = 0x%.8x\n"
670			   "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
671			   "mtd.eraseregions[%d].numblocks = %d\n",
672			   result,mtd.eraseregions[result].offset,
673			   result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
674			   result,mtd.eraseregions[result].numblocks);
675
676#ifdef HAVE_PARTITIONS
677   printk ("\npartitions = %d\n",NB_OF (lart_partitions));
678
679   for (result = 0; result < NB_OF (lart_partitions); result++)
680	 printk (KERN_DEBUG
681			 "\n\n"
682			 "lart_partitions[%d].name = %s\n"
683			 "lart_partitions[%d].offset = 0x%.8x\n"
684			 "lart_partitions[%d].size = 0x%.8x (%uK)\n",
685			 result,lart_partitions[result].name,
686			 result,lart_partitions[result].offset,
687			 result,lart_partitions[result].size,lart_partitions[result].size / 1024);
688#endif
689#endif
690
691#ifndef HAVE_PARTITIONS
692   result = add_mtd_device (&mtd);
693#else
694   result = add_mtd_partitions (&mtd,lart_partitions,NB_OF (lart_partitions));
695#endif
696
697   return (result);
698}
699
700void __exit lart_flash_exit (void)
701{
702#ifndef HAVE_PARTITIONS
703   del_mtd_device (&mtd);
704#else
705   del_mtd_partitions (&mtd);
706#endif
707}
708
709module_init (lart_flash_init);
710module_exit (lart_flash_exit);
711
712MODULE_LICENSE("GPL");
713MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
714MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");
715
716
717