/* * Copyright 2007, Hugo Santos. All Rights Reserved. * Distributed under the terms of the MIT License. */ #ifndef _KERNEL_UTIL_OPEN_HASH_TABLE_H #define _KERNEL_UTIL_OPEN_HASH_TABLE_H #include #include #include #ifdef _KERNEL_MODE # include # include # include #else # include # include #endif /*! The Definition template must have four methods: `HashKey', `Hash', `Compare' and `GetLink;. It must also define several types as shown in the following example: struct Foo { int bar; Foo* fNext; }; struct HashTableDefinition { typedef int KeyType; typedef Foo ValueType; size_t HashKey(KeyType key) const { return key >> 1; } size_t Hash(ValueType* value) const { return HashKey(value->bar); } bool Compare(KeyType key, ValueType* value) const { return value->bar == key; } ValueType*& GetLink(ValueType* value) const { return value->fNext; } }; */ struct MallocAllocator { void* Allocate(size_t size) const { return malloc(size); } void Free(void* memory) const { free(memory); } }; /** Implements an hash table with open hashing, that is, colliding entries are * stored in a linked list. The table may be made to adjust its number of slots * depending on the load factor (this should be enabled unless the object is to * be used at times where memory allocations aren't possible, such as code * called by the memory allocator). * * The link between entries is part of the ValueType stored items, which makes * sure the table can always accept new items and will never fail because it is * out of memory (except at Init time). */ template class BOpenHashTable { public: typedef BOpenHashTable HashTable; typedef typename Definition::KeyType KeyType; typedef typename Definition::ValueType ValueType; static const size_t kMinimumSize = 8; // All allocations are of power of 2 lengths. // regrowth factor: 200 / 256 = 78.125% // 50 / 256 = 19.53125% BOpenHashTable() : fTableSize(0), fItemCount(0), fTable(NULL) { } BOpenHashTable(const Definition& definition) : fDefinition(definition), fTableSize(0), fItemCount(0), fTable(NULL) { } BOpenHashTable(const Definition& definition, const Allocator& allocator) : fDefinition(definition), fAllocator(allocator), fTableSize(0), fItemCount(0), fTable(NULL) { } ~BOpenHashTable() { fAllocator.Free(fTable); } status_t Init(size_t initialSize = kMinimumSize) { if (initialSize > 0 && !_Resize(initialSize)) return B_NO_MEMORY; return B_OK; } size_t TableSize() const { return fTableSize; } bool IsEmpty() const { return fItemCount == 0; } size_t CountElements() const { return fItemCount; } ValueType* Lookup(typename TypeOperation::ConstRefT key) const { if (fTableSize == 0) return NULL; size_t index = fDefinition.HashKey(key) & (fTableSize - 1); ValueType* slot = fTable[index]; while (slot) { if (fDefinition.Compare(key, slot)) break; slot = _Link(slot); } return slot; } status_t Insert(ValueType* value) { if (fTableSize == 0) { if (!_Resize(kMinimumSize)) return B_NO_MEMORY; } else if (AutoExpand && fItemCount >= (fTableSize * 200 / 256)) _Resize(fTableSize * 2); InsertUnchecked(value); return B_OK; } /*! \brief Inserts a value without resizing the table. Use this method if you need to insert a value into the table while iterating it, as regular insertion can invalidate iterators. */ void InsertUnchecked(ValueType* value) { if (CheckDuplicates && _ExhaustiveSearch(value)) { #ifdef _KERNEL_MODE panic("Hash Table: value already in table."); #else debugger("Hash Table: value already in table."); #endif } _Insert(fTable, fTableSize, value); fItemCount++; } // TODO: a ValueType* Remove(const KeyType& key) method is missing bool Remove(ValueType* value) { if (!RemoveUnchecked(value)) return false; if (AutoExpand && fTableSize > kMinimumSize && fItemCount < (fTableSize * 50 / 256)) _Resize(fTableSize / 2); return true; } /*! \brief Removes a value without resizing the table. Use this method if you need to remove a value from the table while iterating it, as Remove can invalidate iterators. Also use this method if you know you are going to reinsert the item soon (possibly with a different hash) to avoid shrinking then growing the table again. */ bool RemoveUnchecked(ValueType* value) { size_t index = fDefinition.Hash(value) & (fTableSize - 1); ValueType* previous = NULL; ValueType* slot = fTable[index]; while (slot) { ValueType* next = _Link(slot); if (value == slot) { if (previous) _Link(previous) = next; else fTable[index] = next; break; } previous = slot; slot = next; } if (slot == NULL) return false; if (CheckDuplicates && _ExhaustiveSearch(value)) { #ifdef _KERNEL_MODE panic("Hash Table: duplicate detected."); #else debugger("Hash Table: duplicate detected."); #endif } fItemCount--; return true; } /*! \brief Removes all elements from the hash table. No resizing happens. The elements are not deleted. If \a returnElements is \c true, the method returns all elements chained via their hash table link. */ ValueType* Clear(bool returnElements = false) { if (fItemCount == 0) return NULL; ValueType* result = NULL; if (returnElements) { ValueType** nextPointer = &result; // iterate through all buckets for (size_t i = 0; i < fTableSize; i++) { ValueType* element = fTable[i]; if (element != NULL) { // add the bucket to the list *nextPointer = element; // update nextPointer to point to the fNext of the last // element in the bucket while (element != NULL) { nextPointer = &_Link(element); element = *nextPointer; } } } } memset(this->fTable, 0, sizeof(ValueType*) * this->fTableSize); fItemCount = 0; return result; } /*! If the table needs resizing, the number of bytes for the required allocation is returned. If no resizing is needed, 0 is returned. */ size_t ResizeNeeded() const { size_t size = fTableSize; if (size == 0 || fItemCount >= (size * 200 / 256)) { // grow table if (size == 0) size = kMinimumSize; while (fItemCount >= size * 200 / 256) size <<= 1; } else if (size > kMinimumSize && fItemCount < size * 50 / 256) { // shrink table while (fItemCount < size * 50 / 256) size >>= 1; if (size < kMinimumSize) size = kMinimumSize; } if (size == fTableSize) return 0; return size * sizeof(ValueType*); } /*! Resizes the table using the given allocation. The allocation must not be \c NULL. It must be of size \a size, which must be a value returned earlier by ResizeNeeded(). If the size requirements have changed in the meantime, the method free()s the given allocation and returns \c false, unless \a force is \c true, in which case the supplied allocation is used in any event. Otherwise \c true is returned. If \a oldTable is non-null and resizing is successful, the old table will not be freed, but will be returned via this parameter instead. */ bool Resize(void* allocation, size_t size, bool force = false, void** oldTable = NULL) { if (!force && size != ResizeNeeded()) { fAllocator.Free(allocation); return false; } _Resize((ValueType**)allocation, size / sizeof(ValueType*), oldTable); return true; } /*! \brief Iterator for BOpenHashTable The iterator is not invalidated when removing the current element from the table, unless the removal triggers a resize. */ class Iterator { public: Iterator(const HashTable* table) : fTable(table) { Rewind(); } Iterator(const HashTable* table, size_t index, ValueType* value) : fTable(table), fIndex(index), fNext(value) {} bool HasNext() const { return fNext != NULL; } ValueType* Next() { ValueType* current = fNext; _GetNext(); return current; } void Rewind() { // get the first one fIndex = 0; fNext = NULL; _GetNext(); } protected: Iterator() {} void _GetNext() { if (fNext) fNext = fTable->_Link(fNext); while (fNext == NULL && fIndex < fTable->fTableSize) fNext = fTable->fTable[fIndex++]; } const HashTable* fTable; size_t fIndex; ValueType* fNext; }; Iterator GetIterator() const { return Iterator(this); } Iterator GetIterator(typename TypeOperation::ConstRefT key) const { if (fTableSize == 0) return Iterator(this, fTableSize, NULL); size_t index = fDefinition.HashKey(key) & (fTableSize - 1); ValueType* slot = fTable[index]; while (slot) { if (fDefinition.Compare(key, slot)) break; slot = _Link(slot); } if (slot == NULL) return Iterator(this, fTableSize, NULL); return Iterator(this, index + 1, slot); } protected: // for g++ 2.95 friend class Iterator; void _Insert(ValueType** table, size_t tableSize, ValueType* value) { size_t index = fDefinition.Hash(value) & (tableSize - 1); _Link(value) = table[index]; table[index] = value; } bool _Resize(size_t newSize) { ValueType** newTable = (ValueType**)fAllocator.Allocate(sizeof(ValueType*) * newSize); if (newTable == NULL) return false; _Resize(newTable, newSize); return true; } void _Resize(ValueType** newTable, size_t newSize, void** _oldTable = NULL) { for (size_t i = 0; i < newSize; i++) newTable[i] = NULL; if (fTable) { for (size_t i = 0; i < fTableSize; i++) { ValueType* bucket = fTable[i]; while (bucket) { ValueType* next = _Link(bucket); _Insert(newTable, newSize, bucket); bucket = next; } } if (_oldTable != NULL) *_oldTable = fTable; else fAllocator.Free(fTable); } else if (_oldTable != NULL) *_oldTable = NULL; fTableSize = newSize; fTable = newTable; } ValueType*& _Link(ValueType* bucket) const { return fDefinition.GetLink(bucket); } bool _ExhaustiveSearch(ValueType* value) const { for (size_t i = 0; i < fTableSize; i++) { ValueType* bucket = fTable[i]; while (bucket) { if (bucket == value) return true; bucket = _Link(bucket); } } return false; } Definition fDefinition; Allocator fAllocator; size_t fTableSize; size_t fItemCount; ValueType** fTable; }; #endif // _KERNEL_UTIL_OPEN_HASH_TABLE_H