// **************************************************************************** // // CDspCommObject.H // // Include file for EchoGals generic driver DSP interface base class. // // ---------------------------------------------------------------------------- // // ---------------------------------------------------------------------------- // // This file is part of Echo Digital Audio's generic driver library. // Copyright Echo Digital Audio Corporation (c) 1998 - 2005 // All rights reserved // www.echoaudio.com // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // **************************************************************************** #ifndef _DSPCOMMOBJECT_ #define _DSPCOMMOBJECT_ #ifdef _DEBUG #ifdef ECHO_WDM #pragma optimize("",off) #endif #endif #ifdef _WIN32 // Must match structure alignment w/DSP #pragma pack( push, 2 ) #endif #include "OsSupport.h" #include "CDaffyDuck.h" /**************************************************************************** Lots of different defines for the different cards ****************************************************************************/ //================================================================================== // // Macros to convert to and from generic driver mixer values. Since it can be tough // to do floating point math in a driver, the generic driver uses fixed-point values. // The numbers are in a 24.8 format; that is, the upper 24 bits are the integer part // of the number and the lower 8 bits represent the fractional part. In this scheme, // a value of 0x180 would be equal to 1.5. // // Since the DSP usually wants 8 bit integer gains, the following macros are useful. // //================================================================================== #define GENERIC_TO_DSP(iValue) ((iValue + 0x80) >> 8) #define DSP_TO_GENERIC(iValue) (iValue << 8) //================================================================================== // // Max inputs and outputs // //================================================================================== #define DSP_MAXAUDIOINPUTS 16 // Max audio input channels #define DSP_MAXAUDIOOUTPUTS 16 // Max audio output channels #define DSP_MAXPIPES 32 // Max total pipes (input + output) //================================================================================== // // These are the offsets for the memory-mapped DSP registers; the DSP base // address is treated as the start of a DWORD array. // //================================================================================== #define CHI32_CONTROL_REG 4 #define CHI32_STATUS_REG 5 #define CHI32_VECTOR_REG 6 #define CHI32_DATA_REG 7 //================================================================================== // // Interesting bits within the DSP registers // //================================================================================== #define CHI32_VECTOR_BUSY 0x00000001 #define CHI32_STATUS_REG_HF3 0x00000008 #define CHI32_STATUS_REG_HF4 0x00000010 #define CHI32_STATUS_REG_HF5 0x00000020 #define CHI32_STATUS_HOST_READ_FULL 0x00000004 #define CHI32_STATUS_HOST_WRITE_EMPTY 0x00000002 #define CHI32_STATUS_IRQ 0x00000040 //================================================================================== // // DSP commands sent via slave mode; these are sent to the DSP by // CDspCommObject::Write_DSP // //================================================================================== #define DSP_FNC_SET_COMMPAGE_ADDR 0x02 #define DSP_FNC_LOAD_LAYLA_ASIC 0xa0 #define DSP_FNC_LOAD_GINA24_ASIC 0xa0 #define DSP_FNC_LOAD_MONA_PCI_CARD_ASIC 0xa0 #define DSP_FNC_LOAD_LAYLA24_PCI_CARD_ASIC 0xa0 #define DSP_FNC_LOAD_MONA_EXTERNAL_ASIC 0xa1 #define DSP_FNC_LOAD_LAYLA24_EXTERNAL_ASIC 0xa1 #define DSP_FNC_LOAD_3G_ASIC 0xa0 //================================================================================== // // Defines to handle the MIDI input state engine; these are used to properly // extract MIDI time code bytes and their timestamps from the MIDI input stream. // //================================================================================== #define MIDI_IN_STATE_NORMAL 0 #define MIDI_IN_STATE_TS_HIGH 1 #define MIDI_IN_STATE_TS_LOW 2 #define MIDI_IN_STATE_F1_DATA 3 #define MIDI_IN_SKIP_DATA ((DWORD)-1) /*------------------------------------------------------------------------------------ Setting the sample rates on Layla24 is somewhat schizophrenic. For standard rates, it works exactly like Mona and Gina24. That is, for 8, 11.025, 16, 22.05, 32, 44.1, 48, 88.2, and 96 kHz, you just set the appropriate bits in the control register and write the control register. In order to support MIDI time code sync (and possibly SMPTE LTC sync in the future), Layla24 also has "continuous sample rate mode". In this mode, Layla24 can generate any sample rate between 25 and 50 kHz inclusive, or 50 to 100 kHz inclusive for double speed mode. To use continuous mode: -Set the clock select bits in the control register to 0xe (see the #define below) -Set double-speed mode if you want to use sample rates above 50 kHz -Write the control register as you would normally -Now, you need to set the frequency register. First, you need to determine the value for the frequency register. This is given by the following formula: frequency_reg = (LAYLA24_MAGIC_NUMBER / sample_rate) - 2 Note the #define below for the magic number -Wait for the DSP handshake -Write the frequency_reg value to the dwSampleRate field of the comm page -Send the vector command SET_LAYLA24_FREQUENCY_REG (see vmonkey.h) Once you have set the control register up for continuous mode, you can just write the frequency register to change the sample rate. This could be used for MIDI time code sync. For MTC sync, the control register is set for continuous mode. The driver then just keeps writing the SET_LAYLA24_FREQUENCY_REG command. ----------------------------------------------------------------------------------*/ #define LAYLA24_MAGIC_NUMBER 677376000 #define LAYLA24_CONTINUOUS_CLOCK 0x000e //================================================================================== // // DSP vector commands // //================================================================================== #define DSP_VC_RESET 0x80ff #ifndef DSP_56361 // // Vector commands for families that only use the 56301 // Only used for Darla20, Gina20, Layla20, and Darla24 // #define DSP_VC_ACK_INT 0x8073 #define DSP_VC_SET_VMIXER_GAIN 0x0000 // Not used, only for compile #define DSP_VC_START_TRANSFER 0x0075 // Handshke rqd. #define DSP_VC_METERS_ON 0x0079 #define DSP_VC_METERS_OFF 0x007b #define DSP_VC_UPDATE_OUTVOL 0x007d // Handshke rqd. #define DSP_VC_UPDATE_INGAIN 0x007f // Handshke rqd. #define DSP_VC_ADD_AUDIO_BUFFER 0x0081 // Handshke rqd. #define DSP_VC_TEST_ASIC 0x00eb #define DSP_VC_UPDATE_CLOCKS 0x00ef // Handshke rqd. #define DSP_VC_SET_LAYLA_SAMPLE_RATE 0x00f1 // Handshke rqd. #define DSP_VC_SET_GD_AUDIO_STATE 0x00f1 // Handshke rqd. #define DSP_VC_WRITE_CONTROL_REG 0x00f1 // Handshke rqd. #define DSP_VC_MIDI_WRITE 0x00f5 // Handshke rqd. #define DSP_VC_STOP_TRANSFER 0x00f7 // Handshke rqd. #define DSP_VC_UPDATE_FLAGS 0x00fd // Handshke rqd. #define DSP_VC_GO_COMATOSE 0x00f9 #else // // Vector commands for families that use either the 56301 or 56361 // #define DSP_VC_ACK_INT 0x80F5 #define DSP_VC_SET_VMIXER_GAIN 0x00DB // Handshke rqd. #define DSP_VC_START_TRANSFER 0x00DD // Handshke rqd. #define DSP_VC_METERS_ON 0x00EF #define DSP_VC_METERS_OFF 0x00F1 #define DSP_VC_UPDATE_OUTVOL 0x00E3 // Handshke rqd. #define DSP_VC_UPDATE_INGAIN 0x00E5 // Handshke rqd. #define DSP_VC_ADD_AUDIO_BUFFER 0x00E1 // Handshke rqd. #define DSP_VC_TEST_ASIC 0x00ED #define DSP_VC_UPDATE_CLOCKS 0x00E9 // Handshke rqd. #define DSP_VC_SET_LAYLA24_FREQUENCY_REG 0x00E9 // Handshke rqd. #define DSP_VC_SET_LAYLA_SAMPLE_RATE 0x00EB // Handshke rqd. #define DSP_VC_SET_GD_AUDIO_STATE 0x00EB // Handshke rqd. #define DSP_VC_WRITE_CONTROL_REG 0x00EB // Handshke rqd. #define DSP_VC_MIDI_WRITE 0x00E7 // Handshke rqd. #define DSP_VC_STOP_TRANSFER 0x00DF // Handshke rqd. #define DSP_VC_UPDATE_FLAGS 0x00FB // Handshke rqd. #define DSP_VC_GO_COMATOSE 0x00d9 #ifdef SUPERMIX #define DSP_VC_TRIGGER 0x00f3 #endif #endif //================================================================================== // // Timeouts // //================================================================================== #define HANDSHAKE_TIMEOUT 20000 // SendVector command timeout in microseconds #define MIDI_OUT_DELAY_USEC 2000 // How long to wait after MIDI fills up //================================================================================== // // Flags for dwFlags field in the comm page // //================================================================================== #define DSP_FLAG_MIDI_INPUT 0x0001 // Enable MIDI input #define DSP_FLAG_SPDIF_NONAUDIO 0x0002 // Sets the "non-audio" bit in the S/PDIF out // status bits. Clear this flag for audio data; // set it for AC3 or WMA or some such #define DSP_FLAG_PROFESSIONAL_SPDIF 0x0008 // 1 Professional, 0 Consumer #ifdef SUPERMIX #define DSP_FLAG_SUPERMIX_SRC 0x0080 // Turn on sample rate conversion for supermixer #endif //================================================================================== // // Clock detect bits reported by the DSP for Gina20, Layla20, Darla24, and Mia // //================================================================================== #define GLDM_CLOCK_DETECT_BIT_WORD 0x0002 #define GLDM_CLOCK_DETECT_BIT_SUPER 0x0004 #define GLDM_CLOCK_DETECT_BIT_SPDIF 0x0008 #define GLDM_CLOCK_DETECT_BIT_ESYNC 0x0010 //================================================================================== // // Clock detect bits reported by the DSP for Gina24, Mona, and Layla24 // //================================================================================== #define GML_CLOCK_DETECT_BIT_WORD96 0x0002 #define GML_CLOCK_DETECT_BIT_WORD48 0x0004 #define GML_CLOCK_DETECT_BIT_SPDIF48 0x0008 #define GML_CLOCK_DETECT_BIT_SPDIF96 0x0010 #define GML_CLOCK_DETECT_BIT_WORD (GML_CLOCK_DETECT_BIT_WORD96|GML_CLOCK_DETECT_BIT_WORD48) #define GML_CLOCK_DETECT_BIT_SPDIF (GML_CLOCK_DETECT_BIT_SPDIF48|GML_CLOCK_DETECT_BIT_SPDIF96) #define GML_CLOCK_DETECT_BIT_ESYNC 0x0020 #define GML_CLOCK_DETECT_BIT_ADAT 0x0040 //================================================================================== // // Gina/Darla clock states // //================================================================================== #define GD_CLOCK_NOCHANGE 0 #define GD_CLOCK_44 1 #define GD_CLOCK_48 2 #define GD_CLOCK_SPDIFIN 3 #define GD_CLOCK_UNDEF 0xff //================================================================================== // // Gina/Darla S/PDIF status bits // //================================================================================== #define GD_SPDIF_STATUS_NOCHANGE 0 #define GD_SPDIF_STATUS_44 1 #define GD_SPDIF_STATUS_48 2 #define GD_SPDIF_STATUS_UNDEF 0xff //================================================================================== // // Layla20 output clocks // //================================================================================== #define LAYLA20_OUTPUT_CLOCK_SUPER 0 #define LAYLA20_OUTPUT_CLOCK_WORD 1 //================================================================================== // // Return values from the DSP when ASIC is loaded // //================================================================================== #define ASIC_LOADED 0x1 #define ASIC_NOT_LOADED 0x0 //================================================================================== // //// DSP Audio formats // // These are the audio formats that the DSP can transfer // via input and output pipes. LE means little-endian, // BE means big-endian. // // DSP_AUDIOFORM_MS_8 // // 8-bit mono unsigned samples. For playback, // mono data is duplicated out the left and right channels // of the output bus. The "MS" part of the name // means mono->stereo. // // DSP_AUDIOFORM_MS_16LE // // 16-bit signed little-endian mono samples. Playback works // like the previous code. // // DSP_AUDIOFORM_MS_24LE // // 24-bit signed little-endian mono samples. Data is packed // three bytes per sample; if you had two samples 0x112233 and 0x445566 // they would be stored in memory like this: 33 22 11 66 55 44. // // DSP_AUDIOFORM_MS_32LE // // 24-bit signed little-endian mono samples in a 32-bit // container. In other words, each sample is a 32-bit signed // integer, where the actual audio data is left-justified // in the 32 bits and only the 24 most significant bits are valid. // // DSP_AUDIOFORM_SS_8 // DSP_AUDIOFORM_SS_16LE // DSP_AUDIOFORM_SS_24LE // DSP_AUDIOFORM_SS_32LE // // Like the previous ones, except now with stereo interleaved // data. "SS" means stereo->stereo. // // DSP_AUDIOFORM_MM_32LE // // Similar to DSP_AUDIOFORM_MS_32LE, except that the mono // data is not duplicated out both the left and right outputs. // This mode is used by the ASIO driver. Here, "MM" means // mono->mono. // // DSP_AUDIOFORM_MM_32BE // // Just like DSP_AUDIOFORM_MM_32LE, but now the data is // in big-endian format. // //================================================================================== #define DSP_AUDIOFORM_MS_8 0 // 8 bit mono #define DSP_AUDIOFORM_MS_16LE 1 // 16 bit mono #define DSP_AUDIOFORM_MS_24LE 2 // 24 bit mono #define DSP_AUDIOFORM_MS_32LE 3 // 32 bit mono #define DSP_AUDIOFORM_SS_8 4 // 8 bit stereo #define DSP_AUDIOFORM_SS_16LE 5 // 16 bit stereo #define DSP_AUDIOFORM_SS_24LE 6 // 24 bit stereo #define DSP_AUDIOFORM_SS_32LE 7 // 32 bit stereo #define DSP_AUDIOFORM_MM_32LE 8 // 32 bit mono->mono little-endian #define DSP_AUDIOFORM_MM_32BE 9 // 32 bit mono->mono big-endian #define DSP_AUDIOFORM_SS_32BE 10 // 32 bit stereo big endian #define DSP_AUDIOFORM_INVALID 0xFF // Invalid audio format //================================================================================== // // Super-interleave is defined as interleaving by 4 or more. Darla20 and Gina20 // do not support super interleave. // // 16 bit, 24 bit, and 32 bit little endian samples are supported for super // interleave. The interleave factor must be even. 16 - way interleave is the // current maximum, so you can interleave by 4, 6, 8, 10, 12, 14, and 16. // // The actual format code is derived by taking the define below and or-ing with // the interleave factor. So, 32 bit interleave by 6 is 0x86 and // 16 bit interleave by 16 is (0x40 | 0x10) = 0x50. // //================================================================================== #define DSP_AUDIOFORM_SUPER_INTERLEAVE_16LE 0x40 #define DSP_AUDIOFORM_SUPER_INTERLEAVE_24LE 0xc0 #define DSP_AUDIOFORM_SUPER_INTERLEAVE_32LE 0x80 //================================================================================== // // Gina24, Mona, and Layla24 control register defines // //================================================================================== #define GML_CONVERTER_ENABLE 0x0010 #define GML_SPDIF_PRO_MODE 0x0020 // Professional S/PDIF == 1, consumer == 0 #define GML_SPDIF_SAMPLE_RATE0 0x0040 #define GML_SPDIF_SAMPLE_RATE1 0x0080 #define GML_SPDIF_TWO_CHANNEL 0x0100 // 1 == two channels, 0 == one channel #define GML_SPDIF_NOT_AUDIO 0x0200 #define GML_SPDIF_COPY_PERMIT 0x0400 #define GML_SPDIF_24_BIT 0x0800 // 1 == 24 bit, 0 == 20 bit #define GML_ADAT_MODE 0x1000 // 1 == ADAT mode, 0 == S/PDIF mode #define GML_SPDIF_OPTICAL_MODE 0x2000 // 1 == optical mode, 0 == RCA mode #define GML_DOUBLE_SPEED_MODE 0x4000 // 1 == double speed, 0 == single speed #define GML_DIGITAL_IN_AUTO_MUTE 0x800000 #define GML_96KHZ (0x0 | GML_DOUBLE_SPEED_MODE) #define GML_88KHZ (0x1 | GML_DOUBLE_SPEED_MODE) #define GML_48KHZ 0x2 #define GML_44KHZ 0x3 #define GML_32KHZ 0x4 #define GML_22KHZ 0x5 #define GML_16KHZ 0x6 #define GML_11KHZ 0x7 #define GML_8KHZ 0x8 #define GML_SPDIF_CLOCK 0x9 #define GML_ADAT_CLOCK 0xA #define GML_WORD_CLOCK 0xB #define GML_ESYNC_CLOCK 0xC #define GML_ESYNCx2_CLOCK 0xD #define GML_CLOCK_CLEAR_MASK 0xffffbff0 #define GML_SPDIF_RATE_CLEAR_MASK (~(GML_SPDIF_SAMPLE_RATE0|GML_SPDIF_SAMPLE_RATE1)) #define GML_DIGITAL_MODE_CLEAR_MASK 0xffffcfff #define GML_SPDIF_FORMAT_CLEAR_MASK 0xfffff01f //================================================================================== // // Mia sample rate and clock setting constants // //================================================================================== #define MIA_32000 0x0040 #define MIA_44100 0x0042 #define MIA_48000 0x0041 #define MIA_88200 0x0142 #define MIA_96000 0x0141 #define MIA_SPDIF 0x00000044 #define MIA_SPDIF96 0x00000144 #define MIA_MIDI_REV 1 // Must be Mia rev 1 for MIDI support //================================================================================== // // Gina20 & Layla20 have input gain controls for the analog inputs; // this is the magic number for the hardware that gives you 0 dB at -10. // //================================================================================== #define GL20_INPUT_GAIN_MAGIC_NUMBER 0xC8 //================================================================================== // // Defines how much time must pass between DSP load attempts // //================================================================================== #define DSP_LOAD_ATTEMPT_PERIOD 1000000L // One million microseconds == one second //================================================================================== // // Size of arrays for the comm page. MAX_PLAY_TAPS and MAX_REC_TAPS are no longer // used, but the sizes must still be right for the DSP to see the comm page correctly. // //================================================================================== #define MONITOR_ARRAY_SIZE 0x180 #define VMIXER_ARRAY_SIZE 0x40 #define CP_MIDI_OUT_BUFFER_SIZE 32 #define CP_MIDI_IN_BUFFER_SIZE 256 #define MAX_PLAY_TAPS 168 #define MAX_REC_TAPS 192 #define DSP_MIDI_OUT_FIFO_SIZE 64 //================================================================================== // // Macros for reading and writing DSP registers // //================================================================================== #ifndef READ_REGISTER_ULONG #define READ_REGISTER_ULONG(ptr) ( *(ptr) ) #endif #ifndef WRITE_REGISTER_ULONG #define WRITE_REGISTER_ULONG(ptr,val) *(ptr) = val #endif /**************************************************************************** The comm page. This structure is read and written by the DSP; the DSP code is a firm believer in the byte offsets written in the comments at the end of each line. This structure should not be changed. Any reads from or writes to this structure should be in little-endian format. ****************************************************************************/ typedef struct { DWORD dwCommSize; // size of this object 0x000 4 DWORD dwFlags; // See Appendix A below 0x004 4 DWORD dwUnused; // Unused entry 0x008 4 DWORD dwSampleRate; // Card sample rate in Hz 0x00c 4 DWORD dwHandshake; // DSP command handshake 0x010 4 CChMaskDsp cmdStart; // Chs. to start mask 0x014 4 CChMaskDsp cmdStop; // Chs. to stop mask 0x018 4 CChMaskDsp cmdReset; // Chs. to reset mask 0x01c 4 WORD wAudioFormat[ DSP_MAXPIPES ]; // Chs. audio format 0x020 16*2*2 DUCKENTRY DuckListPhys[ DSP_MAXPIPES ]; // Chs. Physical duck addrs 0x060 16*2*8 DWORD dwPosition[ DSP_MAXPIPES ]; // Positions for ea. ch. 0x160 16*2*4 BYTE VUMeter[ DSP_MAXPIPES ]; // VU meters 0x1e0 16*2*1 BYTE PeakMeter[ DSP_MAXPIPES ]; // Peak meters 0x200 16*2*1 BYTE OutLineLevel[ DSP_MAXAUDIOOUTPUTS ]; // Output gain 0x220 16*1 BYTE InLineLevel[ DSP_MAXAUDIOINPUTS ]; // Input gain 0x230 16*1 BYTE byMonitors[ MONITOR_ARRAY_SIZE ]; // Monitor map 0x240 0x180 DWORD dwPlayCoeff[ MAX_PLAY_TAPS ]; // Gina/Darla play filters - obsolete 0x3c0 168*4 DWORD dwRecCoeff [ MAX_REC_TAPS ]; // Gina/Darla record filters - obsolete 0x660 192*4 WORD wMidiInData[ CP_MIDI_IN_BUFFER_SIZE ]; // MIDI input data transfer buffer 0x960 256*2 BYTE byGDClockState; // Chg Gina/Darla clock state 0xb60 4 BYTE byGDSpdifStatus; // Chg. Gina/Darla S/PDIF state BYTE byGDResamplerState; // Should always be 3 BYTE byFiller2; CChMaskDsp cmdNominalLevel; // -10 level enable mask 0xb64 4 WORD wInputClock; // Chg. Input clock state WORD wOutputClock; // Chg. Output clock state 0xb68 DWORD dwStatusClocks; // Current Input clock state 0xb6c 4 DWORD dwExtBoxStatus; // External box connected or not 0xb70 4 DWORD dwUnused2; // filler 0xb74 4 DWORD dwMidiOutFreeCount; // # of bytes free in MIDI output FIFO 0xb78 4 DWORD dwUnused3; // 0xb7c 4 DWORD dwControlReg; // Mona, Gina24, Layla24 and 3G control 0xb80 4 DWORD dw3gFreqReg; // 3G frequency register 0xb84 4 BYTE byFiller[24]; // filler 0xb88 BYTE byVmixerLevel[ VMIXER_ARRAY_SIZE ]; // Vmixer levels 0xba0 64 BYTE byMidiOutData[ CP_MIDI_OUT_BUFFER_SIZE ]; // MIDI output data 0xbe0 32 } DspCommPage, *PDspCommPage; /**************************************************************************** CDspCommObject is the class which wraps both the comm page and the DSP registers. CDspCommObject talks directly to the hardware; anyone who wants to do something to the hardware goes through CDspCommObject or one of the derived classes. Note that an instance of CDspCommObject is never actually created; it is treated as an abstract base class. ****************************************************************************/ class CDspCommObject { protected: volatile PDspCommPage m_pDspCommPage; // Physical memory seen by DSP PPAGE_BLOCK m_pDspCommPageBlock; // Physical memory info for COsSupport // // These members are not seen by the DSP; they are used internally by // this class. // WORD m_wNumPipesOut; WORD m_wNumPipesIn; WORD m_wNumBussesOut; WORD m_wNumBussesIn; WORD m_wFirstDigitalBusOut; WORD m_wFirstDigitalBusIn; BOOL m_fHasVmixer; WORD m_wNumMidiOut; // # MIDI out channels WORD m_wNumMidiIn; // # MIDI in channels PWORD m_pwDspCode; // Current DSP code loaded, NULL if nothing loaded PWORD m_pwDspCodeToLoad; // DSP code to load BOOL m_bHasASIC; // Set TRUE if card has an ASIC BOOL m_bASICLoaded; // Set TRUE when ASIC loaded DWORD m_dwCommPagePhys; // Physical addr of this object volatile PDWORD m_pdwDspRegBase; // DSP's register base CChannelMask m_cmActive; // Chs. active mask BOOL m_bBadBoard; // Set TRUE if DSP won't load // or punks out WORD m_wMeterOnCount; // How many times meters have been // enabled PCOsSupport m_pOsSupport; // Ptr to OS specific methods & data CHAR m_szCardName[ 20 ]; BYTE m_byDigitalMode; // Digital mode (see DIGITAL_MODE_?? // defines in EchoGalsXface.h WORD m_wInputClock; // Currently selected input clock WORD m_wOutputClock; // Currently selected output clock ULONGLONG m_ullLastLoadAttemptTime; // Last system time that the driver // attempted to load the DSP & ASIC #ifdef DIGITAL_INPUT_AUTO_MUTE_SUPPORT BOOL m_fDigitalInAutoMute; #endif #ifdef MIDI_SUPPORT WORD m_wMidiOnCount; // Count MIDI enabled cmds ULONGLONG m_ullMidiInTime; // Last time MIDI in occured ULONGLONG m_ullMidiOutTime; // Last time MIDI out occured ULONGLONG m_ullNextMidiWriteTime; // Next time to try MIDI output WORD m_wMtcState; // State for MIDI input parsing state machine #endif protected : virtual WORD ComputeAudioMonitorIndex ( WORD wBusOut, WORD wBusIn ) { return( wBusOut * m_wNumBussesIn + wBusIn ); } // // Load code into DSP // #ifdef DSP_56361 virtual ECHOSTATUS InstallResidentLoader(); #endif virtual ECHOSTATUS LoadDSP( PWORD pCode ); // // Read the serial number from DSP // virtual ECHOSTATUS ReadSn(); // // Load code into ASIC // virtual BOOL LoadASIC( DWORD dwCmd, PBYTE pCode, DWORD dwSize ); virtual BOOL LoadASIC() { return TRUE; } // // Check status of ASIC - loaded or not loaded // virtual BOOL CheckAsicStatus(); // // Write to DSP // ECHOSTATUS Write_DSP( DWORD dwData ); // // Read from DSP // ECHOSTATUS Read_DSP( DWORD *pdwData ); // // Get/Set handshake Flag // DWORD GetHandshakeFlag() { ECHO_ASSERT( NULL != m_pDspCommPage ); return( SWAP( m_pDspCommPage->dwHandshake ) ); } void ClearHandshake() { ECHO_ASSERT( NULL != m_pDspCommPage ); m_pDspCommPage->dwHandshake = 0; } // // Get/set DSP registers // DWORD GetDspRegister( DWORD dwIndex ) { ECHO_ASSERT( NULL != m_pdwDspRegBase ); return READ_REGISTER_ULONG( m_pdwDspRegBase + dwIndex); } void SetDspRegister( DWORD dwIndex, DWORD dwValue ) { ECHO_ASSERT( NULL != m_pdwDspRegBase ); WRITE_REGISTER_ULONG( m_pdwDspRegBase + dwIndex, dwValue); } // // Set control register in CommPage // void SetControlRegister( DWORD dwControlRegister ) { ECHO_ASSERT( NULL != m_pDspCommPage ); m_pDspCommPage->dwControlReg = SWAP( dwControlRegister ); } // // Called after load firmware to restore old gains, meters on, monitors, etc. // virtual void RestoreDspSettings(); // // Send a vector command to the DSP // ECHOSTATUS SendVector( DWORD dwCommand ); // // Wait for DSP to finish the last vector command // BOOL WaitForHandshake(); // // Send new input line setting to DSP // ECHOSTATUS UpdateAudioInLineLevel(); public: // // Construction/destruction // CDspCommObject( PDWORD pdwRegBase, PCOsSupport pOsSupport ); virtual ~CDspCommObject(); // // Card information // virtual WORD GetCardType() = NULL; // Undefined, must be done in derived class const PCHAR GetCardName() { return( m_szCardName ); } // Must be init in derived class // // Get mask with active pipes // void GetActivePipes ( PCChannelMask pChannelMask ); // // Basic info methods // WORD GetNumPipesOut() { return m_wNumPipesOut; } WORD GetNumPipesIn() { return m_wNumPipesIn; } WORD GetNumBussesOut() { return m_wNumBussesOut; } WORD GetNumBussesIn() { return m_wNumBussesIn; } WORD GetNumPipes() { return m_wNumPipesOut + m_wNumPipesIn; } WORD GetNumBusses() { return m_wNumBussesOut + m_wNumBussesIn; } WORD GetFirstDigitalBusOut() { return m_wFirstDigitalBusOut; } WORD GetFirstDigitalBusIn() { return m_wFirstDigitalBusIn; } BOOL HasVmixer() { return m_fHasVmixer; } WORD GetNumMidiOutChannels() { return( m_wNumMidiOut ); } WORD GetNumMidiInChannels() { return( m_wNumMidiIn ); } WORD GetNumMidiChannels() { return( m_wNumMidiIn + m_wNumMidiOut ); } // // Get, set, and clear comm page flags // DWORD GetFlags() { return( SWAP( m_pDspCommPage->dwFlags ) ); } DWORD SetFlags( DWORD dwFlags ) { DWORD dwCpFlags = SWAP( m_pDspCommPage->dwFlags ); dwCpFlags |= dwFlags; m_pDspCommPage->dwFlags = SWAP( dwCpFlags ); if ( m_bASICLoaded && WaitForHandshake() ) UpdateFlags(); return( GetFlags() ); } DWORD ClearFlags( DWORD dwFlags ) { DWORD dwCpFlags = SWAP( m_pDspCommPage->dwFlags ); dwCpFlags &= ~dwFlags; m_pDspCommPage->dwFlags = SWAP( dwCpFlags ); if ( m_bASICLoaded && WaitForHandshake() ) UpdateFlags(); return( GetFlags() ); } // // Returns currently selected input clock // WORD GetInputClock() { return m_wInputClock; } // // Returns what input clocks are currently detected // DWORD GetInputClockDetect() { return( SWAP( m_pDspCommPage->dwStatusClocks ) ); } // // Returns currently selected output clock // WORD GetOutputClock() { return m_wOutputClock; } // // Returns control register // DWORD GetControlRegister() { ECHO_ASSERT( NULL != m_pDspCommPage ); return SWAP( m_pDspCommPage->dwControlReg ); } // // Set input and output clocks // virtual ECHOSTATUS SetInputClock(WORD wClock); virtual ECHOSTATUS SetOutputClock(WORD wClock); #ifdef COURT8_FAMILY virtual ECHOSTATUS SetPhoneBits(DWORD dwPhoneBits) { return ECHOSTATUS_NOT_SUPPORTED; } #endif // // Set digital mode // virtual ECHOSTATUS SetDigitalMode( BYTE byNewMode ) { return ECHOSTATUS_DIGITAL_MODE_NOT_SUPPORTED; } // // Get digital mode // virtual BYTE GetDigitalMode() { return( m_byDigitalMode ); } // // Get mask of all supported digital modes. // (See ECHOCAPS_HAS_DIGITAL_MODE_??? defines in EchoGalsXface.h) // // Note: If the card does not have a digital mode switch // then return 0 (no digital modes supported). // Some legacy cards support S/PDIF as their only // digital mode. We still return 0 here because it // is not switchable. // virtual DWORD GetDigitalModes() { return( 0 ); } // // Return audio channel position in bytes // DWORD GetAudioPosition( WORD wPipeIndex ) { ECHO_ASSERT( wPipeIndex < ECHO_MAXAUDIOPIPES ); return( ( wPipeIndex < ECHO_MAXAUDIOPIPES ) ? SWAP( m_pDspCommPage->dwPosition[ wPipeIndex ] ) : 0 ); } // // Reset the pipe position for a single pipe // void ResetPipePosition(WORD wPipeIndex) { if (wPipeIndex < ECHO_MAXAUDIOPIPES) { m_pDspCommPage->dwPosition[ wPipeIndex ] = 0; } } // // Warning: Never write to the pointer returned by this // function!!! // // The data pointed to by this pointer is in little- // endian format. // PDWORD GetAudioPositionPtr() { return( m_pDspCommPage->dwPosition ); } // // Get the current sample rate // virtual DWORD GetSampleRate() { return( SWAP( m_pDspCommPage->dwSampleRate ) ); } // // Set the sample rate. // Return rate that was set, 0xffffffff if error // virtual DWORD SetSampleRate( DWORD dwNewSampleRate ) = NULL; // // Send current setting to DSP & return what it is // virtual DWORD SetSampleRate() = NULL; // // Start a group of pipes // ECHOSTATUS StartTransport ( PCChannelMask pChannelMask // Pipes to start ); // // Stop a group of pipes // ECHOSTATUS StopTransport ( PCChannelMask pChannelMask ); // // Reset a group of pipes // ECHOSTATUS ResetTransport ( PCChannelMask pChannelMask ); #ifdef SUPERMIX // // Trigger this card for synced transport; used for Supermix mode // ECHOSTATUS TriggerTransport(); #endif // // See if any pipes are playing or recording // BOOL IsTransportActive() { return (FALSE == m_cmActive.IsEmpty()); } // // Tell DSP we added a buffer to a channel // ECHOSTATUS AddBuffer( WORD wPipeIndex ); // // Add start of duck list for one channel to commpage so DSP can read it. // void SetAudioDuckListPhys( WORD wPipeIndex, DWORD dwNewPhysAdr ); // // Read extended status register from the DSP // DWORD GetStatusReg() { return READ_REGISTER_ULONG( m_pdwDspRegBase + CHI32_STATUS_REG ); } // // Tell DSP to release the hardware interrupt // void AckInt() { m_pDspCommPage->wMidiInData[ 0 ] = 0; SendVector( DSP_VC_ACK_INT ); } // // Overload new & delete so memory for this object is allocated // from contiguous non-paged memory. // PVOID operator new( size_t Size ); VOID operator delete( PVOID pVoid ); // // Get status of board // BOOL IsBoardBad() { return( m_bBadBoard ); } // // Tell DSP flags have been updated // ECHOSTATUS UpdateFlags() { ECHO_DEBUGPRINTF(("CDspCommObject::UpdateFlags\n")); ClearHandshake(); return( SendVector( DSP_VC_UPDATE_FLAGS ) ); } // // Get/Set professional or consumer S/PDIF status // virtual BOOL IsProfessionalSpdif() { ECHO_DEBUGPRINTF(("CDspCommObject::IsProfessionalSpdif - flags are 0x%lx\n", GetFlags())); return( ( GetFlags() & DSP_FLAG_PROFESSIONAL_SPDIF ) ? TRUE : FALSE ); } virtual void SetProfessionalSpdif( BOOL bNewStatus ) { ECHO_DEBUGPRINTF(("CDspCommObject::SetProfessionalSpdif %d\n",bNewStatus)); if ( 0 != bNewStatus ) SetFlags( DSP_FLAG_PROFESSIONAL_SPDIF ); else ClearFlags( DSP_FLAG_PROFESSIONAL_SPDIF ); ECHO_DEBUGPRINTF(("CDspCommObject::SetProfessionalSpdif - flags are now 0x%lx\n", GetFlags())); } // // Get/Set S/PDIF out non-audio status bit // virtual BOOL IsSpdifOutNonAudio() { return( ( GetFlags() & DSP_FLAG_SPDIF_NONAUDIO ) ? TRUE : FALSE ); } virtual void SetSpdifOutNonAudio( BOOL bNonAudio) { if ( 0 != bNonAudio ) SetFlags( DSP_FLAG_SPDIF_NONAUDIO ); else ClearFlags( DSP_FLAG_SPDIF_NONAUDIO ); } // // Mixer functions // virtual ECHOSTATUS SetNominalLevel( WORD wBus, BOOL bState ); virtual ECHOSTATUS GetNominalLevel( WORD wBus, PBYTE pbyState ); ECHOSTATUS SetAudioMonitor ( WORD wOutCh, WORD wInCh, INT32 iGain, BOOL fImmediate = TRUE ); // // SetBusOutGain - empty function on non-vmixer cards // virtual ECHOSTATUS SetBusOutGain(WORD wBusOut,INT32 iGain) { return ECHOSTATUS_OK; } // Send volume to DSP ECHOSTATUS UpdateAudioOutLineLevel(); // Send vmixer volume to DSP virtual ECHOSTATUS UpdateVmixerLevel(); virtual ECHOSTATUS SetPipeOutGain ( WORD wPipeOut, WORD wBusOut, INT32 iGain, BOOL fImmediate = TRUE ); virtual ECHOSTATUS GetPipeOutGain ( WORD wPipeOut, WORD wBusOut, INT32 &iGain ); virtual ECHOSTATUS SetBusInGain ( WORD wBusIn, INT32 iGain ); virtual ECHOSTATUS GetBusInGain( WORD wBusIn, INT32 &iGain); // // See description of ECHOGALS_METERS above for // data format information. // virtual ECHOSTATUS GetAudioMeters ( PECHOGALS_METERS pMeters ); ECHOSTATUS GetMetersOn ( BOOL & bOn ) { bOn = ( 0 != m_wMeterOnCount ); return ECHOSTATUS_OK; } ECHOSTATUS SetMetersOn( BOOL bOn ); // // Set/get Audio Format // ECHOSTATUS SetAudioFormat ( WORD wPipeIndex, PECHOGALS_AUDIOFORMAT pFormat ); ECHOSTATUS GetAudioFormat ( WORD wPipeIndex, PECHOGALS_AUDIOFORMAT pFormat ); #ifdef MIDI_SUPPORT // // MIDI output activity // virtual BOOL IsMidiOutActive(); // // Set MIDI I/O on or off // ECHOSTATUS SetMidiOn( BOOL bOn ); // // Read and write MIDI data // ECHOSTATUS WriteMidi ( PBYTE pData, DWORD dwLength, PDWORD pdwActualCt ); ECHOSTATUS ReadMidi ( WORD wIndex, // Buffer index DWORD & dwData // Return data ); #endif // MIDI_SUPPORT // // Reset the DSP and load new firmware. // virtual ECHOSTATUS LoadFirmware(); // // Put the hardware to sleep // virtual ECHOSTATUS GoComatose(); #ifdef DIGITAL_INPUT_AUTO_MUTE_SUPPORT // // Get and set the digital input auto-mute flag // virtual ECHOSTATUS GetDigitalInputAutoMute(BOOL &fAutoMute); virtual ECHOSTATUS SetDigitalInputAutoMute(BOOL fAutoMute); #endif // DIGITAL_INPUT_AUTO_MUTE_SUPPORT #ifdef SUPERMIX // // Set the input gain boost // virtual ECHOSTATUS SetInputGainBoost(WORD wBusIn,BYTE bBoostDb) { return ECHOSTATUS_NOT_SUPPORTED; } #endif }; // class CDspCommObject typedef CDspCommObject * PCDspCommObject; #ifdef _WIN32 #pragma pack( pop ) #endif #endif // **** DspCommObject.h ****