/*- * BSD LICENSE * * Copyright (c) Intel Corporation. All rights reserved. * Copyright (c) 2017, Western Digital Corporation or its affiliates. * * Redistribution and use in sourete and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of sourete code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "nvme_internal.h" /* * Host software shall wait a minimum of CAP.TO x 500 milleseconds for CSTS.RDY * to be set to '1' after setting CC.EN to '1' from a previous value of '0'. */ static inline unsigned int nvme_ctrlr_get_ready_to_in_ms(struct nvme_ctrlr *ctrlr) { union nvme_cap_register cap; /* The TO unit in ms */ #define NVME_READY_TIMEOUT_UNIT 500 cap.raw = nvme_reg_mmio_read_8(ctrlr, cap.raw); return (NVME_READY_TIMEOUT_UNIT * cap.bits.to); } /* * Create a queue pair. */ static int nvme_ctrlr_create_qpair(struct nvme_ctrlr *ctrlr, struct nvme_qpair *qpair) { int ret; /* Create the completion queue */ ret = nvme_admin_create_ioq(ctrlr, qpair, NVME_IO_COMPLETION_QUEUE); if (ret != 0) { nvme_notice("Create completion queue %u failed\n", qpair->id); return ret; } /* Create the submission queue */ ret = nvme_admin_create_ioq(ctrlr, qpair, NVME_IO_SUBMISSION_QUEUE); if (ret != 0) { /* Attempt to delete the completion queue */ nvme_notice("Create submission queue %u failed\n", qpair->id); nvme_admin_delete_ioq(ctrlr, qpair, NVME_IO_COMPLETION_QUEUE); return ret; } nvme_qpair_reset(qpair); return 0; } /* * Delete a queue pair. */ static int nvme_ctrlr_delete_qpair(struct nvme_ctrlr *ctrlr, struct nvme_qpair *qpair) { int ret; /* Delete the submission queue */ ret = nvme_admin_delete_ioq(ctrlr, qpair, NVME_IO_SUBMISSION_QUEUE); if (ret != 0) { nvme_notice("Delete submission queue %u failed\n", qpair->id); return ret; } /* Delete the completion queue */ ret = nvme_admin_delete_ioq(ctrlr, qpair, NVME_IO_COMPLETION_QUEUE); if (ret != 0) { nvme_notice("Delete completion queue %u failed\n", qpair->id); return ret; } return 0; } /* * Intel log page. */ static void nvme_ctrlr_construct_intel_support_log_page_list(struct nvme_ctrlr *ctrlr, struct nvme_intel_log_page_dir *log_page_dir) { if (ctrlr->cdata.vid != NVME_PCI_VID_INTEL || log_page_dir == NULL) return; ctrlr->log_page_supported[NVME_INTEL_LOG_PAGE_DIR] = true; if (log_page_dir->read_latency_log_len || (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) ctrlr->log_page_supported[NVME_INTEL_LOG_READ_CMD_LATENCY] = true; if (log_page_dir->write_latency_log_len || (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) ctrlr->log_page_supported[NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true; if (log_page_dir->temperature_statistics_log_len) ctrlr->log_page_supported[NVME_INTEL_LOG_TEMPERATURE] = true; if (log_page_dir->smart_log_len) ctrlr->log_page_supported[NVME_INTEL_LOG_SMART] = true; if (log_page_dir->marketing_description_log_len) ctrlr->log_page_supported[NVME_INTEL_MARKETING_DESCRIPTION] = true; } /* * Intel log page. */ static int nvme_ctrlr_set_intel_support_log_pages(struct nvme_ctrlr *ctrlr) { struct nvme_intel_log_page_dir *log_page_dir; int ret; log_page_dir = nvme_zmalloc(sizeof(struct nvme_intel_log_page_dir), 64); if (!log_page_dir) { nvme_err("Allocate log_page_directory failed\n"); return ENOMEM; } ret = nvme_admin_get_log_page(ctrlr, NVME_INTEL_LOG_PAGE_DIR, NVME_GLOBAL_NS_TAG, log_page_dir, sizeof(struct nvme_intel_log_page_dir)); if (ret != 0) nvme_notice("Get NVME_INTEL_LOG_PAGE_DIR log page failed\n"); else nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, log_page_dir); nvme_free(log_page_dir); return ret; } /* * Initialize log page support directory. */ static void nvme_ctrlr_set_supported_log_pages(struct nvme_ctrlr *ctrlr) { memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported)); /* Mandatory pages */ ctrlr->log_page_supported[NVME_LOG_ERROR] = true; ctrlr->log_page_supported[NVME_LOG_HEALTH_INFORMATION] = true; ctrlr->log_page_supported[NVME_LOG_FIRMWARE_SLOT] = true; if (ctrlr->cdata.lpa.celp) ctrlr->log_page_supported[NVME_LOG_COMMAND_EFFECTS_LOG] = true; if (ctrlr->cdata.vid == NVME_PCI_VID_INTEL) nvme_ctrlr_set_intel_support_log_pages(ctrlr); } /* * Set Intel device features. */ static void nvme_ctrlr_set_intel_supported_features(struct nvme_ctrlr *ctrlr) { bool *supported_feature = ctrlr->feature_supported; supported_feature[NVME_INTEL_FEAT_MAX_LBA] = true; supported_feature[NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true; supported_feature[NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true; supported_feature[NVME_INTEL_FEAT_SMBUS_ADDRESS] = true; supported_feature[NVME_INTEL_FEAT_LED_PATTERN] = true; supported_feature[NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true; supported_feature[NVME_INTEL_FEAT_LATENCY_TRACKING] = true; } /* * Set device features. */ static void nvme_ctrlr_set_supported_features(struct nvme_ctrlr *ctrlr) { bool *supported_feature = ctrlr->feature_supported; memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported)); /* Mandatory features */ supported_feature[NVME_FEAT_ARBITRATION] = true; supported_feature[NVME_FEAT_POWER_MANAGEMENT] = true; supported_feature[NVME_FEAT_TEMPERATURE_THRESHOLD] = true; supported_feature[NVME_FEAT_ERROR_RECOVERY] = true; supported_feature[NVME_FEAT_NUMBER_OF_QUEUES] = true; supported_feature[NVME_FEAT_INTERRUPT_COALESCING] = true; supported_feature[NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true; supported_feature[NVME_FEAT_WRITE_ATOMICITY] = true; supported_feature[NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true; /* Optional features */ if (ctrlr->cdata.vwc.present) supported_feature[NVME_FEAT_VOLATILE_WRITE_CACHE] = true; if (ctrlr->cdata.apsta.supported) supported_feature[NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true; if (ctrlr->cdata.hmpre) supported_feature[NVME_FEAT_HOST_MEM_BUFFER] = true; if (ctrlr->cdata.vid == NVME_PCI_VID_INTEL) nvme_ctrlr_set_intel_supported_features(ctrlr); } /* * Initialize I/O queue pairs. */ static int nvme_ctrlr_init_io_qpairs(struct nvme_ctrlr *ctrlr) { struct nvme_qpair *qpair; union nvme_cap_register cap; uint32_t i; if (ctrlr->ioq != NULL) /* * io_qpairs were already constructed, so just return. * This typically happens when the controller is * initialized a second (or subsequent) time after a * controller reset. */ return 0; /* * NVMe spec sets a hard limit of 64K max entries, but * devices may specify a smaller limit, so we need to check * the MQES field in the capabilities register. */ cap.raw = nvme_reg_mmio_read_8(ctrlr, cap.raw); ctrlr->io_qpairs_max_entries = nvme_min(NVME_IO_ENTRIES, (unsigned int)cap.bits.mqes + 1); ctrlr->ioq = calloc(ctrlr->io_queues, sizeof(struct nvme_qpair)); if (!ctrlr->ioq) return ENOMEM; /* Keep queue pair ID 0 for the admin queue */ for (i = 0; i < ctrlr->io_queues; i++) { qpair = &ctrlr->ioq[i]; qpair->id = i + 1; TAILQ_INSERT_TAIL(&ctrlr->free_io_qpairs, qpair, tailq); } return 0; } /* * Shutdown a controller. */ static void nvme_ctrlr_shutdown(struct nvme_ctrlr *ctrlr) { union nvme_cc_register cc; union nvme_csts_register csts; int ms_waited = 0; cc.raw = nvme_reg_mmio_read_4(ctrlr, cc.raw); cc.bits.shn = NVME_SHN_NORMAL; nvme_reg_mmio_write_4(ctrlr, cc.raw, cc.raw); csts.raw = nvme_reg_mmio_read_4(ctrlr, csts.raw); /* * The NVMe spec does not define a timeout period for shutdown * notification, so we just pick 5 seconds as a reasonable amount * of time to wait before proceeding. */ #define NVME_CTRLR_SHUTDOWN_TIMEOUT 5000 while (csts.bits.shst != NVME_SHST_COMPLETE) { nvme_usleep(1000); csts.raw = nvme_reg_mmio_read_4(ctrlr, csts.raw); if (ms_waited++ >= NVME_CTRLR_SHUTDOWN_TIMEOUT) break; } if (csts.bits.shst != NVME_SHST_COMPLETE) nvme_err("Controller did not shutdown within %d seconds\n", NVME_CTRLR_SHUTDOWN_TIMEOUT / 1000); } /* * Enable a controller. */ static int nvme_ctrlr_enable(struct nvme_ctrlr *ctrlr) { union nvme_cc_register cc; union nvme_aqa_register aqa; union nvme_cap_register cap; cc.raw = nvme_reg_mmio_read_4(ctrlr, cc.raw); if (cc.bits.en != 0) { nvme_err("COntroller enable called with CC.EN = 1\n"); return EINVAL; } nvme_reg_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); nvme_reg_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); aqa.raw = 0; /* acqs and asqs are 0-based. */ aqa.bits.acqs = ctrlr->adminq.entries - 1; aqa.bits.asqs = ctrlr->adminq.entries - 1; nvme_reg_mmio_write_4(ctrlr, aqa.raw, aqa.raw); cc.bits.en = 1; cc.bits.css = 0; cc.bits.shn = 0; cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */ cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */ /* Page size is 2 ^ (12 + mps). */ cc.bits.mps = PAGE_SHIFT - 12; cap.raw = nvme_reg_mmio_read_8(ctrlr, cap.raw); switch (ctrlr->opts.arb_mechanism) { case NVME_CC_AMS_RR: break; case NVME_CC_AMS_WRR: if (NVME_CAP_AMS_WRR & cap.bits.ams) break; return EINVAL; case NVME_CC_AMS_VS: if (NVME_CAP_AMS_VS & cap.bits.ams) break; return EINVAL; default: return EINVAL; } cc.bits.ams = ctrlr->opts.arb_mechanism; nvme_reg_mmio_write_4(ctrlr, cc.raw, cc.raw); return 0; } /* * Disable a controller. */ static inline void nvme_ctrlr_disable(struct nvme_ctrlr *ctrlr) { union nvme_cc_register cc; cc.raw = nvme_reg_mmio_read_4(ctrlr, cc.raw); cc.bits.en = 0; nvme_reg_mmio_write_4(ctrlr, cc.raw, cc.raw); } /* * Test if a controller is enabled. */ static inline int nvme_ctrlr_enabled(struct nvme_ctrlr *ctrlr) { union nvme_cc_register cc; cc.raw = nvme_reg_mmio_read_4(ctrlr, cc.raw); return cc.bits.en; } /* * Test if a controller is ready. */ static inline int nvme_ctrlr_ready(struct nvme_ctrlr *ctrlr) { union nvme_csts_register csts; csts.raw = nvme_reg_mmio_read_4(ctrlr, csts.raw); return csts.bits.rdy; } /* * Set a controller state. */ static void nvme_ctrlr_set_state(struct nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state, uint64_t timeout_in_ms) { ctrlr->state = state; if (timeout_in_ms == NVME_TIMEOUT_INFINITE) ctrlr->state_timeout_ms = NVME_TIMEOUT_INFINITE; else ctrlr->state_timeout_ms = nvme_time_msec() + timeout_in_ms; } /* * Get a controller data. */ static int nvme_ctrlr_identify(struct nvme_ctrlr *ctrlr) { int ret; ret = nvme_admin_identify_ctrlr(ctrlr, &ctrlr->cdata); if (ret != 0) { nvme_notice("Identify controller failed\n"); return ret; } /* * Use MDTS to ensure our default max_xfer_size doesn't * exceed what the controller supports. */ if (ctrlr->cdata.mdts > 0) ctrlr->max_xfer_size = nvme_min(ctrlr->max_xfer_size, ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); return 0; } /* * Set the number of I/O queue pairs. */ static int nvme_ctrlr_get_max_io_qpairs(struct nvme_ctrlr *ctrlr) { unsigned int cdw0, cq_allocated, sq_allocated; int ret; ret = nvme_admin_get_feature(ctrlr, NVME_FEAT_CURRENT, NVME_FEAT_NUMBER_OF_QUEUES, 0, &cdw0); if (ret != 0) { nvme_notice("Get feature NVME_FEAT_NUMBER_OF_QUEUES failed\n"); return ret; } /* * Data in cdw0 is 0-based. * Lower 16-bits indicate number of submission queues allocated. * Upper 16-bits indicate number of completion queues allocated. */ sq_allocated = (cdw0 & 0xFFFF) + 1; cq_allocated = (cdw0 >> 16) + 1; ctrlr->max_io_queues = nvme_min(sq_allocated, cq_allocated); return 0; } /* * Set the number of I/O queue pairs. */ static int nvme_ctrlr_set_num_qpairs(struct nvme_ctrlr *ctrlr) { unsigned int num_queues, cdw0; unsigned int cq_allocated, sq_allocated; int ret; ret = nvme_ctrlr_get_max_io_qpairs(ctrlr); if (ret != 0) { nvme_notice("Failed to get the maximum of I/O qpairs\n"); return ret; } /* * Format number of I/O queue: * Remove 1 as it as be be 0-based, * bits 31:16 represent the number of completion queues, * bits 0:15 represent the number of submission queues */ num_queues = ((ctrlr->opts.io_queues - 1) << 16) | (ctrlr->opts.io_queues - 1); /* * Set the number of I/O queues. * Note: The value allocated may be smaller or larger than the number * of queues requested (see specifications). */ ret = nvme_admin_set_feature(ctrlr, false, NVME_FEAT_NUMBER_OF_QUEUES, num_queues, 0, &cdw0); if (ret != 0) { nvme_notice("Set feature NVME_FEAT_NUMBER_OF_QUEUES failed\n"); return ret; } /* * Data in cdw0 is 0-based. * Lower 16-bits indicate number of submission queues allocated. * Upper 16-bits indicate number of completion queues allocated. */ sq_allocated = (cdw0 & 0xFFFF) + 1; cq_allocated = (cdw0 >> 16) + 1; ctrlr->io_queues = nvme_min(sq_allocated, cq_allocated); /* * Make sure the number of constructed qpair listed in free_io_qpairs * will not be more than the requested one. */ ctrlr->io_queues = nvme_min(ctrlr->io_queues, ctrlr->opts.io_queues); return 0; } static void nvme_ctrlr_destruct_namespaces(struct nvme_ctrlr *ctrlr) { if (ctrlr->ns) { free(ctrlr->ns); ctrlr->ns = NULL; ctrlr->nr_ns = 0; } if (ctrlr->nsdata) { nvme_free(ctrlr->nsdata); ctrlr->nsdata = NULL; } } static int nvme_ctrlr_construct_namespaces(struct nvme_ctrlr *ctrlr) { unsigned int i, nr_ns = ctrlr->cdata.nn; struct nvme_ns *ns = NULL; /* * ctrlr->nr_ns may be 0 (startup) or a different number of * namespaces (reset), so check if we need to reallocate. */ if (nr_ns != ctrlr->nr_ns) { nvme_ctrlr_destruct_namespaces(ctrlr); ctrlr->ns = calloc(nr_ns, sizeof(struct nvme_ns)); if (!ctrlr->ns) goto fail; nvme_debug("Allocate %u namespace data\n", nr_ns); ctrlr->nsdata = nvme_calloc(nr_ns, sizeof(struct nvme_ns_data), PAGE_SIZE); if (!ctrlr->nsdata) goto fail; ctrlr->nr_ns = nr_ns; } for (i = 0; i < nr_ns; i++) { ns = &ctrlr->ns[i]; if (nvme_ns_construct(ctrlr, ns, i + 1) != 0) goto fail; } return 0; fail: nvme_ctrlr_destruct_namespaces(ctrlr); return -1; } /* * Forward declaration. */ static int nvme_ctrlr_construct_and_submit_aer(struct nvme_ctrlr *ctrlr, struct nvme_async_event_request *aer); /* * Async event completion callback. */ static void nvme_ctrlr_async_event_cb(void *arg, const struct nvme_cpl *cpl) { struct nvme_async_event_request *aer = arg; struct nvme_ctrlr *ctrlr = aer->ctrlr; if (cpl->status.sc == NVME_SC_ABORTED_SQ_DELETION) /* * This is simulated when controller is being shut down, to * effectively abort outstanding asynchronous event requests * and make sure all memory is freed. Do not repost the * request in this case. */ return; if (ctrlr->aer_cb_fn != NULL) ctrlr->aer_cb_fn(ctrlr->aer_cb_arg, cpl); /* * Repost another asynchronous event request to replace * the one that just completed. */ if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) /* * We can't do anything to recover from a failure here, * so just print a warning message and leave the * AER unsubmitted. */ nvme_err("Initialize AER failed\n"); } /* * Issue an async event request. */ static int nvme_ctrlr_construct_and_submit_aer(struct nvme_ctrlr *ctrlr, struct nvme_async_event_request *aer) { struct nvme_request *req; req = nvme_request_allocate_null(&ctrlr->adminq, nvme_ctrlr_async_event_cb, aer); if (req == NULL) return -1; aer->ctrlr = ctrlr; aer->req = req; req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; return nvme_qpair_submit_request(&ctrlr->adminq, req); } /* * Configure async event management. */ static int nvme_ctrlr_configure_aer(struct nvme_ctrlr *ctrlr) { union nvme_critical_warning_state state; struct nvme_async_event_request *aer; unsigned int i; int ret; state.raw = 0xFF; state.bits.reserved = 0; ret = nvme_admin_set_feature(ctrlr, false, NVME_FEAT_ASYNC_EVENT_CONFIGURATION, state.raw, 0, NULL); if (ret != 0) { nvme_notice("Set feature ASYNC_EVENT_CONFIGURATION failed\n"); return ret; } /* aerl is a zero-based value, so we need to add 1 here. */ ctrlr->num_aers = nvme_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1)); for (i = 0; i < ctrlr->num_aers; i++) { aer = &ctrlr->aer[i]; if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) { nvme_notice("Construct AER failed\n"); return -1; } } return 0; } /* * Start a controller. */ static int nvme_ctrlr_start(struct nvme_ctrlr *ctrlr) { nvme_qpair_reset(&ctrlr->adminq); nvme_qpair_enable(&ctrlr->adminq); if (nvme_ctrlr_identify(ctrlr) != 0) return -1; if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) return -1; if (nvme_ctrlr_init_io_qpairs(ctrlr)) return -1; if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) return -1; if (nvme_ctrlr_configure_aer(ctrlr) != 0) nvme_warning("controller does not support AER!\n"); nvme_ctrlr_set_supported_log_pages(ctrlr); nvme_ctrlr_set_supported_features(ctrlr); if (ctrlr->cdata.sgls.supported) ctrlr->flags |= NVME_CTRLR_SGL_SUPPORTED; return 0; } /* * Memory map the controller side buffer. */ static void nvme_ctrlr_map_cmb(struct nvme_ctrlr *ctrlr) { int ret; void *addr; uint32_t bir; union nvme_cmbsz_register cmbsz; union nvme_cmbloc_register cmbloc; uint64_t size, unit_size, offset, bar_size, bar_phys_addr; cmbsz.raw = nvme_reg_mmio_read_4(ctrlr, cmbsz.raw); cmbloc.raw = nvme_reg_mmio_read_4(ctrlr, cmbloc.raw); if (!cmbsz.bits.sz) goto out; /* Values 0 2 3 4 5 are valid for BAR */ bir = cmbloc.bits.bir; if (bir > 5 || bir == 1) goto out; /* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */ unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu); /* controller memory buffer size in Bytes */ size = unit_size * cmbsz.bits.sz; /* controller memory buffer offset from BAR in Bytes */ offset = unit_size * cmbloc.bits.ofst; nvme_pcicfg_get_bar_addr_len(ctrlr->pci_dev, bir, &bar_phys_addr, &bar_size); if (offset > bar_size) goto out; if (size > bar_size - offset) goto out; ret = nvme_pcicfg_map_bar_write_combine(ctrlr->pci_dev, bir, &addr); if ((ret != 0) || addr == NULL) goto out; ctrlr->cmb_bar_virt_addr = addr; ctrlr->cmb_bar_phys_addr = bar_phys_addr; ctrlr->cmb_size = size; ctrlr->cmb_current_offset = offset; if (!cmbsz.bits.sqs) ctrlr->opts.use_cmb_sqs = false; return; out: ctrlr->cmb_bar_virt_addr = NULL; ctrlr->opts.use_cmb_sqs = false; return; } /* * Unmap the controller side buffer. */ static int nvme_ctrlr_unmap_cmb(struct nvme_ctrlr *ctrlr) { union nvme_cmbloc_register cmbloc; void *addr = ctrlr->cmb_bar_virt_addr; int ret = 0; if (addr) { cmbloc.raw = nvme_reg_mmio_read_4(ctrlr, cmbloc.raw); ret = nvme_pcicfg_unmap_bar(ctrlr->pci_dev, cmbloc.bits.bir, addr); } return ret; } /* * Map the controller PCI bars. */ static int nvme_ctrlr_map_bars(struct nvme_ctrlr *ctrlr) { void *addr; int ret; ret = nvme_pcicfg_map_bar(ctrlr->pci_dev, 0, 0, &addr); if (ret != 0 || addr == NULL) { nvme_err("Map PCI device bar failed %d (%s)\n", ret, strerror(ret)); return ret; } nvme_debug("Controller BAR mapped at %p\n", addr); ctrlr->regs = (volatile struct nvme_registers *)addr; nvme_ctrlr_map_cmb(ctrlr); return 0; } /* * Unmap the controller PCI bars. */ static int nvme_ctrlr_unmap_bars(struct nvme_ctrlr *ctrlr) { void *addr = (void *)ctrlr->regs; int ret; ret = nvme_ctrlr_unmap_cmb(ctrlr); if (ret != 0) { nvme_err("Unmap controller side buffer failed %d\n", ret); return ret; } if (addr) { ret = nvme_pcicfg_unmap_bar(ctrlr->pci_dev, 0, addr); if (ret != 0) { nvme_err("Unmap PCI device bar failed %d\n", ret); return ret; } } return 0; } /* * Set a controller in the failed state. */ static void nvme_ctrlr_fail(struct nvme_ctrlr *ctrlr) { unsigned int i; ctrlr->failed = true; nvme_qpair_fail(&ctrlr->adminq); if (ctrlr->ioq) for (i = 0; i < ctrlr->io_queues; i++) nvme_qpair_fail(&ctrlr->ioq[i]); } /* * This function will be called repeatedly during initialization * until the controller is ready. */ static int nvme_ctrlr_init(struct nvme_ctrlr *ctrlr) { unsigned int ready_timeout_in_ms = nvme_ctrlr_get_ready_to_in_ms(ctrlr); int ret; /* * Check if the current initialization step is done or has timed out. */ switch (ctrlr->state) { case NVME_CTRLR_STATE_INIT: /* Begin the hardware initialization by making * sure the controller is disabled. */ if (nvme_ctrlr_enabled(ctrlr)) { /* * Disable the controller to cause a reset. */ if (!nvme_ctrlr_ready(ctrlr)) { /* Wait for the controller to be ready */ nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1, ready_timeout_in_ms); return 0; } /* * The controller is enabled and ready. * It can be immediatly disabled */ nvme_ctrlr_disable(ctrlr); nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms); if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) nvme_msleep(2000); return 0; } if (nvme_ctrlr_ready(ctrlr)) { /* * Controller is in the process of shutting down. * We need to wait for CSTS.RDY to become 0. */ nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms); return 0; } /* * Controller is currently disabled. * We can jump straight to enabling it. */ ret = nvme_ctrlr_enable(ctrlr); if (ret) nvme_err("Enable controller failed\n"); else nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1, ready_timeout_in_ms); return ret; case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1: if (nvme_ctrlr_ready(ctrlr)) { /* CC.EN = 1 && CSTS.RDY = 1, * so we can disable the controller now. */ nvme_ctrlr_disable(ctrlr); nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms); return 0; } break; case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0: if (!nvme_ctrlr_ready(ctrlr)) { /* CC.EN = 0 && CSTS.RDY = 0, * so we can enable the controller now. */ ret = nvme_ctrlr_enable(ctrlr); if (ret) nvme_err("Enable controller failed\n"); else nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1, ready_timeout_in_ms); return ret; } break; case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1: if (nvme_ctrlr_ready(ctrlr)) { if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_RDY) nvme_msleep(2000); ret = nvme_ctrlr_start(ctrlr); if (ret) nvme_err("Start controller failed\n"); else nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE); return ret; } break; default: nvme_panic("Unhandled ctrlr state %d\n", ctrlr->state); nvme_ctrlr_fail(ctrlr); return -1; } if ((ctrlr->state_timeout_ms != NVME_TIMEOUT_INFINITE) && (nvme_time_msec() > ctrlr->state_timeout_ms)) { nvme_err("Initialization timed out in state %d\n", ctrlr->state); nvme_ctrlr_fail(ctrlr); return -1; } return 0; } /* * Reset a controller. */ static int nvme_ctrlr_reset(struct nvme_ctrlr *ctrlr) { struct nvme_qpair *qpair; unsigned int i; if (ctrlr->resetting || ctrlr->failed) /* * Controller is already resetting or has failed. Return * immediately since there is no need to kick off another * reset in these cases. */ return 0; ctrlr->resetting = true; /* Disable all queues before disabling the controller hardware. */ nvme_qpair_disable(&ctrlr->adminq); for (i = 0; i < ctrlr->io_queues; i++) nvme_qpair_disable(&ctrlr->ioq[i]); /* Set the state back to INIT to cause a full hardware reset. */ nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE); while (ctrlr->state != NVME_CTRLR_STATE_READY) { if (nvme_ctrlr_init(ctrlr) != 0) { nvme_crit("Controller reset failed\n"); nvme_ctrlr_fail(ctrlr); goto out; } } /* Reinitialize qpairs */ TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) { if (nvme_ctrlr_create_qpair(ctrlr, qpair) != 0) nvme_ctrlr_fail(ctrlr); } out: ctrlr->resetting = false; return ctrlr->failed ? -1 : 0; } /* * Set a controller options. */ static void nvme_ctrlr_set_opts(struct nvme_ctrlr *ctrlr, struct nvme_ctrlr_opts *opts) { if (opts) memcpy(&ctrlr->opts, opts, sizeof(struct nvme_ctrlr_opts)); else memset(&ctrlr->opts, 0, sizeof(struct nvme_ctrlr_opts)); if (ctrlr->opts.io_queues == 0) ctrlr->opts.io_queues = DEFAULT_MAX_IO_QUEUES; if (ctrlr->opts.io_queues > NVME_MAX_IO_QUEUES) { nvme_info("Limiting requested I/O queues %u to %d\n", ctrlr->opts.io_queues, NVME_MAX_IO_QUEUES); ctrlr->opts.io_queues = NVME_MAX_IO_QUEUES; } } /* * Attach a PCI controller. */ struct nvme_ctrlr * nvme_ctrlr_attach(struct pci_device *pci_dev, struct nvme_ctrlr_opts *opts) { struct nvme_ctrlr *ctrlr; union nvme_cap_register cap; uint32_t cmd_reg; int ret; /* Get a new controller handle */ ctrlr = malloc(sizeof(struct nvme_ctrlr)); if (!ctrlr) { nvme_err("Allocate controller handle failed\n"); return NULL; } nvme_debug("New controller handle %p\n", ctrlr); /* Initialize the handle */ memset(ctrlr, 0, sizeof(struct nvme_ctrlr)); ctrlr->pci_dev = pci_dev; ctrlr->resetting = false; ctrlr->failed = false; TAILQ_INIT(&ctrlr->free_io_qpairs); TAILQ_INIT(&ctrlr->active_io_qpairs); pthread_mutex_init(&ctrlr->lock, NULL); ctrlr->quirks = nvme_ctrlr_get_quirks(pci_dev); nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE); ret = nvme_ctrlr_map_bars(ctrlr); if (ret != 0) { nvme_err("Map controller BAR failed\n"); pthread_mutex_destroy(&ctrlr->lock); free(ctrlr); return NULL; } /* Enable PCI busmaster and disable INTx */ nvme_pcicfg_read32(pci_dev, &cmd_reg, 4); cmd_reg |= 0x0404; nvme_pcicfg_write32(pci_dev, cmd_reg, 4); /* * Doorbell stride is 2 ^ (dstrd + 2), * but we want multiples of 4, so drop the + 2. */ cap.raw = nvme_reg_mmio_read_8(ctrlr, cap.raw); ctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd; ctrlr->min_page_size = 1 << (12 + cap.bits.mpsmin); /* Set default transfer size */ ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; /* Create the admin queue pair */ ret = nvme_qpair_construct(ctrlr, &ctrlr->adminq, 0, NVME_ADMIN_ENTRIES, NVME_ADMIN_TRACKERS); if (ret != 0) { nvme_err("Initialize admin queue pair failed\n"); goto err; } /* Set options and then initialize */ nvme_ctrlr_set_opts(ctrlr, opts); do { ret = nvme_ctrlr_init(ctrlr); if (ret) goto err; } while (ctrlr->state != NVME_CTRLR_STATE_READY); return ctrlr; err: nvme_ctrlr_detach(ctrlr); return NULL; } /* * Detach a PCI controller. */ void nvme_ctrlr_detach(struct nvme_ctrlr *ctrlr) { struct nvme_qpair *qpair; uint32_t i; while (!TAILQ_EMPTY(&ctrlr->active_io_qpairs)) { qpair = TAILQ_FIRST(&ctrlr->active_io_qpairs); nvme_ioqp_release(qpair); } nvme_ctrlr_shutdown(ctrlr); nvme_ctrlr_destruct_namespaces(ctrlr); if (ctrlr->ioq) { for (i = 0; i < ctrlr->io_queues; i++) nvme_qpair_destroy(&ctrlr->ioq[i]); free(ctrlr->ioq); } nvme_qpair_destroy(&ctrlr->adminq); nvme_ctrlr_unmap_bars(ctrlr); pthread_mutex_destroy(&ctrlr->lock); free(ctrlr); } /* * Get a controller feature. */ int nvme_ctrlr_get_feature(struct nvme_ctrlr *ctrlr, enum nvme_feat_sel sel, enum nvme_feat feature, uint32_t cdw11, uint32_t *attributes) { int ret; pthread_mutex_lock(&ctrlr->lock); ret = nvme_admin_get_feature(ctrlr, sel, feature, cdw11, attributes); if (ret != 0) nvme_notice("Get feature 0x%08x failed\n", (unsigned int) feature); pthread_mutex_unlock(&ctrlr->lock); return ret; } /* * Set a controller feature. */ int nvme_ctrlr_set_feature(struct nvme_ctrlr *ctrlr, bool save, enum nvme_feat feature, uint32_t cdw11, uint32_t cdw12, uint32_t *attributes) { int ret; pthread_mutex_lock(&ctrlr->lock); ret = nvme_admin_set_feature(ctrlr, save, feature, cdw11, cdw12, attributes); if (ret != 0) nvme_notice("Set feature 0x%08x failed\n", (unsigned int) feature); pthread_mutex_unlock(&ctrlr->lock); return ret; } /* * Attach a namespace. */ int nvme_ctrlr_attach_ns(struct nvme_ctrlr *ctrlr, unsigned int nsid, struct nvme_ctrlr_list *clist) { int ret; pthread_mutex_lock(&ctrlr->lock); ret = nvme_admin_attach_ns(ctrlr, nsid, clist); if (ret) { nvme_notice("Attach namespace %u failed\n", nsid); goto out; } ret = nvme_ctrlr_reset(ctrlr); if (ret != 0) nvme_notice("Reset controller failed\n"); out: pthread_mutex_unlock(&ctrlr->lock); return ret; } /* * Detach a namespace. */ int nvme_ctrlr_detach_ns(struct nvme_ctrlr *ctrlr, unsigned int nsid, struct nvme_ctrlr_list *clist) { int ret; pthread_mutex_lock(&ctrlr->lock); ret = nvme_admin_detach_ns(ctrlr, nsid, clist); if (ret != 0) { nvme_notice("Detach namespace %u failed\n", nsid); goto out; } ret = nvme_ctrlr_reset(ctrlr); if (ret) nvme_notice("Reset controller failed\n"); out: pthread_mutex_unlock(&ctrlr->lock); return ret; } /* * Create a namespace. */ unsigned int nvme_ctrlr_create_ns(struct nvme_ctrlr *ctrlr, struct nvme_ns_data *nsdata) { unsigned int nsid; int ret; pthread_mutex_lock(&ctrlr->lock); ret = nvme_admin_create_ns(ctrlr, nsdata, &nsid); if (ret != 0) { nvme_notice("Create namespace failed\n"); nsid = 0; } pthread_mutex_unlock(&ctrlr->lock); return nsid; } /* * Delete a namespace. */ int nvme_ctrlr_delete_ns(struct nvme_ctrlr *ctrlr, unsigned int nsid) { int ret; pthread_mutex_lock(&ctrlr->lock); ret = nvme_admin_delete_ns(ctrlr, nsid); if (ret != 0) { nvme_notice("Delete namespace %u failed\n", nsid); goto out; } ret = nvme_ctrlr_reset(ctrlr); if (ret) nvme_notice("Reset controller failed\n"); out: pthread_mutex_unlock(&ctrlr->lock); return ret; } /* * Format NVM media. */ int nvme_ctrlr_format_ns(struct nvme_ctrlr *ctrlr, unsigned int nsid, struct nvme_format *format) { int ret; pthread_mutex_lock(&ctrlr->lock); ret = nvme_admin_format_nvm(ctrlr, nsid, format); if (ret != 0) { if (nsid == NVME_GLOBAL_NS_TAG) nvme_notice("Format device failed\n"); else nvme_notice("Format namespace %u failed\n", nsid); goto out; } ret = nvme_ctrlr_reset(ctrlr); if (ret) nvme_notice("Reset controller failed\n"); out: pthread_mutex_unlock(&ctrlr->lock); return ret; } /* * Update a device firmware. */ int nvme_ctrlr_update_firmware(struct nvme_ctrlr *ctrlr, void *fw, size_t size, int slot) { struct nvme_fw_commit fw_commit; unsigned int size_remaining = size, offset = 0, transfer; void *f = fw; int ret; if (size & 0x3) { nvme_err("Invalid firmware size\n"); return EINVAL; } pthread_mutex_lock(&ctrlr->lock); /* Download firmware */ while (size_remaining > 0) { transfer = nvme_min(size_remaining, ctrlr->min_page_size); ret = nvme_admin_fw_image_dl(ctrlr, f, transfer, offset); if (ret != 0) { nvme_err("Download FW (%u B at %u) failed\n", transfer, offset); goto out; } f += transfer; offset += transfer; size_remaining -= transfer; } /* Commit firmware */ memset(&fw_commit, 0, sizeof(struct nvme_fw_commit)); fw_commit.fs = slot; fw_commit.ca = NVME_FW_COMMIT_REPLACE_IMG; ret = nvme_admin_fw_commit(ctrlr, &fw_commit); if (ret != 0) { nvme_err("Commit downloaded FW (%zu B) failed\n", size); goto out; } ret = nvme_ctrlr_reset(ctrlr); if (ret) nvme_notice("Reset controller failed\n"); out: pthread_mutex_unlock(&ctrlr->lock); return ret; } /* * Get an unused I/O queue pair. */ struct nvme_qpair *nvme_ioqp_get(struct nvme_ctrlr *ctrlr, enum nvme_qprio qprio, unsigned int qd) { struct nvme_qpair *qpair = NULL; union nvme_cc_register cc; uint32_t trackers; int ret; cc.raw = nvme_reg_mmio_read_4(ctrlr, cc.raw); /* Only the low 2 bits (values 0, 1, 2, 3) of QPRIO are valid. */ if ((qprio & 3) != qprio) return NULL; /* * Only value NVME_QPRIO_URGENT(0) is valid for the * default round robin arbitration method. */ if ((cc.bits.ams == NVME_CC_AMS_RR) && (qprio != NVME_QPRIO_URGENT)) { nvme_err("Invalid queue priority for default round " "robin arbitration method\n"); return NULL; } /* I/O qpairs number of entries belong to [2, io_qpairs_max_entries] */ if (qd == 1) { nvme_err("Invalid queue depth\n"); return NULL; } if (qd == 0 || qd > ctrlr->io_qpairs_max_entries) qd = ctrlr->io_qpairs_max_entries; /* * No need to have more trackers than entries in the submit queue. * Note also that for a queue size of N, we can only have (N-1) * commands outstanding, hence the "-1" here. */ trackers = nvme_min(NVME_IO_TRACKERS, (qd - 1)); pthread_mutex_lock(&ctrlr->lock); /* Get the first available qpair structure */ qpair = TAILQ_FIRST(&ctrlr->free_io_qpairs); if (qpair == NULL) { /* No free queue IDs */ nvme_err("No free I/O queue pairs\n"); goto out; } /* Construct the qpair */ ret = nvme_qpair_construct(ctrlr, qpair, qprio, qd, trackers); if (ret != 0) { nvme_qpair_destroy(qpair); qpair = NULL; goto out; } /* * At this point, qpair contains a preallocated submission * and completion queue and a unique queue ID, but it is not * yet created on the controller. * Fill out the submission queue priority and send out the * Create I/O Queue commands. */ if (nvme_ctrlr_create_qpair(ctrlr, qpair) != 0) { nvme_err("Create queue pair on the controller failed\n"); nvme_qpair_destroy(qpair); qpair = NULL; goto out; } TAILQ_REMOVE(&ctrlr->free_io_qpairs, qpair, tailq); TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq); out: pthread_mutex_unlock(&ctrlr->lock); return qpair; } /* * Free an I/O queue pair. */ int nvme_ioqp_release(struct nvme_qpair *qpair) { struct nvme_ctrlr *ctrlr; int ret; if (qpair == NULL) return 0; ctrlr = qpair->ctrlr; pthread_mutex_lock(&ctrlr->lock); /* Delete the I/O submission and completion queues */ ret = nvme_ctrlr_delete_qpair(ctrlr, qpair); if (ret != 0) { nvme_notice("Delete queue pair %u failed\n", qpair->id); } else { TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq); TAILQ_INSERT_HEAD(&ctrlr->free_io_qpairs, qpair, tailq); } pthread_mutex_unlock(&ctrlr->lock); return ret; } /* * Submit an NVMe command using the specified I/O queue pair. */ int nvme_ioqp_submit_cmd(struct nvme_qpair *qpair, struct nvme_cmd *cmd, void *buf, size_t len, nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_request *req; int ret = ENOMEM; req = nvme_request_allocate_contig(qpair, buf, len, cb_fn, cb_arg); if (req) { memcpy(&req->cmd, cmd, sizeof(req->cmd)); ret = nvme_qpair_submit_request(qpair, req); } return ret; }