/* * Copyright 2006-2013, Haiku, Inc. All Rights Reserved. * Distributed under the terms of the MIT License. * * Authors: * Axel Dörfler, axeld@pinc-software.de */ /*! This class manages a pool of areas for one client. The client is supposed to clone these areas into its own address space to access the data. This mechanism is only used for bitmaps for far. */ // TODO: areas could be relocated if needed (to be able to resize them) // However, this would require a lock whenever a block of memory // allocated by this allocator is accessed. #include "ClientMemoryAllocator.h" #include #include #include #include "ServerApp.h" typedef block_list::Iterator block_iterator; typedef chunk_list::Iterator chunk_iterator; ClientMemoryAllocator::ClientMemoryAllocator(ServerApp* application) : fApplication(application), fLock("client memory lock") { } ClientMemoryAllocator::~ClientMemoryAllocator() { // delete all areas and chunks/blocks that are still allocated while (true) { struct block* block = fFreeBlocks.RemoveHead(); if (block == NULL) break; free(block); } while (true) { struct chunk* chunk = fChunks.RemoveHead(); if (chunk == NULL) break; delete_area(chunk->area); free(chunk); } } void* ClientMemoryAllocator::Allocate(size_t size, block** _address, bool& newArea) { // A detached allocator no longer allows any further allocations if (fApplication == NULL) return NULL; BAutolock locker(fLock); // Search best matching free block from the list block_iterator iterator = fFreeBlocks.GetIterator(); struct block* block; struct block* best = NULL; while ((block = iterator.Next()) != NULL) { if (block->size >= size && (best == NULL || block->size < best->size)) best = block; } if (best == NULL) { // We didn't find a free block - we need to allocate // another chunk, or resize an existing chunk best = _AllocateChunk(size, newArea); if (best == NULL) return NULL; } else newArea = false; // We need to split the chunk into two parts: the one to keep // and the one to give away if (best->size == size) { // The simple case: the free block has exactly the size we wanted to have fFreeBlocks.Remove(best); *_address = best; return best->base; } // TODO: maybe we should have the user reserve memory in its object // for us, so we don't have to do this here... struct block* usedBlock = (struct block*)malloc(sizeof(struct block)); if (usedBlock == NULL) return NULL; usedBlock->base = best->base; usedBlock->size = size; usedBlock->chunk = best->chunk; best->base += size; best->size -= size; *_address = usedBlock; return usedBlock->base; } void ClientMemoryAllocator::Free(block* freeBlock) { if (freeBlock == NULL) return; BAutolock locker(fLock); // search for an adjacent free block block_iterator iterator = fFreeBlocks.GetIterator(); struct block* before = NULL; struct block* after = NULL; bool inFreeList = true; if (freeBlock->size != freeBlock->chunk->size) { // TODO: this could be done better if free blocks are sorted, // and if we had one free blocks list per chunk! // IOW this is a bit slow... while (struct block* block = iterator.Next()) { if (block->chunk != freeBlock->chunk) continue; if (block->base + block->size == freeBlock->base) before = block; if (block->base == freeBlock->base + freeBlock->size) after = block; } if (before != NULL && after != NULL) { // merge with adjacent blocks before->size += after->size + freeBlock->size; fFreeBlocks.Remove(after); free(after); free(freeBlock); freeBlock = before; } else if (before != NULL) { before->size += freeBlock->size; free(freeBlock); freeBlock = before; } else if (after != NULL) { after->base -= freeBlock->size; after->size += freeBlock->size; free(freeBlock); freeBlock = after; } else fFreeBlocks.Add(freeBlock); } else inFreeList = false; if (freeBlock->size == freeBlock->chunk->size) { // We can delete the chunk now struct chunk* chunk = freeBlock->chunk; if (inFreeList) fFreeBlocks.Remove(freeBlock); free(freeBlock); fChunks.Remove(chunk); delete_area(chunk->area); if (fApplication != NULL) fApplication->NotifyDeleteClientArea(chunk->area); free(chunk); } } void ClientMemoryAllocator::Detach() { BAutolock locker(fLock); fApplication = NULL; } void ClientMemoryAllocator::Dump() { if (fApplication != NULL) { debug_printf("Application %" B_PRId32 ", %s: chunks:\n", fApplication->ClientTeam(), fApplication->Signature()); } chunk_list::Iterator iterator = fChunks.GetIterator(); int32 i = 0; while (struct chunk* chunk = iterator.Next()) { debug_printf(" [%4" B_PRId32 "] %p, area %" B_PRId32 ", base %p, " "size %lu\n", i++, chunk, chunk->area, chunk->base, chunk->size); } debug_printf("free blocks:\n"); block_list::Iterator blockIterator = fFreeBlocks.GetIterator(); i = 0; while (struct block* block = blockIterator.Next()) { debug_printf(" [%6" B_PRId32 "] %p, chunk %p, base %p, size %lu\n", i++, block, block->chunk, block->base, block->size); } } struct block* ClientMemoryAllocator::_AllocateChunk(size_t size, bool& newArea) { // round up to multiple of page size size = (size + B_PAGE_SIZE - 1) & ~(B_PAGE_SIZE - 1); // At first, try to resize our existing areas chunk_iterator iterator = fChunks.GetIterator(); struct chunk* chunk; while ((chunk = iterator.Next()) != NULL) { status_t status = resize_area(chunk->area, chunk->size + size); if (status == B_OK) { newArea = false; break; } } // TODO: resize and relocate while holding the write lock struct block* block; uint8* address; if (chunk == NULL) { // TODO: temporary measurement as long as resizing areas doesn't // work the way we need (with relocating the area, if needed) if (size < B_PAGE_SIZE * 32) size = B_PAGE_SIZE * 32; // create new area for this allocation chunk = (struct chunk*)malloc(sizeof(struct chunk)); if (chunk == NULL) return NULL; block = (struct block*)malloc(sizeof(struct block)); if (block == NULL) { free(chunk); return NULL; } char name[B_OS_NAME_LENGTH]; #ifdef HAIKU_TARGET_PLATFORM_LIBBE_TEST strcpy(name, "client heap"); #else snprintf(name, sizeof(name), "heap:%" B_PRId32 ":%s", fApplication->ClientTeam(), fApplication->SignatureLeaf()); #endif area_id area = create_area(name, (void**)&address, B_ANY_ADDRESS, size, B_NO_LOCK, B_READ_AREA | B_WRITE_AREA | B_CLONEABLE_AREA); if (area < B_OK) { free(block); free(chunk); return NULL; } // add chunk to list chunk->area = area; chunk->base = address; chunk->size = size; fChunks.Add(chunk); newArea = true; } else { // create new free block for this chunk block = (struct block *)malloc(sizeof(struct block)); if (block == NULL) return NULL; address = chunk->base + chunk->size; chunk->size += size; } // add block to free list block->chunk = chunk; block->base = address; block->size = size; fFreeBlocks.Add(block); return block; } // #pragma mark - ClientMemory::ClientMemory() : fAllocator(NULL), fBlock(NULL) { } ClientMemory::~ClientMemory() { if (fAllocator != NULL) { if (fBlock != NULL) fAllocator->Free(fBlock); fAllocator.Unset(); } } void* ClientMemory::Allocate(ClientMemoryAllocator* allocator, size_t size, bool& newArea) { fAllocator.SetTo(allocator, false); return fAllocator->Allocate(size, &fBlock, newArea); } area_id ClientMemory::Area() { if (fBlock != NULL) return fBlock->chunk->area; return B_ERROR; } uint8* ClientMemory::Address() { if (fBlock != NULL) return fBlock->base; return 0; } uint32 ClientMemory::AreaOffset() { if (fBlock != NULL) return fBlock->base - fBlock->chunk->base; return 0; } // #pragma mark - ClonedAreaMemory::ClonedAreaMemory() : fClonedArea(-1), fOffset(0), fBase(NULL) { } ClonedAreaMemory::~ClonedAreaMemory() { if (fClonedArea >= 0) delete_area(fClonedArea); } void* ClonedAreaMemory::Clone(area_id area, uint32 offset) { fClonedArea = clone_area("server_memory", (void**)&fBase, B_ANY_ADDRESS, B_READ_AREA | B_WRITE_AREA, area); if (fBase == NULL) return NULL; fOffset = offset; return Address(); } area_id ClonedAreaMemory::Area() { return fClonedArea; } uint8* ClonedAreaMemory::Address() { return fBase + fOffset; } uint32 ClonedAreaMemory::AreaOffset() { return fOffset; }