1/*
2 * random.c -- A strong random number generator
3 *
4 * Version 1.89, last modified 19-Sep-99
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, and the entire permission notice in its entirety,
14 *    including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 *    products derived from this software without specific prior
20 *    written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions.  (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices.  Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm.  Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable.  So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers.  In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure.  Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool".  The SHA hash avoids
80 * exposing the internal state of the entropy pool.  It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output.  Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable.  For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs.  This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * 	void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom.  /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested.  As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong.  For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * 	void add_keyboard_randomness(unsigned char scancode);
129 * 	void add_mouse_randomness(__u32 mouse_data);
130 * 	void add_interrupt_randomness(int irq);
131 * 	void add_blkdev_randomness(int irq);
132 *
133 * add_keyboard_randomness() uses the inter-keypress timing, as well as the
134 * scancode as random inputs into the "entropy pool".
135 *
136 * add_mouse_randomness() uses the mouse interrupt timing, as well as
137 * the reported position of the mouse from the hardware.
138 *
139 * add_interrupt_randomness() uses the inter-interrupt timing as random
140 * inputs to the entropy pool.  Note that not all interrupts are good
141 * sources of randomness!  For example, the timer interrupts is not a
142 * good choice, because the periodicity of the interrupts is too
143 * regular, and hence predictable to an attacker.  Disk interrupts are
144 * a better measure, since the timing of the disk interrupts are more
145 * unpredictable.
146 *
147 * add_blkdev_randomness() times the finishing time of block requests.
148 *
149 * All of these routines try to estimate how many bits of randomness a
150 * particular randomness source.  They do this by keeping track of the
151 * first and second order deltas of the event timings.
152 *
153 * Ensuring unpredictability at system startup
154 * ============================================
155 *
156 * When any operating system starts up, it will go through a sequence
157 * of actions that are fairly predictable by an adversary, especially
158 * if the start-up does not involve interaction with a human operator.
159 * This reduces the actual number of bits of unpredictability in the
160 * entropy pool below the value in entropy_count.  In order to
161 * counteract this effect, it helps to carry information in the
162 * entropy pool across shut-downs and start-ups.  To do this, put the
163 * following lines an appropriate script which is run during the boot
164 * sequence:
165 *
166 *	echo "Initializing random number generator..."
167 *	random_seed=/var/run/random-seed
168 *	# Carry a random seed from start-up to start-up
169 *	# Load and then save the whole entropy pool
170 *	if [ -f $random_seed ]; then
171 *		cat $random_seed >/dev/urandom
172 *	else
173 *		touch $random_seed
174 *	fi
175 *	chmod 600 $random_seed
176 *	poolfile=/proc/sys/kernel/random/poolsize
177 *	[ -r $poolfile ] && bytes=`cat $poolfile` || bytes=512
178 *	dd if=/dev/urandom of=$random_seed count=1 bs=bytes
179 *
180 * and the following lines in an appropriate script which is run as
181 * the system is shutdown:
182 *
183 *	# Carry a random seed from shut-down to start-up
184 *	# Save the whole entropy pool
185 *	echo "Saving random seed..."
186 *	random_seed=/var/run/random-seed
187 *	touch $random_seed
188 *	chmod 600 $random_seed
189 *	poolfile=/proc/sys/kernel/random/poolsize
190 *	[ -r $poolfile ] && bytes=`cat $poolfile` || bytes=512
191 *	dd if=/dev/urandom of=$random_seed count=1 bs=bytes
192 *
193 * For example, on most modern systems using the System V init
194 * scripts, such code fragments would be found in
195 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
196 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
197 *
198 * Effectively, these commands cause the contents of the entropy pool
199 * to be saved at shut-down time and reloaded into the entropy pool at
200 * start-up.  (The 'dd' in the addition to the bootup script is to
201 * make sure that /etc/random-seed is different for every start-up,
202 * even if the system crashes without executing rc.0.)  Even with
203 * complete knowledge of the start-up activities, predicting the state
204 * of the entropy pool requires knowledge of the previous history of
205 * the system.
206 *
207 * Configuring the /dev/random driver under Linux
208 * ==============================================
209 *
210 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
211 * the /dev/mem major number (#1).  So if your system does not have
212 * /dev/random and /dev/urandom created already, they can be created
213 * by using the commands:
214 *
215 * 	mknod /dev/random c 1 8
216 * 	mknod /dev/urandom c 1 9
217 *
218 * Acknowledgements:
219 * =================
220 *
221 * Ideas for constructing this random number generator were derived
222 * from Pretty Good Privacy's random number generator, and from private
223 * discussions with Phil Karn.  Colin Plumb provided a faster random
224 * number generator, which speed up the mixing function of the entropy
225 * pool, taken from PGPfone.  Dale Worley has also contributed many
226 * useful ideas and suggestions to improve this driver.
227 *
228 * Any flaws in the design are solely my responsibility, and should
229 * not be attributed to the Phil, Colin, or any of authors of PGP.
230 *
231 * The code for SHA transform was taken from Peter Gutmann's
232 * implementation, which has been placed in the public domain.
233 * The code for MD5 transform was taken from Colin Plumb's
234 * implementation, which has been placed in the public domain.
235 * The MD5 cryptographic checksum was devised by Ronald Rivest, and is
236 * documented in RFC 1321, "The MD5 Message Digest Algorithm".
237 *
238 * Further background information on this topic may be obtained from
239 * RFC 1750, "Randomness Recommendations for Security", by Donald
240 * Eastlake, Steve Crocker, and Jeff Schiller.
241 */
242
243#include <linux/utsname.h>
244#include <linux/config.h>
245#include <linux/module.h>
246#include <linux/kernel.h>
247#include <linux/major.h>
248#include <linux/string.h>
249#include <linux/fcntl.h>
250#include <linux/slab.h>
251#include <linux/random.h>
252#include <linux/poll.h>
253#include <linux/init.h>
254
255#include <asm/processor.h>
256#include <asm/uaccess.h>
257#include <asm/irq.h>
258#include <asm/io.h>
259
260/*
261 * Configuration information
262 */
263#define DEFAULT_POOL_SIZE 512
264#define SECONDARY_POOL_SIZE 128
265#define BATCH_ENTROPY_SIZE 256
266#define USE_SHA
267
268/*
269 * The minimum number of bits of entropy before we wake up a read on
270 * /dev/random.  Should always be at least 8, or at least 1 byte.
271 */
272static int random_read_wakeup_thresh = 8;
273
274/*
275 * If the entropy count falls under this number of bits, then we
276 * should wake up processes which are selecting or polling on write
277 * access to /dev/random.
278 */
279static int random_write_wakeup_thresh = 128;
280
281/*
282 * A pool of size .poolwords is stirred with a primitive polynomial
283 * of degree .poolwords over GF(2).  The taps for various sizes are
284 * defined below.  They are chosen to be evenly spaced (minimum RMS
285 * distance from evenly spaced; the numbers in the comments are a
286 * scaled squared error sum) except for the last tap, which is 1 to
287 * get the twisting happening as fast as possible.
288 */
289static struct poolinfo {
290	int	poolwords;
291	int	tap1, tap2, tap3, tap4, tap5;
292} poolinfo_table[] = {
293	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
294	{ 2048,	1638,	1231,	819,	411,	1 },
295
296	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
297	{ 1024,	817,	615,	412,	204,	1 },
298
299	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
300	{ 512,	411,	308,	208,	104,	1 },
301
302	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
303	{ 256,	205,	155,	101,	52,	1 },
304
305	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
306	{ 128,	103,	76,	51,	25,	1 },
307
308	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
309	{ 64,	52,	39,	26,	14,	1 },
310
311	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
312	{ 32,	26,	20,	14,	7,	1 },
313
314	{ 0,	0,	0,	0,	0,	0 },
315};
316
317#define POOLBITS	poolwords*32
318#define POOLBYTES	poolwords*4
319
320/*
321 * For the purposes of better mixing, we use the CRC-32 polynomial as
322 * well to make a twisted Generalized Feedback Shift Reigster
323 *
324 * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
325 * Transactions on Modeling and Computer Simulation 2(3):179-194.
326 * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
327 * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
328 *
329 * Thanks to Colin Plumb for suggesting this.
330 *
331 * We have not analyzed the resultant polynomial to prove it primitive;
332 * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
333 * of a random large-degree polynomial over GF(2) are more than large enough
334 * that periodicity is not a concern.
335 *
336 * The input hash is much less sensitive than the output hash.  All
337 * that we want of it is that it be a good non-cryptographic hash;
338 * i.e. it not produce collisions when fed "random" data of the sort
339 * we expect to see.  As long as the pool state differs for different
340 * inputs, we have preserved the input entropy and done a good job.
341 * The fact that an intelligent attacker can construct inputs that
342 * will produce controlled alterations to the pool's state is not
343 * important because we don't consider such inputs to contribute any
344 * randomness.  The only property we need with respect to them is that
345 * the attacker can't increase his/her knowledge of the pool's state.
346 * Since all additions are reversible (knowing the final state and the
347 * input, you can reconstruct the initial state), if an attacker has
348 * any uncertainty about the initial state, he/she can only shuffle
349 * that uncertainty about, but never cause any collisions (which would
350 * decrease the uncertainty).
351 *
352 * The chosen system lets the state of the pool be (essentially) the input
353 * modulo the generator polymnomial.  Now, for random primitive polynomials,
354 * this is a universal class of hash functions, meaning that the chance
355 * of a collision is limited by the attacker's knowledge of the generator
356 * polynomail, so if it is chosen at random, an attacker can never force
357 * a collision.  Here, we use a fixed polynomial, but we *can* assume that
358 * ###--> it is unknown to the processes generating the input entropy. <-###
359 * Because of this important property, this is a good, collision-resistant
360 * hash; hash collisions will occur no more often than chance.
361 */
362
363/*
364 * Linux 2.2 compatibility
365 */
366#ifndef DECLARE_WAITQUEUE
367#define DECLARE_WAITQUEUE(WAIT, PTR)	struct wait_queue WAIT = { PTR, NULL }
368#endif
369#ifndef DECLARE_WAIT_QUEUE_HEAD
370#define DECLARE_WAIT_QUEUE_HEAD(WAIT) struct wait_queue *WAIT
371#endif
372
373/*
374 * Static global variables
375 */
376static struct entropy_store *random_state; /* The default global store */
377static struct entropy_store *sec_random_state; /* secondary store */
378static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
379static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
380
381/*
382 * Forward procedure declarations
383 */
384#ifdef CONFIG_SYSCTL
385static void sysctl_init_random(struct entropy_store *random_state);
386#endif
387
388/*****************************************************************
389 *
390 * Utility functions, with some ASM defined functions for speed
391 * purposes
392 *
393 *****************************************************************/
394
395/*
396 * Unfortunately, while the GCC optimizer for the i386 understands how
397 * to optimize a static rotate left of x bits, it doesn't know how to
398 * deal with a variable rotate of x bits.  So we use a bit of asm magic.
399 */
400#if !defined(__i386__)
401static inline __u32 rotate_left(int i, __u32 word)
402{
403	return (word << i) | (word >> (32 - i));
404
405}
406#else
407static inline __u32 rotate_left(int i, __u32 word)
408{
409	__asm__("roll %%cl,%0"
410		:"=r" (word)
411		:"0" (word),"c" (i));
412	return word;
413}
414#endif
415
416/*
417 * More asm magic....
418 *
419 * For entropy estimation, we need to do an integral base 2
420 * logarithm.
421 *
422 * Note the "12bits" suffix - this is used for numbers between
423 * 0 and 4095 only.  This allows a few shortcuts.
424 */
425static inline __u32 int_ln_12bits(__u32 word)
426{
427	/* Smear msbit right to make an n-bit mask */
428	word |= word >> 8;
429	word |= word >> 4;
430	word |= word >> 2;
431	word |= word >> 1;
432	/* Remove one bit to make this a logarithm */
433	word >>= 1;
434	/* Count the bits set in the word */
435	word -= (word >> 1) & 0x555;
436	word = (word & 0x333) + ((word >> 2) & 0x333);
437	word += (word >> 4);
438	word += (word >> 8);
439	return word & 15;
440}
441
442#define DEBUG_ENT(fmt, arg...) do {} while (0)
443
444/**********************************************************************
445 *
446 * OS independent entropy store.   Here are the functions which handle
447 * storing entropy in an entropy pool.
448 *
449 **********************************************************************/
450
451struct entropy_store {
452	unsigned	add_ptr;
453	int		entropy_count;
454	int		input_rotate;
455	int		extract_count;
456	struct poolinfo poolinfo;
457	__u32		*pool;
458};
459
460/*
461 * Initialize the entropy store.  The input argument is the size of
462 * the random pool.
463 *
464 * Returns an negative error if there is a problem.
465 */
466static int create_entropy_store(int size, struct entropy_store **ret_bucket)
467{
468	struct	entropy_store	*r;
469	struct	poolinfo	*p;
470	int	poolwords;
471
472	poolwords = (size + 3) / 4; /* Convert bytes->words */
473	/* The pool size must be a multiple of 16 32-bit words */
474	poolwords = ((poolwords + 15) / 16) * 16;
475
476	for (p = poolinfo_table; p->poolwords; p++) {
477		if (poolwords == p->poolwords)
478			break;
479	}
480	if (p->poolwords == 0)
481		return -EINVAL;
482
483	r = kmalloc(sizeof(struct entropy_store), GFP_KERNEL);
484	if (!r)
485		return -ENOMEM;
486
487	memset (r, 0, sizeof(struct entropy_store));
488	r->poolinfo = *p;
489
490	r->pool = kmalloc(POOLBYTES, GFP_KERNEL);
491	if (!r->pool) {
492		kfree(r);
493		return -ENOMEM;
494	}
495	memset(r->pool, 0, POOLBYTES);
496	*ret_bucket = r;
497	return 0;
498}
499
500/* Clear the entropy pool and associated counters. */
501static void clear_entropy_store(struct entropy_store *r)
502{
503	r->add_ptr = 0;
504	r->entropy_count = 0;
505	r->input_rotate = 0;
506	r->extract_count = 0;
507	memset(r->pool, 0, r->poolinfo.POOLBYTES);
508}
509
510static void free_entropy_store(struct entropy_store *r)
511{
512	if (r->pool)
513		kfree(r->pool);
514	kfree(r);
515}
516
517/*
518 * This function adds a byte into the entropy "pool".  It does not
519 * update the entropy estimate.  The caller should call
520 * credit_entropy_store if this is appropriate.
521 *
522 * The pool is stirred with a primitive polynomial of the appropriate
523 * degree, and then twisted.  We twist by three bits at a time because
524 * it's cheap to do so and helps slightly in the expected case where
525 * the entropy is concentrated in the low-order bits.
526 */
527static void add_entropy_words(struct entropy_store *r, const __u32 *in,
528			      int nwords)
529{
530	static __u32 const twist_table[8] = {
531		         0, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
532		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
533	unsigned i;
534	int new_rotate;
535	int wordmask = r->poolinfo.poolwords - 1;
536	__u32 w;
537
538	while (nwords--) {
539		w = rotate_left(r->input_rotate, *in++);
540		i = r->add_ptr = (r->add_ptr - 1) & wordmask;
541		/*
542		 * Normally, we add 7 bits of rotation to the pool.
543		 * At the beginning of the pool, add an extra 7 bits
544		 * rotation, so that successive passes spread the
545		 * input bits across the pool evenly.
546		 */
547		new_rotate = r->input_rotate + 14;
548		if (i)
549			new_rotate = r->input_rotate + 7;
550		r->input_rotate = new_rotate & 31;
551
552		/* XOR in the various taps */
553		w ^= r->pool[(i + r->poolinfo.tap1) & wordmask];
554		w ^= r->pool[(i + r->poolinfo.tap2) & wordmask];
555		w ^= r->pool[(i + r->poolinfo.tap3) & wordmask];
556		w ^= r->pool[(i + r->poolinfo.tap4) & wordmask];
557		w ^= r->pool[(i + r->poolinfo.tap5) & wordmask];
558		w ^= r->pool[i];
559		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
560	}
561}
562
563/*
564 * Credit (or debit) the entropy store with n bits of entropy
565 */
566static void credit_entropy_store(struct entropy_store *r, int nbits)
567{
568	if (r->entropy_count + nbits < 0) {
569		DEBUG_ENT("negative entropy/overflow (%d+%d)\n",
570			  r->entropy_count, nbits);
571		r->entropy_count = 0;
572	} else if (r->entropy_count + nbits > r->poolinfo.POOLBITS) {
573		r->entropy_count = r->poolinfo.POOLBITS;
574	} else {
575		r->entropy_count += nbits;
576		if (nbits)
577			DEBUG_ENT("%s added %d bits, now %d\n",
578				  r == sec_random_state ? "secondary" :
579				  r == random_state ? "primary" : "unknown",
580				  nbits, r->entropy_count);
581	}
582}
583
584/**********************************************************************
585 *
586 * Entropy batch input management
587 *
588 * We batch entropy to be added to avoid increasing interrupt latency
589 *
590 **********************************************************************/
591
592static __u32	*batch_entropy_pool;
593static int	*batch_entropy_credit;
594static int	batch_max;
595static int	batch_head, batch_tail;
596static struct tq_struct	batch_tqueue;
597static void batch_entropy_process(void *private_);
598
599/* note: the size must be a power of 2 */
600static int __init batch_entropy_init(int size, struct entropy_store *r)
601{
602	batch_entropy_pool = kmalloc(2*size*sizeof(__u32), GFP_KERNEL);
603	if (!batch_entropy_pool)
604		return -1;
605	batch_entropy_credit =kmalloc(size*sizeof(int), GFP_KERNEL);
606	if (!batch_entropy_credit) {
607		kfree(batch_entropy_pool);
608		return -1;
609	}
610	batch_head = batch_tail = 0;
611	batch_max = size;
612	batch_tqueue.routine = batch_entropy_process;
613	batch_tqueue.data = r;
614	return 0;
615}
616
617/*
618 * Changes to the entropy data is put into a queue rather than being added to
619 * the entropy counts directly.  This is presumably to avoid doing heavy
620 * hashing calculations during an interrupt in add_timer_randomness().
621 * Instead, the entropy is only added to the pool once per timer tick.
622 */
623void batch_entropy_store(u32 a, u32 b, int num)
624{
625	int	new;
626
627	if (!batch_max)
628		return;
629
630	batch_entropy_pool[2*batch_head] = a;
631	batch_entropy_pool[(2*batch_head) + 1] = b;
632	batch_entropy_credit[batch_head] = num;
633
634	new = (batch_head+1) & (batch_max-1);
635	if (new != batch_tail) {
636		queue_task(&batch_tqueue, &tq_timer);
637		batch_head = new;
638	} else {
639		DEBUG_ENT("batch entropy buffer full\n");
640	}
641}
642
643/*
644 * Flush out the accumulated entropy operations, adding entropy to the passed
645 * store (normally random_state).  If that store has enough entropy, alternate
646 * between randomizing the data of the primary and secondary stores.
647 */
648static void batch_entropy_process(void *private_)
649{
650	struct entropy_store *r	= (struct entropy_store *) private_, *p;
651	int max_entropy = r->poolinfo.POOLBITS;
652
653	if (!batch_max)
654		return;
655
656	p = r;
657	while (batch_head != batch_tail) {
658		if (r->entropy_count >= max_entropy) {
659			r = (r == sec_random_state) ?	random_state :
660							sec_random_state;
661			max_entropy = r->poolinfo.POOLBITS;
662		}
663		add_entropy_words(r, batch_entropy_pool + 2*batch_tail, 2);
664		credit_entropy_store(r, batch_entropy_credit[batch_tail]);
665		batch_tail = (batch_tail+1) & (batch_max-1);
666	}
667	if (p->entropy_count >= random_read_wakeup_thresh)
668		wake_up_interruptible(&random_read_wait);
669}
670
671/*********************************************************************
672 *
673 * Entropy input management
674 *
675 *********************************************************************/
676
677/* There is one of these per entropy source */
678struct timer_rand_state {
679	__u32		last_time;
680	__s32		last_delta,last_delta2;
681	int		dont_count_entropy:1;
682};
683
684static struct timer_rand_state keyboard_timer_state;
685static struct timer_rand_state mouse_timer_state;
686static struct timer_rand_state extract_timer_state;
687static struct timer_rand_state *irq_timer_state[NR_IRQS];
688static struct timer_rand_state *blkdev_timer_state[MAX_BLKDEV];
689
690/*
691 * This function adds entropy to the entropy "pool" by using timing
692 * delays.  It uses the timer_rand_state structure to make an estimate
693 * of how many bits of entropy this call has added to the pool.
694 *
695 * The number "num" is also added to the pool - it should somehow describe
696 * the type of event which just happened.  This is currently 0-255 for
697 * keyboard scan codes, and 256 upwards for interrupts.
698 * On the i386, this is assumed to be at most 16 bits, and the high bits
699 * are used for a high-resolution timer.
700 *
701 */
702static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
703{
704	__u32		time;
705	__s32		delta, delta2, delta3;
706	int		entropy = 0;
707
708#if defined(__i386__)
709	if (cpu_has_tsc) {
710		__u32 high;
711		rdtsc(time, high);
712		num ^= high;
713	} else {
714		time = jiffies;
715	}
716#elif defined(__x86_64__)
717	__u32 high;
718	rdtsc(time, high);
719	num ^= high;
720#else
721	time = jiffies;
722#endif
723
724	/*
725	 * Calculate number of bits of randomness we probably added.
726	 * We take into account the first, second and third-order deltas
727	 * in order to make our estimate.
728	 */
729	if (!state->dont_count_entropy) {
730		delta = time - state->last_time;
731		state->last_time = time;
732
733		delta2 = delta - state->last_delta;
734		state->last_delta = delta;
735
736		delta3 = delta2 - state->last_delta2;
737		state->last_delta2 = delta2;
738
739		if (delta < 0)
740			delta = -delta;
741		if (delta2 < 0)
742			delta2 = -delta2;
743		if (delta3 < 0)
744			delta3 = -delta3;
745		if (delta > delta2)
746			delta = delta2;
747		if (delta > delta3)
748			delta = delta3;
749
750		/*
751		 * delta is now minimum absolute delta.
752		 * Round down by 1 bit on general principles,
753		 * and limit entropy entimate to 12 bits.
754		 */
755		delta >>= 1;
756		delta &= (1 << 12) - 1;
757
758		entropy = int_ln_12bits(delta);
759	}
760	batch_entropy_store(num, time, entropy);
761}
762
763void add_keyboard_randomness(unsigned char scancode)
764{
765	static unsigned char last_scancode;
766	/* ignore autorepeat (multiple key down w/o key up) */
767	if (scancode != last_scancode) {
768		last_scancode = scancode;
769		add_timer_randomness(&keyboard_timer_state, scancode);
770	}
771}
772
773void add_mouse_randomness(__u32 mouse_data)
774{
775	add_timer_randomness(&mouse_timer_state, mouse_data);
776}
777
778void add_interrupt_randomness(int irq)
779{
780	if (irq >= NR_IRQS || irq_timer_state[irq] == 0)
781		return;
782
783	add_timer_randomness(irq_timer_state[irq], 0x100+irq);
784}
785
786void add_blkdev_randomness(int major)
787{
788	if (major >= MAX_BLKDEV)
789		return;
790
791	if (blkdev_timer_state[major] == 0) {
792		rand_initialize_blkdev(major, GFP_ATOMIC);
793		if (blkdev_timer_state[major] == 0)
794			return;
795	}
796
797	add_timer_randomness(blkdev_timer_state[major], 0x200+major);
798}
799
800/******************************************************************
801 *
802 * Hash function definition
803 *
804 *******************************************************************/
805
806/*
807 * This chunk of code defines a function
808 * void HASH_TRANSFORM(__u32 digest[HASH_BUFFER_SIZE + HASH_EXTRA_SIZE],
809 * 		__u32 const data[16])
810 *
811 * The function hashes the input data to produce a digest in the first
812 * HASH_BUFFER_SIZE words of the digest[] array, and uses HASH_EXTRA_SIZE
813 * more words for internal purposes.  (This buffer is exported so the
814 * caller can wipe it once rather than this code doing it each call,
815 * and tacking it onto the end of the digest[] array is the quick and
816 * dirty way of doing it.)
817 *
818 * It so happens that MD5 and SHA share most of the initial vector
819 * used to initialize the digest[] array before the first call:
820 * 1) 0x67452301
821 * 2) 0xefcdab89
822 * 3) 0x98badcfe
823 * 4) 0x10325476
824 * 5) 0xc3d2e1f0 (SHA only)
825 *
826 * For /dev/random purposes, the length of the data being hashed is
827 * fixed in length, so appending a bit count in the usual way is not
828 * cryptographically necessary.
829 */
830
831#ifdef USE_SHA
832
833#define HASH_BUFFER_SIZE 5
834#define HASH_EXTRA_SIZE 80
835#define HASH_TRANSFORM SHATransform
836
837/* Various size/speed tradeoffs are available.  Choose 0..3. */
838#define SHA_CODE_SIZE 0
839
840/*
841 * SHA transform algorithm, taken from code written by Peter Gutmann,
842 * and placed in the public domain.
843 */
844
845/* The SHA f()-functions.  */
846
847#define f1(x,y,z)   ( z ^ (x & (y^z)) )		/* Rounds  0-19: x ? y : z */
848#define f2(x,y,z)   (x ^ y ^ z)			/* Rounds 20-39: XOR */
849#define f3(x,y,z)   ( (x & y) + (z & (x ^ y)) )	/* Rounds 40-59: majority */
850#define f4(x,y,z)   (x ^ y ^ z)			/* Rounds 60-79: XOR */
851
852/* The SHA Mysterious Constants */
853
854#define K1  0x5A827999L			/* Rounds  0-19: sqrt(2) * 2^30 */
855#define K2  0x6ED9EBA1L			/* Rounds 20-39: sqrt(3) * 2^30 */
856#define K3  0x8F1BBCDCL			/* Rounds 40-59: sqrt(5) * 2^30 */
857#define K4  0xCA62C1D6L			/* Rounds 60-79: sqrt(10) * 2^30 */
858
859#define ROTL(n,X)  ( ( ( X ) << n ) | ( ( X ) >> ( 32 - n ) ) )
860
861#define subRound(a, b, c, d, e, f, k, data) \
862    ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
863
864
865static void SHATransform(__u32 digest[85], __u32 const data[16])
866{
867    __u32 A, B, C, D, E;     /* Local vars */
868    __u32 TEMP;
869    int	i;
870#define W (digest + HASH_BUFFER_SIZE)	/* Expanded data array */
871
872    /*
873     * Do the preliminary expansion of 16 to 80 words.  Doing it
874     * out-of-line line this is faster than doing it in-line on
875     * register-starved machines like the x86, and not really any
876     * slower on real processors.
877     */
878    memcpy(W, data, 16*sizeof(__u32));
879    for (i = 0; i < 64; i++) {
880	    TEMP = W[i] ^ W[i+2] ^ W[i+8] ^ W[i+13];
881	    W[i+16] = ROTL(1, TEMP);
882    }
883
884    /* Set up first buffer and local data buffer */
885    A = digest[ 0 ];
886    B = digest[ 1 ];
887    C = digest[ 2 ];
888    D = digest[ 3 ];
889    E = digest[ 4 ];
890
891    /* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
892#if SHA_CODE_SIZE == 0
893    /*
894     * Approximately 50% of the speed of the largest version, but
895     * takes up 1/16 the space.  Saves about 6k on an i386 kernel.
896     */
897    for (i = 0; i < 80; i++) {
898	if (i < 40) {
899	    if (i < 20)
900		TEMP = f1(B, C, D) + K1;
901	    else
902		TEMP = f2(B, C, D) + K2;
903	} else {
904	    if (i < 60)
905		TEMP = f3(B, C, D) + K3;
906	    else
907		TEMP = f4(B, C, D) + K4;
908	}
909	TEMP += ROTL(5, A) + E + W[i];
910	E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
911    }
912#elif SHA_CODE_SIZE == 1
913    for (i = 0; i < 20; i++) {
914	TEMP = f1(B, C, D) + K1 + ROTL(5, A) + E + W[i];
915	E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
916    }
917    for (; i < 40; i++) {
918	TEMP = f2(B, C, D) + K2 + ROTL(5, A) + E + W[i];
919	E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
920    }
921    for (; i < 60; i++) {
922	TEMP = f3(B, C, D) + K3 + ROTL(5, A) + E + W[i];
923	E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
924    }
925    for (; i < 80; i++) {
926	TEMP = f4(B, C, D) + K4 + ROTL(5, A) + E + W[i];
927	E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
928    }
929#elif SHA_CODE_SIZE == 2
930    for (i = 0; i < 20; i += 5) {
931	subRound( A, B, C, D, E, f1, K1, W[ i   ] );
932	subRound( E, A, B, C, D, f1, K1, W[ i+1 ] );
933	subRound( D, E, A, B, C, f1, K1, W[ i+2 ] );
934	subRound( C, D, E, A, B, f1, K1, W[ i+3 ] );
935	subRound( B, C, D, E, A, f1, K1, W[ i+4 ] );
936    }
937    for (; i < 40; i += 5) {
938	subRound( A, B, C, D, E, f2, K2, W[ i   ] );
939	subRound( E, A, B, C, D, f2, K2, W[ i+1 ] );
940	subRound( D, E, A, B, C, f2, K2, W[ i+2 ] );
941	subRound( C, D, E, A, B, f2, K2, W[ i+3 ] );
942	subRound( B, C, D, E, A, f2, K2, W[ i+4 ] );
943    }
944    for (; i < 60; i += 5) {
945	subRound( A, B, C, D, E, f3, K3, W[ i   ] );
946	subRound( E, A, B, C, D, f3, K3, W[ i+1 ] );
947	subRound( D, E, A, B, C, f3, K3, W[ i+2 ] );
948	subRound( C, D, E, A, B, f3, K3, W[ i+3 ] );
949	subRound( B, C, D, E, A, f3, K3, W[ i+4 ] );
950    }
951    for (; i < 80; i += 5) {
952	subRound( A, B, C, D, E, f4, K4, W[ i   ] );
953	subRound( E, A, B, C, D, f4, K4, W[ i+1 ] );
954	subRound( D, E, A, B, C, f4, K4, W[ i+2 ] );
955	subRound( C, D, E, A, B, f4, K4, W[ i+3 ] );
956	subRound( B, C, D, E, A, f4, K4, W[ i+4 ] );
957    }
958#elif SHA_CODE_SIZE == 3   /* Really large version */
959    subRound( A, B, C, D, E, f1, K1, W[  0 ] );
960    subRound( E, A, B, C, D, f1, K1, W[  1 ] );
961    subRound( D, E, A, B, C, f1, K1, W[  2 ] );
962    subRound( C, D, E, A, B, f1, K1, W[  3 ] );
963    subRound( B, C, D, E, A, f1, K1, W[  4 ] );
964    subRound( A, B, C, D, E, f1, K1, W[  5 ] );
965    subRound( E, A, B, C, D, f1, K1, W[  6 ] );
966    subRound( D, E, A, B, C, f1, K1, W[  7 ] );
967    subRound( C, D, E, A, B, f1, K1, W[  8 ] );
968    subRound( B, C, D, E, A, f1, K1, W[  9 ] );
969    subRound( A, B, C, D, E, f1, K1, W[ 10 ] );
970    subRound( E, A, B, C, D, f1, K1, W[ 11 ] );
971    subRound( D, E, A, B, C, f1, K1, W[ 12 ] );
972    subRound( C, D, E, A, B, f1, K1, W[ 13 ] );
973    subRound( B, C, D, E, A, f1, K1, W[ 14 ] );
974    subRound( A, B, C, D, E, f1, K1, W[ 15 ] );
975    subRound( E, A, B, C, D, f1, K1, W[ 16 ] );
976    subRound( D, E, A, B, C, f1, K1, W[ 17 ] );
977    subRound( C, D, E, A, B, f1, K1, W[ 18 ] );
978    subRound( B, C, D, E, A, f1, K1, W[ 19 ] );
979
980    subRound( A, B, C, D, E, f2, K2, W[ 20 ] );
981    subRound( E, A, B, C, D, f2, K2, W[ 21 ] );
982    subRound( D, E, A, B, C, f2, K2, W[ 22 ] );
983    subRound( C, D, E, A, B, f2, K2, W[ 23 ] );
984    subRound( B, C, D, E, A, f2, K2, W[ 24 ] );
985    subRound( A, B, C, D, E, f2, K2, W[ 25 ] );
986    subRound( E, A, B, C, D, f2, K2, W[ 26 ] );
987    subRound( D, E, A, B, C, f2, K2, W[ 27 ] );
988    subRound( C, D, E, A, B, f2, K2, W[ 28 ] );
989    subRound( B, C, D, E, A, f2, K2, W[ 29 ] );
990    subRound( A, B, C, D, E, f2, K2, W[ 30 ] );
991    subRound( E, A, B, C, D, f2, K2, W[ 31 ] );
992    subRound( D, E, A, B, C, f2, K2, W[ 32 ] );
993    subRound( C, D, E, A, B, f2, K2, W[ 33 ] );
994    subRound( B, C, D, E, A, f2, K2, W[ 34 ] );
995    subRound( A, B, C, D, E, f2, K2, W[ 35 ] );
996    subRound( E, A, B, C, D, f2, K2, W[ 36 ] );
997    subRound( D, E, A, B, C, f2, K2, W[ 37 ] );
998    subRound( C, D, E, A, B, f2, K2, W[ 38 ] );
999    subRound( B, C, D, E, A, f2, K2, W[ 39 ] );
1000
1001    subRound( A, B, C, D, E, f3, K3, W[ 40 ] );
1002    subRound( E, A, B, C, D, f3, K3, W[ 41 ] );
1003    subRound( D, E, A, B, C, f3, K3, W[ 42 ] );
1004    subRound( C, D, E, A, B, f3, K3, W[ 43 ] );
1005    subRound( B, C, D, E, A, f3, K3, W[ 44 ] );
1006    subRound( A, B, C, D, E, f3, K3, W[ 45 ] );
1007    subRound( E, A, B, C, D, f3, K3, W[ 46 ] );
1008    subRound( D, E, A, B, C, f3, K3, W[ 47 ] );
1009    subRound( C, D, E, A, B, f3, K3, W[ 48 ] );
1010    subRound( B, C, D, E, A, f3, K3, W[ 49 ] );
1011    subRound( A, B, C, D, E, f3, K3, W[ 50 ] );
1012    subRound( E, A, B, C, D, f3, K3, W[ 51 ] );
1013    subRound( D, E, A, B, C, f3, K3, W[ 52 ] );
1014    subRound( C, D, E, A, B, f3, K3, W[ 53 ] );
1015    subRound( B, C, D, E, A, f3, K3, W[ 54 ] );
1016    subRound( A, B, C, D, E, f3, K3, W[ 55 ] );
1017    subRound( E, A, B, C, D, f3, K3, W[ 56 ] );
1018    subRound( D, E, A, B, C, f3, K3, W[ 57 ] );
1019    subRound( C, D, E, A, B, f3, K3, W[ 58 ] );
1020    subRound( B, C, D, E, A, f3, K3, W[ 59 ] );
1021
1022    subRound( A, B, C, D, E, f4, K4, W[ 60 ] );
1023    subRound( E, A, B, C, D, f4, K4, W[ 61 ] );
1024    subRound( D, E, A, B, C, f4, K4, W[ 62 ] );
1025    subRound( C, D, E, A, B, f4, K4, W[ 63 ] );
1026    subRound( B, C, D, E, A, f4, K4, W[ 64 ] );
1027    subRound( A, B, C, D, E, f4, K4, W[ 65 ] );
1028    subRound( E, A, B, C, D, f4, K4, W[ 66 ] );
1029    subRound( D, E, A, B, C, f4, K4, W[ 67 ] );
1030    subRound( C, D, E, A, B, f4, K4, W[ 68 ] );
1031    subRound( B, C, D, E, A, f4, K4, W[ 69 ] );
1032    subRound( A, B, C, D, E, f4, K4, W[ 70 ] );
1033    subRound( E, A, B, C, D, f4, K4, W[ 71 ] );
1034    subRound( D, E, A, B, C, f4, K4, W[ 72 ] );
1035    subRound( C, D, E, A, B, f4, K4, W[ 73 ] );
1036    subRound( B, C, D, E, A, f4, K4, W[ 74 ] );
1037    subRound( A, B, C, D, E, f4, K4, W[ 75 ] );
1038    subRound( E, A, B, C, D, f4, K4, W[ 76 ] );
1039    subRound( D, E, A, B, C, f4, K4, W[ 77 ] );
1040    subRound( C, D, E, A, B, f4, K4, W[ 78 ] );
1041    subRound( B, C, D, E, A, f4, K4, W[ 79 ] );
1042#else
1043#error Illegal SHA_CODE_SIZE
1044#endif
1045
1046    /* Build message digest */
1047    digest[ 0 ] += A;
1048    digest[ 1 ] += B;
1049    digest[ 2 ] += C;
1050    digest[ 3 ] += D;
1051    digest[ 4 ] += E;
1052
1053	/* W is wiped by the caller */
1054#undef W
1055}
1056
1057#undef ROTL
1058#undef f1
1059#undef f2
1060#undef f3
1061#undef f4
1062#undef K1
1063#undef K2
1064#undef K3
1065#undef K4
1066#undef subRound
1067
1068#else /* !USE_SHA - Use MD5 */
1069
1070#define HASH_BUFFER_SIZE 4
1071#define HASH_EXTRA_SIZE 0
1072#define HASH_TRANSFORM MD5Transform
1073
1074/*
1075 * MD5 transform algorithm, taken from code written by Colin Plumb,
1076 * and put into the public domain
1077 */
1078
1079/* The four core functions - F1 is optimized somewhat */
1080
1081/* #define F1(x, y, z) (x & y | ~x & z) */
1082#define F1(x, y, z) (z ^ (x & (y ^ z)))
1083#define F2(x, y, z) F1(z, x, y)
1084#define F3(x, y, z) (x ^ y ^ z)
1085#define F4(x, y, z) (y ^ (x | ~z))
1086
1087/* This is the central step in the MD5 algorithm. */
1088#define MD5STEP(f, w, x, y, z, data, s) \
1089	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
1090
1091/*
1092 * The core of the MD5 algorithm, this alters an existing MD5 hash to
1093 * reflect the addition of 16 longwords of new data.  MD5Update blocks
1094 * the data and converts bytes into longwords for this routine.
1095 */
1096static void MD5Transform(__u32 buf[HASH_BUFFER_SIZE], __u32 const in[16])
1097{
1098	__u32 a, b, c, d;
1099
1100	a = buf[0];
1101	b = buf[1];
1102	c = buf[2];
1103	d = buf[3];
1104
1105	MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478,  7);
1106	MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
1107	MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
1108	MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
1109	MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf,  7);
1110	MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
1111	MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
1112	MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
1113	MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8,  7);
1114	MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
1115	MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
1116	MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
1117	MD5STEP(F1, a, b, c, d, in[12]+0x6b901122,  7);
1118	MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
1119	MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
1120	MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
1121
1122	MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562,  5);
1123	MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340,  9);
1124	MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
1125	MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
1126	MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d,  5);
1127	MD5STEP(F2, d, a, b, c, in[10]+0x02441453,  9);
1128	MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
1129	MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
1130	MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6,  5);
1131	MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6,  9);
1132	MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
1133	MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
1134	MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905,  5);
1135	MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8,  9);
1136	MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
1137	MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
1138
1139	MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942,  4);
1140	MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
1141	MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
1142	MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
1143	MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44,  4);
1144	MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
1145	MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
1146	MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
1147	MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6,  4);
1148	MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
1149	MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
1150	MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
1151	MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039,  4);
1152	MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
1153	MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
1154	MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
1155
1156	MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244,  6);
1157	MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
1158	MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
1159	MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
1160	MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3,  6);
1161	MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
1162	MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
1163	MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
1164	MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f,  6);
1165	MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
1166	MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
1167	MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
1168	MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82,  6);
1169	MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
1170	MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
1171	MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
1172
1173	buf[0] += a;
1174	buf[1] += b;
1175	buf[2] += c;
1176	buf[3] += d;
1177}
1178
1179#undef F1
1180#undef F2
1181#undef F3
1182#undef F4
1183#undef MD5STEP
1184
1185#endif /* !USE_SHA */
1186
1187/*********************************************************************
1188 *
1189 * Entropy extraction routines
1190 *
1191 *********************************************************************/
1192
1193#define EXTRACT_ENTROPY_USER		1
1194#define EXTRACT_ENTROPY_SECONDARY	2
1195#define TMP_BUF_SIZE			(HASH_BUFFER_SIZE + HASH_EXTRA_SIZE)
1196#define SEC_XFER_SIZE			(TMP_BUF_SIZE*4)
1197
1198static ssize_t extract_entropy(struct entropy_store *r, void * buf,
1199			       size_t nbytes, int flags);
1200
1201/*
1202 * This utility inline function is responsible for transfering entropy
1203 * from the primary pool to the secondary extraction pool.  We pull
1204 * randomness under two conditions; one is if there isn't enough entropy
1205 * in the secondary pool.  The other is after we have extracted 1024 bytes,
1206 * at which point we do a "catastrophic reseeding".
1207 */
1208static inline void xfer_secondary_pool(struct entropy_store *r,
1209				       size_t nbytes)
1210{
1211	__u32	tmp[TMP_BUF_SIZE];
1212
1213	if (r->entropy_count < nbytes * 8 &&
1214	    r->entropy_count < r->poolinfo.POOLBITS) {
1215		int nwords = min_t(int,
1216				   r->poolinfo.poolwords - r->entropy_count/32,
1217				   sizeof(tmp) / 4);
1218
1219		DEBUG_ENT("xfer %d from primary to %s (have %d, need %d)\n",
1220			  nwords * 32,
1221			  r == sec_random_state ? "secondary" : "unknown",
1222			  r->entropy_count, nbytes * 8);
1223
1224		extract_entropy(random_state, tmp, nwords * 4, 0);
1225		add_entropy_words(r, tmp, nwords);
1226		credit_entropy_store(r, nwords * 32);
1227	}
1228	if (r->extract_count > 1024) {
1229		DEBUG_ENT("reseeding %s with %d from primary\n",
1230			  r == sec_random_state ? "secondary" : "unknown",
1231			  sizeof(tmp) * 8);
1232		extract_entropy(random_state, tmp, sizeof(tmp), 0);
1233		add_entropy_words(r, tmp, sizeof(tmp) / 4);
1234		r->extract_count = 0;
1235	}
1236}
1237
1238/*
1239 * This function extracts randomness from the "entropy pool", and
1240 * returns it in a buffer.  This function computes how many remaining
1241 * bits of entropy are left in the pool, but it does not restrict the
1242 * number of bytes that are actually obtained.  If the EXTRACT_ENTROPY_USER
1243 * flag is given, then the buf pointer is assumed to be in user space.
1244 *
1245 * If the EXTRACT_ENTROPY_SECONDARY flag is given, then we are actually
1246 * extracting entropy from the secondary pool, and can refill from the
1247 * primary pool if needed.
1248 *
1249 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
1250 */
1251static ssize_t extract_entropy(struct entropy_store *r, void * buf,
1252			       size_t nbytes, int flags)
1253{
1254	ssize_t ret, i;
1255	__u32 tmp[TMP_BUF_SIZE];
1256	__u32 x;
1257
1258	add_timer_randomness(&extract_timer_state, nbytes);
1259
1260	/* Redundant, but just in case... */
1261	if (r->entropy_count > r->poolinfo.POOLBITS)
1262		r->entropy_count = r->poolinfo.POOLBITS;
1263
1264	if (flags & EXTRACT_ENTROPY_SECONDARY)
1265		xfer_secondary_pool(r, nbytes);
1266
1267	DEBUG_ENT("%s has %d bits, want %d bits\n",
1268		  r == sec_random_state ? "secondary" :
1269		  r == random_state ? "primary" : "unknown",
1270		  r->entropy_count, nbytes * 8);
1271
1272	if (r->entropy_count / 8 >= nbytes)
1273		r->entropy_count -= nbytes*8;
1274	else
1275		r->entropy_count = 0;
1276
1277	if (r->entropy_count < random_write_wakeup_thresh)
1278		wake_up_interruptible(&random_write_wait);
1279
1280	r->extract_count += nbytes;
1281
1282	ret = 0;
1283	while (nbytes) {
1284		/*
1285		 * Check if we need to break out or reschedule....
1286		 */
1287		if ((flags & EXTRACT_ENTROPY_USER) && current->need_resched) {
1288			if (signal_pending(current)) {
1289				if (ret == 0)
1290					ret = -ERESTARTSYS;
1291				break;
1292			}
1293			schedule();
1294		}
1295
1296		/* Hash the pool to get the output */
1297		tmp[0] = 0x67452301;
1298		tmp[1] = 0xefcdab89;
1299		tmp[2] = 0x98badcfe;
1300		tmp[3] = 0x10325476;
1301#ifdef USE_SHA
1302		tmp[4] = 0xc3d2e1f0;
1303#endif
1304		/*
1305		 * As we hash the pool, we mix intermediate values of
1306		 * the hash back into the pool.  This eliminates
1307		 * backtracking attacks (where the attacker knows
1308		 * the state of the pool plus the current outputs, and
1309		 * attempts to find previous ouputs), unless the hash
1310		 * function can be inverted.
1311		 */
1312		for (i = 0, x = 0; i < r->poolinfo.poolwords; i += 16, x+=2) {
1313			HASH_TRANSFORM(tmp, r->pool+i);
1314			add_entropy_words(r, &tmp[x%HASH_BUFFER_SIZE], 1);
1315		}
1316
1317		/*
1318		 * In case the hash function has some recognizable
1319		 * output pattern, we fold it in half.
1320		 */
1321		for (i = 0; i <  HASH_BUFFER_SIZE/2; i++)
1322			tmp[i] ^= tmp[i + (HASH_BUFFER_SIZE+1)/2];
1323#if HASH_BUFFER_SIZE & 1	    /* There's a middle word to deal with */
1324		x = tmp[HASH_BUFFER_SIZE/2];
1325		x ^= (x >> 16);		/* Fold it in half */
1326		((__u16 *)tmp)[HASH_BUFFER_SIZE-1] = (__u16)x;
1327#endif
1328
1329		/* Copy data to destination buffer */
1330		i = min(nbytes, HASH_BUFFER_SIZE*sizeof(__u32)/2);
1331		if (flags & EXTRACT_ENTROPY_USER) {
1332			i -= copy_to_user(buf, (__u8 const *)tmp, i);
1333			if (!i) {
1334				ret = -EFAULT;
1335				break;
1336			}
1337		} else
1338			memcpy(buf, (__u8 const *)tmp, i);
1339		nbytes -= i;
1340		buf += i;
1341		ret += i;
1342		add_timer_randomness(&extract_timer_state, nbytes);
1343	}
1344
1345	/* Wipe data just returned from memory */
1346	memset(tmp, 0, sizeof(tmp));
1347
1348	return ret;
1349}
1350
1351/*
1352 * This function is the exported kernel interface.  It returns some
1353 * number of good random numbers, suitable for seeding TCP sequence
1354 * numbers, etc.
1355 */
1356void get_random_bytes(void *buf, int nbytes)
1357{
1358	if (sec_random_state)
1359		extract_entropy(sec_random_state, (char *) buf, nbytes,
1360				EXTRACT_ENTROPY_SECONDARY);
1361	else if (random_state)
1362		extract_entropy(random_state, (char *) buf, nbytes, 0);
1363	else
1364		printk(KERN_NOTICE "get_random_bytes called before "
1365				   "random driver initialization\n");
1366}
1367
1368/*********************************************************************
1369 *
1370 * Functions to interface with Linux
1371 *
1372 *********************************************************************/
1373
1374/*
1375 * Initialize the random pool with standard stuff.
1376 *
1377 * NOTE: This is an OS-dependent function.
1378 */
1379static void init_std_data(struct entropy_store *r)
1380{
1381	struct timeval 	tv;
1382	__u32		words[2];
1383	char 		*p;
1384	int		i;
1385
1386	do_gettimeofday(&tv);
1387	words[0] = tv.tv_sec;
1388	words[1] = tv.tv_usec;
1389	add_entropy_words(r, words, 2);
1390
1391	/*
1392	 *	This doesn't lock system.utsname. However, we are generating
1393	 *	entropy so a race with a name set here is fine.
1394	 */
1395	p = (char *) &system_utsname;
1396	for (i = sizeof(system_utsname) / sizeof(words); i; i--) {
1397		memcpy(words, p, sizeof(words));
1398		add_entropy_words(r, words, sizeof(words)/4);
1399		p += sizeof(words);
1400	}
1401}
1402
1403void __init rand_initialize(void)
1404{
1405	int i;
1406
1407	if (create_entropy_store(DEFAULT_POOL_SIZE, &random_state))
1408		return;		/* Error, return */
1409	if (batch_entropy_init(BATCH_ENTROPY_SIZE, random_state))
1410		return;		/* Error, return */
1411	if (create_entropy_store(SECONDARY_POOL_SIZE, &sec_random_state))
1412		return;		/* Error, return */
1413	clear_entropy_store(random_state);
1414	clear_entropy_store(sec_random_state);
1415	init_std_data(random_state);
1416#ifdef CONFIG_SYSCTL
1417	sysctl_init_random(random_state);
1418#endif
1419	for (i = 0; i < NR_IRQS; i++)
1420		irq_timer_state[i] = NULL;
1421	for (i = 0; i < MAX_BLKDEV; i++)
1422		blkdev_timer_state[i] = NULL;
1423	memset(&keyboard_timer_state, 0, sizeof(struct timer_rand_state));
1424	memset(&mouse_timer_state, 0, sizeof(struct timer_rand_state));
1425	memset(&extract_timer_state, 0, sizeof(struct timer_rand_state));
1426	extract_timer_state.dont_count_entropy = 1;
1427}
1428
1429void rand_initialize_irq(int irq)
1430{
1431	struct timer_rand_state *state;
1432
1433	if (irq >= NR_IRQS || irq_timer_state[irq])
1434		return;
1435
1436	/*
1437	 * If kmalloc returns null, we just won't use that entropy
1438	 * source.
1439	 */
1440	state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1441	if (state) {
1442		memset(state, 0, sizeof(struct timer_rand_state));
1443		irq_timer_state[irq] = state;
1444	}
1445}
1446
1447void rand_initialize_blkdev(int major, int mode)
1448{
1449	struct timer_rand_state *state;
1450
1451	if (major >= MAX_BLKDEV || blkdev_timer_state[major])
1452		return;
1453
1454	/*
1455	 * If kmalloc returns null, we just won't use that entropy
1456	 * source.
1457	 */
1458	state = kmalloc(sizeof(struct timer_rand_state), mode);
1459	if (state) {
1460		memset(state, 0, sizeof(struct timer_rand_state));
1461		blkdev_timer_state[major] = state;
1462	}
1463}
1464
1465
1466static ssize_t
1467random_read(struct file * file, char * buf, size_t nbytes, loff_t *ppos)
1468{
1469	DECLARE_WAITQUEUE(wait, current);
1470	ssize_t			n, retval = 0, count = 0;
1471
1472	if (nbytes == 0)
1473		return 0;
1474
1475	add_wait_queue(&random_read_wait, &wait);
1476	while (nbytes > 0) {
1477		set_current_state(TASK_INTERRUPTIBLE);
1478
1479		n = nbytes;
1480		if (n > SEC_XFER_SIZE)
1481			n = SEC_XFER_SIZE;
1482		if (n > random_state->entropy_count / 8)
1483			n = random_state->entropy_count / 8;
1484		if (n == 0) {
1485			if (file->f_flags & O_NONBLOCK) {
1486				retval = -EAGAIN;
1487				break;
1488			}
1489			if (signal_pending(current)) {
1490				retval = -ERESTARTSYS;
1491				break;
1492			}
1493			schedule();
1494			continue;
1495		}
1496		n = extract_entropy(sec_random_state, buf, n,
1497				    EXTRACT_ENTROPY_USER |
1498				    EXTRACT_ENTROPY_SECONDARY);
1499		if (n < 0) {
1500			retval = n;
1501			break;
1502		}
1503		count += n;
1504		buf += n;
1505		nbytes -= n;
1506		break;		/* This break makes the device work */
1507				/* like a named pipe */
1508	}
1509	current->state = TASK_RUNNING;
1510	remove_wait_queue(&random_read_wait, &wait);
1511
1512	/*
1513	 * If we gave the user some bytes, update the access time.
1514	 */
1515	if (count != 0) {
1516		UPDATE_ATIME(file->f_dentry->d_inode);
1517	}
1518
1519	return (count ? count : retval);
1520}
1521
1522static ssize_t
1523urandom_read(struct file * file, char * buf,
1524		      size_t nbytes, loff_t *ppos)
1525{
1526	return extract_entropy(sec_random_state, buf, nbytes,
1527			       EXTRACT_ENTROPY_USER |
1528			       EXTRACT_ENTROPY_SECONDARY);
1529}
1530
1531static unsigned int
1532random_poll(struct file *file, poll_table * wait)
1533{
1534	unsigned int mask;
1535
1536	poll_wait(file, &random_read_wait, wait);
1537	poll_wait(file, &random_write_wait, wait);
1538	mask = 0;
1539	if (random_state->entropy_count >= random_read_wakeup_thresh)
1540		mask |= POLLIN | POLLRDNORM;
1541	if (random_state->entropy_count < random_write_wakeup_thresh)
1542		mask |= POLLOUT | POLLWRNORM;
1543	return mask;
1544}
1545
1546static ssize_t
1547random_write(struct file * file, const char * buffer,
1548	     size_t count, loff_t *ppos)
1549{
1550	int		ret = 0;
1551	size_t		bytes;
1552	__u32 		buf[16];
1553	const char 	*p = buffer;
1554	size_t		c = count;
1555
1556	while (c > 0) {
1557		bytes = min(c, sizeof(buf));
1558
1559		bytes -= copy_from_user(&buf, p, bytes);
1560		if (!bytes) {
1561			ret = -EFAULT;
1562			break;
1563		}
1564		c -= bytes;
1565		p += bytes;
1566
1567		add_entropy_words(random_state, buf, (bytes + 3) / 4);
1568	}
1569	if (p == buffer) {
1570		return (ssize_t)ret;
1571	} else {
1572		file->f_dentry->d_inode->i_mtime = CURRENT_TIME;
1573		mark_inode_dirty(file->f_dentry->d_inode);
1574		return (ssize_t)(p - buffer);
1575	}
1576}
1577
1578static int
1579random_ioctl(struct inode * inode, struct file * file,
1580	     unsigned int cmd, unsigned long arg)
1581{
1582	int *p, size, ent_count;
1583	int retval;
1584
1585	switch (cmd) {
1586	case RNDGETENTCNT:
1587		ent_count = random_state->entropy_count;
1588		if (put_user(ent_count, (int *) arg))
1589			return -EFAULT;
1590		return 0;
1591	case RNDADDTOENTCNT:
1592		if (!capable(CAP_SYS_ADMIN))
1593			return -EPERM;
1594		if (get_user(ent_count, (int *) arg))
1595			return -EFAULT;
1596		credit_entropy_store(random_state, ent_count);
1597		/*
1598		 * Wake up waiting processes if we have enough
1599		 * entropy.
1600		 */
1601		if (random_state->entropy_count >= random_read_wakeup_thresh)
1602			wake_up_interruptible(&random_read_wait);
1603		return 0;
1604	case RNDGETPOOL:
1605		if (!capable(CAP_SYS_ADMIN))
1606			return -EPERM;
1607		p = (int *) arg;
1608		ent_count = random_state->entropy_count;
1609		if (put_user(ent_count, p++) ||
1610		    get_user(size, p) ||
1611		    put_user(random_state->poolinfo.poolwords, p++))
1612			return -EFAULT;
1613		if (size < 0)
1614			return -EINVAL;
1615		if (size > random_state->poolinfo.poolwords)
1616			size = random_state->poolinfo.poolwords;
1617		if (copy_to_user(p, random_state->pool, size * sizeof(__u32)))
1618			return -EFAULT;
1619		return 0;
1620	case RNDADDENTROPY:
1621		if (!capable(CAP_SYS_ADMIN))
1622			return -EPERM;
1623		p = (int *) arg;
1624		if (get_user(ent_count, p++))
1625			return -EFAULT;
1626		if (ent_count < 0)
1627			return -EINVAL;
1628		if (get_user(size, p++))
1629			return -EFAULT;
1630		retval = random_write(file, (const char *) p,
1631				      size, &file->f_pos);
1632		if (retval < 0)
1633			return retval;
1634		credit_entropy_store(random_state, ent_count);
1635		/*
1636		 * Wake up waiting processes if we have enough
1637		 * entropy.
1638		 */
1639		if (random_state->entropy_count >= random_read_wakeup_thresh)
1640			wake_up_interruptible(&random_read_wait);
1641		return 0;
1642	case RNDZAPENTCNT:
1643		if (!capable(CAP_SYS_ADMIN))
1644			return -EPERM;
1645		random_state->entropy_count = 0;
1646		return 0;
1647	case RNDCLEARPOOL:
1648		/* Clear the entropy pool and associated counters. */
1649		if (!capable(CAP_SYS_ADMIN))
1650			return -EPERM;
1651		clear_entropy_store(random_state);
1652		init_std_data(random_state);
1653		return 0;
1654	default:
1655		return -EINVAL;
1656	}
1657}
1658
1659struct file_operations random_fops = {
1660	read:		random_read,
1661	write:		random_write,
1662	poll:		random_poll,
1663	ioctl:		random_ioctl,
1664};
1665
1666struct file_operations urandom_fops = {
1667	read:		urandom_read,
1668	write:		random_write,
1669	ioctl:		random_ioctl,
1670};
1671
1672/***************************************************************
1673 * Random UUID interface
1674 *
1675 * Used here for a Boot ID, but can be useful for other kernel
1676 * drivers.
1677 ***************************************************************/
1678
1679/*
1680 * Generate random UUID
1681 */
1682void generate_random_uuid(unsigned char uuid_out[16])
1683{
1684	get_random_bytes(uuid_out, 16);
1685	/* Set UUID version to 4 --- truely random generation */
1686	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1687	/* Set the UUID variant to DCE */
1688	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1689}
1690
1691/********************************************************************
1692 *
1693 * Sysctl interface
1694 *
1695 ********************************************************************/
1696
1697#ifdef CONFIG_SYSCTL
1698
1699#include <linux/sysctl.h>
1700
1701static int sysctl_poolsize;
1702static int min_read_thresh, max_read_thresh;
1703static int min_write_thresh, max_write_thresh;
1704static char sysctl_bootid[16];
1705
1706/*
1707 * This function handles a request from the user to change the pool size
1708 * of the primary entropy store.
1709 */
1710static int change_poolsize(int poolsize)
1711{
1712	struct entropy_store	*new_store, *old_store;
1713	int			ret;
1714
1715	if ((ret = create_entropy_store(poolsize, &new_store)))
1716		return ret;
1717
1718	add_entropy_words(new_store, random_state->pool,
1719			  random_state->poolinfo.poolwords);
1720	credit_entropy_store(new_store, random_state->entropy_count);
1721
1722	sysctl_init_random(new_store);
1723	old_store = random_state;
1724	random_state = batch_tqueue.data = new_store;
1725	free_entropy_store(old_store);
1726	return 0;
1727}
1728
1729static int proc_do_poolsize(ctl_table *table, int write, struct file *filp,
1730			    void *buffer, size_t *lenp)
1731{
1732	int	ret;
1733
1734	sysctl_poolsize = random_state->poolinfo.POOLBYTES;
1735
1736	ret = proc_dointvec(table, write, filp, buffer, lenp);
1737	if (ret || !write ||
1738	    (sysctl_poolsize == random_state->poolinfo.POOLBYTES))
1739		return ret;
1740
1741	return change_poolsize(sysctl_poolsize);
1742}
1743
1744static int poolsize_strategy(ctl_table *table, int *name, int nlen,
1745			     void *oldval, size_t *oldlenp,
1746			     void *newval, size_t newlen, void **context)
1747{
1748	int	len;
1749
1750	sysctl_poolsize = random_state->poolinfo.POOLBYTES;
1751
1752	/*
1753	 * We only handle the write case, since the read case gets
1754	 * handled by the default handler (and we don't care if the
1755	 * write case happens twice; it's harmless).
1756	 */
1757	if (newval && newlen) {
1758		len = newlen;
1759		if (len > table->maxlen)
1760			len = table->maxlen;
1761		if (copy_from_user(table->data, newval, len))
1762			return -EFAULT;
1763	}
1764
1765	if (sysctl_poolsize != random_state->poolinfo.POOLBYTES)
1766		return change_poolsize(sysctl_poolsize);
1767
1768	return 0;
1769}
1770
1771/*
1772 * These functions is used to return both the bootid UUID, and random
1773 * UUID.  The difference is in whether table->data is NULL; if it is,
1774 * then a new UUID is generated and returned to the user.
1775 *
1776 * If the user accesses this via the proc interface, it will be returned
1777 * as an ASCII string in the standard UUID format.  If accesses via the
1778 * sysctl system call, it is returned as 16 bytes of binary data.
1779 */
1780static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
1781			void *buffer, size_t *lenp)
1782{
1783	ctl_table	fake_table;
1784	unsigned char	buf[64], tmp_uuid[16], *uuid;
1785
1786	uuid = table->data;
1787	if (!uuid) {
1788		uuid = tmp_uuid;
1789		uuid[8] = 0;
1790	}
1791	if (uuid[8] == 0)
1792		generate_random_uuid(uuid);
1793
1794	sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1795		"%02x%02x%02x%02x%02x%02x",
1796		uuid[0],  uuid[1],  uuid[2],  uuid[3],
1797		uuid[4],  uuid[5],  uuid[6],  uuid[7],
1798		uuid[8],  uuid[9],  uuid[10], uuid[11],
1799		uuid[12], uuid[13], uuid[14], uuid[15]);
1800	fake_table.data = buf;
1801	fake_table.maxlen = sizeof(buf);
1802
1803	return proc_dostring(&fake_table, write, filp, buffer, lenp);
1804}
1805
1806static int uuid_strategy(ctl_table *table, int *name, int nlen,
1807			 void *oldval, size_t *oldlenp,
1808			 void *newval, size_t newlen, void **context)
1809{
1810	unsigned char	tmp_uuid[16], *uuid;
1811	unsigned int	len;
1812
1813	if (!oldval || !oldlenp)
1814		return 1;
1815
1816	uuid = table->data;
1817	if (!uuid) {
1818		uuid = tmp_uuid;
1819		uuid[8] = 0;
1820	}
1821	if (uuid[8] == 0)
1822		generate_random_uuid(uuid);
1823
1824	if (get_user(len, oldlenp))
1825		return -EFAULT;
1826	if (len) {
1827		if (len > 16)
1828			len = 16;
1829		if (copy_to_user(oldval, uuid, len) ||
1830		    put_user(len, oldlenp))
1831			return -EFAULT;
1832	}
1833	return 1;
1834}
1835
1836ctl_table random_table[] = {
1837	{RANDOM_POOLSIZE, "poolsize",
1838	 &sysctl_poolsize, sizeof(int), 0644, NULL,
1839	 &proc_do_poolsize, &poolsize_strategy},
1840	{RANDOM_ENTROPY_COUNT, "entropy_avail",
1841	 NULL, sizeof(int), 0444, NULL,
1842	 &proc_dointvec},
1843	{RANDOM_READ_THRESH, "read_wakeup_threshold",
1844	 &random_read_wakeup_thresh, sizeof(int), 0644, NULL,
1845	 &proc_dointvec_minmax, &sysctl_intvec, 0,
1846	 &min_read_thresh, &max_read_thresh},
1847	{RANDOM_WRITE_THRESH, "write_wakeup_threshold",
1848	 &random_write_wakeup_thresh, sizeof(int), 0644, NULL,
1849	 &proc_dointvec_minmax, &sysctl_intvec, 0,
1850	 &min_write_thresh, &max_write_thresh},
1851	{RANDOM_BOOT_ID, "boot_id",
1852	 &sysctl_bootid, 16, 0444, NULL,
1853	 &proc_do_uuid, &uuid_strategy},
1854	{RANDOM_UUID, "uuid",
1855	 NULL, 16, 0444, NULL,
1856	 &proc_do_uuid, &uuid_strategy},
1857	{0}
1858};
1859
1860static void sysctl_init_random(struct entropy_store *random_state)
1861{
1862	min_read_thresh = 8;
1863	min_write_thresh = 0;
1864	max_read_thresh = max_write_thresh = random_state->poolinfo.POOLBITS;
1865	random_table[1].data = &random_state->entropy_count;
1866}
1867#endif 	/* CONFIG_SYSCTL */
1868
1869/********************************************************************
1870 *
1871 * Random funtions for networking
1872 *
1873 ********************************************************************/
1874
1875/*
1876 * TCP initial sequence number picking.  This uses the random number
1877 * generator to pick an initial secret value.  This value is hashed
1878 * along with the TCP endpoint information to provide a unique
1879 * starting point for each pair of TCP endpoints.  This defeats
1880 * attacks which rely on guessing the initial TCP sequence number.
1881 * This algorithm was suggested by Steve Bellovin.
1882 *
1883 * Using a very strong hash was taking an appreciable amount of the total
1884 * TCP connection establishment time, so this is a weaker hash,
1885 * compensated for by changing the secret periodically.
1886 */
1887
1888/* F, G and H are basic MD4 functions: selection, majority, parity */
1889#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1890#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1891#define H(x, y, z) ((x) ^ (y) ^ (z))
1892
1893/*
1894 * The generic round function.  The application is so specific that
1895 * we don't bother protecting all the arguments with parens, as is generally
1896 * good macro practice, in favor of extra legibility.
1897 * Rotation is separate from addition to prevent recomputation
1898 */
1899#define ROUND(f, a, b, c, d, x, s)	\
1900	(a += f(b, c, d) + x, a = (a << s) | (a >> (32-s)))
1901#define K1 0
1902#define K2 013240474631UL
1903#define K3 015666365641UL
1904
1905/*
1906 * Basic cut-down MD4 transform.  Returns only 32 bits of result.
1907 */
1908static __u32 halfMD4Transform (__u32 const buf[4], __u32 const in[8])
1909{
1910	__u32	a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1911
1912	/* Round 1 */
1913	ROUND(F, a, b, c, d, in[0] + K1,  3);
1914	ROUND(F, d, a, b, c, in[1] + K1,  7);
1915	ROUND(F, c, d, a, b, in[2] + K1, 11);
1916	ROUND(F, b, c, d, a, in[3] + K1, 19);
1917	ROUND(F, a, b, c, d, in[4] + K1,  3);
1918	ROUND(F, d, a, b, c, in[5] + K1,  7);
1919	ROUND(F, c, d, a, b, in[6] + K1, 11);
1920	ROUND(F, b, c, d, a, in[7] + K1, 19);
1921
1922	/* Round 2 */
1923	ROUND(G, a, b, c, d, in[1] + K2,  3);
1924	ROUND(G, d, a, b, c, in[3] + K2,  5);
1925	ROUND(G, c, d, a, b, in[5] + K2,  9);
1926	ROUND(G, b, c, d, a, in[7] + K2, 13);
1927	ROUND(G, a, b, c, d, in[0] + K2,  3);
1928	ROUND(G, d, a, b, c, in[2] + K2,  5);
1929	ROUND(G, c, d, a, b, in[4] + K2,  9);
1930	ROUND(G, b, c, d, a, in[6] + K2, 13);
1931
1932	/* Round 3 */
1933	ROUND(H, a, b, c, d, in[3] + K3,  3);
1934	ROUND(H, d, a, b, c, in[7] + K3,  9);
1935	ROUND(H, c, d, a, b, in[2] + K3, 11);
1936	ROUND(H, b, c, d, a, in[6] + K3, 15);
1937	ROUND(H, a, b, c, d, in[1] + K3,  3);
1938	ROUND(H, d, a, b, c, in[5] + K3,  9);
1939	ROUND(H, c, d, a, b, in[0] + K3, 11);
1940	ROUND(H, b, c, d, a, in[4] + K3, 15);
1941
1942	return buf[1] + b;	/* "most hashed" word */
1943	/* Alternative: return sum of all words? */
1944}
1945
1946#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1947
1948static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12])
1949{
1950	__u32	a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1951
1952	/* Round 1 */
1953	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1954	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1955	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1956	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1957	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1958	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1959	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1960	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1961	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1962	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1963	ROUND(F, c, d, a, b, in[10] + K1, 11);
1964	ROUND(F, b, c, d, a, in[11] + K1, 19);
1965
1966	/* Round 2 */
1967	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1968	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1969	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1970	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1971	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1972	ROUND(G, d, a, b, c, in[11] + K2,  5);
1973	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1974	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1975	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1976	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1977	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1978	ROUND(G, b, c, d, a, in[10] + K2, 13);
1979
1980	/* Round 3 */
1981	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1982	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1983	ROUND(H, c, d, a, b, in[11] + K3, 11);
1984	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1985	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1986	ROUND(H, d, a, b, c, in[10] + K3,  9);
1987	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1988	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1989	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1990	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1991	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1992	ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1993
1994	return buf[1] + b;	/* "most hashed" word */
1995	/* Alternative: return sum of all words? */
1996}
1997#endif
1998
1999#undef ROUND
2000#undef F
2001#undef G
2002#undef H
2003#undef K1
2004#undef K2
2005#undef K3
2006
2007/* This should not be decreased so low that ISNs wrap too fast. */
2008#define REKEY_INTERVAL	300
2009#define HASH_BITS 24
2010
2011#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2012__u32 secure_tcpv6_sequence_number(__u32 *saddr, __u32 *daddr,
2013				   __u16 sport, __u16 dport)
2014{
2015	static __u32	rekey_time;
2016	static __u32	count;
2017	static __u32	secret[12];
2018	struct timeval 	tv;
2019	__u32		seq;
2020
2021	/* The procedure is the same as for IPv4, but addresses are longer. */
2022
2023	do_gettimeofday(&tv);	/* We need the usecs below... */
2024
2025	if (!rekey_time || (tv.tv_sec - rekey_time) > REKEY_INTERVAL) {
2026		rekey_time = tv.tv_sec;
2027		/* First five words are overwritten below. */
2028		get_random_bytes(&secret[5], sizeof(secret)-5*4);
2029		count = (tv.tv_sec/REKEY_INTERVAL) << HASH_BITS;
2030	}
2031
2032	memcpy(secret, saddr, 16);
2033	secret[4]=(sport << 16) + dport;
2034
2035	seq = (twothirdsMD4Transform(daddr, secret) &
2036	       ((1<<HASH_BITS)-1)) + count;
2037
2038	seq += tv.tv_usec + tv.tv_sec*1000000;
2039	return seq;
2040}
2041
2042__u32 secure_ipv6_id(__u32 *daddr)
2043{
2044	static time_t	rekey_time;
2045	static __u32	secret[12];
2046	time_t		t;
2047
2048	/*
2049	 * Pick a random secret every REKEY_INTERVAL seconds.
2050	 */
2051	t = CURRENT_TIME;
2052	if (!rekey_time || (t - rekey_time) > REKEY_INTERVAL) {
2053		rekey_time = t;
2054		/* First word is overwritten below. */
2055		get_random_bytes(secret, sizeof(secret));
2056	}
2057
2058	return twothirdsMD4Transform(daddr, secret);
2059}
2060
2061#endif
2062
2063
2064__u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr,
2065				 __u16 sport, __u16 dport)
2066{
2067	static __u32	rekey_time;
2068	static __u32	count;
2069	static __u32	secret[12];
2070	struct timeval 	tv;
2071	__u32		seq;
2072
2073	/*
2074	 * Pick a random secret every REKEY_INTERVAL seconds.
2075	 */
2076	do_gettimeofday(&tv);	/* We need the usecs below... */
2077
2078	if (!rekey_time || (tv.tv_sec - rekey_time) > REKEY_INTERVAL) {
2079		rekey_time = tv.tv_sec;
2080		/* First three words are overwritten below. */
2081		get_random_bytes(&secret[3], sizeof(secret)-12);
2082		count = (tv.tv_sec/REKEY_INTERVAL) << HASH_BITS;
2083	}
2084
2085	/*
2086	 *  Pick a unique starting offset for each TCP connection endpoints
2087	 *  (saddr, daddr, sport, dport).
2088	 *  Note that the words are placed into the first words to be
2089	 *  mixed in with the halfMD4.  This is because the starting
2090	 *  vector is also a random secret (at secret+8), and further
2091	 *  hashing fixed data into it isn't going to improve anything,
2092	 *  so we should get started with the variable data.
2093	 */
2094	secret[0]=saddr;
2095	secret[1]=daddr;
2096	secret[2]=(sport << 16) + dport;
2097
2098	seq = (halfMD4Transform(secret+8, secret) &
2099	       ((1<<HASH_BITS)-1)) + count;
2100
2101	/*
2102	 *	As close as possible to RFC 793, which
2103	 *	suggests using a 250 kHz clock.
2104	 *	Further reading shows this assumes 2 Mb/s networks.
2105	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
2106	 *	That's funny, Linux has one built in!  Use it!
2107	 *	(Networks are faster now - should this be increased?)
2108	 */
2109	seq += tv.tv_usec + tv.tv_sec*1000000;
2110	return seq;
2111}
2112
2113/*  The code below is shamelessly stolen from secure_tcp_sequence_number().
2114 *  All blames to Andrey V. Savochkin <saw@msu.ru>.
2115 */
2116__u32 secure_ip_id(__u32 daddr)
2117{
2118	static time_t	rekey_time;
2119	static __u32	secret[12];
2120	time_t		t;
2121
2122	/*
2123	 * Pick a random secret every REKEY_INTERVAL seconds.
2124	 */
2125	t = CURRENT_TIME;
2126	if (!rekey_time || (t - rekey_time) > REKEY_INTERVAL) {
2127		rekey_time = t;
2128		/* First word is overwritten below. */
2129		get_random_bytes(secret+1, sizeof(secret)-4);
2130	}
2131
2132	/*
2133	 *  Pick a unique starting offset for each IP destination.
2134	 *  Note that the words are placed into the first words to be
2135	 *  mixed in with the halfMD4.  This is because the starting
2136	 *  vector is also a random secret (at secret+8), and further
2137	 *  hashing fixed data into it isn't going to improve anything,
2138	 *  so we should get started with the variable data.
2139	 */
2140	secret[0]=daddr;
2141
2142	return halfMD4Transform(secret+8, secret);
2143}
2144
2145#ifdef CONFIG_SYN_COOKIES
2146/*
2147 * Secure SYN cookie computation. This is the algorithm worked out by
2148 * Dan Bernstein and Eric Schenk.
2149 *
2150 * For linux I implement the 1 minute counter by looking at the jiffies clock.
2151 * The count is passed in as a parameter, so this code doesn't much care.
2152 */
2153
2154#define COOKIEBITS 24	/* Upper bits store count */
2155#define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
2156
2157static int	syncookie_init;
2158static __u32	syncookie_secret[2][16-3+HASH_BUFFER_SIZE];
2159
2160__u32 secure_tcp_syn_cookie(__u32 saddr, __u32 daddr, __u16 sport,
2161		__u16 dport, __u32 sseq, __u32 count, __u32 data)
2162{
2163	__u32 	tmp[16 + HASH_BUFFER_SIZE + HASH_EXTRA_SIZE];
2164	__u32	seq;
2165
2166	/*
2167	 * Pick two random secrets the first time we need a cookie.
2168	 */
2169	if (syncookie_init == 0) {
2170		get_random_bytes(syncookie_secret, sizeof(syncookie_secret));
2171		syncookie_init = 1;
2172	}
2173
2174	/*
2175	 * Compute the secure sequence number.
2176	 * The output should be:
2177   	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
2178	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
2179	 * Where sseq is their sequence number and count increases every
2180	 * minute by 1.
2181	 * As an extra hack, we add a small "data" value that encodes the
2182	 * MSS into the second hash value.
2183	 */
2184
2185	memcpy(tmp+3, syncookie_secret[0], sizeof(syncookie_secret[0]));
2186	tmp[0]=saddr;
2187	tmp[1]=daddr;
2188	tmp[2]=(sport << 16) + dport;
2189	HASH_TRANSFORM(tmp+16, tmp);
2190	seq = tmp[17] + sseq + (count << COOKIEBITS);
2191
2192	memcpy(tmp+3, syncookie_secret[1], sizeof(syncookie_secret[1]));
2193	tmp[0]=saddr;
2194	tmp[1]=daddr;
2195	tmp[2]=(sport << 16) + dport;
2196	tmp[3] = count;	/* minute counter */
2197	HASH_TRANSFORM(tmp+16, tmp);
2198
2199	/* Add in the second hash and the data */
2200	return seq + ((tmp[17] + data) & COOKIEMASK);
2201}
2202
2203/*
2204 * This retrieves the small "data" value from the syncookie.
2205 * If the syncookie is bad, the data returned will be out of
2206 * range.  This must be checked by the caller.
2207 *
2208 * The count value used to generate the cookie must be within
2209 * "maxdiff" if the current (passed-in) "count".  The return value
2210 * is (__u32)-1 if this test fails.
2211 */
2212__u32 check_tcp_syn_cookie(__u32 cookie, __u32 saddr, __u32 daddr, __u16 sport,
2213		__u16 dport, __u32 sseq, __u32 count, __u32 maxdiff)
2214{
2215	__u32 	tmp[16 + HASH_BUFFER_SIZE + HASH_EXTRA_SIZE];
2216	__u32	diff;
2217
2218	if (syncookie_init == 0)
2219		return (__u32)-1;	/* Well, duh! */
2220
2221	/* Strip away the layers from the cookie */
2222	memcpy(tmp+3, syncookie_secret[0], sizeof(syncookie_secret[0]));
2223	tmp[0]=saddr;
2224	tmp[1]=daddr;
2225	tmp[2]=(sport << 16) + dport;
2226	HASH_TRANSFORM(tmp+16, tmp);
2227	cookie -= tmp[17] + sseq;
2228	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
2229
2230	diff = (count - (cookie >> COOKIEBITS)) & ((__u32)-1 >> COOKIEBITS);
2231	if (diff >= maxdiff)
2232		return (__u32)-1;
2233
2234	memcpy(tmp+3, syncookie_secret[1], sizeof(syncookie_secret[1]));
2235	tmp[0] = saddr;
2236	tmp[1] = daddr;
2237	tmp[2] = (sport << 16) + dport;
2238	tmp[3] = count - diff;	/* minute counter */
2239	HASH_TRANSFORM(tmp+16, tmp);
2240
2241	return (cookie - tmp[17]) & COOKIEMASK;	/* Leaving the data behind */
2242}
2243#endif
2244
2245
2246
2247EXPORT_SYMBOL(add_keyboard_randomness);
2248EXPORT_SYMBOL(add_mouse_randomness);
2249EXPORT_SYMBOL(add_interrupt_randomness);
2250EXPORT_SYMBOL(add_blkdev_randomness);
2251EXPORT_SYMBOL(batch_entropy_store);
2252EXPORT_SYMBOL(generate_random_uuid);
2253
2254