Searched hist:709 (Results 1 - 9 of 9) sorted by relevance

/freebsd-10.0-release/games/morse/
H A DMakefilediff 10352 Sun Aug 27 12:06:15 MDT 1995 joerg Make morse(6) realling playing the characters on the speaker.

Minor additions by me, mostly taken from the suggestion in PR # bin/709.

Submitted by: lyndon@orthanc.com (Lyndon Nerenberg, VE7TCP/VE6BBM)
H A Dmorse.cdiff 10352 Sun Aug 27 12:06:15 MDT 1995 joerg Make morse(6) realling playing the characters on the speaker.

Minor additions by me, mostly taken from the suggestion in PR # bin/709.

Submitted by: lyndon@orthanc.com (Lyndon Nerenberg, VE7TCP/VE6BBM)
/freebsd-10.0-release/games/bcd/
H A Dbcd.6diff 10352 Sun Aug 27 12:06:15 MDT 1995 joerg Make morse(6) realling playing the characters on the speaker.

Minor additions by me, mostly taken from the suggestion in PR # bin/709.

Submitted by: lyndon@orthanc.com (Lyndon Nerenberg, VE7TCP/VE6BBM)
/freebsd-10.0-release/sys/sys/
H A Deventhandler.hdiff 243631 Tue Nov 27 19:36:13 MST 2012 andre Base the mbuf related limits on the available physical memory or
kernel memory, whichever is lower. The overall mbuf related memory
limit must be set so that mbufs (and clusters of various sizes)
can't exhaust physical RAM or KVM.

The limit is set to half of the physical RAM or KVM (whichever is
lower) as the baseline. In any normal scenario we want to leave
at least half of the physmem/kvm for other kernel functions and
userspace to prevent it from swapping too easily. Via a tunable
kern.maxmbufmem the limit can be upped to at most 3/4 of physmem/kvm.

At the same time divorce maxfiles from maxusers and set maxfiles to
physpages / 8 with a floor based on maxusers. This way busy servers
can make use of the significantly increased mbuf limits with a much
larger number of open sockets.

Tidy up ordering in init_param2() and check up on some users of
those values calculated here.

Out of the overall mbuf memory limit 2K clusters and 4K (page size)
clusters to get 1/4 each because these are the most heavily used mbuf
sizes. 2K clusters are used for MTU 1500 ethernet inbound packets.
4K clusters are used whenever possible for sends on sockets and thus
outbound packets. The larger cluster sizes of 9K and 16K are limited
to 1/6 of the overall mbuf memory limit. When jumbo MTU's are used
these large clusters will end up only on the inbound path. They are
not used on outbound, there it's still 4K. Yes, that will stay that
way because otherwise we run into lots of complications in the
stack. And it really isn't a problem, so don't make a scene.

Normal mbufs (256B) weren't limited at all previously. This was
problematic as there are certain places in the kernel that on
allocation failure of clusters try to piece together their packet
from smaller mbufs.

The mbuf limit is the number of all other mbuf sizes together plus
some more to allow for standalone mbufs (ACK for example) and to
send off a copy of a cluster. Unfortunately there isn't a way to
set an overall limit for all mbuf memory together as UMA doesn't
support such a limiting.

NB: Every cluster also has an mbuf associated with it.

Two examples on the revised mbuf sizing limits:

1GB KVM:
512MB limit for mbufs
419,430 mbufs
65,536 2K mbuf clusters
32,768 4K mbuf clusters
9,709 9K mbuf clusters
5,461 16K mbuf clusters

16GB RAM:
8GB limit for mbufs
33,554,432 mbufs
1,048,576 2K mbuf clusters
524,288 4K mbuf clusters
155,344 9K mbuf clusters
87,381 16K mbuf clusters

These defaults should be sufficient for even the most demanding
network loads.

MFC after: 1 month
H A Dmbuf.hdiff 243631 Tue Nov 27 19:36:13 MST 2012 andre Base the mbuf related limits on the available physical memory or
kernel memory, whichever is lower. The overall mbuf related memory
limit must be set so that mbufs (and clusters of various sizes)
can't exhaust physical RAM or KVM.

The limit is set to half of the physical RAM or KVM (whichever is
lower) as the baseline. In any normal scenario we want to leave
at least half of the physmem/kvm for other kernel functions and
userspace to prevent it from swapping too easily. Via a tunable
kern.maxmbufmem the limit can be upped to at most 3/4 of physmem/kvm.

At the same time divorce maxfiles from maxusers and set maxfiles to
physpages / 8 with a floor based on maxusers. This way busy servers
can make use of the significantly increased mbuf limits with a much
larger number of open sockets.

Tidy up ordering in init_param2() and check up on some users of
those values calculated here.

Out of the overall mbuf memory limit 2K clusters and 4K (page size)
clusters to get 1/4 each because these are the most heavily used mbuf
sizes. 2K clusters are used for MTU 1500 ethernet inbound packets.
4K clusters are used whenever possible for sends on sockets and thus
outbound packets. The larger cluster sizes of 9K and 16K are limited
to 1/6 of the overall mbuf memory limit. When jumbo MTU's are used
these large clusters will end up only on the inbound path. They are
not used on outbound, there it's still 4K. Yes, that will stay that
way because otherwise we run into lots of complications in the
stack. And it really isn't a problem, so don't make a scene.

Normal mbufs (256B) weren't limited at all previously. This was
problematic as there are certain places in the kernel that on
allocation failure of clusters try to piece together their packet
from smaller mbufs.

The mbuf limit is the number of all other mbuf sizes together plus
some more to allow for standalone mbufs (ACK for example) and to
send off a copy of a cluster. Unfortunately there isn't a way to
set an overall limit for all mbuf memory together as UMA doesn't
support such a limiting.

NB: Every cluster also has an mbuf associated with it.

Two examples on the revised mbuf sizing limits:

1GB KVM:
512MB limit for mbufs
419,430 mbufs
65,536 2K mbuf clusters
32,768 4K mbuf clusters
9,709 9K mbuf clusters
5,461 16K mbuf clusters

16GB RAM:
8GB limit for mbufs
33,554,432 mbufs
1,048,576 2K mbuf clusters
524,288 4K mbuf clusters
155,344 9K mbuf clusters
87,381 16K mbuf clusters

These defaults should be sufficient for even the most demanding
network loads.

MFC after: 1 month
/freebsd-10.0-release/sys/kern/
H A Dkern_mbuf.cdiff 243631 Tue Nov 27 19:36:13 MST 2012 andre Base the mbuf related limits on the available physical memory or
kernel memory, whichever is lower. The overall mbuf related memory
limit must be set so that mbufs (and clusters of various sizes)
can't exhaust physical RAM or KVM.

The limit is set to half of the physical RAM or KVM (whichever is
lower) as the baseline. In any normal scenario we want to leave
at least half of the physmem/kvm for other kernel functions and
userspace to prevent it from swapping too easily. Via a tunable
kern.maxmbufmem the limit can be upped to at most 3/4 of physmem/kvm.

At the same time divorce maxfiles from maxusers and set maxfiles to
physpages / 8 with a floor based on maxusers. This way busy servers
can make use of the significantly increased mbuf limits with a much
larger number of open sockets.

Tidy up ordering in init_param2() and check up on some users of
those values calculated here.

Out of the overall mbuf memory limit 2K clusters and 4K (page size)
clusters to get 1/4 each because these are the most heavily used mbuf
sizes. 2K clusters are used for MTU 1500 ethernet inbound packets.
4K clusters are used whenever possible for sends on sockets and thus
outbound packets. The larger cluster sizes of 9K and 16K are limited
to 1/6 of the overall mbuf memory limit. When jumbo MTU's are used
these large clusters will end up only on the inbound path. They are
not used on outbound, there it's still 4K. Yes, that will stay that
way because otherwise we run into lots of complications in the
stack. And it really isn't a problem, so don't make a scene.

Normal mbufs (256B) weren't limited at all previously. This was
problematic as there are certain places in the kernel that on
allocation failure of clusters try to piece together their packet
from smaller mbufs.

The mbuf limit is the number of all other mbuf sizes together plus
some more to allow for standalone mbufs (ACK for example) and to
send off a copy of a cluster. Unfortunately there isn't a way to
set an overall limit for all mbuf memory together as UMA doesn't
support such a limiting.

NB: Every cluster also has an mbuf associated with it.

Two examples on the revised mbuf sizing limits:

1GB KVM:
512MB limit for mbufs
419,430 mbufs
65,536 2K mbuf clusters
32,768 4K mbuf clusters
9,709 9K mbuf clusters
5,461 16K mbuf clusters

16GB RAM:
8GB limit for mbufs
33,554,432 mbufs
1,048,576 2K mbuf clusters
524,288 4K mbuf clusters
155,344 9K mbuf clusters
87,381 16K mbuf clusters

These defaults should be sufficient for even the most demanding
network loads.

MFC after: 1 month
H A Dsubr_param.cdiff 243631 Tue Nov 27 19:36:13 MST 2012 andre Base the mbuf related limits on the available physical memory or
kernel memory, whichever is lower. The overall mbuf related memory
limit must be set so that mbufs (and clusters of various sizes)
can't exhaust physical RAM or KVM.

The limit is set to half of the physical RAM or KVM (whichever is
lower) as the baseline. In any normal scenario we want to leave
at least half of the physmem/kvm for other kernel functions and
userspace to prevent it from swapping too easily. Via a tunable
kern.maxmbufmem the limit can be upped to at most 3/4 of physmem/kvm.

At the same time divorce maxfiles from maxusers and set maxfiles to
physpages / 8 with a floor based on maxusers. This way busy servers
can make use of the significantly increased mbuf limits with a much
larger number of open sockets.

Tidy up ordering in init_param2() and check up on some users of
those values calculated here.

Out of the overall mbuf memory limit 2K clusters and 4K (page size)
clusters to get 1/4 each because these are the most heavily used mbuf
sizes. 2K clusters are used for MTU 1500 ethernet inbound packets.
4K clusters are used whenever possible for sends on sockets and thus
outbound packets. The larger cluster sizes of 9K and 16K are limited
to 1/6 of the overall mbuf memory limit. When jumbo MTU's are used
these large clusters will end up only on the inbound path. They are
not used on outbound, there it's still 4K. Yes, that will stay that
way because otherwise we run into lots of complications in the
stack. And it really isn't a problem, so don't make a scene.

Normal mbufs (256B) weren't limited at all previously. This was
problematic as there are certain places in the kernel that on
allocation failure of clusters try to piece together their packet
from smaller mbufs.

The mbuf limit is the number of all other mbuf sizes together plus
some more to allow for standalone mbufs (ACK for example) and to
send off a copy of a cluster. Unfortunately there isn't a way to
set an overall limit for all mbuf memory together as UMA doesn't
support such a limiting.

NB: Every cluster also has an mbuf associated with it.

Two examples on the revised mbuf sizing limits:

1GB KVM:
512MB limit for mbufs
419,430 mbufs
65,536 2K mbuf clusters
32,768 4K mbuf clusters
9,709 9K mbuf clusters
5,461 16K mbuf clusters

16GB RAM:
8GB limit for mbufs
33,554,432 mbufs
1,048,576 2K mbuf clusters
524,288 4K mbuf clusters
155,344 9K mbuf clusters
87,381 16K mbuf clusters

These defaults should be sufficient for even the most demanding
network loads.

MFC after: 1 month
H A Duipc_socket.cdiff 243631 Tue Nov 27 19:36:13 MST 2012 andre Base the mbuf related limits on the available physical memory or
kernel memory, whichever is lower. The overall mbuf related memory
limit must be set so that mbufs (and clusters of various sizes)
can't exhaust physical RAM or KVM.

The limit is set to half of the physical RAM or KVM (whichever is
lower) as the baseline. In any normal scenario we want to leave
at least half of the physmem/kvm for other kernel functions and
userspace to prevent it from swapping too easily. Via a tunable
kern.maxmbufmem the limit can be upped to at most 3/4 of physmem/kvm.

At the same time divorce maxfiles from maxusers and set maxfiles to
physpages / 8 with a floor based on maxusers. This way busy servers
can make use of the significantly increased mbuf limits with a much
larger number of open sockets.

Tidy up ordering in init_param2() and check up on some users of
those values calculated here.

Out of the overall mbuf memory limit 2K clusters and 4K (page size)
clusters to get 1/4 each because these are the most heavily used mbuf
sizes. 2K clusters are used for MTU 1500 ethernet inbound packets.
4K clusters are used whenever possible for sends on sockets and thus
outbound packets. The larger cluster sizes of 9K and 16K are limited
to 1/6 of the overall mbuf memory limit. When jumbo MTU's are used
these large clusters will end up only on the inbound path. They are
not used on outbound, there it's still 4K. Yes, that will stay that
way because otherwise we run into lots of complications in the
stack. And it really isn't a problem, so don't make a scene.

Normal mbufs (256B) weren't limited at all previously. This was
problematic as there are certain places in the kernel that on
allocation failure of clusters try to piece together their packet
from smaller mbufs.

The mbuf limit is the number of all other mbuf sizes together plus
some more to allow for standalone mbufs (ACK for example) and to
send off a copy of a cluster. Unfortunately there isn't a way to
set an overall limit for all mbuf memory together as UMA doesn't
support such a limiting.

NB: Every cluster also has an mbuf associated with it.

Two examples on the revised mbuf sizing limits:

1GB KVM:
512MB limit for mbufs
419,430 mbufs
65,536 2K mbuf clusters
32,768 4K mbuf clusters
9,709 9K mbuf clusters
5,461 16K mbuf clusters

16GB RAM:
8GB limit for mbufs
33,554,432 mbufs
1,048,576 2K mbuf clusters
524,288 4K mbuf clusters
155,344 9K mbuf clusters
87,381 16K mbuf clusters

These defaults should be sufficient for even the most demanding
network loads.

MFC after: 1 month
/freebsd-10.0-release/etc/
H A Drcdiff 709 Sat Nov 06 23:19:06 MST 1993 wollman Added a new flag variable to /etc/netstart, $sendmail_flags, which
gives the flags to be passed to sendmail when it is started. (If it is
"NO", sendmail is not started.) Also, always start the portmapper regardless
of the value of $nfs_server; this should prevent the inetd complaints we
have seen from recurring.

Completed in 248 milliseconds